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RESEARCH OBJECTIVE AND APPROACH

A.  Space Station Related Applications for Vision Systems

Computer vision systems which can perceive environment through
sensors and respond with appropriate action or decision have numerous
space station applications. Vision systems can be used to automate routine
space station operations thereby relieving crewmen of repetitive tasks.
This increases crew time available for more demanding operations
requiring human skills. Some of the routine Operations which can be
performed by vision systems within the space station module are given
below:

1)  Vision intelligent robots can be used for operations such as
locate, fetch, store and adjust.

2)  During times the modules are not occupied by crewman, vision
systems can be used for "watch dog" monitoring and reporting
of unanticipated events. These include loose objects and
instruments floating by, ECLSS cabin air anomalies, etc..

3) Some flight experiments such as microgravity crystal growth
are difficult to instrument. Vision systems can be used to
monitor such experiment, record data and alert crewmen only
when necessary.

4)  Vision systems are also useful for docking, servicing, assembly
and other advanced space station operations. NASA inhouse
research shows that providing computer vision capability for
orbital maneuvering vehicle (OMYV)) offers several advantages:
provides independence from docking aids and communication
links; eliminates communication delay for vehicle control and
reduces operator training cost for remote control,

B. Research Objective

The general objective of the proposed research is to evaluate the
potential of expert system approach for the development of computer
vision system capable of performing routine tasks within the space station
modules.
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The knowledge base contains the descriptions of several flight
panels. Knowledge is organized and stored as files: 1) 2-D string file which
provides inclusion and left-right-top-bottom relationship among objects.
This information is used to direct search for the desired object; 2) Object
type attribute file which contains several attributes for each type of object;
3) Feature file which has prominent features of all panels; 4) Scene
description file for each panel; 5) Object location file which gives the
inclusion relations of objects.

Scene matching techniques are needed for context sensitive object
recognition.  Context sensitive object recognition which recognizes the
object in the context of the scene is more reliable than context free
recognition. However, errors due to segmentation make scene matching
problem a difficult task. Imperfect segmentation may produce any of the
following errors: mismeasured objects, missing objects or relations,
merged objects, or extra objects.

This research has produced a robust graph-based scene matching
method which is capable of handling problems causes by imperfect
segmentation. The approach is very general and may be used in many
NASA and other applications.  Therefore, the graph theoretic scene
matching method is described as a general technique in this report. It is
then applied to a specific NASA application (space station) in Chapter VII.
The software is developed in Pascal as well as in C.



ABSTRACT

The ability to match two scenes is a fundamental requirement in a variety of
computer vision tasks. This dissertation presents a graph theoretic approach 10
inexact scene matching which is useful in dealing with problems due to imperfect
image segmentation. A scene is described by a set of graphs, with nodes
representing objects and arcs representing relationships between objects. Each
node has a set of values representing various attribute measurements of the object it
represents. Each arc has values representing the relations between pairs of objects,
such as angle, adjacency, or distance. With this method of scene representation, the
task in scene matching is to match two sets of graphs. Because of segmentation
errors, variations in camera angle, illumination, and other conditions, an exact

match between the sets of observed and stored graphs is usually not possible.

In the approach developed, first the problem is represented as an association
graph, in which each node represents a possible mapping of an observed region to a
stored object, and each arc represents the compatibility of two mappings. Nodes
and arcs have weights indicating the merit of a region-object mapping and the
degree of compatibility between twd fhappings. A match between the two graphs
corresponds to a clique, or fully connected subgraph, in the association graph. The
task is to find the clique fhat réprese’nts the best match. Fuzzy relaxation is used to
update the node weights using the contextual information contained in the arcs and
nelghbonng nodes. This sunphﬁes the evaluation of cliques. A method of handling
oversegmentation and undersegmentaiion problems is also presented. The
approach is tested with 4 set of realistic images which exhibit many types of

segmentation errors.
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[. INTRODUCTION
The ability to match two scenes is one of the fundamental requirements in a
variety of computer vision tasks including automatic navigation, object location,
pictorial databases, and character recognition. The specific task accomplished
during scene matching is application or problem dependent. Some of the more
frequently encountered tasks are listed below:
1) Image registration: Let Image 1 and Image 2 be the two given images.
Assume that the field-of-view of Image 1 is completely contained within the
tield-of-view of Image 2. Now, the problem of image registration is that of

locating the subimage of Image 2 which best matches Image 1.

2)  Scene recognition: In scene recognition, the goal is to classify the input image
as one of the known images. For example, in character recognition, the goal is

to classify the input character as one of a set of known characters.

La
S

3-D scene construction: By matching images of a scene obtained from
different positions, one can generate 3-D information about the scene. This is

known as stereoscopic vision.

4)  Object recognition: Scene matching techniques are used for context sensitive
object recognition. Context sensitive object recognition which recognizes the
object in the context of the scene is more reliable than context-free

recognition.




Because of its usefulness in practical applications, scene matching has been a
topic of interest for many years. The scene matching methods developed during the
last three decades can be classified into three major categories: template matching

methods, feature matching methods, and graph theoretic methods.

When the scenes to be matched do not differ in rotation and spatial resolution,
template matching methods such as cross correlation and sequential similarity
detection algorithms may be used [12]. The major problem with template matching
methods is the high computation associated with them. Feature matching methods
characterize each image by a pattern or feature vector and then match two images
by matching their feature vectors [18]. Feature matching methods can tolerate
minor geometric distortions. Many real world problems are not suitable tor
template and feature matching methods. For example, consider two images of the
same scene obtained by sensors from different viewing points. Now the geometric
attributes such as size and shape of objects, and distances between objects, will
change from image to image. Under these conditions where most template and

feature matching methods fail, graph theoretic methods are useful.

1.1 Graph Theoretic Scene Matching Approach

Scene matching is the process of finding a correspondence between regions
of an observed image and objects in a stored representation of a scene. This
matching process is the final stage in a computer vision system, shown in Figure
1-1. During segmentation (Stage 1) the input image is partitioned into

meaningful regions. The region description stage extracts significant attributes of
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Figure 1-1: General model for computer vision systems.

each region. Relationships that exist among various regions are determined
during Stage 3 processing. Matching the input image with the stored scene is

accomplished during the last stage.

The idea of matching two scenes based on matching graphical
representations of the scenes was first developed in 1975 [1]. A graph-based
matching approach has the advantage that it can deal better with inexact matches
caused by differences in viewing angles, scaling, or illumination, or by limitations
ot the segmentation algorithms used. In graph-based matching, regions in a

scene are represented by vertices in a graph, and relationships between regions



are represented by arcs. The vertices have associated attribute values, which
may include measurements of such properties as intensity, texture, area, or

circularity.

A scene can be described by a set of graphs representing various
relationships among the objects. As an example of graph-based scene
representation, Figures 1-2 through 1-6 show a hypothetical scene and a set of
graphs using the relations of adjacency, inclusion, reflectance, and texture. These
figures are from Greene [13], who has developed a means of scene knowledge

representation.

A perfect match between the graphical representations of an observed
scene and a stored scene is an isomorphism between the two graphs. Two graphs
are isomorphic if and only if there is a one-to-one mapping of all vertices of the
two graphs such that all adjacency relationships are preserved. In the most
general case, a matching between two graphical representations of scenes can be
a many-to-many mapping of vertices V, of the graph of the observed scene to
vertices V; of the graph of the stored scene. In matching two scenes, the best
match is desired. The best match may be defined as the match that minimizes
some measurement of differences in attributes of corresponding vertices and

relations.

1.2 Problem Statement
Variations and uncertainties in camera angle, scaling, and illumination, and

problems due to noise make exact scene matching difficult if not impossible.
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Graph theoretic scene matching methods are able to handle inexact scene

matching better than template and teature matching methods.

Previous research, however, tends to assume a perfect segmentation of the
input image, meaning that a perfect match to a stored model can be found.
Unfortunately, segmentation algorithms are not perfect. Several different types
of errors can occur during segmentation. Little work has been done on the
intelligent choice of relations and attributes to facilitate graphical matching in
the real world of imperfect image segmentations. A shadow can cause an
object’s boundary to be incorrectly tound. An apparent break in an object’s
boundary can cause the perimeter to be mismeasured. Extraneous marks or
shadows may be segmented as objects that do not correspond to any objects in
the stored scene representation. Shadows or marks can cause two or more
objects to appear to the segmentation algorithm as one large object. An object
may not be visible due to glare, shadows, or occlusion. Missing or changed

relations are also possible.

In summary, imperfect segmentation may produce any of the following:
mismeasured objects, missing objects or relations, merged objects, or extra
objects. Any of these can cause a graph matching algorithm to fail unless the
attributes and relations used, and the graph matching algorithm used, are

intelligently chosen.

The objective of this research is to develop a robust graph-based scene
matching approach which is capable of handling problems caused by impertect

segmentation.
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he development of a good graph-based scene matching method is a
significant contribution to computer vision, in general, and scene matching, in
particular. This method can be applied to solve many interesting real world

problems. Some of them are given below.

In the task of object location, the input scene is first identified as one of a
number of known scenes. Once the scene is identified the goal is to locate a
particular object within the scene. If the input scene can be represented
symbolically as a set of attributed graphs, this symbolic representation can be
matched with the stored scene representation through graph isomorphism. This
allows the desired object to be located in the context of the scene, thus making

object location more reliable.

In an automatic navigation application, several scenes (e.g. aerial
photographs) are stored in memory for path finding purposes. During the actual
flight, the system compares the acquired image with those stored in memory to
stay on course. In general, the two scenes compared are obtained from different
sensor positions, and exact geometric matching is not possible. A graph theoretic

approach is highly desirable in such applications.

Pictorial databases constitute another application area for graph-based
scene matching [5,17]. In this application, a user may enter, as a database query,
a symbolic representation for a scene he wishes to retrieve. This representation
must be matched to stored representations to find the correct scene(s). Again, a
graph theoretic matching approach is useful, since the use of exact measurements

of angles, distances, and object boundaries in a query would be cumbersome. A



perfect match between the query and a stored scene representation is possible
here, since there is no image processing involved. The main problem in this

application is to index a large number of scenes for quick searching.

In character recognition, the process is to classify an input handwritten
character as an instance of a known character. In graph theoretic matching,
component lines of the character are represented as vertices of a graph, and their
relationships as arcs. This problem differs from the previously mentioned
applications, since the differences between stored and observed versions of a
character are real, and not simply due to segmentation errors or variations of

camera angle.

1.3 Report QOuerview
Previous research in graph-based scene matching has left several problems
unsolved, even when the segmentation process is error-free. The presence of
segmentation errors adds several new problems to the existing list. This
report  builds a complete approach to the problem, from determination of

scene representation through the evaluation of match merits.

To clarify the problems associated with segmentation errors, Chapter II
presents some typical examples of segmented scenes exhibiting various types of
errors. These common segmentation errors and their effects on graphical
matching are analyzed. Chapter II also presents previous research into graphical
matching techniques and their application to inexact scene matching. On the
purely theoretical end of the spectrum, Ullmann and others [3,6,16,29] have

devised algorithms for determining graph or subgraph isomorphisms. These



algorithms generally entail some modification to a basic approach consisting of
tinding a vertex mapping matrix, which indicates all possible mappings of
observed to stored vertices, then checking all possibilities by use of a
backtracking algorithm. Another approach to graph matching entails the use of
association graphs [2,22,32]. The nodes in an association graph are defined over
ordered pairs of vertices from the stored graph and the observed graph. An
ordered pair is included as a node in the association graph if the two vertices in
the ordered pair could map to each other, based on properties of the objects thev
represent. The mapping of several vertices from the observed graph to a single
vertex in the stored graph is allowable, so that regions that were erroneously split
by the segmentation algorithm can be mapped to a single object. An arc in the
association graph from node A to node B indicates that the mappings
represented in A and B are compatible with each other. Matches are then found
by determining the largest cliques, or fully connected subgraphs, in the
association graph. This approach can be used to find common subgraphs of two

graphs.

The association graph method of matching is very promising since it has the
potential to deal with any of the problems of imperfect segmentation: missing

objects, extra objects, merged or split objects, and mismeasured objects.

The details of the vertex mapping matrix and association graph matching
techniques are presented in Chapter II. Then, previous work which was
specifically directed at the scene matching problem is presented and evaluated in

the context of the segmentation problems presented at the beginning of the
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chapter. The balance of the dissertation describes a new approach for
graph-based scene maiching which is better suited to matching in the presence of

segmentation errors.

The first issue to be addressed is the intelligent selection of attributes and
relations to be used to represent scenes as attributed graphs. Past research has
seldom taken into account limitations of segmentation algorithms used on
real-world input scenes. The relations, attributes, and primitives used seem
sensible, but are seldom precisely defined, and have not been evaluated in the
context of imperfect segmentations. A single set of attributes and relations may
not be appropriate for several different types of scenes. For example, in an
aerial photograph, the relations of adjacency and inclusion are natural choices,
but in a scene consisting of well-separated blobs on a uniform background, these

relations would not be useful.

Some obvious attributes that can be used to describe regions are size,
intensity, shape, and texture. Attributes such as size and intensity are usually not
useful unless they can be scale- or intensity- normalized first. Some attributes,
such as perimeter, are quite susceptible to noise or limitations of
boundary-finding algorithms. Also, differences in scale may cause

disproportionate differences in perimeter measurements.

The relations used to describe a scene depend on the type of scene. Some
useful relations have been investigated by Greene [13]. In an aerial photograph
with regions that have shared boundaries, adjacency and inclusion are sensible

choices. In a scene that can be approximately rotation-normalized, the relations



left-of and above make sense. Other relations, such as larger-than,
more-textured-than, or brighter-than, are possible. The use of transitive or
intransitive relations is another choice to be made. The use of an intransitive
relation can make it more difficult to handle the problem of missing objects. In
Chapter III, the selection of attributes and relations to minimize problems due to

segmentation errors and to facilitate inexact matching is discussed.

Chapter [V begins the description of a graphical matching technique that
allows for inexact matches. The starting point of the work presented here is 10
assign weights to the nodes and arcs of the association graph, according to how
good a node-to-node compatibility is and how good a mapping-to-mapping
compatibility is. An algorithm to find the ‘best’ clique in such a weighted

association graph will be presented.

In Chapters V and VI, the use of weighted association graphs for inexact
scene matching is developed. In Chapter V, a relaxation algorithm for updating
the node weights of the association graph is presented. A simulation is run on
several variations of an example scene, including problems of extra and missing
objects, as well as mismeasured attributes and relations. The use of binary
relations is contrasted with the use of real-valued relations. Another difficult
problem is that of oversegmentation and undersegmentation. In Chapter VI, the
basic algorithm of Chapter V is expanded to handle these problems. A
simulation is run on example scenes that exhibit these problems, using

real-valued relations.
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Chapter VII describes an application of the matching algorithm developed
here to a real-world scene matching problem. A system to demonstrate inexact
scene matching for object location was developed for the National Aeronautics
and Space Administration (NASA), at Marshall Space Flight Center. Object
location would be a necessary capability in a machine vision/robot arm system
for use in the space station laboratory module, which could ultimately handle
routine tasks such as fetching and storing objects and monitoring experiments. In
this system, we incorporate scene representation, matching, and match
evaluation techniques developed in this research. Chapter VII includes the
results obtained by running the relaxation algorithm on an actual scene ofa
space shuttle simulator panel which was used as a realistic test image tor the
object location system. This chapter also includes a discussion of the practical
considerations of using this algorithm on a real-world problem of realistic

proportions.

Chapter VIII is an evaluation of this work, its limitations and possibilities

for future research.




1. PREVIOUS RESEARCH

A graph-based or graph-theoretic approach for scene matching was first
reported in 1975 [1]. Since then, several researchers have attempted and succeeded
in dealing with inexact matches based on topology-like features. In this chapter, the
existing graph theoretic scene matching methods are summarized and then analyzed
10 determine the implications of imperfect segmentation on their performance.
Also, the analysis of various types of segmentation errors and their effect on graph
theoretic scene matching methods is needed in determining the direction for future
research. Different types of image segmentation errors are discussed with

illustrations in Section 2.1.

2.1 Segmentation Errors

A robust, reliable, and accurate image segmentation system must form the
foundation of every computer vision system. However, in the last three decades,
research has not yet produced a truly reliable segmentation system which can
handle varying imaging conditions and noise. There are several factors which
make image segmentation a difficult problem, and Hung has addressed these

problems in detail [15].
With the help of examples, in this section a few errors which are common to

image segmentation are illustrated. Three space shuttle simulator panels before

and after segmentation are presented in Figures 2-1 through 2-3. The

14
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Figure 2-1: Segmentation errors: merged and missing objects.
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digital image captured by a solid state camera is segmented by using
segmentation software on a commercially available image processing system
(Perceptics). During segmentation, one or more objects may go undetected.
Object A in Figure 2-1(a) is not present in the segmented image, Figure 2-1(b).
This type of error is normally due to poor contrast between the background and

objects. Blurred edges may also be the cause for this type of error.

When the boundary between two objects which are close to each other is
not clear, undersegmentation is possible. In an undersegmented image, several
objects may merge together to form a single region. In Figure 2-1(a), objects B
and C merge to produce a single region in Figure 2-1(b). Similarly, D and E

have merged together.

Shadows, glare, and sometimes severe noise may result in extraneous
regions in the segmented image which do not correspond to any real object in the
scene. In Figure 2-2(b), A is a cluster of extra regions which are due to the text
printed on the panel. It is not easy to mask or prevent such regions from

appearing in the segmented image. Region B corresponds to a scratch on the

panel.

The presence of shadows and noise may also cause oversegmentation in
which pixels belonging to an object are partitioned into several disjoint regions.

In Figure 2-3(a), object A is split into three regions.

Poor segmentation may yield incorrect values for geometric and intensity

attributes used to characterize regions. Object B in Figure 2-3(a) appears much
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smaller than its actual size in Figure 2-3(b). This is due to the inability of the
boundary detection algorithm to handle the shadow within the bright object. The

net effect is a set of distorted geometric attributes.

2.2 Implications for Graphical Matching Methods

In the graph theoretic approach, two scenes are matched by matching their
graphical representations. Segmentation errors affect attribute values of nodes
as well as the structure of the graph. Various effects that segmentation errors

can have on graph representation of scenes are given below.

Mismeasured attributes: Since the segmentation algorithms will not find
perfect region boundaries, an exact match between regional descriptions of an
observed region and a stored object would be a rare occurrence. One must
consider that a region may map to a particular object if its regional description is
similar enough to that of the object. This implies that the selection of attributes
to be used for describing regions is very important, since possible mappings
should not be ruled out on the basis of attribute measures that are unreliable
because of segmentation errors. As seen in Figures 2-1 and 2-3, a region’s

perimeter is an example of such an unreliable attribute.

Reversed relations: In the case of relations such as ‘adjacent-to, ‘left-of," or
‘above,” it may be possible to find exact matches. However, we have seen that
segmentation problems may cause errors in relations as well as attributes. For
example, positional relations such as ‘left-of’ or ‘above’ may be different in the
segmented image because of rotation changes or mismeasured boundaries that

cause region centroids to be shifted. If the relation ‘left-of is defined based on
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horizontal pixel values of object and region centroids, a very slight rotation can
cause the relation to be opposite in the observed scene. In other words, selection
and definition of relations are critical steps. As far as possible, relations which
are less sensitive to segmentation errors must be chosen. When possible,
real-valued relations should be used instead of binary relations, so that when
seeking a match between observed and stored scenes, one can look for similarities

in relations rather than exact matches.

Missing objects and relations: Segmentation errors may change the
structure of the graphical representation of the scene. When parts of a scene are
not visible in the input image, or when there are occluded objects, the graphical
representation will have missing nodes. Missing relations among objects result in
missing arcs. An example is shown in Figure 2-4. In the stored scene, region B
includes region A. Because the scene is only partially visible in the observed

image, region B does not include region A.

Extra objects and relations: An unexpected object appearing in the scene
corresponds to an extra node. If the extraneous region is not similar to any of the
objects in the stored scene, it may be ignored. If it is similar to one or more
objects, then the scene matching problem becomes more complicated. An extra
relation between two objects in the observed scene corresponds to an extra arc.
One common situation that could lead to this problem is an occluded object
along with use of an intransitive left-of relation. This situation is shown in Figure

2-5. Here, object B is not visible in the observed scene, so the relation A left-of
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¢ necomes an extra arc. This problem is eliminated if transitive relations are
ssed. Of course with some relations such as adjacency (shared boundaries), a

rransitive relation cannot be used.

Split and merged objects: The presence of split or merged objects in the
segmented image causes the structure of the observed graph to differ from that
of the stored graph. If an object is split into two regions, the observed graph will
contain two nodes corresponding to that object rather than one, and may have
extra arcs representing the relations between the two nodes. If two objects are

merged together, the opposite problem occurs.

In summary, missing nodes, extra nodes, missing arcs, and extra arcs are
possible, due to segmentation errors. This may alter the structure of the graph
representation of the input image. The graph theoretic matching method must
be capable of dealing with the above structural changes. In the rest of this
chupter, existing graph-based scene matching methods are presented and

evaluated in view of segmentation errors.

23 Previous Research in Scene Representation and Matching

Graph-based scene matching methods can broadly be classified into two
categories: vertex mapping matrix methods and association graph methods.
Both approaches accomplish matching based on the principle of graph
isomorphism. There are many terms having to do with graph isomorphism that
should be defined, since different authors use these terms in different ways.
Shapiro and Haralick provide definitions of many graph-theoretic terms, and

>0me of them are described below [26].

Py —



Graph Homomorphism: A graph homomorphism from Graph G to Graph H is
a mapping in which all vertices of G map to a subset of the vertices of H such
that if Vertex @ maps to ¢ “and Vertex b mapstod'(a’#b"), then any relation
that exists between cand b in G also exists between @ “and b “in H.
Homomorphism need not be a one-to-one mapping. Several vertices in G can

collapse into a single node in H.

Graph monomorphism: A graph monomorphism is a homomorphism that is one
to one. In other words, each node of G maps to a distinct node of H, while
preserving the arc relations of G, although there may be extra nodes or arcs on H
that have no counterparts in G. The term subgraph isomorphism seems to be a

more common term for relational monomorphism, and it is the term used in this

dissertation,

Vertex-induced subgraph isomorphism: A vertex-induced subgraph

f.\()morphism Is a special case of subgraph isomorp_hism. If there is a subgraph
“SOmorphism from G 1o H, and if for all vertices a and b in G mapping to ¢ " and
> inH, Tespectively, the relations between q and b in G match exactly with those

Petweena " and b - in H, then the isomorphism is a vertex-induced subgraph

S0morphism,

faPh isomorphism: A graph isomorphism is a mapping in which each vertex in

G maps | - . o :
PS 10 a unique vertey in H, and each vertex in H is mapped to by a unique
ver

XotG. Itis g pertect graphical match.




Finding an isomorphism between two graphs is an NP-complete problem,

since the number of mappings to try for n nodes is O(n!). The computation is
exactly proportional to n! only if all possible node mappings are tried. When the
number of mappings can be restricted to a small number (based on graph
properties), the problem can be solved in a reasonable amount of time.
2.3.1 Vertex Mapping Matrix Approach
One method for finding graph (or subgraph) isomorphisms involves
setting up a matrix called the vertex mapping matrix. The rows of the matrix
represent the vertices of the subgraph G, and the columns represent the
vertices of the graph H. A value of 1 at position (x,y) in the matrix indicates
that vertex x in G could map to vertex y in H. A basic algorithm for finding

isomorphisms using the vertex mapping matrix approach is as follows:

1) The initial vertex mapping matrix M °is a binary matrix which is formed

by comparing the in-degree and out-degree of each vertex in G with all
vertices in H. \/%  is set to 1iff the in-degree and out-degree of xin G
are less than the in-degree and out-degree of y in H, respectively.
Otherwise, V¢ , is set to 0. If other constraints on nodes are known,
they too may be used in narrowing down the possibilities in the vertex

mapping matrix.

19
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Some of the ones in M °are changed to 0 to obtain a matrix M * such that

the following are true:

a) There is exactly one 1 in each row of A1 "




b) There is at most one 1 in each column of \/ -,

A given M ° matrix may yield many matrices W " to satisfy the above

conditions. These matrices may be found by a backtracking procedure.

3) Foreach M found in (2), compute matrix C as

C=(M (M BY). (2-1)

Now, graph G is isomorphic to a subgraph of H, with the mapping given
by V", iff, for alliand j,if A, = 1 thenC,; = 1. For vertex-induced

subgraph isomorphism, C must be equal to A.

Example:

This example illustrates the vertex mapping matrix method for
determining subgraph isomorphism. Two graphs G and H are shown in
Figure 2-6. (Note that G is a subgraph of H.) Applving the above procedure

to this problem, we obtain

1234

1 {1101
M°=210100
310110

The backtracking procedure will produce two possibilities for M "

1234 1234
111000 110001
My =210100 M',=210100
310010 310010
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Figure 2-6: Two graphs and their adjacency matrices.




spplving Equation 2-1 to these matrices gives:

o
<

010 011
c,=001, and C,=001.
000 000

Since C, = A4, the mapping represented by M " is a vertex-induced subgraph

isomorphism (i.e. there are no missing arcs among vertices in the subgraph).
The matrix C ; satisfies the broader condition for subgraph isomorphism (if

4, =1thenC,, = 1), in which there may be missing arcs in G.

!

Several modifications to this basic algorithm have been suggested in
order to speed up the algorithm [3,6,16,29,30]. The modification proposed by
Ulimann [29] consists of reducing the number of ones in M °before using the
backtracking procedure. If Vertexain G canmap toa “in H, then Mg ,-is 1.
Ifb and care neighbors of a in G, then they must map to some b “and ¢ “in H
which are neighbors of @ . If this is not true, then MY . is changed to 0. This
ensures that every \l " that can be obtained from A1 °is an isomorphism.

There is no need to compute the matrix C to check for isomorphism.
Ullmann suggests that this procedure be continued until no 1 in the vertex

mapping matrix is set to 0 during a complete iteration.

Mittal [16] describes an algorithm for directed graph isomorphism in
which properties other than in-degree and out-degree are used to reduce the
number of mappings to be tried. He finds the distances between all pairs of
vertices in each graph using Floyd’s algorithm. The vertices of each graph are
then partitioned into several classes such that vertices that are in the same

class have the same in-degree and out-degree. Also, vertices in the same class

.L;,




are all separated from each other by a fixed distance. A vertex from G can
map to a vertex from H only if they belong to identical classes. Although
many possibilities are eliminated, there may still be backtracking required to
determine some remaining mappings. This approach is only for
isomorphisms, not for subgraph isomorphisms or other imperfect matches
between graphs. So, it is not appropriate for scene matching applications, in
which exact isomorphism may be a rare occurrence.
2.3.2 Association Graph Method

Another method for finding graph isomorphisms is the association graph
method. Rather than representing a possible mapping by a 1 in the vertex
mapping matrix, it is represented by a vertex in the association graph. An arc
between two vertices in the association graph indicates that the two mappings
represented by the vertices are compatible. In order to find an isomorphism
or any subgraph-to-subgraph mapping from the observed to the stored graph,
a maximal clique (fully connected subgraph) in the association graph is

sought.

In a scene matching application, the nodes represent region-object pairs.
Arcs between nodes represent compatibilities between pairs of mappings.
Nodes in the association graph exist if a region-object mapping is possible,
based on similar local properties of the regions and objects. An arc exists if
the relation between the two regions matches the relation between the two
corresponding objects. In order to determine a mapping from observed scene

to stored scene, the largest maximal clique in the association graph is found.




Example:

Figure 2-7 shows the association graph for the graphs shown in Figure
2.6. Each 1 in M °gives a vertex in the association graph. Two nodes (x.y)

and (x , v )are connected by an arc if and only if the following condition

holds:

If x is adjacent to x "then /is adjacent to v .

For isomorphisms, the association graph cannot have arcs between nodes
(x,yYand (x.y Yor(x.y)and(x",v),since this implies ‘collapsing’ a
pair of nodes in G or H into one node. If we wish to allow for
homomorphisms, these arcs are permissible. The association graph in Figure
2-7 contains two largest maximal cliques: {(1,1), (2,2), (3,3)} and {(1,4), (2,2),
(3,3)}. The first clique is a vertex induced isomorphism (the solution
obtained from A | in Section 2.3.1) and the second clique is a subgraph

isomorphism (M ~,).

Figure 2-7: Association graph: cliques represent isomorphisms.
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An algorithm which may be used for finding maximal cliques is given

below:

1) Assume all vertices are in the same clique.

2) Check pairs of vertices; if there is no arc between them, then they must
be in separate cliques. Split the potential clique into two parts; one with
vertex x and not y, and the other with vertex y and not x. Each part

contains all of the other vertices of the original potential clique.

3) Recursively perform (2) on each potential clique. When no more
splitting is needed, all the remaining potential cliques are actual cliques.
The maximal cliques are the ones that are not subsets of any other

cliques.

Figure 2-8 is an illustration of this clique finding algorithm on the
example of Figure 2-7. Each group shows the potential cliques at each
iteration of the splitting process, separated by semicolons. Maximal cliques
are marked by asterisks. The groups that are crossed out are duplicates of
groups previously considered or are subsets of maximal cliques previously

found.



[teration 1:

(LD(L2)(L4)(2,2)(3,2)(3.3)

[teration 2:
(L, 1)(1,4)(2,2)(3,2)(3,3);
(1,2)(1,4)(2,2)(3,2)(3,3)
[teration 3:
L,1)(2,2)(3,2)(3,3); (1,4)(2,2)(3,2)(3,3)
1’2) 272) 3’2) 373)a > y - - y
Iteration 4:
{(1LD(22)(3,3) (2,2)(3,2)(3.3)
*(1,4)(2,2)(3,3); & =2
(1L,2)(3,.2)(3,3); (2,2)(3,2)(3,3)
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(3,2)(3.3);
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[teration 6:
*(3,2); 3
*(1,2); &
Figure 2-8: Illustration of a parallel clique finding process.

2.4 Previous Research on Inexact Graph Theoretic Matching

The algorithms described in Section 2.3 are simply intended for matching
graphs where exact graphical matches can be found. However, in scene matching
applications, an exact match is a rare occurrence. Previous research on inexact

scene matching using the graph theoretic approach is summarized in this section.

Tsai and Fu describe an error correcting subgraph matching algorithm
[27,28]. In this approach, the observed or input scene is represented as an
attributed graph (graph with weights on vertices and arcs). and matched with part
of the stored graph by measuring the amount of distortion of vertices and arcs

needed to obtain a match. The attributed graph may have missing or



qismeasured nodes and arcs. Missing nodes are due to missing objects, and
nismeasured attributes are due to noise, lighting conditions, or geometric
distortions. Simularly, missing nodes or deformed nodes may result in missing
qres. Noise may alter the weights associated with an arc. The assumption of
their approach is that the pattern deformation probabilities or densities can be
Jetermined, so that the conditional probability #(w | w ") where w " is the
observed scene and wis the stored scene, can be computed. In other words,
deformation probability densities are used to obtain the maximum likelihood
solution. In a problem such as character recognition, it is possible to find these
probability densities using a sample set of characters. However, in scene
matching, determining the probabilities of an object being missing or an attribute
being mismeasured due to a segmentation error is difficult, since the
segmentation errors are not predictable. The subgraph error correcting
isomorphism approach of Tsai and Fu also allows only for one-to-one mappings.
As a result, this approach cannot handle extraneous objects in the input scene or

the problems caused by oversegmentation or undersegmentation. Only missing

or mismeasured objects or relations are handled.

A similar approach is described by Wong and You [31]. Rather than
starting with a prototype and a set of probabilities or densities for all possible
deformations, stored scenes are represented as "random graphs." A random
graph is a pair R =(W,B), where W is the vertex set and B is the arc set. Each
element of W and B is a random variable. Rather than finding a match that

maximizes a probability measure, they find a match that minimizes a measure of
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AALrOPY- This method is also suitable for applications such as character
recognition, where sample patterns can be used to determine probability

jistributions of the random variables.

Haralick and Shapiro [25,26] describe another approach to inexact graph
theoretic scene matching. They assume that the observed scene is a randomly
altered version of the stored, prototype, scene. Weighting functions assign
weights to vertices in the stored graph. The weight of a vertex indicates the
importarnce or prominence of the corresponding object. Relations (arcs) also
have weights assigned to them, to indicate their importance. Weights on vertices
sum to 1, as do weights on arcs. An inexact mapping must meet the following
conditions:

1) Each observed object must map to the corresponding stored object well
enough. The quality of the mapping is determined by a difference measure,

and its value must be less than a predefined threshold.

2)  The sum of the weights of those stored objects that do not have any
observed object mapping to them must be less than a threshold. This
ensures that there are not too many important objects missing from the

observed scene.
3) The sum of weights of missing relations (arcs) must be less than a threshold.

Haralick and Shapiro agree that defining a "best match" using all three
conditions stated above is difficult. A perfect match with very few vertices is no

good; neither is a sloppy match involving all the vertices.



Yang, Snvder, and Bilbro [32] describe the use of association graphs tor

finding inexact matches in scenes that have been oversegmented. They have

modified the association graph method by allowing multiple regions to map to

the same object. The approach described requires that after many-to-one

mappings, the adjacency relations between regions in the observed scene and

petween corresponding objects in the stored scene match exactly. Adjacency is

the only relation used by them.

2.5 Evaluation

An evaluation of the previous research in the area of inexact graph

theoretic scene matching has led to the following conclusions:

1)

2)

3)

4)

The existing techniques do not explicitly allow for multiple relations to exist
between two vertices. The use of several relations among the same set of
vertices is sensible in scene matching, since there are many relations among

objects in a scene.

Proper selection of attributes and relations is critical to the success of the
graph theoretic approach. This problem becomes even more important

when the segmentation process is not error-free.

None of the methods reported in the literature are capable of handling all
the various problems caused by imperfect segmentation. Some methods

can deal with missing vertices and arcs or with oversegmentation.

The probabilistic methods are suitable for problems such as automatic

character recognition where various probability density functions can be



(9]
w

determined from sample data.

Current applications of association graphs are inadequate since they do not

AV Y
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allow for any measures of merit indicating how good a region-to-object
mapping is, or how compatible two mappings are. However, this method is
more promising than the vertex mapping matrix method, since it allows for
matching of conimon subgraphs, not just subgraph isomorphisms. This is
important because a subgraph isomorphism cannot be found when both

missing and extra objects occur in the observed scene.

Based on the evaluation presented in this section, a graph-based scene
matching method which is capable of handling segmentation errors is developed
in the remainder of this ¢ report. Problems of attribute and relation
selection, and graph representation of scenes, are presented in Chapter III. The
improved scene matching method based on association graphs is described in

Chapters IV through VI.



ne REPRESENTATION OF SCENES BY MULTIPLE GRAPHS

As mentioned in the previous chapter, the problems addressed in this chapter
include graph representation of scenes, and selection of attributes and relations. In
Jeveloping the method of scene description, we keep in mind that the scene
matching process will be attempting to match observed regions to stored objects
hased on similarities in local attribute measurements. Comparing relations which
exist between pairs of regions to the relations between the corresponding pairs of
objects will allow the matching procedure to use the scene context to eliminate

incorrect mappings.

Much of the exisfing research does not investigate the appropriateness of
various types of relations and attributes to the problems peculiar to scene matching.
We describe a set of attributes and relations that should be appropriate for many
scene matching applications. The attributes and relations used are chosen to
facilitate inexact scene matching by graphical matching techniques. The relations
used are transitive when possible, so that an observed graph with missing vertices
can be matched directly to a stored graph, by deleting only the missing vertices from

the stored graph.
Attributes and relations should be chosen in a way that facilitates inexact

matching. The matching should be fault-tolerant, but should be able to determine

the correct match, not choosing a false match as the best.

36
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3.1 Graph Representation

Over the years, several methods for representing scenes by graphs have
beenl developed [8,18,19,26,28]. The approach used here is to model a scene by a
set of graphs (G 1. G 2. oo, G v}, all graphs defined on the same set of vertices
(Vi VeVl Each object or component in the scene is represented by a
vertex. With vertex V', we associate an attribute vector
(O =(x 1 (Ve)x2(Ve)...x.(V)]. The components of X (V) are
real-valued measurements taken on the object represented by I . For example,
«, (V) may be the area and x> (V) may be the circularity measure of V'«
Each graph describes a particular relation among the vertices. For example, &,
may describe the adjacency relation and G, may describe the reflectance relation

among the scene objects.

The above approach is similar to the one used by Faugeras and Price [10].
The approach described in this section allows the use of real-valued as well as
binary relations, whereas the Faugeras and Price approach allows only binary
relations. Real-valued relations are relatively more fault tolerant and therefore
suitable for inexact scene matching when the segmentation process is not perfect.

The four rules given below are useful in constructing scene model graphs.

Rule 1: If a binary relation R is symmetricand V', RV, draw a directed arc

from Vr. toV,.and a directed arc from V', to V.. IfV, is not R-related to
V,,leave V,and V', unconnected. R is symmetric if and onlyif V., RV,

means that ", RV/,. For example, adjacency is a symmetric relation. An
undirected graph may be used to describe a symmetric relation, but since

undirected graphs cannot describe asymmetric relations, for the sake of
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uniformity, directed graphs are used to specify all tvpes of relations.

Rule 2: [f the binary relation R is asymmetric and if it is known that I, R 1" ;is

always true, then include an arc from V', to V', . If there is a possibility of V',
RV ,orV , RV, drawarcs fromV oV ,and V" ;t0 V.. Rule 2 ensures that
the graph of the observed image remains a subgraph of the model no
matter what relation V', and /', have in the observed scene. An example
would be the relation ‘above.’ If only slight rotation is expected, for many
pairs of objects in the scene we can be sure of the observed ‘above’ relation.
However, if the centroids of two objects have almost the same y coordinate,
a very slight rotation can cause the relation ‘above’ to be reversed. This is

shown in Figure 3-1.

Rule 3: Each binary relation must be explicitly shown even if the relation is

transitive. If R is a transitive relation, and if V', RV ;and IV, RV, then V',
R V. According to Rule 3, the relation V', R V' must be shown explicitly.
This forces the graph of the observed image to remain a subgraph of the

model even if V', is missing in the observed image due to noise or improper

segmentation. (This was illustrated in Figure 2-5.)

Rule 4; In case of a real-valued relation, there must be an arc between every

pair of vertices. The absence of the relation between two vertices must be

indicated by assigning zero weight to the arcs connecting them.

3.2 Attribute Selection

Primitives used in scene matching applications fall into two categories:

regions and line or curve segments. Regions are useful primitives in applications
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such as aerial scenes, or when scenes consist of separated objects on a
background. Line or curve segments are used in character recognition or in
other applications in which scenes can be represented as line drawings. Both

types of primitives may be used in the same system.

Attributes that can be used to reliably distinguish among the objects in a
scene are useful in narrowing down the set of regions that can map to a
particular object. However, there is a tradeoff involved, since the best attributes
to use may also be the most difficult to measure because of high computation or
special equipment needed. The characteristics of typical objects encountered in
scenes, and the types of errors a given segmentation algorithm is prone to make,
must be considered in selecting attributes. Any attempt to find one universal set

of attributes useful for every application is futile.

Attributes can be classified into two basic types: region-wide attributes and
geometric attributes. Region-wide attributes are averages over the entire area of
a region, and do not depend on shape. Values of some geometric attributes
depend on a region’s size, and others depend on shape. Hence, some geometric
attributes are sensitive to errors in the detection of a region’s boundary. Some

examples of each of these types of attributes are given below.
Region-wide Attributes

Intensity: This is the average brightness of the pixels contained within the object

boundary. This attribute is sensitive to changes in illumination and sometimes to
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changes in sensor position. Because it depends on the boundary, segmentation

orrOrS Can cause errors in the intensity measure if the region is not of uniform

intensity.

Texture: One measure of texture is the variance of the histogram of the region’s
intensity. As with intensity, boundary detection errors can cause errors in texture

measure if the region does not have a uniform texture.

Color: When an image is obtained by a color camera, values for the amount of
red, blue, and green at each pixel are available. The color of a region can be
defined as a set of coefficients representing the average of the red, blue, and

green values respectively over the area of the region.

Range: Range is the distance of the object from the sensor. A range finder is
needed to obtain this measurement. It is useful in distinguishing objects from
marks that occur on a background, as in the simulator panel scenes shown in

Chapter II.

Region-wide attributes are often useful when segmentation errors are present, as
they are less sensitive than geometric attributes to errors in the detection of an
region’s boundary.

Geometric Attributes

Attributes to Describe Curves: Some attributes useful when curve segments are

the Pflrmtlves being used are curve length, length of a line between the curve’s



endpoints. rotal angle change from one end to the other, and symmetry [33]. The
qain difficulty in using curve segments is to determine where to break a complex
curve into primitives. Ordinarily they are broken at inflection points. Noise and
segmentation erTOrs can cause discrepancies between observed curves and their

stored counterparts.

perimeter: This is the length of the region’s boundary. Perimeter is especially

susceptible to segmentation errors, but is invariant to translation and rotation.

srea: The number of pixels contained within a region’s boundary is the area.

Since it depends on boundary, this attribute is also sensitive to segmentation

errors.

Circularity: The circularity of a region can be defined as

inxarea / perimeter? This gives a circularity measure of 1 to a circle, /4
to a square, and smaller values for rectangles with increasingly uneven side
lengths. This attribute is sensitive to boundary detection errors, but is invariant

to scale, translation, and rotation.

Length, height: The length (height) of a region in number of pixels in the
horizontal (vertical) direction can be useful. However, it is sensitive to changes

In rotation.

Extent: The extent of an object can be defined as the product of its length and
height. This measure is much less sensitive than the area measure to

Ségmentation errors, although it is sensitive to rotation.



Elongation: The ratio of length to height can be called the elongation of the
ong '

~iact. This simple indicator of shape is often usetul in distinguishing among
opject o7

. iferent objects. It is invariant to scale, although it is sensitive to rotation.
1

d
y(inimum bounding rectangle: The area, length, and height of the smallest
rectangle that can enclose the region are useful measures, less sensitive than area
i o
(0 segmentation errors, and not sensitive to rotation. However, it is harder to

=

compute than the extent of the region.

Rectangularity: Rectangularity is the ratio of the region’s area to the area of its

minimum bounding rectangle.

Geometric attributes that depend on the measurement of perimeter are
susceptible to segmentation errors. Those that depend on length and height

measures are less susceptible to these errors.

The choice of attributes should be tolerant to noise and errors. A pattern
vector for each object can be obtained, components of which are relatively
insensitive to noise, scaling, and rotation. Differences between pattern vectors of
observed regions and stored objects are used to determine which regions could
map to which objects, based on local properties alone. Ifa region’s pattern
vector does not fall within the allowable distance to any stored object, the region
is disregarded. If a region is a possible match for more than one object, the
context of the graphical relationships among objects will be used to determine

which object it actually represents.
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Relation Selection

13

[t is important to select relations so that inexact matches are facilitated.
Relations may either be binary (i.e. the relation either exists or does not) or

i,6331.va1ued. The following sections describe sensible binary relations that may
be used for scene descriptions, and real-valued counterparts, which provide an
improvement over binary relations in the case of inexact segmentation.
3.3.1 Binary Relations
Relations may be classified into three groups: comparative relations,

positional relations, and topological relations. The binary forms of these

tvpes of relations are described below.

Comparative Relations: Comparative relations are found by comparing
values of attributes of two regions. Any attribute may instead be expressed as
a comparative relation. For example, intensity, texture, area, and circularity
attributes can be expressed as the relations brighter-than, more-textured-than,
larger-than, and more-circular-than, respectively. An advantage of expressing
these values as relations is that scaling is not necessary. However, if they are
not expressed as attributes, they cannot be used to eliminate possibilities for

region-object mappings.

Positional Relations: The relations left-of and above are commonly used to
describe the relative positions of two regions [26,31]. However, these
relations are seldom precisely defined. There are several possible definitions

of left-of and above.




A could be considered left of B if:

1) ally coordinates in object A are less than all y coordinates in object B.

2) somey coordinate of A is less than all y coordinates of B.

3) there is a horizontal line passing through some pixel in A and some pixel
in B such that the y coordinate of the A pixel is less than the y
coordinate of the B pixel.

4) they coordinate of the centroid of A is less than the y coordinate of the
centroid of B.

5) the centroid of A lies within the left-of quadrant shown in Figure 3-2.

Some of these definitions are inherently transitive, such as the last two. If
relations used in graphs to describe scenes are transitive, matching by
subgraph isomorphism is facilitated, because the row and column of a missing
vertex can be deleted from the stored graph’s matrix, and the remaining
matrix will be a perfect match. For example, in a left-of relation, if an
intransitive relation is used and an intermediate vertex is missing, the
observed graph will have an arc that is not present in the stored graph, so the

observed graph is not a subgraph of the stored graph.

The use of the ‘left-of and ‘above’ relations allows a scene to be
described in an inexact manner, allowing for rhatches even when a change in
camera angle or a slight rotation occurs. The definition of ‘left-of based on
Figure 3-2 allows for scenes that appear quite different to be represented by
the same graphs. The fourth definition given above may be more pleasing
intuitively, although it too allows for very different scenes to have the same

representation. An advantage of the fifth definition is that we may use an
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overlapping angle region in which both of the relations "left-of and ‘above’
hold. With this approach, the tolerance for rotation of the scene does not

change as the distance between the objects changes.

—af AN
Left-of — Opject Centroid
/ N

/ N
/ | N

Figure 3-2: A possible definition of relations ‘left-of and ‘above.’

A problem with the left-of and above relations is that they are sensitive
to rotation. One way to deal with this problem is to allow for overlapping
ranges fo; the two relations. In the stored scene, region A is specified as
being left-of and above B. In the observed scene, one or the other will occur,
as long as the rotation is not too large. This way, we have a subgraph
isomorphism, because the observed scene {s missing a relation, but will not
have an extra relation. The overlapping of ranges is shown in Figure 3-3.

Another useful approach to this problem is explained in the next section.
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Figure 3-3: ‘Left-of and ‘above’ relations with overlapping domains.

Topological Relations: The relations of adjacency and inclusion are useful in
scenes such as aerial photographs, A boundary pixel of a region is defined as
a pixel which has a neighbor belonging to another region. Region A is
adjacent to Region B if and only if there are one or more boundary pixels of
Region A that have neighbors that are boundary pixels of Region B. Region
A is included in Region B if and only if Region A is part of a composite
region, S, such that all boundary pixels of S are neighbors of boundary pixels
of B. Region A may be the only region in S.
3.3.2 Real-valued Relations

Whenever a binary relation is used, variations in the observed scene can
cause the graph representations to vary widely. With binary relations,

Region A is either adjacent to B or not; either above B or not; either brighter
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than B or not. It is preferable to avoid these either-or relations, since a slight
change in rotation or illumination, or a slight segmentation error, can cause
these relations to be reversed. For relations that can be measured as real

numbers, a real-valued relation may be used.

Figure 3-4(a) shows the disadvantage in an either-or decision about
adjacency. Observed regions A and B match objects a and b, but because of a

segmentation error, the observed regions are not adjacent to one another.

Figure 3-4(b) shows the same problem with the relation of inclusion.
Because of a segmentation error, region B is not included in region A, even

though A wraps around B to a large extent.

The difficulty with the left-of and above relations is shown in Figure
3-4(c). Whether the relations are defined in terms of four quadrants or by
comparing y coordinate values of the centroids, a slight rotation can cause the

binary relation to change.

In Figure 3-4(d), the problem with a binary relation brighter-than is
shown. Due to shadows, glare, or changes in illumination, particularly with
shiny surfaces, the brighter-than relation between two regions may be

reversed.

The use of real-valued relations allows for a more accurate
representation of the relations between objects, and a more accurate

evaluation of how similar or different two relations are.
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Figure 34: Disadvantages of using binary, ‘either-or,’ relations.
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For example, if the adjacency relation is represented as two real-valued
arcs, the percentage of each region’s boundary that is shared with the other
region can be the value of the arc. This is shown in Figure 3-3(a). If the
stored relation A adjacent-to B has a value of 1%, and the observed relation
A adjacent to B has a value of 0%, the difference is just 1%. This more
accurately reflects the difference in adjacency relations between the observed

and the stored scene.

This real-valued representation of adjacency as percentage of boundary
shared eliminates the need for a separate representation of the inclusion
relation. We define a boundary pixel of a region to be any pixel that borders
on a pixel that is a part of a different region. By this de;fim'tion, a region that
includes another will have outside and inside boundary pixels. Whenever B
adjacent-to A has a value of 100%, it implies that B is included in A, since
100% of its boundary pixels are adjacent to A. In Figure 3-5(b), object B
adjacent-to A has a value of 100%, and region B adjacent-to A has a value of
85%, so that there is a difference of 15%, rather than a total rm'srnétch as with

the binary inclusion relation.

For representation of positional relations, the angle that a line between
object centroids makes with the horizontal may be used. Then, in comparing
the observed scene and the stored scene, the angle difference between a pair
of regions and a pair of objects will be 0 if a perfect match, and 180 degrees if

completely opposite. Figure 3-5(c) illustrates the advantage of using this



A 1% Adjacent-to B A 0% Adjacent-to B
B 1% Adjacent-to A B 0% Adjacent-to A
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Figure 3-5: Real-valued relations allow similarity to be conveyed.
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representation. A slight rotation changes the value of the angle relation from
130 degrees to 137 degrees, rather than changing the binary relations trom

above and not left-of, to not above and left-of.

Even with a real-valued relation to represent the positional relation
between objects, a substantial amount of rotation will cause problems. A
scene may be rotated in such a way that a false match of regions to objects
may look correct because of the angle measures. So, if substantial rotation is
expected, it is better to handle the problem by first finding certain
distinguishing features that can be used to rotation-normalize the scene. If
only slight rotation is expected, the comparison of angle measures will provide

good results.

Another method for handling rotation is to express positional relations
as real values, and then to try the matching algorithm on several versions of
the scene at different rotations. It would then be expected that the best match

would be with the scene that has been rotation-corrected.

For the brightness relation, and other relations between region
attributes, as well, it is helpful to put a real value on the relation. For
example, the value of the relation A brighter-than B can be expressed as the
difference of the intensity of A and the intensity of B. In Figure 3-5(d), this
difference is 20% for the stored scene and -1% for the observed scene, the
discrepancy possibly due to a shadow over region A. So the difference
between the two relations is 21% when a real-valued relation is used, as

opposed to a reversal of relations when a binary brightness relation is used.
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Another useful real-valued relation is distance. This relation is useful is
discriminating between pairs of regions that are almost adjacent, when
adjacency is described by the real-valued relation explained above, and pairs
that are not even close together. For example, in Figure 3-6, the adjacency
relations between regions A and B, and between regions A and C, are
identical. However, the pair of mappings (RA,0A) and (RA,OB) is more
compatible than the pair (RA,0A) and (RC,0B). The relation of distance
helps in discriminating which pair of mappings is more compatible. The
distance between a pair of stored objects and the distance between a pair of

observed regions should be similar if the regions map to the objects.

Another ppssible way to define the distance relation, for scenes
consisting of isolated biobs on a background, is that the distance from A to B
is the minimum distance between any boundary pixel of A and any boundary
pixel of B such that a line can be drawn between the two pixels without going
through another regions. If there are no two pixels that can be joined without
going through another region, define the distance as infinity, or the largest

real value possible.

This distance measure should, of course, be scaled so that scenes scaled
differently will still have similar distance measures between corresponding
regions. One way to accomplish the scaling is to express the distance as some

proportion of the perimeter, area, or extent of the two regions.
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Figure 3-6: A useful real-valued relation:

A 18 Distance—-from C

A 0% Adjacent-to C
C 0% Adjacent-to A
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‘distance-from.’
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3.3.3 Adaptation of Matching Methods for Scene Matching

The algorithms described in Chapter II were simply intended for the
matching of graphs, and are not adapted to the specific problem of scene
matching. These standard algorithms are designed to match two graphs,

rather than two sets of graphs that would be used for description of scenes.

If the graphs have no weights associated with the arcs, the arc weight in
each graph can arbitrarily be assigned to increasing powers of two. For
example, arcs in the ‘included-in’ graph (matrix) may be labeled with "1’s,
those in the ‘left-of’ graph with 2’s, and those in the ‘above’ graph with “4’s.
Then, the adjacency matrices for these graphs may be added together, with
the resulting weighted adjacency matrix representing the set of graphs with no
loss of information. Isomorphisms matching a set of observed graphs and a
set of stored graphs can be found by matching these composite graphs which
are obtained by adding the adjacency matrices together. The use of multiple
graphs does not add to the complexity of the backtracking algorithm for
subgraph isomorphism, although checking the condition for isomorphism

between the A and C matrices requires a bit-by-bit comparison of arc weights.

The use of multiple graphs on the same vertex set can help to speed up
the search for isomorphisms, by limiting the possibilities to try. In- and
out-degree for each vertex in each graph is checked, as well as plausible
object matches based on object attributes. Once a vertex mapping matrix is
obtained, the problem of finding isomorphisms with multiple graphs on the
same vertex set with unlabeled arcs is reduced to matching single graphs with

weighted arcs, with no loss of information.



Inexact matching is limited to subgraph isomorphisms in the case of the

vertex mapping matrix approach, and common subgraphs, with no splitting or

merging of nodes, in the standard association graph method.

The vertex mapping matrix approach can be modified for application to
scene matching as follows. Each scene is described by graphs on several
relations; for examples left of and above. The observed objects are classified
in terms of what object classes they might belong to. The class membership is
determined by measurement of several attribute values. Measures of texture
and circularity are useful. Allowable ranges for these measurements can be
allowed to overlap for different object classes, so each object may be a
possible member of more than one object class. This information is used to
limit the possible mappings in the M ° matrix. The relations left of and above
are determined by the relationships between centroids of objects. In the
stored representation, the ranges of left of and above are allowed to overlap
so that there are extra relations in the stored representation. This helps in

dealing with small rotations of the scene.

We assume the following to be available: list of stored objects and their
types, matrices for several relations on the stored scene, acceptable
measurement ranges for each object type, measurements of attributes of

observed objects, matrices for the relations on the observed scene.
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The scene matching process is as follows:
For each observed object, determine to which object types it might

belong, based on acceptable measurements of attributes.

Form matrix M ¢, in which M ; = | iff object Zin the observed scene

could be of the object class to which /in the stored scene belongs.

Form matrix M ¢, the vertex mapping matrix based on degree of vertices.
Check degrees for each graph in the set of graphs used. Use both
in-degree and out-degree for the directed graphs. The observed node
can map to a stored node if the in-degree of the observed node is no
greater than the in-degree of the stored node, and the out-degree of the
observed node is no greater than the out-degree of the stored node, for

each of the graphs describing the scene.

Form matrix M° = M AND M <.

For the observed and stored graphs, obtain composite graphs A and 5.
For a set of graphs (G°,G'....,G"}, setG{ ;= 2"iff G{ ;= 1 and set it
to 0 otherwise. The composite graph G is the sum of all G*. G has all
the arc information from the set of graphs combined into one graph

which can be used in the subgraph matching algorithm.

Use backtracking procedure to iterate through possible M " matrices.

The Ullmann refinement may or may not be beneficial. If M °is very
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sparse, the refinement procedure may not be necessary. Compute
matrix C and compare with 4. An exact match indicates that W~

specifies a vertex-induced subgraph isomorphism of .4 to 2.

If C - A>[0], there may or may not be a subgraph isomorphism. For
each A, ,and C, ,. if for any corresponding pair of bits @ and ¢, the condition
(NOT @) AND o) is true, the matrix C does not represent a subgraph of
matrix .4 . If this condition is false for every corresponding pair of bits for

each A, ,andC, ,, thenCis a subgraph of 4.

The vertex mapping matrix approach lends itself best to problems of
exact subgraph isomorphism, since various graph properties can be used to
eliminate possib'le mappings. If we wish to allow the possibility of inexact
matches between relations, the matrix M ¢ cannot be used in eliminating
possible mappings. Also, occurrences of both extra and missing objects in the
observed scene cannot be handled, since the observed scene would not be a

subgraph of the stored scene.

Of the two approaches to finding graph isomorphism, the association
graph method is better suited to finding inexact matches. The association
graph method may also be modified to match two sets of graphs describing
scenes. All possibilities for inexact matches can be taken into account. A
missing object v will correspond to a situation in which the clique defining the
mapping does not contain any node (X . y )for any region X'. An extra region
X corresponds to the clique not containing any node ( X, y ) for any object /.

These possibilities are handled with no extra modifications to the association



sraph method. Problems of oversegmentation and undersegmentation can
4lso be managed by this method. The simplest way to allow for
oversegmented regions, e.g. X', and .X'; . is to say that both regions map to
object 1f (X1 v)and (X2, v)are both in the clique defining the mapping.
Likewise, an undersegmented region, X', can map to two or more objects, e.g.
vi,and 2. if (X,y)and (X, y.)are in the clique. Another way to handle
oversegmented or undersegmented regions is to include ‘merge nodes’ in the
association graph. For example, if regions X and ¥ could both map to object

x,,anode ((X,Y), x)could be introduced.

The application of the association graph method to the problem of

inexact scene matching is described in detail in Chapters IV, V, and VI.



[V. ASSOCIATION GRAPH METHOD IN INEXACT MATCHING

As shown in Chapter II, subgraph isomorphism approaches to scene matching
can handle some cases of inexact matching: missing objects and missing relations.
In realistic situations, the problems due to imperfect segmentation include extra
objects, mismeasured relations, and split and merged objects. A modification of the
association graph method for scene matching can provide a better way of dealing

with these problems.

In this chapter, we first describe the shortcomings of the basic method of Yang,
Snyder, and Bilbro {32], as discussed in Chapter II, and suggest an enhancement to
the basic method, which provides a better way of dealing with the inexact matching
problems brought about by segmentation errors. The three issues to be decided in
order to implement the enhancement are outlined in Section 4.2. The issues
brought up in this chapter are addressed in detail in Chapters V and VI, in which a

new application of a relaxation algorithm to scene matching is developed.

4.1 Improvements

There are several areas in which the basic association graph approach can
be improved. In the basic method, a region-to-object mapping is considered
either possible or impossible. Nodes representing all the possible mappings are
included in the association graph, but there is no measure of merit associated
with the mappings. A value should be assigned to a node to indicate how good a

mapping is. Likewise, two region-to-object mappings are considered either
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compatible or incompatible, based only on equivalence of the binary adjacency
relation between objects and between regions. In inexact matching problems,
rwo mappings cannot be considered absolutely compatible or incompatible. As
seen in Chapter I, it may not even be wise to consider two regions to be
absolutely adjacent or not adjacent. Values should be assigned to relations as

well.

Similarly, the evaluation of the largest maximal clique as being the best
mapping does not allow for any gray areas in interpretation of compatibility
(4,32]. A maximal clique may contain dubious region-object mappings which are
just barely considered compatible. Again, the need for weights assigned to nodes

and arcs is apparent.

Figure 4-1 shows an example of a basic association graph, and one with
weights assigned to vertices and arcs. Any vertex (X,y) indicates the mapping of
Region X in the observed scene to Object y in the stored scene. An arc
connecting (Xy,y1) and (Xa,y) indicates that these two mappings are compatible.
The original method of finding a mapping from observed regions to stored
objects was to use the mapping represented by the largest clique in the
association graph. In the weighted association graph, the weight on a vertex
(X,y) indicates how compatible the mapping of Region X to Object y is, based on
attribute measurements of the region. The weight on an edge from (Xy,y1) to
(X2y,) indicates how compatible the two mappings are to each other, based on
similarities in the relations between X; and X,, and y; and y,. Based on these
weights, it may be determined that a smaller clique, such as {(A,a), (B,b), (C,d)}

in Figure 4-1, represents a better mapping than the largest clique.
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Figure 4-1: A weighted association graph is more useful for inexact scene matching.

The approach used by Yang was designed to handle the problem of
oversegmented images, i.e. images in which more than one region may map to a
single object. The occurrences of extra regions and missing regions are also
handled implicitly by this method. However, the problem of undersegmented
regions is not addressed, the assumption being that a segmentation algorithm can
be ‘tuned’ sb that either oversegmentation or undersegmentation occurs, but not
both. In practice, we may have cases of both problems in the same scene with

the same tuning of the segmentation algorithm.

A variation of this basic approach can handle problems of missing and extra

objects, and oversegmentation and undersegmentation. Several alternative



methods of dealing with oversegmentation and undersegmentation are explored
in Chapter V1. To see that a variation of this approach can handle all of these
problems, we can simply look at the result that can be obtained. A clique
representing a best mapping can be missing some of the regions of the observed
scene, or some of the objects of the stored scene. It can contain two or more
nodes that map one region to different objects, or nodes that map more than one
region to one object. Alternatively, oversegmentation and undersegmentation
may be handled by adding nodes representing multiple mappings to the
association graph. The flexibility of the association graph method provides a

clear advantage over other graph-based approaches to scene matching.

4.2 Problems to be Addressed

The main problems that need to be addressed in order to extend the
method to handle these issues are: 1) the determination of weights for nodes, 2)
the determination of weights for arcs, and 3) the evaluation of the result, or

finding the ‘best’ clique in the association graph.

The weights for nodes should represent the closeness of the mapping of a
given region to an object. This can be determined by some measure of how
similar the region and the object are, based on local properties. The arc weights
represent compatibility between two mappings, so they must reflect similarities
between region-to-region and object-to-object relations. If we assume there are
no split or merged regions, the determination of these weights is fairly
straightforward. But, if there is a possibility of split or merged regions,
determining the structure of the association graph and the node and arc weights

is a more difficult problem. If we wish to maintain the idea of each node
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representing the mapping of one region to one object, we must determine how to
find weights for arcs between nodes representing the same region mapping 1o
two different objects, or the same object mapping to two different regions. If we
abandon the idea of each node representing one object and one region, we need
a method of determining node weights on nodes that represent more than one
object (region) mapping to one region (object), and arc weights for
compatibilities of these nodes with others. The determination of weights for
problems without split or merged regions is discussed in Chapter V. The case of

split or merged regions is covered in Chapter VI.

The evaluation of the resulting weighted association graph is the most
difficult problem. First, we must find cliques that represent candidates for the
best mapping. In a large graph, this can be a computationally demanding task.
Next, we must evaluate the merits of the cliques found, to determine which is the
best. Not only the node weights representing region-object compatibility, but
also the arc weights representing compatibility between mappings, must be
considered in evaluating the merit of a clique. Do we include a node with a high
weight in a clique if all arcs connecting it to the rest of the clique have relatively
low weights? Do we include a node with low weight if its arcs have high weights?
How do we compare the relative merits of two different weighted cliques,

containing different numbers of nodes?

One approach is suggested by Davis [7], who has used association graphs in

a different application, boundary matching. His approach is first to use a



discrete relaxation process to prune the association graph to decrease the
qumber of cligues to be found, and then to evaluate the cliques by the following

cost formula:

COFY=Y MWL F()*) 3 S, (FU).F()*P(my)P(mMo),

=] j=1

where M (i, F (i)) measures the dissimilarity of object iand region F ({) and
S.,(F(i),F(j))is described as "the tension in the spring connecting” {and jif
they are represented by F (()and 7 (/) in the observed scene. So, this approach
assigns costs to nodes and arcs of the association graph, rather than merits.
p(m7) is a penalty for stored objects which are left out of the clique (implying
they were not observed in the scene), and £ (o) is a penalty for observed
primitives which are left out (or which do not map to any stored primitives under
the mapping represented by the clique). A problem with this approach is that
determining the values of these penalties is difficult. Another problem is that
every clique, including those that are not maximal, will need to be evaluated to

determine the mapping of lowest cost.

It is apparent that the main drawback in using this approach is the difficulty
in finding the ‘best’ mapping by evaluating the cliques found in the association
graph. The approach used by Davis attacks the problem by using discrete
relaxation to reduce the number of cliques to be found, but his method still

entails a complicated evaluation function.
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Since the ultimate goal is to decide which region-to-object mappings are
correct, it seems that a reasonable goal is to determine a method for
incorporating contextual information into the node weights. Node weights could
be altered based on weights of arcs and neighboring nodes, so that cliques may
be evaluated using only the new node weights, ignoring arcs. The goal should be
to decrease the number of cliques to be tried, and also to simplify the
measurement of the merit of a clique. The next chapter describes relaxation

algorithms, a class of algorithms which will facilitate these goals.



V. RELAXATION ALGORITHM APPLIED TO ASSOCIATION GRAPHS

In general, the classification problem deals with the assignment of a given unit
10 one of several predefined classes. Relaxation, an iterative parallel approach, has
been successfully used to improve classification performance [11,14,23,24]. Let
Ay Az Abeaset of n units, and €, C3,..., C nbe the mclasses. The
relaxation approach assumes that each A, can map to any of the mclasses, and
assigns an initial probability for each possible mapping. Therefore, A, has m
probabilities associated with it. Then, at each iteration, these probabilities are
updated based on contextual information. This causes one of the probabilities to
approach one and others to approach zero. The unit . is then assigned to the class

determined by the highest probability.

In this chapter, the relaxation approach is combined with the association graph
method to obtain a better graph theoretic approach for scene matching. Relaxation
algorithms used for classification, in their original forms, are not suitable for scene

matching, so significant modification is necessary.

Various types of relaxation algorithms: probabilistic, discrete, and fuzzy, are
described in Section 5.1. Section 5.2 describes the application of relaxation
algorithms to the scene matching problem. Selection of initial node and arc weights,
updating rule, and condition for termination are presented, as well as the
interpretation of the final result obtained from the relaxation process. Simulation

results which support the theoretical concepts developed are given in Sections 5.3
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and 3.4,

3.1 Relaxation Algorithms

As stated earlier, relaxation algorithms are used when each of a set of units
A,,.... Anis to be assigned to one of the classesC,, ..., C . In this approach,
unit A, is assigned minitial probabilities pi; . P2, .-+ Pim Where py;is the
probability that A, belongs to C,. The assignment of unit A, to C, has some
degree of compatibility or incompatibility to the assignment of unit 4 .to C
This compatibility value is denoted by c (i, j:h, k) The probabilities associated
with each unit are updated iteratively by taking into account compatibility values
and the probabilities of neighboring units. The goal is that the final probabilities
obtained will favor one mapping above all others for each unit, and that this
mapping will be the correct one. The problems to be addressed in selecting a
relaxation algorithm are the computation of initial probabilities, computation of

compatibility values, selection of updating rule, and terminating condition.

In the scene matching application, the ‘set of units’ corresponds to the set of

regions in the observed image. The ‘classes’ correspond to the set of objects in
the stored representation. In the discussion below which is specific to scene
matching, the terms ‘region’ and ‘object’ are used rather than ‘unit’ and ‘class.’
The goal of the relaxation process as applied to scene matching differs from the
goal as used in applications such as image segmentation. In segmentation, each
unit (pixel) can map to one and only one class. Every unit must map to a class.
However, in scene matching a region can map to more than one object. Several

regions can map to a single object. There can be objects that have no regions
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mapping to them and regions that map to no objects. Therefore it is necessary to
investigate each relaxation approach to determine its suitability for the inexact

scene matching purpose.

Relaxation algorithms can be classified into three basic categories:
probabilistic, fuzzy, and discrete. These are described below, and their

applicability to scene matching is discussed.

5.1.1 Probabilistic Relaxation

In probabilistic relaxation, with each object 4, a probability vector

(Dt Pzreeees D.m ) is associated, where p; is an estimate of the probability
that A, belongs to C ;. If A, is a neighbor of A, and p A is the probability that
AreCy.thenc(i, ji h,k)indicates the compatibility between the mappings
A.eC,and A,eC,. Its value is in the range [-1, 1] where -1 indicates total
incompatibility, + 1 indicates total compatibility, and 0 indicates irrelevancy

("don’t care").

Given the initial probabilities and compatibilities between various
mappings, one can adjust the probabilities associated with each unit on the
basis of contextual information embedded in the probabilities and
compatibility coefficients associated with its neighbors. The adjustment
process satisfies the following properties:

a) If preishighandc(i, j;h, k)is close to 1, p,,; should be increased.

b) If pacis highandc(i, jih,k)is close to -1, p,; should be decreased.

¢) If paeisloworc(i, j;h,k)is close to 0, then p,, should not change



significantly.
An updating rule suggested by Rosenfeld which has the above properties

is given by Equations 5-1 and 5-2 [24]:

ey RS+ q) (5-1)
i ’

S pS(1+q)
AR

where

SRR R . (5-2)
q. = Z(Zc(l"j;h"k)phk)'
n-1,0 &=

het

In Equation S5-2, the products c (i, j1 A, k)X pacare averaged for each

neighbor of node n;;. This average is in the range [-1,1]. In Equation 5-1, the
new value for p; is taken as the old value times 1 plus this average, so that
positive averages will increase p,; and negative averages will decrease it. This
value is then normalized so that the sum over different classes /for py;is 1.

n m
The iterative procedure is continued until 3. 2_ | pl - pl <6 where &is

is} jel

a pre-specified small number.

There are some limitations in applying this approach to scene matching
problems. The assumption that each unit maps to one and only one class is
not generally valid. One region of the observed image may map to none of
the stored objects. It is possible to overcome this limitation by allowing for
the existence of a ‘null’ object to which regions have some probability of

mapping. If the node representing the mapping of a region to the ‘null’ object
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2nds up with the highest probability for the region, it can be assumed that the
region did not map to any of the stored objects. Determining the initial

probability that a region will map to ‘null’ is also problematic.

A region may also map to more than one stored object, in the case of an
undersegmented scene. The region may be two or more objects merged
together. In this case, a probabilistic relaxation algorithm is not expected to

yield satisfactory results.

5.1.2 Fuzzy Relaxation

In another approach to relaxation, fuzzy relaxation, for each possible
mapping (i.e. A,€C,forallzand ) a weight is assigned. This weight is simply
a measure of the closeness of match between unit A, and class C . Weights

will all be between 0 and 1, but weights for a given unit need not sum to 1.

The values on arcs, c (i, j; h, k), are values in the range [0,1] indicating
the compatibility of mapping unit ¢to class jwith mapping unit A to class 4.

¢(i,jii k) is defined as Lif j =k, and 0 otherwise.

During iteration (r + 1), weight p{;’ is updated by the following rule
[24]:
(5-3)

pith) L
n

i{max c(i,jih, k)p(”]

Figure 5-1 shows an example of this updating rule applied in one iteration on

node (A, a).



Figure 5-1: Rosenfeld’s fuzzy updating rule applied to node (A,a).
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The fuzzy relaxation algorithm causes some of the weights to decrease
faster than others. After a few iterations, there is no longer a change in the
order of probabilities relative to one another, The nodes with highest

probabilities are the preferred mappings.

1 This updating rule displays an undesirable characteristic, as shown in
Figure 5-2. In this instance, the initial node weights actually have no effect on
the final result. The values of both nodes are driven to 0.3, if the node

| weights are normalized to add to 1 at each iteration. In general, if all arc

‘ weights are the same, the node weights will all stabilize at equal values,

| regardless of the initial weights. This is not a desirable characteristic in the
scene matching application. If all arc weights are the same in an association
graph (i.e. the graph is fully connected with all arcs equal), the node weights
should not all become identical, as this eliminates all the influence of the

initial node weight.

0.9 0.9

[nitial Graph Resulting Graph

Figure 5.2 Rosenfeld’s rule applied to a graph with all arc weights equal.
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[n scene matching, the fuzzy relaxation approach makes sense, since it
allows for mapping a region to none of the stored objects, if all of a region’s
‘probabilities’ are low, or to several stored objects, if several of its

‘probabilities’ are sufficiently high.

When allowing for mapping of several regions to one object
(oversegmentation), there are several problems to be addressed. First, how
do we determine the arc weights joining two nodes that map different regions
to the same object? Once this is resolved, the problem is to determine if

certain nodes should be included in the clique representing the best mapping.

5.1.3 Discrete Relaxation

In discrete relaxation, an assignment of a unit to a class is considered
either possible or impossible. Rather than updating the weights on nodes, the
relaxation process deletes nodes that are considered impossible, based on

supporting values of neighboring nodes.

A usual formulation of the discrete relaxation algorithm is to assign
initial probabilities and compatibility values to 1 or 0. The following updating
rule, which can also be used with real values for fuzzy relaxation, is used [24]:

re n m -4
pl ”=min{malxc(i,j;h.k)pfl’,;’]. (>-4)
k=

h=]

An approach by Davis (7] (described in more detail in Section 5.2) uses a

different idea of "discrete” relaxation. He assigns node and compatibility
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values between 0 and 1, to represent degrees of consistency and compatibility.
The initial node weights are the values p,, of the local evaluation function
that describes the closeness of the observed region A, to the stored object C,.

Then, a node is deleted if the support for that node,

E¢,=h21k;phkyh#£.k¢j (5-3)

is less than some threshold. As nodes are deleted, the support for other nodes
decreases, and more nodes may be deleted. The process terminates when no
nodes are deleted during an iteration. In this process, the node weights are
not updated, but values of neighboring nodes are simply used to determine if

a node is kept or discarded.

5.2 Application of Relaxation to Scene Matching

In this section, we examine the application of relaxation techniques to the
scene matching problem. Whenever relaxation is used, the questions to be
resolved are the determination of initial node and arc weights, updating rule, and

condition for termination of the algorithm.

In scene matching, we must also determine how to use the result of the
relaxation algorithm. Initially, in using weighted association graphs for scene
matching, the problem is one of how to select which nodes are included in the
clique representing the best match. The nodes included should have high
weights, and the arcs connecting those nodes to others should also have high

weights. Our goal is to have the relaxation algorithm simplify the selection of the



Jlique of the association graph that represents the ‘best’ match by choosing nodes

+ith values above some threshold for inclusion in the clique, without having to

consider arc weights.

There have been some applications of relaxation to scene matching
problems discussed in the literature. Davis [7] describes a procedure for shape
matching using relaxation techniques. In his work, observed angles and template
angles of simple closed curves are to be matched. The process used is discrete
relaxation, meaning that the goal of the relaxation process is to delete nodes
from the association graph, not to change weights and leave all nodes in place. A
unique feature of the algorithm presented by Davis is a second step performed
after the relaxation on the nodes. A ‘line graph’ is created, in which the arcs of
the original association graph become nodes of the line graph, and nodes of the
original become arcs. The same discrete relaxation process is applied to the line
graph. Nodes (lines) are deleted, which also reduces the number of cliques in
the association graph. The result is a pruned association graph with many of the
less likely mappings eliminated. The use of relaxation in this way does not

simplify the evaluation of the merit of remaining cliques in the association graph.

Faugeras, Berthod, and Price [9,10,20,21] describe the use of a probabilistic
relaxation process in scene matching of aerial images. They consider the
observed regions to be the classes of the relaxation algorithm, and the stored
Objects to be the units. The goal is then to find an observed region that
corresponds to each of the stored objects. This handles the problem of extra

feglons in the image that do not correspond to stored objects. However, each
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stored object is assumed to have an observed region in the image that

corresponds to it. But as we have seen, missing objects are a common

segmentation problem.

5.2.1 Type of Relaxation Algorithm to Use

Probabilistic relaxation has several shortcomings when applied to scene
matching. First, there is the assumption that each region must map to one
and only one object. That is the basis of assigning node weights representing
probabilities. Probabilistic relaxation updates these probabilities, and the
result is that the node with highest probability for each region is considered
the correct mapping. In order to allow for mapping of a region to none of the
stored objects, we must use a ‘null’ object to which a region may map.
Determining the probability that a region maps to this ‘null’ object as opposed
to any existing object is a puzzling problem. For a region to map to more
than one object, the best we can do with this approach is to say that if several
nodes for a region have similar probabilities which are higher than those of
other nodes, we may consider that the region maps to all of the objects
represented by those nodes. For example, a region may have nodes with
weights of 0.45, 0.45, and 0.1. We may interpret this result as indicating that
the first two nodes represent correct mappings of this region to two different
objects. A problem with this approach is apparent when we attempt to
interpret the final result of the relaxation. We cannot simply favor nodes with
the highest values if we are to allow for mapping of a region to multiple
objects, since at least one of the probabilities in those cases must be less than

0.5.
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Fuzzy relaxation seems to be the most appropriate for use in scene
matching. It requires none of the work-arounds needed in probabilistic
relaxation. The mapping of one region to multiple objects, or to no object,
can be handled with some modification to the algorithm. In the final result,

we may interpret nodes of highest value to be the best mappings.

5.2.2 Initial Node Weights

The initial node weights could be set to 1 or 0, indicating whether it is
plausible that a region could map to an object based on similarities between
attribute measurements. A better method is to determine the weight by a
measure of similarity between the region and object. Faugeras and Price [10]
describe a sensible approach. They compute a difference rating, R(u.n),

where u is the stored representation of an object and n is the observed region.

m (5-6)
R(u.nY=) |Vu=VaulW.Sk

k=1

where m is the number of attributes that have been measured (color, texture,
etc.), V .eand V' . are attribute values. W is the feature’s weighting (a scaling
factor based on the size of the value), and S «is the feature’s strength, or
importance. Then, the values are transformed to the range [0,1] by setting

flu,n)=1/(R(u,n)+1).

I «was used by Faugeras and Price to handle differences in the scales of
various attributes; for example, if the observed region has area 550 and the
stored region has area 500, this is a difference of 50 pixels, which is small. But

if two angles are compared, a difference of 50 degrees is large.



Scaling the attribute values of the regions before caleulating R (u, n)
may improve the results. The scaling factor can be determined by comparing
the average value of the feature among the stored objects with the average
value among the observed regions. This would allow the use of features such
as area and intensity, which may have an average value in the observed scene

that is higher or lower than expected. So, f(u, n)may be determined as

follows:

£, (5-7)

3

(3-8)
R(u,n)= Z Vo=V e I Wi Sy

k=1

1 (3-9)

A YY)

Perfect matches receive a value of 1, and increasingly bad matches have
values approaching 0. Weights below some threshold may be set to 0, to

reduce the number of possibilities to be tried.

5.2.3 Initial Arc Weights
The value of c(i, j;h, k)is based on similarity of relations between
regions A, and A, , and objects C ;and C,. In each graph, if a relation exists

between the regions and also between the objects, the value of c (¢, j; h, k)is

increased. If all relations match, c(i, jih, k)is 1. If none match, the value is
0.
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If real-valued relations are used, arc weights may be determined in the
same way as node weights: higher differences in the values of relations lead

to lower arc weights.

The arc weights between nodes representing the same region
(undérsegmentation) or the same object (oversegmentation) must be
determined differently.

5.2.4 Updating Rule
A fuzzy relaxation algorithm was run using several example scenes. The

first updating rule tried was

A 5-10
pff’”%Z{ max c(i,/jih, k)p(”] 10
A scaling step,

n (5-11)

(re1) (0)

Db D
o PR
pl] n

S S e

is performed, so that it is possible to use the condition of little change
between weights at two consecutive iterations as the terminating condition.
With this scaling step, the node weights add to the same sum after each
iteration, which makes clear which nodes are increasing and which are

decreasing.

The rule seemed appropriate for sceng matching applications, since

weak mappings for other regions should not adversely affect a mapping. Only
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the strongest mappings for each region are used to update the probability of a

given region-to-object mapping.

However, experimentation showed that with this updating rule, the
initial node weights are irrelevant. The averaging of weights in the updating

rule eliminates any advantage a node has because of a high initial weight.

A modified rule was tried:

n

- 1 m Yo
Pz(‘/ ”:an,O)Jr[-zZ[n::alx(pf,k’c(t./;h.k))}

hel

(5-12)

This was also followed by a scaling step. Here, the initial node weight
influences the value at every iteration, as a sort of ‘bonus’ for good matches,
with a determining the importance of the initial weight. This approach was
taken rather than including p{)’in the average, so that the importance of the

initial weight would not depend on the number of regions.

It is instructive to examine the behavior of the updating rules on a very
simple example. Figure 5-3 shows the results of applying Equations 5-10 and
5-11 (a = 0), and Equations 5-12 and 5-11 (a = 0.5), on an association graph
consisting of just two nodes. The node weights are 0.1 and 0.9, and the arc
weight is set at 1, 0.1, and 0. Ata = G, the initial node weights have no effect
on the final outcome. For increasing values of o, the initial node weights have
increasing importance in the final result. If the arc weight is zero, the nodes

do not affect each other, regardless of the value of &
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Figure 5-3: Positive a allows initial node weights to affect result.

Another simple example demonstrates how the value of acan affect the

order of node weights in the final result. Figure 5-4(a) shows the initial
association graphs, which have values on nodes (B,b) and (B,¢) reversed.
Figure 5-4(b) shows the result of applying Equation 5-10 (a = O) to these
graphs. Figure 5-4(c) shows the result of applying Equation 5-12, with
a=0.15. With the original rule, the initial node weights are unimportant, but
with the modified rule, a high value of acan allow the relaxation process to
favor a node that has a high initial weight. F_igure 5-5 shows the effect of

changing the value of . With a lower value, the arc weights are given more
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importance, but a higher value gives the node weights more importance. The
value of aaffects the outcome of the relaxation process, so determining a
good value for ais important.
5.2.5 Termination

In fuzzy relaxation, the process changes the weights of each node during
each iteration. When scaled so that the sum of node weights is constant, as
more iterations are run, the differences between previous and current node
weights become smaller and smaller. Running the relaxation algorithm until
the differences are below some value is one way to determine when to
terminate the algorithm. However, this can be wasteful, since the relative

values of the weights may not change after the first few iterations.

The number of iterations needed depends roughly on the radius of the
association graph (the maximum length of a shortest path between two
vertices). The radius determines how many iterations are needed in order to
assure that every node value has affected every other node in the graph.
Hence, the radius is the least number of iterations needed. More iterations
may be needed, depending on the particular weights on nodes and arcs in the
given problem. Because the maximum value of the product of arc weight and
node weight for a given region is used as a contribution in updating, it is
possible for more iterations to be needed as this maximum may correspond to

a different node at a subsequent iteration.

In the examples attempted, the fuzzy relaxation algorithm resulted in
probabilities for all desired mappings being above a threshold, and all other

mappings being below the threshold, after only a few iterations. ‘After that



point, the probabilities did not change relative order.

3.2.6 Using the Result

The problems remaining after the relaxation algorithm are to choose the

proper threshold, above which all region-object mappings will be desirable,

and to find and evaluate the cliques.

A hypothetical outcome is shown in Figure 5-6. We are still left with the

question of which clique is ‘better.” Is it the one with the most nodes, the

highest sum of weights, or the highest average of weights? The highest

average is not a good measure, since a clique of one node of 0.9 would be

considered just as good as one with 5 nodes of 0.9 each. A reasonable way to

evaluate these cliques is to first merge the nodes corresponding to the same

region or to the same object, averaging their weights. Then, the sum of

weights is'a meaningful measure of the merit of the clique.

0.9

Figure 5-6: Which clique is ‘better?’
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A simple algorithm to find a ‘good’ clique which is probably the best, can
be used. Select the node with highest weight. Iteratively examine the node
with next highest weight to see if it is in the clique with all the previous nodes
selected. Ifso, add it to the clique and continue. If not, examine the node
with next highest weight. This procedure will result in finding only one clique,
containing the highest-valued node. This clique is likely to be the one with
the highest node sum as well. An alternate approach to finding cliques, which
insures that the clique with the highest node sum is found, is to use the
algorithm outlined in Chapter II and sum the nodes in each of the cliques
found to determine the best clique. In spite of increased computation, the

later method is preferred.

5.3 Simulation Results - Binary Relations

The fuzzy relaxation process described above was tested on a hypothetical
example scene. Attributes of intensity, area, and circularity were used to
describe the objects. The node weights were then determined by the following
tormula:

o KRG )) (5-13)
HELELCD

where K is the number of attributes, and

TR . 5-14
;?tJ,/):ZlVlk_Viklwk. ( )
ke]
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. is the value of the k" attribute for region i,V . is the value of the &*"

quribute for object 7. and W« is a scaling factor which ensures that each term of
the sum is in the range [0, 1]. This results in node weights between 0 and 1, with
] representing a perfect match and 0 representing the worst match possible,
given the attributes as measured. The relations ‘left-of’ and ‘above’ were detined
in terms of four quadrants from an object’s centroid: above, left, right, and
below, as was shown in Figure 3-2. Because of the nature of these relations, a
variation of the method for determining the arc weights (¢, /; R, k)was used.
The arcc(i. j;h, k)was set to 1 if the relation between regions Zand A, and
objects jand k, matched exactly. The value was set to 0 if the relations were
reversed, e.g. Tabove /X and ‘k above j’ The value was set to 0.5 if the relation
was rotated by one 'quadrant. So, if “above 1 and ‘jleft-of k,’ the arc weight

c(i, jih. k)was set to 0.5.

The relaxation updating rule used was:

.- L&l g 12
P!, ”=apf,°)+<1-a)[;Z[‘Q?ﬁ‘(pgk)c“'“h’k))”'

hel

This rule allows ato range from 0 to 1, with 0 indicating no importance 10 initial

node weights and 1 indicating no importance to arc weights. This is slightly

different from Equation 5-12, in which ais in the range [0, ®).
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The following cases of imperfect segmentation were tested:

Case 1 - All model objects have corresponding regions in the observed scene,
although there are mismeasured attributes due to segmentation errors, and
variations in relations due to a slight rotation.

Case 2 - One object is missing from the observed scene.

Case 3 - The observed scene contains a spurious region that does not map to any
of the model objects.

Case 4 - The observed scene is missing an object and also contains a spurious
region.

The scene model and the four inexact segmentations are shown in Figure 5-7.

The results of the relaxation procedure are shown in Tables 5-1 through 5-4.

In Table 3-1, the final weights obtained by using the updating rule of
Equation 5-15 are shown for aset to 0 and to 0.2. In this case, higher values of «
were not necessary to obtain a good result. Even though the relations do not
match exactly, the relaxation procedure successfully updated the node weights so

that the desired mappings came out with high values.

Table 5-2 shows the case of a missing object. In this example, the value of
using a non-zero ain the updating rule is demonstrated. If ais set to 0, we
cannot decide which of the mappings (R4, O3) and (R4, OS5) is better, since the
contextual support for each is equal. If ais set to 0.2, the mapping (R4, O5) is
favored because it represents a better local match (higher initial node weight)

than (R4, O3).
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Figure 5-7: Hypothetical scene and four observed scenes with segmentation errors.
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Table 3-3 demonstrates the case of an extra region (number 6) in the
observed scene. In this example, a non-zero awas not needed. In the result,
(R6, O5) does have a relatively high value, but since this mapping is not
compatible with the mapping (RS, OS5), which has a higher value, the clique

containing (RS, OS) would be favored.

Table 5-4 represents the most difficult case, in which there is an extra
region and a missing object. The ideal result would be to have no region map to
Object 3, and to have Region 5 map to no object. In this table, the importance of
choosing an appropriate value for ais shown. If ais set to 0, two incorrect
mappings, (R4, O3) a}nd (RS, OS) are favored. (R4, OS) loses to (R4, O3), since
the higher initial value of (R4, OS) is ignored. Ata =0.6,too much importance
is given to the initial node weights, and the contextual support for nodes with
relatively low initial weights, such as (R4, OS5), does not pull their weights up

sufficiently. Ata =0.2,the node (R4, O5) is favored, as desired.



Table 3-1: No missing or extra objects.

ATTRIBUTE MEASUREMENTS RELATIONS
Obijects Intensity ,?rca 1Circularil'y Objects Regions
05
! 02 06 0.61 Left-of Left-of
3 05 1 L 12345 12345
3 0.8 1.7 0.77 1101100 1101100
5 0.2 0.6 0.6 2100000 2100000
3100000 3100000
Regions 4100101 4101101
1 0.5 1 08 5100000 5{00000
2 0.4 0.62 0.67
3 0.4 0.8 08 Above Above
4 0.8 1.6 0.63 12345 12345
5 02 02 0.9 1100011 1100111
2100111 2100101
3(00001 3|00001
4{00000 4/00000
5(00000 5(00000
[NTTIAL WEIGHTS FINAL WEIGHTS
*(R1,01) 0.83 (R4,01) 043 a: 0 0.2 a: 0 0.2
(R1,02) 0.63 (R4,02) 051 *(R1,01) 1.034 0.96% (R4,01) - -
(R1,03) 0.83 (R4,03) 043 (R1,02) 0.850 0.795 (R4,02) - -
(R1,04) 0.69 *(R4,04) 0.86 (R1,03) 0.717 0.746 (R4,03) - -
(R1,05) 0.63 (R4,05) 031 (R1,04) 0531 0.586 *(R4,04) 0938 0924
(R1,05) 0.246 0.348 (R4,05) - -
(R2,01) 0.60 (RS.01) 0.61
*(R2,02) 0.86 (R5,02) 0.67 (R2,01) - - (R5,01) 0493 0520
(R2,03) 0.60 (RS5,03) 0.61 *(R2,02) 0.937 0.897 (R5,02) 0.326 0422
(R2,04) 0.51 (R5,04) 0.31 (R2,03) - - (RS,03) 0.889 0.829
(R2,05) 0.86 *(R5,05) 0.67 (R2,04) - - (R5,04) - -
(R2,05) 0471 03595 *(R5,05) 1.034 0.935
(R3,01) 0.61
(R3,02) 0.7 (R3,01) 0517 0.547
*(R3,03) 0.66 (R3,02) 0.666 0.667
(R3,04) 0.61 *(R3,03) 1.034 0933
(R3,05) 0.7 (R3,04) 0.653 0.635
(R3,05) 0.763 0.754
* Correct mappings * Correct mappings
- Initial weight too low to consider
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Table 3-2: Missing Object 3.

ATTRIBUTE MEASUREMENTS RELATIONS
Objects Iéxgcnsity .?:ca Circularity Objects Regions
1

é 0.2 0.6 0.61 Left-of Left-of
3 05 1 1 12345 1234
3 08 1.7 0.77 1101100 1]0101
5 0.2 0.6 0.6 2(00000 210000

3{00000 3j0101
Regions 4100101 4{0000
1 05 1 08 s|00000
2 0.4 0.62 0.67
3 0.8 1.6 0.63 Above Above
rl 0.2 0.2 0.9 12345 1234

1100011 110011

2100111 210001

3j00001 3|10000

4100000 40000

5{00000

INTTIAL WEIGHTS FINAL WEIGHTS
a: 0 0.2 a: 0 0.2
*(R1,01) 0.83 (R3,01) 043 *(R1,01) 1.033 0965 (R3,01) - .
(R1,02) 0.63 (R3,02) 051 (R1,02) 0.803 0.762 (R3,02) - -
(R1,03) 0.83 (R3,03) 043 (R1,03) 0702 0.721 (R3,03) - -
(R1,04) 0.69 *(R3,04) 0.86 (R1,04) 0564 0.616 *(R3,04) 0935 0.924
(R1,05) 0.63 (R3,05) 051 (R1,05) 0.331 0415 (R3,05) - -
(R2,01) 0.60 (R4,01) 0.61 (R2,01) - - (R4,01) 0331 0409
*(R2,02) 086 (R4,02) 0.67 *(R2,02) 0.909 03873 (R4,02) 0538 0569
(R2,03) 0.60 (R4,03) 0.61 (R2,03) - - (R4,03) 1.033 0.914
(R2,04) 051 (R4,04) 031 (R2,04) - - (R4,04) - -
(R2,05) 0.86 *(R4,05) 0.67 (R2,05) 0539 0.651 *(R4,05) 1.033 0.931
* Correct mappings * Correct mappings
- Initial weight too low to consider
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Table 3-3: Extra Region 6.
m  ATTRIBUTE MEASUREMENTS RELATIONS
Objects In;ensity r;\:ca 1Circularity Objects Regions
0.
3 02 06 061 Left-of Left-of
05 1 1 12345 123456
3 08 1.7 0.77 1101100 1j011000
5 0.2 0.6 0.6 2100000 2[000000
3]00000 3j000000
Regions 4100101 4011010
1 05 1 08 5{00000 5000000
2 0.4 0.62 0.67 6/001010
3 04 08 0.8
1 0.8 1.6 0.63 Above Above
5 02 02 09 12345 123456
6 0.4 08 08 100011 11001111
2100111 21001011
3j00001 3feoooto
4/00000 41000001
5100000 51000000
6{000000
INTTIAL WEIGHTS FINAL WEIGHTS
a: ] 0.2 a: 0 0.2
*(R1,01) 0.83 (R4,01) 043 *(R1,01) 1.113 1031 (R4,01) - -
(R1,02) 0.63 (R4,02) 051 (R1,02) 0.912 0.846 (R4,02) - -
(R1,03) 0.83 (R4,03) 043 (R1,03) 0.821 0.831 (R4,03) - -
(R1,04) 0.69 *(R4,04) 0.86 (R1,04) 0.567 0592 *(R4,04) 0.939 0.903
(R1,05) 0.63 (R4,05) 051 (R1,085) 0.227 0.337 (R4,05) - -
(R2,01) 0.60 (RS5,01) 0.61 (R2,01) - - (RS5,01) 0547 0562
*(R2,02) 0.86 (RS5,02) 0.67 *(R2,02) 1.025 0.969 (R5,02) 0.396 0477
(R2,03) 0.60 (R5,03) 0.61 (R2,03) - - (RS5,03) 0.919 0.846
(R2,04) 051 (RS,04) 0.31 (R2,04) - - (R5,04) - -
(R2,05) 0.86 *(R5,05) 0.67 (R2,05) 0.315 0475 *(R5,05) 0.991 0.907
(R3,01) 0.61 (R6,01) 058 (R3,01) 0551 0579 (R6,01) - -
(R3,02) 0.71 (R6,02) 0.77 (R3,02) 0.690 0.690 (R6,02) 0.362 0.463
*(R3,03) 0.66 (R6,03) 0.58 *(R3,03) 1.035 0931 (R6,03) - -
(R3,04) 061 (R6,04) 058 (R3,04) 0650 0.644 (R6,04) - -
(R3,05) 0.M1 (R6,05) 0.77 (R3,05) 0.752 0.752 (R6,05) 0.828 0.804
* Correct mappings * Correct mappings
- Initial weight too low to consider
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Table 3-4: Extra Region 3, missing Object 3.

ATTRIBUTE MEASUREMENTS

* Correct mappings

* Correct mappings

- Initial weight too low to consider

RELATIONS

Cbjects [n_tscnsity Area l(.",ir::ulan’ty Objects Regions
1 0 1
2 0.2 0.6 0.61 Left-of Left-of
3 05 1 1 12345 12345
4 08 1.7 0.77 1101100 101000
s 0.2 0.6 0.6 2100000 2(00000

3/00000 3j01010
Regions 4100101 4100000
1 05 1 0.8 5/00000 5/00010
2 0.4 0.62 0.67
3 0.8 1.6 0.63
4 0.2 0.2 0.9 Above Above
s 0.4 1.2 0.6 12345 12345

1{00011 100111

2l00111 200011

3100001 3[00001

4{000090 4/00000

5100000 5/00000

INTTIAL WEIGHTS FINAL WEIGHTS
a: 0 02 06 a: hj 0.2 0.6

*(R1,01) 0383 (R4,01) 0.61 *(R1,01) 1.148 1.057 0913 (R4,01) 0565 0577 0.599
(R1,02) 0.63 (R4,02) 0.67 (R1,02) 0910 0.844 0.721 (R4,02) 0445 0508 0.603
(R1,03) 0.83 (R4,03) 061 (R1,03) 0.856 0.845 0.828 (R4,03) 0992 0.884 0.713
(R1,04) 0.69 (R4,04) 0.31 (R1,04) 0440 0521 0.641 (R4,04) - - -
(R1,05) 0.63 *(R4,05) 0.67 (R1,05) 0.292 0.389 03536 *(R4,05) 0971 0.900 0.766
(R2,01) 0.60 (R5,01) 0.58 (R2,01) - - - (R5,01) - - -
*(R2,02) 0.86 (R5,02) 0.77 *(R2,02) 1.047 0.981 0.894 (R5,02) 0.317 0.436 0.631
(R2,03) 0.60 (RS5,03) 0358 (R2,03) - - - (R5,03) - - -
(R2,04) 051 (RS5,04) 058 (R2,04) - - - (R5,04) - - -
(R2,05) 0.86 (R5,05) 0.77 (R2,05) 0.444 0565 0.761 (RS5,05) 0934 0.876 0.799
(R3,01) 043 (R3,01) - - .
(R3,02) 051 (R3,02) - - -
(R3,03) 043 (R3,03) - - -
*(R3,04) 0.86 *(R3,04) 0.927 0.907 0.86
(R3.05) 0.51 (R3,05) - - -

94



95

5.4 Simulation Results: Real-Valued Relations

The simulation presented in this section demonstrates the usefulness of
real-valued positional relations. In the simulation of the previous section, since
only the binary relations left-of and above were used, only slight rotations of the
scene could be handled. With the relative positions of objects represented as
angles, a large rotation of the scene can be handled, by running the relaxation
process on several rotated versions of the observed scene. The relaxation
process applied to the rotation representing the best match should result in the
clique with the highest node sum. If only a small rotation is expected to occur,

there is no need to run the relaxation process using several rotations.

To demonstrate the use of real-valued positional relations with the scene of
the previous example, the relations in the stored and observed scenes shown in
Figure 5-8 were represented as angles in degrees that a line from the first object

to the second makes with the horizontal.

The weights of arcs in the association graph were determined by the
difference of angles in the observed scene and the stored scene. If the angles
match exactly, the arc weight equals 1. If the angles differ by 180 degrees, the arc
weight is 0. The determination of these arc weights is similar to the
determination of node weights, since real values of relations are compared for
similarity. The only difference is that in angle relations we must make
corrections so that the angle differences are not overstated. (For example, an
angle difference of 200 degrees is actually a difference of 160 degrees: no
differences can be greater than 180.) In the relaxation process, only the arcs with

weights above 0.85 were kept.
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Figure 5-9: Observed scene superimposed on stored scene, three rotations.
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The relaxation process was run on the scenes of Figure 53-8, for 18 different
rotations, 20 degrees apart, with aset to 0. This simulation shows that the

process can be used to rotation-normalize scenes.

The results obtained can be interpreted by finding the clique with the
highest node weight sum for each rotation. We find that the rotation that comes
closest to matching the original scene is the one with the highest sum. Table 3-3
shows these node weight sums for each rotation. In Table 3-6, the results for
rotations of 60, 240, and 320 degrees are shown. These three rotations produced
the highest-valued cliques, i.e. the ones with the highest node sums. Figure 3-9
shows the observed scene superimposed on the stored scene at each of the three
angles, to show that the favored mappings for each rotation do make sense. It is
evident that at a rotation of 60 degrees, the mappings (R1,01), (R2,02),
(R3,04), and (R4,095) are the best. At 240 degrees, the closest mappings are
(R1,05), (R4,01), and (RS,02). At 320 degrees, the relaxation process results in
(R1,02), (R2,05), and (R4,01) having the highest values.

Table 5-5: Sums of highest cliques, 18 rotations of observed scene.

Angle Sum Angle sum
0 6.902 180 7.830
20 5.557 200 5.332
40 4773 220 5.216
60 9.498 240 8.660
80 7.906 260 6.000
100 7.636 280 6.730
120 6.579 300 6.076
140 5.109 320 | 8.600
160 5.149 340 6.530 -




Table 3-6: Extra Region 3, missing Object 3.

Stored and observed scenes shown in Figure 5-8.

—

* Correct mappings

* Correct mappings

- Initial weight too low to consider

ATTRIBUTE MEASUREMENTS RELATIONS
Objects  Intensity  Area Circularity Objects Regions
1 0.5 1 1
2 0.2 0.6 0.61
3 0.5 1 1 4 3 1
I 0.8 1.7 0.77 1] - 18335270313 1] ~- 295205 238 205
s 0.2 0.6 0.6 2l - -270235270 2 - - 155190167
: 3t - - - 207270 3 - - - 275203
Regions I 4 - - - - 130
1 05 1 0.8 sl - - - - - S| - - - - -
2 04 0.62 0.67
3 0.8 1.6 0.63
4 0.2 02 0.9
5 0.4 1.2 0.6
INTTIAL WEIGHTS FINAL WEIGHTS
Angle: 60 240 320 Angle: 60 240 320
*(R1,01) 083 (R4,01) 0.61 *(R1,01) 2415 0.000 0.000 (R4,01) 0.000 2.862 2.892
(R1,02) 0.63 (R4,02) 0.67 (R1,02) 0.004 0.000 2.903 (R4,02) 0.000 0.044 0.000
(R1,03) 0.83 (R4,03) 0.61 (R1,03) 0.004 1.496 1.366 (R4,03) 0.770 0.044 0.074
(R1,04) 0.69 (R4,04) 031 (R1,04) 0.004 0.000 0.000 (R4,04) - - -
(R1,05) 0.63 *(R4,08) 0.67 (R1,05) 0.000 2.880 0.050 *(R4,05) 2.352 0.000 0.074
(R2,01) 0.60 (RS5,01) 058 (R2,01) - - - (R5,01) - - -
*(R2,02) 0.86 (R5,02) 0.77 *(R2,02) 2.341 0.000 0.000 (RS,02) 0.000 2.918 0.000
(R2,03) 0.60 (R5,03) 0.58 (R2,03) - - - (R5,03) - - -
(R2,04) 051 (R5,04) 0.58 (R2,04) - - - (R5,04) - - -
(R2,05) 0.86 (RS5,05) 0.77 (R2,05) 0.004 0.044 2.805 (RS,05) 0.004 0.000 0.000
(R3,01) 043 (R3,01) - - -
(R3,02) 051 (R3,02) - - -
(R3,03) 043 (R3,03) - - -
*(R3,04) 0.86 *(R3,04) 2.390 0.000 0.050
(R3,05) 0351 (R3,05) - - -
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5.4.1 Discussion

As mentioned previously, using a nonzero value of aallows for a

balance between the importance of good local matches of regions to
objects, and the importance of good matches between relations. Ata =0,
the initial node weights are used only to eliminate very poor mappings by
thresholding before relaxation begins. After that point, the best match of
relations alone determines which mapping is favored, and the initial node
weights have no effect. A non-zero value of atends to hold down the
values of nodes with low initial weights, and tends to maintain the values
of nodes with high initial weights, thus incorporating local and contextual

information into the node weights.

Even if error-free relations are expected, a nonzero acan be useful.
In Figure 5-10, an observed and stored scene are shown, the observed
scene rotated 180 degrees. The object centroids form a square, so if the
observed scene is rotated 0, 90, 180, or 270 degrees, perfect matches can
be found among relations. In this scene, if the node weights for all
region-object mappings are above the acceptance threshold, the only way
to favor the 180 degree rotation is to use a non-zero &, so that the initial

node weights influence the result.

Rotation of the observed scene can be handled by performing

relaxation at several rotation angles and choosing the best result. At the
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rotation angle that matches best, any remaining differences in angles
berween observed and stored scene are caused by tilt and by errors in

segmentation which cause object centroids to be incorrect.

Stored Scene Observed Scene,
Rotated

O (]

.
- -

Figure 5-10: Stored and rotated observed scene: node weights are important.

A parallel implementation is needed to make this approach feasible.
All rotation angles should be processed in parallel, and ideally all nodes in
the association graph should be updated simultaneously in each iteration

of the relaxation process.

In this simulation, none of the object attributes were
rotation-sensitive. For example, in Figure 5-9, at 320 degrees, even though
region 2 and object 2 are not aligned correctly, (R2, O2) has the same

initial weight as it does at 60 degrees, the correct rotation. The addition of
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shape-based attributes that are rotation-sensitive, and the measurement of
these attributes at each attempted rotation, would improve the results by

allowing poor shape matches to be discarded before relaxation.

Naturally, if the scene contains symmetries, there will be several
rotations at which the relaxation algorithm produces cliques with high
values. But if there is no way for anyone to distinguish which of several
rotations is the ‘correct’ one, the relaxation process cannot be expected to

succeed either.



vI. HANDLING OVERSEGMENTATION AND UNDERSEGMENTATION
The method described in Chapter V can handle extra regions, missing objects,
inexact measurements, and errors in relations. But the problems due to merged or

split regions are not addressed.

Section 6.1 describes various ways in which oversegmentation and
undersegmentation problems could be handled by the association graph relaxation
method. In Section 6.2, the best of these methods is described in more detail. A
simulation on a hypothetical scene containing split and merged regions is presented
in Section 6.3.

6.1 Approaches to the Problem

One of the reasons for pursuing the association graph approach to scene
matching is that it can allow for the mapping of multiple regions to one object, or
one region to multiple objects. In this section, various approaches to the
problem are discussed in terms of changes in the association graph before the
relaxation process is done, and any changes in the relaxation process itself, that

are needed in order to handle merged and split regions.

There are two ways of approaching these problems. One is to go back to
the segmented image when the possibility of a merged or split object is indicated.
The regions in question would then actually be split, or merged, the attributes
re-measured, and the graphs of the relations re-built. Then, a revised association

graph would be built, and the relaxation process run. The other approach is to
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avoid resegmenting the image, and modify the association graph method itself to
handle over and undersegmentation. This approach appears more practical and
efficient. The simplest possible approach would be to use the relaxation process
as described in Chapter V on an association graph that has weighted arcs
between nodes that map the same region to two objects, or the same object to
two regions. This allows multiple nodes involving the same region or object to
belong to the same clique in the association graph. Since this approach has
drawbacks, it and other approaches involving modifications of the association

graph and the relaxation process are discussed in the next sections.

Obviously, we do not want to try out all possibilities for split or merged
regions. Only the regions/objects for which we suspect splitting or merging
should be investigated. For a region A, we can suspect that the mappings (A,a)
(region A to object a) and (A,b) may both be correct if 1) objects a and b are
near one another, 2) each region-wide attribute of A, such as texture, color, or
intensity, is close in value to the weighted average of the attribute value of
objects a and b, and 3) the area of A is close to the sum of the areas of a and b.
Condition 1 can be determined by storing an extra relation, ‘next-to,” for each
scene. Object a is ‘next-to’ b if there is a possibility of these two objects being
merged together by segmentation. If a and b are adjacent, this possibility clearly
exists. Also, if a and b are near each other (although not touching), and have no
other objects between them, they could be merged in segmentation. This
‘next-to’ relation could be the real-valued distance relation discussed in Section

332
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For oversegmentation, the three conditions above need to be applied to the
observed scene. So, we suspect that the mappings (A,a) and (B,a) are both
correct if 1) regions A and B are near one another, 2) region-wide attributes are

similar, and 3) the area of a is close to the sum of the areas of A and B.

It is possible that either or both of mappings (A,a) and (A,b) may be t00
unlikely to have nodes in the association graph, and that the mapping (A,(a,b))
should be included in the graph. So, the possibilities for merged or split regions
should be determined by comparing region descriptions and ‘next-to’ relations

rather than by looking only at existing nodes in the association graph.

The following sections describe various approaches to handling this
problem. The sections are written assuming undersegmentation, or a merged
region, but approaches for handling oversegmentation are analogous to these.

6.1.1 Assignment of Arc Weights Only

In the simplest approach, the method presented in Chapter V can be
modified by simply allowing for arcs between nodes mapping one region to
different objects. This is illustrated in Figure 6-1. Objects a and b in the.
stored scene are observed as one region, A. The weight z for arc
((A,2),(A,b)) could be determined as if it were an estimated node weight for a
node (A,(a,b)) mapping region A to both objects a and b. If the mappings
(A,a) and (A,b) are both supported by the context of the scene, they will tend
to increase. If not, it is likely that one or the other will increase, but not both.
The node weights p and q still represent the similarities between region A and

object a, and region A and object b, without taking into account the fact that
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the region could be two objects merged together. So, these node weights are
likely to be quite low. The arc weights x and vy, likewise, are computed based

on the assumption that A is not two objects merged together.

If the relaxation updating rule is not modified, a node’s weight can only
be affected by one contribution from each region. So, for example in Figure
6-1, only the greater of c(A.a; A,b)Xx p 4 »and p 4 o can affect the new
weight of node (A,a), making it unlikely that the node (A,b) could affect the
weight of (A,a). The final result would be interpreted as in Chapter V, with
nodes with weights below a threshold discarded and the remaining cliques
evaluated to find the best one. Because an arc is allowed between (A,a) and
(A,b), if both nodes have weights above the threshold after relaxation, they

can both be members of the highest valued clique.

Although this approach requires few modifications to the original
relaxation procedure, it is an unsatisfying solution because the weights on
nodes and arcs do not correspond to the reality of the situation, and all arc

weights are not calculated in the same way.

6.1.2 Re-estimation of Attributes and Relations

Another approach is to consider region A to be split into two regions, A]
and Ay, and to estimate new attributes and relations for these regions from
the regional and relational descriptions for the original region. This is shown
in Figure 6-2. The nodes (A,a) and (A,b) are replaced by (A1,a) and (A2,b),
to reflect the assumption that region A shopld be split. Relations between Aj

and Ay could be assumed to be the same as between objects a and b, so that
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Figure 6-2: I:Iandling merged regions by re-estimating attributes for the two parts.
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the value of z would be 1. The values of p and q would be updated to reflect
the fact that areas of regions Aj and A3 are each estimated to be in the same
proportion as objects a and b. This will increase the values of p and q if the
region should indeed be split. Values x and y would be recomputed, based on

new estimates of the locations of centroids of regions Aj and A).

The original values on nodes (A,a) and (A,b) are lost when this
approach is taken. So, we abandon the assumptions that A could map to only
a, or 1o only b. If one of these possibilities represents a correct mapping, this
approach jeopardizes the chance of only one of the nodes ending up with a

high weight after the relaxation process is completed.

6.1.3 Adding the Split Nodes to the Original Graph

Rather than replacing the old nodes (A,a) and (A,b) with nodes (A1,a)
and (A3,b), we could add these new nodes to the original graph, so that we
have the association graph shown in Figure 6-3. The weights p and q on the
original nodes remain the same, and the weights p’ and @’ are recomputed as
described above. The weights x and y also remain unchanged, while u and w
are computed as above. The weight z will be taken as 1, since we assume A t0

be split in such a way that A1 and A7 have the same relations as a and b.

The benefit of this approach is that we continue to allow for the
possibility that A maps to object a, or to object b, while adding the possibility
that A has been merged. Also, the relaxation rule does not need to be
changed. The drawback, of course, is that we have two extra nodes added to

the association graph.
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6.1.4 Creation of Merge Nodes

Another approach is to create merge nodes such as (A,(a,b)), with
weights based on estimated attribute values of the merged objects, and add
these merge nodes to the original graph. The resulting association graph is
shown in Figure 6-4. The arcs adjacent to these merge nodes in the
association graph need to be determined by finding relations of the ‘object’
(a,b) to other objects in the stored scene, and comparing these relations with
those of region A. This could be done by estimating the centroid of the
merged object as the midpoint of a line between the centroids of objects a and
b. Then, the relations between this new centroid and the centroids of other

objects would be found.

The reason for representing the merged region by only one node is that
the two new nodes described in the previous section are expected to respond
similarly in the relaxation process. Either both should have high values after
relaxation, or both should have low values. If only one of the new nodes has a
low value, it implies that the region in that node is spurious and also the
object in that node is missing in the observed scene, which is not a likely
occurrence. So, there is little advantage in representing the mapping of one
region to two objects by multiple nodes. It only increases the computation
needed.

6.1.5 Partial Re-segmentation of Image

The approaches described so far require us to go back to the regional
and relational descriptions of the stored and observed scenes, but not to
reconsider the scene itself. The most complicated approach would involve

identifying possible merged regions and re-segmenting that portion of the
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Figure 6-3: Adding re-estimated nodes to the original graph.
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Figure 6-4: Adding a node representing mapping of merged region to two objects.
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original image to obtain a segmentation in which the regions are not merged
into one. Then, new regional and relational descriptions for the changed

regions would need to be created, and a new association graph built.

6.1.6 Evaluation
In evaluating these approaches, there are three goals to keep in mind:
1)  All reasonable possibilities for mappings should be retained.
2) The method should not require the addition of more nodes than
necessary to the association graph.

3) The node and arc weight computations should make sense.

The example of Figure 6-2 failed to support the first goal, since the mappings
of the whole region to each of the objects were no longer considered possible.
Nodes (A,a) and (A,b) were not retained in the association graph. The
example of Figure 6-3 hinders the second goal, because it requires the
addition of two new nodes for each split or merged region. The example of
Figure 6-1 supports the first two goals, but not the third. The arc weight
between (A,a) and (A,b) is not based on similarities in relations at all, since
the region A has no relations to itself. Also, the node weights of (A,a) and
(A,b) only reflect the similarity of the whole region A to a, and the whole
region A to b. There is nothing in the graph that reflects the similarity of
region A with the merged object (a,b), or similarities of region A1 to object a
and region A to object b. So, the method of Figure 6-4 appears to be the

best.
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Intuitively, it seems that extra nodes should be added (as in Figure 6-3)
in the case of undersegmentation, and merge nodes should be added (as in
Figure 6-4) in the case of oversegmentation. This would allow the association
graph to more accurately reflect the actual situation. However, since there is
little advantage to having the extra nodes of Figure 6-3, the method used here
creates merge nodes for both the merged regions and the split regions, so that
if (A,a) is compatible with (A,b) we create a node (A,(a,b)) representing the
merge of objects a and b. Likewise, if (A,a) is compatible with (B,a), we
create node ((A,B),a), merging regions A and B. A drawback of this
approach is that we add several more nodes and arcs to the association graph,
for which we must compute initial weights and update. An advantage is that
we still allow for the possibility that the regions in question have not been
split/merged, by leaving the original weights of nodes (A,a) and (A,b)

uncorrupted.

6.2 Procedure for Handling Split and Merged Regions

The procedure used is the last possibility discussed above. We allow for
creation of merge nodes which represent merging of observed regions, and
merge nodes which represent merging of objects in the stored scene. The
procedure is as follows:

1) Compute the initial node weights for the regions and objects.

2) Determine candidate regions/objects for which we will attempt to merge
corresponding objects/regions. If all of a region’s node weights are below a
threshold, this indicates that none of the objects map well to that region. If

this is the case, consider pairs of objects. If a pair of objects are adjacent
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(or meet some ‘closeness’ criterion), have similar region-wide attribute
values, and have region-wide attribute values that match well with the
region having all low node weights, and the merged object does not already
exist, then create a merged object, and compute its node weight with the
region. If the merged object already exists, simply compute its node weight
with the region. Similarly, check node weights for each object. If an object
has all low node weights, attempt to create a merged region which will map
well to the object. |
Process for creating a merged object or region: Calculate attribute
values for the merged object or region. For region-wide attributes, the
new values are weighted averages of the values for the two objects
being merged. For area, the new value is the sum of the areas of the
two objects. Add a row and column for the new object to the matrices
representing the relations, and estimate values of the new object’s
relations with other objects. Angle relations are estimated by simply
averaging the angle relations of the two constituent objects. The
real-valued adjacency relation (the percentage of an object’s pixels that
border on another object) is computed by determining the perimeter of
the merged object (the sum of perimeters minus twice the length of
their shared boundary). Then, the percentage of border pixels with
other objects is calculated based on the new perimeter. Since the new
object is simply added to the list of objects, it can also be considered for
merging with other objects, thus allowing for merges of three or more

objects.
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2b) Compute node weight of the merged object with the region that
prompted the attempt to find merged objects. Since the node weights
are represented in a matrix with rows corresponding to objects and
columns corresponding to regions, if the merged object is being newly
added to the list of objects, all the other node weights for the merged

object should be initialized to zero.

3) After all plausible merged objects/regions have been created and their
initial node weights computed, find the values of the arcs in the association
graph. Arcs are not allowed between nodes that include the same object or
the same region; e.g., there is no arc between node (R1,(01,02)) and
(R2,02). Arcs from merged objects/regions are computed in the same way
as other arcs, since the appropriate estimated relation values for the
merged objects are included in the relation matrices, just as for any other

objects.

4)  Perform the relaxation process on the association graph which includes

nodes involving merged objects or regions.

A slight change in the relaxation updating rule is necessary. Since two
nodes including the same region are defined as incompatible, nodes involving
regions that belong to merge nodes have fewer terms possible in the sum in the
updating rule, which is an unfair disadvantage. Nodes including only a region

that is not involved in a merge node have possible terms in the sum from every
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region. To make up for missing terms, a merge compensation factor, o, 18
included in the updating rule. The value of p{]” is then counted 6. times in the
sum. So, the new updating rule is given by:

l (r) : n Y.,
(1) (o) . _ L b,pi * max ,jiih.k
o ap, (1 Q){n[ Pij hzl[ 18 (Prec(inj ))]}}

At

(6-1)

An example of this is shown in Table 6-1. Assuming there are four regions, 1, 2,
3, and (1,2), the table shows that for nodes which map region 1 (or 2) to some
object, there can only be terms in the sum in the updating rule from nodes
involving regions 1, 2, and 3. However, since nodes involving region 3 could be
compatible with nodes involving any of the regions, they have four possible
terms. Nodes mapping region (1,2) to any object can have terms from only
region 3 and region (1,2). The factors b, compensate for these missing terms by

counting the value of p,; multiple times.

Table 6-1: Missing terms due to merged regions.

Regions Affecting
P Sum b,
123 (1,2)
P X X X 2
Pz X X X 2
P3; X X X X 1
Pa.2yi X 3
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Example:
Figure 6-3 shows that the relaxation algorithm can use the context of the
scene to favor the mapping of a merged region over those of non-merged regions

that happen to have higher initial node weights.

Original Association Graph

0.3 0.6 0.8

Result, &X= 0

Figure 6-5: Example of relaxation process including a merged region.
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In this example, the weight of (R2,01) is 0.3, (R1,01) is 0.9, and (R(1,2),01) is
0.8. But the weights on arcs connecting (R(1,2),01) to the other correct nodes
((R4,03) and (R3,02)) have higher values than those for (R1,01), indicating
that within the context of the scene, the merged region is a better mapping. At
a = 0, the result of relaxation is that the clique containing (R(1,2),01), (R4,03),
and (R3,02) is the highest-valued. For a very high value of a, the initial node
weights carry enough importance that the clique containing (R1,01), (R2,02),

and (R4,03) becomes the highest-valued.

6.3 Simulation with Split and Merged Regions

The procedure described above was performed on the hypothetical scene
and the four inexact segmentations shown in Figure 6-6. The attributes used for
description of regions were intensity, texture, and area. The real-valued relations
used were the angle that a line between region centroids makes with the
horizontal, and the percentage of region boundary adjacent to another region.
For Cases 1 and 4, the intensity value for Object 2 was set to 0.1. For Cases 2
and 3, in which the hypothetical segmentation has merged Objects 1 and 2, the
intensity for Object 2 was set to 0.5, a more plausible value, since the intensities

of Objects 1 and 2 would likely be similar if the two objects were merged.

The results for'Case 1, in which Object 1 is split into Regions 1 and 3, are
shown in Table 6-2. The process correctly mapped Region 6, which includes
Regions 1 and §, to Object 1. Even if the initial values of (R1,01) and (R6,01)
are switched, the improved context support for (R6,01) causes that mépping to

be favored.
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Figure 6-6: Hypothetical scene and observed scenes with split or merged regions.
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Table 6-2: Simulation results; Case 1, split Object 1.
™ ATTRIBUTES RELATIONS
OBJECT Ares Intensity Texture OBJECTS REGIONS
1 1.83 0.7 0.3 Angle Relation Angle Relation
2 0.3 0.1 0.5 1 2 3 &% 1 2 3 4 5 6
3 1.2 10 0.0 eeeemssessssssses essssssssesssesseroesmoesoeoses
A 0.5 0.1 0.2 1] 0 3735 10 1| 0 25 348 10 270 O
2217 033 O 2| 205 o 330 7 230 217.5
REGION 3175155 0 &5 3| 168 150 0 85 187 177.5
1 0.98 0.5 0.85 4] 190 180 245 0 4| 190 187 265 0 205 197.5
2 0.38 0.2 0.4 5| 90 50 7 & 0 9
3 2.22 0.9 0.05 6| 0 37.5357.5 17.5 ¢ O
4 0.28 0.02 0.35
b 0.46 0.45 0.8
[ 1.44 0.62 0.83 Adjacency Relation Adjacency Relation

{(“Desired mappings

(R1,01) 0.80
(r1,02) 0.57
(R1,03) 0.39
(R1,04) 0.45
(R2,01) 0.43
*(R2,02) 0.90
(R2,03) 0.33
(R2,04) 0.87
(R3,01) 0.57
(R3,02) 0.22
*(R3,03) 0.88
(R3,04) 0.34
(R&,01) 0.33
(R4,02) 0.9
(R&,03) 0.27
*(R4,04) 0.91
(RS,01) 0.75
T (RS,02) 0.66
(RS,03) 0.34
(RS,04) 0.54
*(R6,01) 0.89
(R6,02) 0.00
(R6,03) 0.00
(R6,04) 0.00

Initisl node weights

1 rd 3 &

110 0090 0
210240 0 0
3]0 0 0 0.2
o 0 1 0

Final node weights

Alpha = 0.2
0.828 0.857
0.979 0.979
0.438 0.639
0.979 0.979
0.4628 0.629
0.983 0.984
0.796 0.797
1.082 1.050
Initial weight too low to consider

----------

Initial weights of (R1,01), (R6,01) switched

12
10  0.01
2] 0.09 0
30 0
4o 0
s| 0.35 0
6| 0 0.01

4 5 6
0 0.280
0 0 0.0
0.280 0
0 0 0
0 0 0
0 0 0
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Table 6-3 shows the results for Case 2, in which Objects 1 and 2 are merged
into Region 1. Agaln, the process correctly mapped Region 1 to Object 5, which
includes Objects 1 and 2. The mapping of Region 1 to Object 1 also attained a
high value, since Region 1 matches quite well to Object 1 alone, and its centroid
is close to the centroid of Object 1, which leads to high arc values for the node

(R1,0O1).

Table 6-4 contains the results for Case 3, in which Objects 1 and 2 are
merged into Region 1, and Object 1 is split into Regions 1 and 2. The mapping
desired in this case is Region 5 (Regions 1 and 2) to Object S (Objects 1 and 2).
Ata = 0.2, the mapping (R5,01) is wrongly favored. Ata =0.25, the correct

mapping (RS,05) prevails.

Table 6-5 contains the results for Case 4, in which Object 1 has been split
into three regions, Regions 1, 5, and 6. This example illustrates the way that
more than two regions may be merged into one. Regions are merged pairwise,
and the new regions are added to the list of regions, so that they are considered
for future merges. In this example, Region 7 is the merge of Regions 1 and 5;
Region 8 is the merge of Regions 6 and 1, Region 9 is the merge of Regions 6
and 3; and Region 10 is the merge of Regions 8 (6 and 1) and 5. Of all nodes
mapping to Object 1, the node (R10,01) has the highest weight after relaxation.
In each of the examples with a = 0.25, the clique with the highest node sum

after relaxation represents the correct mapping.



Table 6-3: Simulation results; Case 2, merged Objects 1 and 2.

™ ATTRIBUTES

i
[}
! OBJECT Area [ntensity
i 1 1.83 0.7
!

2 0.23 0.5
3 1.82 1.0
4 0.25 6.1
5 2.06 0.48
REGION
1 2.02 0.65
2 2.22 0.9
3 0.28 .02

Texture
0.8
0.5
0.0
0.2
0.77

0.8
0.05
0.35

RELATIONS

OBJECTS

Angle Relation

12 3

1] 0 37 355
2[ 217 0 335
3175155 0
4| 190 180 245
S| 0 0345

& 5

-------

0 0
85 165
0 185
5 0

Adjacency Relation

----------------------

12 3
110 0.09 0
210,240 O
30 0 0
40 0 1
sj0 0 0

REGIONS
Angle Relation
1 2 3

1] 0 350 12
21170 0 85
3] 192 265 O

Adjacency Relation

--------------------

(R1,01) 0.95
| (R1,02) 0.53
(R1,03) 0.53
(R1,04) 0.28

*(R1,05) 0.97
(R2,01) 0.57
(R2,02) 0.36
i *(R2,03) 0.88
(R2,04) 0,34
(R2,05) 0.00
Z (R3,01) 0.33
i (R3,02) 0.77
i (R3,03) 0.27
' *(R3,04) 0.91
{ (R3,05) 0.00
|

|

]

i * Desired mappings

—

Merge object 052Q01+02

Mpha = 0.2 Alpha = 0.25
1.009 1.004
1.010 1.006
0.948 0.9463
0.556 0.575
0.957 0.953

- Initial weight too low to comsider
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Table 6-4: Simulation results; Case 3, split Object 1, merged Objects 1 and 2.

ATTRIBUTES RELATIONS
OBJECT Area Intensity Texture OBJECTS
1 1.83 0.7 0.8 Angle Relation
2 0.23 0.5 0.5 1T 2 3 4 5
3 1.82 1.0 0.0 veeececciinaa..,
4 0.25 0.1 0.2 11 0 3735 10 o
5 2.06 0.68 0.77 2217 0335 0 o0
REGION 3| 175155 0 645 145
1 1.48 0.65 0.6 4] 190 180 245 0 185
2 0.5 0.7 0.7 S| 0 0345 5 0
3 2.22 0.9 0.05
4 0.28 0.02 0.35 Adjacency Relation
5 1.98 0.66 0.63 1 2 I 4 5
110 0.09 0 0 O
2] 0.26 0 0o 0 0
3|0 0 0 0.20
4| 0 0 1 0 0
5|0 0 0 0 oO
Initial node weights Final node weights
Alpha = 0.2 Alpha = 0.25
(R1,01) 0.85 0.762 0.772
(R1,02) 0.70 0.715 0.715
(R1,03) 0.59 - -
(R1,04) 0.45 - -
Merge object 05=01+Q2
(R1,05) 0.83 0.765 0.773
(R2,01) 0.76 0.714 0.717
(R2,02) 0.81 0.716 0.726
(R2,03) 0.40 - -
(R2,04) 0.56 - -
(R2,05) 0.71% 0.692 0.695
(R3,01) 0.57 - -
(R3,02) 0.36 - -
*(R3,03) 0.88 0.922 0.919
(R3,04) 0.34 - -
(R3,05) 0.00 - -
(R4,01) 0.33 - -
(R4, 02) 0.77 0.667 0.675
(Re,03) 0.27 . -
*(R6,04) 0,91 0.918 0.917
(R4,05) 0.00 - -
Merge region RSsR1+R2
(R5,01) 0.8% 1.067 1.047
(R5,02) 0.60 - -
(R5,03) 0©.00 - -
(R5,04) 0.00 . .
*(RS,05) 0.93 1.068 1.052
s0esired mappings - Initisl weight too low to consider

REGIONS
Angle Relation
1 2 3

-------------

1] 0 265 346

2| 85 0

3] 166 185

4] 183 215 26

51 0 0 35

Adjacency Relat
1 2 3

10 0.2 0

2] 0.330 0

310 0 0

4o o0 o

sfo 0 0

5 35 0
0 85
5 0
5.5 19 0

ion




Table 6-5: Simulation results; Case 4, three-way split of Object 1.
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OBJECT

OBJECTS
Angle Relation
1 2 3

Q O O N0 VT &~ U

—

ATTRIB
Area
1.83
0.23
1.82
0.25

.98
.38
.22
.28
.29
A7
.27
.15
.66
Lok

-0 - - 00 0O MM o o

RELATIONS

37 355

0 335
155 0
180 245

1 0
2| 217
3] 175
4| 190

Adjacency Relation
1 2

1 0 0.09 0

2] 0.2 0

3l 0 0

4] 0 0

4

1
2|
3|
4|
51
6|
7|
8|
9l
10|

UTES

Intensity Texture

0.7 0.8
0.1 0.5
1.0 0.0
0.1 0.2
0.6 0.85
0.2 0.4
0.9 0.05
0.02 0.35
0.65 6.8
0.7 0.75
0.61 0.8
0.61 0.8
0.67 0.78
0.62 0.83
REGIONS
Angle Relation
1 2 3 4 5
0 25 3,8 10 265
205 0 330 7 225
168 150 0 8 185
190 187 265 0 205
85 45 s 25 0
103 40 0 25 205
0 35 356.5 17.5 0
0 42.5 354 17.5 235
96 52.5 2.5 25 0.
0 43.75 359.5 21.25 O
Adjacency Relation
1 2 3 4 5 6
0 0.01 0 0 0.16 0.
0.09 0 0 0 0 0
0 s} 0 0.28 0 0
0 0 0.60 0 0 0
0.28 0 0 0 0 0.
0.32 0 0 0 0.25 0
0 0.01 0 ] 0 0.
0 0.01 O 0 0.22 0
0.38 0 0 0 0 0
0 0.01 0O 0 0 0

7 8 9 10
"0 0 274 0
215 222.5 232.5 223.75
176.50 1764  182.5 179.5
197.50 197.5 205 201.25

0 55 0 0
154 0 0 0

0 0 0 0

0 0 0 ]

0 0 0 ]

0 0 0 0

8 9 10
@ 0.28 0
09 0.09 0 0.09
c 0 0
0 0 0
0.48 0 0
570 0 0
0 0 0
0 0 0.
0 0 0
0 0 0

o 0o 0 0O 0O Q0o o0o




Table 6-5 (continued)
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initisl node weights

--------------------

(R1,01)
(R1,02)
(R1,03)
(R1,04)
(R2,01)
*(R2,02)
(R2,03)
(R2,04)
(R3,01)
(R3,02)
*(R3,03)
(R3,04)
(R4,01)
(R4,02)
(R&,03)
*(R4,06)
(RS,01)
(RS,02)
(RS,03)
(RS,0)
(R6,01)
(R6,02)
(R6,03)
(R6,04)

0.80
0.57
0.39
0.45
0.43
0.90
0.33
0.87
0.57
0.22
0.38
0.34
0.33
0.91
0.27
0.91
0.73
0.69
0.3
0.57
0.70
0.69

0.33

0.57

Final node weights

Alphs = 0.2

0.656

Merge region R7zRS+R1

(R7,01)
(R7,02)
(R7,03)
(R7,04)

0.8
0.00
0.00
6.00

Merge region R8=R6+R1

(R8,01)
(R8,02)
(R8,03)
(R8,06)

0.8
0.00
0.00
0.00

Merge region RPsR&+RS

(R9,01)
(R9,02)
(R9,03)
(R9,04)

0.73
0.00
0.00
0.00

Merge region R103R8+RS

*(R10,01)
(R10,02)
(R10,03)
(R10,04)

0.90
0.00
0.00
0.00

* Desired mappings

Alphs = 0.25

0.674

- lnitial weight too low to consider




To test the ability of the relaxation process to determine the correct
rotation of an observed scene, the scene of Case 1 was processed, with different
rotation angles at steps of 20 degrees. Table 6-6 shows the sum of nodes in the

highest-valued clique found for each angle.

Table 6-6: Sums of highest cliques, 18 rotations of Case 1.

Angle Sum Angle Sum
0 3.985 180 1.795
20 2972 200 1.816
40 3.124 220 1.837
60 2.999 240 1.857
80 2.099 260 1.988
100 2.099 280 2.572
120 1.843 300 2.250
140 1.823 320 4.127
160 1.801 340 4,035

This example shows that this process for rotation normalization is not
foolproof. There were two rotation angles, 320 and 340 degrees, at which the
sums of nodes in the highest clique were greater than at 0 degrees, the correct
rotation. These results would seem to indicate that the rotation of 320 degrees
yields the best match of the observed scene to the stored model. To understand
why this result came about, it is helpful to examine the arcs of the association
graphs at rotations of 0 and 320 degrees. At 0 degrees, the incorrect mapping
(R4,02) happens to have high enough compatibility with (R1,01), (R5,01), and
(R6,01) that it has arcs in the association graph connecting it with these three
nodes. Thus, in the updating formula, the node (R4,02) is receiving

contributions from Regions 1, 5, and 6. So, at 0 degrees rotation, the node



(R4,02) has a final weight of 0.651. In contrast, at 320 degrees, the node
(R4,02) has no arcs, and at 340 degrees, it has two rather than three. This leads
node (R4,02) to have a lower weight at these rotations, and so the other nodes
have relatively higher weights. The initial node weights, and the final weights for

rotations of 0, 320, and 340 degrees, are shown in Table 6-7.

Table 6-7: Initial and final node weights, three rotations of Case 1.

[nitial
Node Weights Final Node Weights
0° 320° 340°
(R1,01) 0.80 0.828  0.850  0.820
* (R2,02) 0.90 0973 0912 0975
R2,04) 0.87 0.657 0.761  0.693
* (R3,03)0.88 0971 1.024 0.984
R4,02) 0.91 0.651 0310 0539
* (R4,04) 0.91 0977 1.043  1.002
R5,01) 0.75 0.794 0.866  0.827
* (R6,01) 0.89 1.064 1148 1.074
*Desired mappings




vIl. PROOF OF CONCEPT

The ideas developed here were implemented in a demonstration object
location system for NASA. The object of the work was to explore some of the issues
involved in implementing a machine vision system to be used in conjunction with a
robot arm in the space station laboratory module. Section 7.1 provides background
on possible uses of machine vision in the space station environment. The
demonstration system developed for the project is described in Section 7.2. Section
7.3 describes the relaxation process applied to an example scene used in the

demonstration system.

7.1 Background

There is interest at NASA in investigating the use of vision systems to
automate routine space station operations, relieving crewmen of repetitive tasks.
Within the space station modules, a vision intelligent robot could be used for
operations such as location, fetching, storing, and repairing. Vision systems
could be used to monitor experiments, record data, and alert crewmen only when

necessary.

Vision systems would also be useful outside the space station, for
applications such as orbital docking, servicing, and assembly. The use of vision in
docking is particularly beneficial, since it eliminates communication time delay

for vehicle control. NASA is also investigating the possibility of using vision
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systems for weather prediction by tracking cloud motion. In short, reliable vision
systems are needed to automate space station and other advanced NASA

operations.

A necessary component of any machine vision system is the ability to locate
objects of interest. It is this component that was explored in detail in this

research.

7.2 Description of System

The system, developed on a commercially available image processing
system (Perceptics), with the relaxation algorithm developed on an IBM PC,
demonstrates the object location component of a machine vision system. Given a

request to find a particular object, the system returns the location of the object.

The assumptions made in developing the demonstration system were as
follows:
1)  The robot arm’s exact position may be unknown.
2) The interior of the laboratory module is broken into several separate
scenes, or panels.
3)  All of a panel will appear in the field-of-view at once.
4) There will be changes in scale, translation, and intensity, and slight changes

in rotation and tilt.
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2)

3)

4)

5)
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The steps in the processing are as follows:

Identify the panel present in the input scene. This is done by searching for
prominent features that distinguish among scenes. Low-level features, such
as ‘two bright, nearly horizontal lines,’ or ‘ten nearly vertical lines of high

texture’ are used.

Based on the approximate location of the distinguishing features, find the
region of interest on the panel that contains the desired object. This is done

to cut down on the number of objects that must be dealt with at one time.

Run the segmentation process provided with the Perceptics. This process
produces a list of regions found in the image. Each region’s location,
perimeter, area, length, height, and circularity are listed, along with some

other attributes.

For objects that lie along rows and columns of objects on the panels, a
simplified object location process is performed. This process finds probable
locations of objects, based on intersection points of lines of high texture
(intensity variation). Then, regions found by the segmentation process are

matched with these objects.

For objects that cannot be located by the simple process of Step 4, the
relaxation process is run on the remaining regions to find the best matches

between regions and objects.
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7.3 Relaxation Process
The relaxation process described in Chapters V and VI was tested on an
actual example of a scene having segmentation errors. The scene, annotated

with object numbers, is shown in Figure 7-1.

The attributes used to describe the objects were intensity, texture (variance
of intensity), extent (height x width), and elongation (width/height). In addition,
the pixel coordinates of the regions were used, in order to rule out mappings of
objects to regions which are very far away from their approximate expected

location.

The real-valued positional relation of angle between centroids was used.
Also, a binary relation, ‘nearby,” was defined such that Region A is nearby
Region B iff the distance between their centroids is less than a threshold based
on the sum of the heights and widths of the two objects. Both relations were
used in determining association graph arc values. Additionally, the ‘nearby’
relation was used in the procedure to merge oversegmented regions: two regions

could not be merged unless the relation ‘nearby’ existed between them.

The practical considerations of running the relaxation procedure on a
typical real-world problem became apparent in running this example, since the
stored scene had 13 objects and the observed scene contained 50 regions. The
example exhibited many problems of mismeasured region boundaries and extra
regions. There was also one missing object and several objects that had been

split into multiple regions by the segmentation process.
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Figure 7-1: Space shuttle simulator panel used as example scene.
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Three different ideas were explored with this example. First, using the
process described in Chapter V (no merging of regions), two forms of the
updating rule were tried. Then, the value of awas tested, at 0 and 0.25. Then,
the ideas of Chapter VI were applied to this example, to show how the procedure

can handle some real-world examples of over-segmentation.

The results of the various experiments with the relaxation process bear out
the previous conclusions regarding attribute and relation selection. Due to
practical considerations, the attributes used were not ideal. Because of
segmentation errors, the attributes that were based on perimeter were
unreliable, and were not used. Attributes of intensity and texture (variance of
intensity over a region’s area) were of limited usefulness. In the scenes being
used, the various objects all had approximately the same intensity and texture.
The corresponding observed regions did not have intensity values that matched
the objects well, because the segmentation process is based on finding regions of
high intensity. The segmentation algorithm tends to outline the brightest parts of
the objects, and to go around the shadows or darker parts. The variations in
these values could not be used to narrow down mappings of regions tb objects,
except to help in ruling out the mappings of some extra regions to objects.

7.3.1 Two Forms of Updating Rule

One issue that was brought to light with this example is the form of the
updating rule. In the formulation used in previous chapters, a node’s weight
is updated by the highest contribution (arc weight x node weight) for each

region. This original updating rule is:



= (6_1)

1 & m -
—Z{max(pgl)c(z,j;h,k)) ay
oy k=1 _}_J

plteap (1 a)i
However, in this example, there are many extra regions. Any contributions to
a node’s weight from the nodes involving these extra regions are spurious, so
it was expected that the result would be negatively affected by this problem.
So, a comparison was done between the original updating rule (above) and

the following rule:

p=apy (] -a)[%ﬁl[rr;%x(p%;’cci.j:h,knﬂ. (6-2)

The change is that the sum has one term for each object, and the maximum is

taken over the n regions for each given object.

Figure 7-2 shows the result of the original rule, Equation 7-1. Regions
are labeled with the object number of Figure 7-1to which they were found to
map by the relaxation algorithm. (The oversegmented objects, numbers 1,3,
11, and 13, were not attempted.) There are several errors in the favored
mappings found by the original rule. An extra object in the upper right corner
of the picture has been wrongly labeled as Object 2. Also, the wrong region
has been labeled as Object 8. There was also an error on Object 12. The
region corresponding to the printing on the panel under the switch was
labeled as Object 12. Figure 7-3 shows the result of using Equation 7-2 as the
updating rule. All the mappings that were found were correct. This result

suggests that if many extra regions are expected, given a particular application
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Figure 7-2: Object assignments resulting from using the original updating rule.
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Figure 7-3: Object assignments resulting from using the modified updating rule.



and segmentation algorithm, it is better to use Equation 7-2 as the updating
rule. If the segmentation algorithm is expected to miss many objects, the
original rule of Equation 7-1 is preferred.

7.3.2 Value of Alpha

Another experiment explored using two values of @: 0and 0.25. In this

application, the attributes that were readily measured with the system being
used were not very effective in distinguishing among the different types of
objects or distinguishing the extra objects from the stored objects. So, it was
expected that using a lower value of awould provide a better result. The
updating rule of Equation 7-2 was used, with aset to 0 and 0.25.
(Oversegmented objects, again, were not attempted.) Both led to correct
mappings for objects,‘ as shown in Figure 7-3. The sum of the node weights of
the favored nodes for each object was 7.866 ata =0.25, and 8.164 ata = 0.
This indicates that in this application, since the relation values were more
reliable than the attribute values, a lower value of aprovided a less
ambiguous result.
7.3.3 Handling Oversegmentation

This example contained several instances of oversegmented objects.
Because of the relatively large number of regions, this posed a practical
problem in running the relaxation process on a PC, in terms of memory size
and time requirements. Judicious selection of thresholds on the initial node
weights and arc values was necessary to keep the number of arcs in the
association graph down to a manageable level. In this example, 77 new
regions were created by the merging process. The resulting association graph

contained 7,248 arcs above the arc weight threshold.
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Two reglons were considered for merging if an object had all its initial
node weights below a threshold, and if the two regions were nearby and had
similar region-wide attributes (intensity and texture), and if the node
representing the mapping of the merged region to the object had a weight
above a threshold. New regions created by this process were added to the list
of regions, and later considered for further merges with other regions, thus

allowing for merges of more than two regions.

The results of the relaxation process oo the oversegmenied objects are
shown in Figure 7-4. (Results for objects which were not oversegmented were
the same as in Figure 7-3.) The merged region that mapped to Object 1
consisted of three regions: the main part of Object 1, the region
corresponding to the left bracket of Object 1, and the region corresponding to
the line of printing under the object. For Object 3, the top and bottom
portions of the object, along with the printing under it, merged to form the
region that was favored by the relaxation process. The left bracket and the
main part of Object 11 were mapped to that object. The main part of Object
13 merged with the printing above the object to form the region that mapped
best to Object 13. In each case, there were some €rrors, with regions that
could legitimately be considered part of an object not included in the favored
regions, Or extra objects (printing) being included. However, the results are
reasonable, as can be seen by examining the original scene of Figure 7-1. In
some cases, it is difficult to tell where an object ends and the printing below it

begins.



137

L O

rmIoigay  FTEOT
e

ORIGINAL PAGE I¢
OF POOR QUALITY

Figure 7-4: Object assignments obtained by merging oversegmented regions.



VIII. CONCLUSION AND RECOMMENDATIONS
8.1 Conclusion
This report describes an approach to inexact scene matching in which
we can find the ‘best’ mapping of observed regions to stored objects, given
degrees of closeness in region-object matches and in relation matches. This is

important since segmentation errors render exact matches impossible.

The selection of attributes and relations for the description of scenes was
discussed in some detail. Real-valued relations have proven to be very helpful in
inexact scene matching, because they allow for measurements of the closeness of

match between expected and observed relations.

Previous work has demonstrated the use of clique finding within association
graphs to model the determination of the ‘best’ region-to-object mapping.
However, that work was limited by the use of ‘yes or no’ choices in that it was
only specified that a region could or could not map to a given object, and that
two mappings were or were not compatible with each other. The work presented
here extends the use of the clique finding matching approach by weighting the
nodes and arcs of the association graph to allow for the quantification of how

good a mapping is, and how compatible two mappings are.

Applying relaxation to the weighted association graph simplifies the

selection of the best clique by eliminating nodes that have low values after
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relaxation, and by allowing the cliques to be evaluated by examining node
weights only and ignoring arc weights, as the relaxation process incorporates the
contextual information into the node weights. As mentioned in Chapter IV,
relaxation has been used in conjunction with clique finding in association graphs
for boundary matching, but in that research, discrete relaxation was used only to
reduce the size of the association graph and not to simplify the evaluation of

cliques.

Most previous uses of relaxation for scene matching have not been
incorporated into the framework of clique finding in association graphs. After
the relaxation process, the result is obtained by selecting the highest valued node
for each object. This method does not deal with missing or merged objects, and
does not handle the possibility that these highest-valued nodes may not all be
compatible with one another. Also, previous uses of relaxation for scene
matching or similar problems have not used an updating rule that allows for the
balancing of importance of initial node weights (local information) and arc
weights (contextual information). In scene matching, it is essential to take both

the local and contextual information into account when deciding on the best

mapping.

A means of handling problems of oversegmentation and undersegmentation
has also been presented here. By identifying possible split or merged regions and
adding merge nodes to the association graph, mappings of one region to multiple
objects, one object to multiple regions, and even multiple regions to multiple

objects are possible with little modification to the relaxation process.
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8.2 Recommendations

There are many opportunities for future research using this work as a

foundation. The major areas for further work are listed below:

1)

There is a need for research into the determination of the various
thresholds and parameters that must be set properly in order to produce
good results. These thresholds and parameters are listed and explained

below.

Initial mapping threshold: Nodes with weights below this threshold are
dropped from consideration. The threshold should be low enough that it
does not eliminate correct mappings with low initial weights due to
segmentation errors. But it should be high enough to eliminate
unnecessarily processing bad mappings, and not to allow a node with a very
low initial weight to be wrongly favored by the relaxation process because it

happens to have good contextual support.

Arc weight threshold: Since there are weights on the arcs of the
association graph, these values must be thresholded so that only the nodes
connected by arcs with values above the threshold are considered
compatible. The arc weight threshold should be low enough to retain
compatibility between mappings that are indeed compatible but may have a
low arc weight due to mismeasured relations. The threshold should be high
enough not to assume compatibility between two mappings that are
incompatible. In the evaluation of the association graph that results after

relaxation, having fewer arcs will result in smaller cliques.
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Merge consideration threshold: In determining whether to look for
possible regions to merge, the algorithm looks for an object that has all low
node weights. The merge consideration threshold is the value below which
the node weights are considered to be low. This threshold should be high
enough to consider merges even when an initial node weight is somewhat
high: it could be falsely high, or context support could be higher for a
merged region. The threshold should be low enough so that time is not
wasted considering merges for regions/objects that already have good
matches. (In the interest of accuracy, this threshold can be set high, so that

more possibilities of merged regions/objects afe considered.)

Similarity threshold: In order to merge two regions, their similarity (the
‘node weight’ achieved by comparing their region-wide attributes) must be
above this threshold, and the similarity of each region to the object that
prompted the merge attempt must be above the threshold. If this threshold
is too low, there will be a proliferation of merge nodes, increasing the size
of the association graph and the processing required, and increasing the
chance of an incorrect merged region/object being wrongly favored by the
relaxation process. If the threshold is too high, the process fails to merge

regions/objects that should be merged.

The parameter a: As discussed previously, a provides a balance
between the importance of the initial node weights (local compatibility) and
the association graph arc values (contextual support). If ais too low, a good

mapping may have a low node weight after relaxation because of
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mismatches in relations due to segmentation errors. If o is too high, the
contextual support for a mapping with a low initial weight due to

segmentation errors will not pull the node’s value up sufficiently.

Final node threshold: After relaxation, any nodes with weights below
this threshold are eliminated from consideration. If the threshold is too
low, an incorrect node with a very low weight could be included in the
clique representing the best mapping. This node should not be thought of
as adding to the merit of the mapping. If the threshold is too high, a correct

region-object mapping may be eliminated.

In testing the algorithm, when a correct mapping fails to be favored or
an incorrect mapping is improperly favored, it is relatively easy to
determine what sort of adjustment to thresholds or parameters would
improve the result. In applying this algorithm to a particular type of scene
with a given segmentation algorithm, a useful enhancement would be a
system for tuning these thresholds and parameters by the use of a set of
stored scenes and observed scenes exhibiting segmentation errors typical of
those expected in actual use. The system would perform the algorithm on
the sample scenes. When errors occur, the system would determine what
adjustment would be helpful in improving the result. For example, if a
node that should have a high weight after relaxation has a low weight, and if
its initial weight is high, increasing the value of o could improve the result.
If a merged region should have been created to map to a particular object,

it could be that the similarity threshold was too high.



2)

3)

4)

Another area in which turther research is needed is in parallel
implementations of the algorithms described here. All of the procedures
involved, including measurement of attributes and relations, determination
node and arc weights, determination of merge regions and objects, and the
relaxation process itself, are computationally intensive. So, any
implementation that does not make use of parallel processing is not likely

to be practical on problems of typical size.

In the handling of split or merged objects, finding candidate regions or
objects for merging by analyzing the initial node weights before relaxation
may not be the best approach. Because contextual information is not
considered, many unnecessary merges may be considered, and some
necessary ones may be overlooked. A better approach may be to run the
relaxation algorithm on the original regions and objects first, assuming that
there are no split or merged objects. Then, the final node weights may be
analyzed to determine if the relaxation procedure should be performed

again, on an association graph to which merge nodes have been added.

Another area in which there are many possibilities for more research is the
use of this matching approach in conjunction with primitives, attributes, and
relations different than those used here. The use of image regions as
primitives is appropriate for applications in which it is expected that whole
regions will usually be visible in the camera’s field of view. In applications
such as aerial photographs, the use of segments of the curves that constitute

the region boundaries may be more appropriate, because often only parts of
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regions are within the field of view of the camera. Using generalized
relations, which relate groups of objects, rather than simply pairs, may be

useful in handling problems such as rotation.

The use of relaxation in conjunction with clique finding in association
graphs may have applications in areas that are unrelated to scene matching.
This approach may be useful any time a mapping of units to classes is
sought, in which compatibility of individual mappings with each other is

important and many-to-many mappings are possible.
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