4,231 research outputs found

    A graph theoretic approach to scene matching

    Get PDF
    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors

    The Palaeographical Method under the Light of a Digital Approach

    Get PDF
    This paper has the twofold aim of reflecting upon a humanities computing approach to palaeography, and of making such reflections - together with its related experimental results - fruitful at the implementation level. Firstly, the paper explores the methodological issues related to the use of a digital tool to support the palaeographical analysis of medieval handwriting. It claims that humanities computing methods can assist in making explicit those processes of the palaeographical research that encompass detailed analyses, in particular of the handwriting and, more generally, of other idiosyncratic features of written cultural artefacts. Thus, palaeographical tools are to be contextualised and used within a broader methodological framework where their role is to mediate the vision, the comparison, the representation, the analysis and the interpretation of these objects. Secondly, the paper attempts to evaluate the experimentations carried out with a specific software and, in so doing, to test a humanities computing approach to palaeography at a practical level, so as to direct future implementations. Some of these implementations have already been carried out by the current developers of the application in question with whom the author collaborates closely, while others are still in progress and in need of future iterative refinements

    Paradigm Completion for Derivational Morphology

    Full text link
    The generation of complex derived word forms has been an overlooked problem in NLP; we fill this gap by applying neural sequence-to-sequence models to the task. We overview the theoretical motivation for a paradigmatic treatment of derivational morphology, and introduce the task of derivational paradigm completion as a parallel to inflectional paradigm completion. State-of-the-art neural models, adapted from the inflection task, are able to learn a range of derivation patterns, and outperform a non-neural baseline by 16.4%. However, due to semantic, historical, and lexical considerations involved in derivational morphology, future work will be needed to achieve performance parity with inflection-generating systems.Comment: EMNLP 201

    The Unsupervised Acquisition of a Lexicon from Continuous Speech

    Get PDF
    We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency.Comment: 27 page technical repor
    corecore