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Abstract

We present an unsupervised learning algorithm that acquires a natural-language lexicon

from raw speech. The algorithm is based on the optimal encoding of symbol sequences in

an MDL framework, and uses a hierarchical representation of language that overcomes many

of the problems that have stymied previous grammar-induction procedures. The forward

mapping from symbol sequences to the speech stream is modeled using features based

on articulatory gestures. We present results on the acquisition of lexicons and language

models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm

compares very favorably to other reported results with respect to segmentation performance

and statistical e�ciency.
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1 Introduction

Internally, a sentence is a sequence of discrete elements drawn from a �nite vocabulary. Spoken,

it becomes a continuous signal{ a series of rapid pressure changes in the local atmosphere

with few obvious divisions. How can a pre-linguistic child, or a computer, acquire the skills

necessary to reconstruct the original sentence? Speci�cally, how can it learn the vocabulary of

its language given access only to highly variable, continuous speech signals? We answer this

question, describing an algorithm that produces a linguistically meaningful lexicon from a raw

speech stream. Of course, it is not the �rst answer to how an utterance can be segmented

and classi�ed given a �xed vocabulary, but in this work we are speci�cally concerned with the

unsupervised acquisition of a lexicon, given no prior language-speci�c knowledge.

In contrast to several prior proposals, our algorithm makes no assumptions about the pres-

ence of facilitative side information, or of cleanly spoken and segmented speech, or about the

distribution of sounds within words. It is instead based on optimal coding in a minimum de-

scription length (MDL) framework. Speech is encoded as a sequence of articulatory feature

bundles, and compressed using a hierarchical dictionary-based coding scheme. The optimal

dictionary is the one that produces the shortest description of both the speech stream and the

dictionary itself. Thus, the principal motivation for discovering words and other facts about

language is that this knowledge can be used to improve compression, or equivalently, prediction.

The success of our method is due both to the representation of language we adopt, and to

our search strategy. In our hierarchical encoding scheme, all linguistic knowledge is represented

in terms of other linguistic knowledge. This provides an incentive to learn as much about the

general structure of language as possible, and results in a prior that serves to discriminate

against words and phrases with unnatural structure. The search and parsing strategies, on

the other hand, deliberately avoid examining the internal representation of knowledge, and are

therefore not tied to the history of the search process. Consequently, the algorithm is relatively

free to restructure its own knowledge, and does not su�er from the local-minima problems that

have plagued other grammar-induction schemes.

At the end, our algorithm produces a lexicon, a statistical language model, and a segmenta-

tion of the input. Thus, it has diverse application in speech recognition, lexicography, text and

speech compression, machine translation, and the segmentation of languages with continuous

orthography. This paper presents acquisition results from text and phonetic transcripts, and

preliminary results from raw speech. So far as we know, these are the �rst reported results on

learning words directly from speech without prior knowledge. Each of our tests is on complex

input: the TIMIT speech collection, the Brown text corpus [18], and the CHILDES database

of mothers' speech to children [26]. The �nal words and segmentations accord well with our

linguistic intuitions (this is quanti�ed), and the language models compare very favorably to

other results with respect to statistical e�ciency. Perhaps more importantly, the work here

demonstrates that supervised training is not necessary for the acquisition of much of language,

and o�ers researchers investigating the acquisition of syntax and other higher processes a �rm

foundation to build up from.
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The remainder of this paper is divided into nine sections, starting with the problem as we

see it (2) and the learning framework we attack the problem from (3). (4) explains how we

link speech to the symbolic representation of language described in (5). (6) is about our search

algorithm, (7) contains results, and (8) discusses how the learning framework extends to the

acquisition of word meanings and syntax. Finally, (9) frames the work in relation to previous

work and (10) concludes.

2 The Problem

Broadly, the task we are interested in is this: a listener is presented with a lengthy but �nite

sequence of utterances. Each utterance is an acoustic signal, sensed by an ear or microphone,

and may be paired with information perceived by other senses. From these signals, the listener

must acquire the necessary expertise to map a novel utterance into a representation suitable

for higher analysis, which we will take to be a sequence of words drawn from a known lexicon.

To make this a meaningful problem, we should adopt some objective de�nition of what it

means to be a word that can be used to evaluate results. Unfortunately, there is no single

useful de�nition of a word: the term encompasses a diverse collection of phenomena that seems

to vary substantially from language to language (see Spencer [38]). For instance, wanna is a

single phonological word, but at the level of syntax is best analyzed as want to. And while

common cold may on phonological, morphological and syntactic grounds be two words, for the

purposes of machine translation or the acquisition of lexical semantics, it is more conveniently

treated as a unit.

A solution to this conundrum is to avoid distinguishing between di�erent levels of rep-

resentation altogether: in other words, to try to capture as many linguistically important

generalizations as possible without labeling what particular branch of linguistics they fall into.

This approach accords well with traditional theories of morphology that assume words have

structure at many levels (and in particular with theories that suppose word formation to obey

similar principles to syntax, see Halle and Marantz [21]). Peeking ahead, after analyzing the

Brown corpus our algorithm parses the phrase the government of the united states as a single

entity, a \word" that has a representation. The components of that representation are also

words with representations. The top levels of this tree structure1 look like

[[[ the][ [[govern][ment]]]][[ of][[ the][[ united][[ state]s]]]]].

1The important aspect of this representation is that linguistic knowledge (words, in this case) is represented
in terms of other knowledge. It is only for computational convenience that we choose such a simple concatenative

model of decomposition. At the risk of more complex estimation and parsing procedures, it would be possible to

choose primitives that combine in more interesting ways; see, for example, the work of Della Pietra, Della Pietra
and La�erty [15]. Certainly there is plenty of evidence that a single tree structure is incapable of explaining all

the interactions between morphology and phonology (so-called bracketing paradoxes and the non-concatenative

morphology of the semitic languages are well-known examples; see Kenstowicz [25] for more).
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Here, each unit enclosed in brackets (henceforth these will simply be called words) has an entry

in the lexicon. There is a word united states that might be assigned a meaning independently

of united or states. Similarly, if the pronunciation of government is not quite the concatenation

of govern and ment (as wanna is not the concatenation of want and to) then there is a level of

representation where this is naturally captured. We submit that this hierarchical representation

is considerably more useful than one that treats the government of the united states as an atom,

or that provides no structure beyond that obvious from the placement of spaces.

If we accept this sort of representation as an intelligent goal, then why is it hard to achieve?

First of all, notice that even given a known vocabulary, continuous speech recognition is very dif-

�cult. Pauses are rare, as anybody who has listened to a conversation in an unknown language

can attest. What is more, during speech production sounds blend across word boundaries, and

words undergo tremendous phonological and acoustic variation: what are you doing is often

pronounced /w��c�du'n/.2 Thus, before reaching the language learner, unknown sounds from

an unknown number of words drawn from an unknown distribution are smeared across each

other and otherwise corrupted by various noisy channels. From this, the learner must deduce

the parameters of the generating process. This may seem like an impossible task- after all,

every utterance the listener hears could be a new word. But if the listener is a human being, he

or she is endowed with a tremendous knowledge about language, be it in the form of a learning

algorithm or a universal grammar, and this constrains and directs the learning process; some

part of this knowledge pushes the learner to establish equivalence classes over sounds. The

performance of any machine learning algorithm on this problem is largely dependent on how

well it mimics that behavior.

3 The Learning Framework

Traditionally, language acquisition has been viewed as the problem of �nding any grammar3

consistent with a sequence of utterances, each labeled grammatical or ungrammatical. Gold [19]

discusses the di�culty of this problem at length, in the context of converging on such a grammar

in the limit of arbitrarily long example sequences. More than 40 years ago, Chomsky saw the

problem similarly, but aware that there might be many consistent grammars, wrote

In applying this theory to actual linguistic material, we must construct a grammar

of the proper form: : : Among all grammars meeting this condition, we select the

simplest. The measure of simplicity must be de�ned in such a way that we will be

able to evaluate directly the simplicity of any proposed grammar: : : It is tempting,

then, to consider the possibility of devising a notational system which converts

considerations of simplicity into considerations of length. [9]

2Appendix A provides a table of the phonetic symbols used in this paper, and their pronunciations.
3Throughout this paper, the word grammar refers to a grammar in the formal sense, and not to syntax.
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A practical framework for natural language learning that retains Chomsky's intuition about

the quality of a grammar being inversely related to its length and avoids the pitfalls of the

grammatical vs. ungrammatical distinction is that of stochastic complexity, as embodied in

the minimum description length (MDL) principle of Rissanen [30, 31]. This principle can

be interpreted as follows: a theory is a model of some process, correct only in so much as

it reliably predicts the outcome of that process. In comparing theories, performance must be

weighed against complexity{ a baroque theory can explain any data, but is unlikely to generalize

well. The best theory is the simplest one that adequately predicts the observed outcome of the

process. This notion of optimality is formalized in terms of the combined length of an encoding

of both the theory and the data: the best theory is the one with the shortest such encoding.

Put again in terms of language, a grammarG is a stochastic theory of language production that

assigns a probability pG(u) to every conceivable utterance u. These probabilities can be used to

design an e�cient code for utterances; information theory tells us that u can be encoded using

� log pG(u) bits.
4 Therefore, if U is a set of utterances and jGj is the length of the shortest

description of G, the combined description length of U and G is jGj+
P

u2U � log pG(u). The

best grammar for U is the one that minimizes this quantity. The process of minimizing it is

equivalent to optimally compressing U .

We adopt this MDL framework. It is well-de�ned, has a foundation in information complex-

ity, and (as we will see) leads directly to a convenient lexical representation. For our purposes,

we choose the class of grammars in such a way that each grammar is essentially a lexicon. It is

our premise that within this class, the grammar with the best predictive properties (the short-

est description length) is the lexicon of the source. Additionally, the competition to compress

the input provides a noble incentive to learn more about the source language than just the

lexicon, and to make use of all cross-linguistic invariants.

We are proposing to learn a lexicon indirectly, by minimizing a function of the input (the

description length) that is parameterized over the lexicon. This is a risky strategy; certainly

a supervised framework would be more likely to succeed. Historically, there has been a large

community advocating the view that child language acquisition relies on supervisory informa-

tion, either in the form of negative feedback after ungrammatical productions, or clues present

in the input signal that transparently encode linguistic structure. The supporting argument

has always been that of last resort: supervised training may explain how learning is possible.

Gold's proof [19] that most powerful classes of formal languages are unlearnable without both

positive and negative examples is cited as additional evidence for the necessity of side informa-

tion. Sokolov and Snow [36] discuss this further and survey arguments that implicit negative

evidence is present in the learning environment. Along the same lines, several researchers,

notably Jusczyk [22, 23] and Cutler [11], argue that there are clues in the speech signal, such

as prosody, stress and intonation patterns, that can be used to segment the signal into words,

and that children do in fact attend to these clues. Unfortunately, the clues are almost always

language speci�c, which merely shifts the question to how the clues are acquired.

4We assume a minimal familiarity with information theory; see Cover and Thomas [10] for an introduction.
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We prefer to leave open the question of whether children make use of supervisory infor-

mation, and attack the question of whether such information is necessary for language acqui-

sition. Gold's proof, for example, does not hold for suitably constrained classes of languages

or for grammars interpreted in a probabilistic framework. Furthermore, both the acquisition

and use of prosodic and intonational clues for segmentation falls out naturally given the cor-

rect unsupervised learning framework, since they are generalizations that enable speech to be

better predicted. For these reasons, and also because there are many important engineer-

ing problems where labeled training data is unavailable or expensive, we prefer to investigate

unsupervised methods. A working unsupervised algorithm would both dispel many of the

learnability-argument myths surrounding child language acquisition, and be a valuable tool to

the natural language engineering community.

4 A Model of Speech Production

There is a conceptual di�culty with using a minimum description-length learning framework

when the input is a speech signal: speech is continuous, and can be speci�ed to an arbitrary

degree of precision. However, if we assume that beyond a certain precision the variation is

simply noise, it makes sense to quantize the space of signals into small regions with �xed

volume �. Given a probability density function p(�) over the space of signals, the number of

bits necessary to specify a region centered at u is approximately � log p(u)�. The � contributes

a constant term that is irrelevant with respect to minimization, leaving the e�ective description

length of an utterance u at � log p(u). For simplicity we follow much of the speech recognition

community in computing p(u) from an intermediate representation, a sequence of phones �,

using standard technology to compute p(uj�).5 More unusual, perhaps, is our model of the

generation of this phone sequence �, which attempts to capture some very rudimentary aspects

of phonology and phonetics.

We adopt a natural and convenient model of the underlying representation of sound in

memory. Each word is a sequence of feature bundles, or phonemes
6 (following Halle [20] these

features are taken to represent control signals to vocal articulators). The fact that features

are bundled is taken to mean that, in an ideal situation, there will be some period when all

articulators are in their speci�ed con�gurations simultaneously (this interpretation of autoseg-

mental representations is also taken by Bird and Ellison [3]). In order to allow for common

phonological processes, and in particular for the changes that occur in casual speech, we admit

5In particular, phones are mapped to triphones by crossing them with features of their left and right context.

Each triphone is a 3-state HMM with Gaussian mixture models over a vector of mel-frequency cepstral coe�cients
and their �rst and second order di�erences. Supervised training on the TIMIT data set is used for parameter

estimation; this is explained in greater depth in section 7.3. Rabiner and Juang [29] provide an excellent

introduction to these methods.
6A phoneme is a unit used to store articulatory information about a word in memory; a phone is similar but

represents the commands actually sent to the articulation mechanism. In our model, a sequence of phonemes

undergoes various phonological transformations to become a sequence of phones; in general the set of phones is
larger than the set of phonemes, though we constrain both to the set described in appendix A.
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Figure 1: A 4-feature depiction of how /gr�ndp�/ might surface as /gr~�mp�/. The nasalization

of the /�/ and /d/ and the place-of-articulation assimilation of the /d/ are explained by skew

in the signals to those two articulators. No phone is output for the phoneme /n/.

several sources of variation between the underlying phonemes and the phones that generates

the speech signal. In particular, a given phoneme may map to zero, one, or more phones;

features may exhibit up to one phoneme of skew (this helps explain assimilation); and there

is some inherent noise in the mapping of features from underlying to surface forms. Taken

together, this model can account for almost arbitrary insertion, substitution, and deletion of

articulatory features between the underlying phonemes and the phone sequence, but it strongly

favors changes that are expected given the physical nature of the speech production process.

Figure 1 contains a graphical depiction of a pronunciation of the word grandpa, in which the

underlying /gr�ndp�/ surfaces as /gr~�mp�/.

To be more concrete, the underlying form of a sentence is taken to be the concatenation of

the phonemes of each word in the sentence. This sequence is mapped to the phone sequence

by means of a stochastic �nite-state transducer, though of a much simpler sort than Kaplan

and Kay use to model morphology and phonology in their classic work [24]: it has only three

states. Possible actions are to copy (write a phone related to the underlying phoneme and

advance), delete (advance), map (write a phone related to the underlying phoneme without

advancing), and insert (write an arbitrary phone without advancing). When writing a phone,

the distribution over phones is a function of the features of the current input phoneme, the

next input phoneme, and the most recently written phone. The probability of deleting is

related to the probability of writing the same phone twice in succession. Figure 2 presents the

state transition model for this transducer; in our experiments the parameters of this model are

�xed, though obviously they could be re-estimated in later stages of learning. In the �gure,

pC(sjq; u; n) is the probability of the phone s surfacing given that the underlying phoneme

u is being copied in the context of the previous phone q and the subsequent phoneme n.

Similarly, pM(sjq; u) is the probability of mapping to s, and pI(s) is the probability of inserting

s. Appendix A describes how these functions are computed.
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state actions next state probability

start insert: write(s) inserted cI � pI(s)

map: write(s) mapped cMcI � pM (sjq; u)

delete: advance start cMcI �min(cD; pC(qjq; u; n) + pC(njq; u; n))

copy: advance;write(s) start cMcI �min(: : :) � pC(sjq; u; n)

inserted map: write(s) mapped cM � pM (sjq; u)

delete: advance start cM �min(cD; pC(qjq; u; n) + pC(njq; u; n))

copy: advance;write(s) start cM �min(: : :) � pC(sjq; u; n)

mapped map: write(s) mapped cM � pM (sjq; u)

copy: advance;write(s) start cM � pC(sjq; u; n)

Figure 2: The state transitions of the transducer that maps from an underlying phoneme

sequence to a sequence of phones. Here, s is the surface phone, q is the previous surface

phone, u is the underlying phoneme, and n is the next underlying phoneme. In our current

implementation, cI = 0:05; cM = 0:05 and cD = 0:9 (chosen quite arbitrarily).

This model of speech production determines p(�j�), the probability of a phone sequence

� given a phoneme sequence �, computed by summing over all possible derivations of � from

�. The probability of an utterance u given a phoneme sequence � is then
P

� p(uj�)p(�j�),

and the combined description length of a grammar G and a set of utterances becomes jGj +P
u � log

P
� p(uj�)pG(�). Using this formula, any language model that assigns probabilities

to phoneme sequences can be evaluated with respect to the MDL principle. The problem of

predicting speech is reduced to predicting phoneme sequences; the extra steps do no more than

contribute a term that weighs phoneme sequences by how well they predict certain utterances.

Phonemes can be viewed as arbitrary symbols for the purposes of language modeling, no di�er-

ent than text characters. As a consequence, any algorithm that can build a lexicon by modeling

unsegmented text is a good part of the way towards learning words from speech; the princi-

pal di�erence is that in the case of speech there are two hidden layers that must be summed

over, namely the phoneme and phone sequences. Some approximations to this summation are

discussed in sections 6.1 and 7.3. Meanwhile, the next two sections will treat the input as a

simple character sequence.

5 The Class of Grammars

All unsupervised learning techniques rely on �nding regularities in data. In language, regular-

ities exist at many di�erent scales, from common sound sequences that are words, to intricate

patterns of grammatical categories constrained by syntax, to the distribution of actions and

objects unique to a conversation. These all interact to create weaker second-order regularities,

such as the high probability of the word the after of. It can be extremely di�cult to separate

the regularities tied to \interesting" aspects of language from those that naturally arise when

7



many complex processes interact. For example, the 19-character sequence radiopasteurization

appears six times in the Brown corpus, far too often to be a freak coincidence. But at the

same time, the 19-character sequence scratching her nose also appears exactly six times. Our

intuition is that radiopasteurization is some more fundamental concept, but it is not easy to

imagine principled schemes of determining this from the text alone. The enormous number of

uninteresting coincidences in everyday language is distracting; plainly, a useful algorithm must

be capable of extracting fundamental regularities even when such coincidences abound. This

and the minimum description length principle are the motivation for our lexical representation

(our class of grammars).

In this class of grammars, terminals are drawn from an arbitrary alphabet. For the time

being, let us assume they are ascii characters, though in the case of speech processing they

are phonemes. Nonterminals are concatenated sequences of terminals. Together, terminals

and nonterminals are called \words". The purpose of a nonterminal is to capture a statistical

pattern that is not otherwise predicted by the grammar.7 In this work, these patterns are merely

unusually common sequences of characters, though given a richer set of linguistic primitives,

the framework extends naturally. As a general principle, it is advantageous to add a word to the

grammar when its characters appear more often than can be explained given other knowledge,

though the cost of actually representing the word acts as a bu�er against words that occur only

marginally more often than expected, or that have unlikely (long) descriptions.

Some of the coincidences in the input data are of interest, and others are not. We assume

that the vast majority of the less interesting coincidences (scratching her nose) arise from

interactions between more fundamental processes (verbs take noun-phrase arguments; nose is

a noun, and so on). This suggests that fundamental processes can be extracted by looking for

patterns within the uninteresting coincidences, and implies a recursive learning scheme: extract

patterns from the input (creating words), and extract patterns from those words, and so on.

These steps are equivalent to compressing not only the input, but also the parameters of the

compression algorithm, in a never-ending attempt to identify and eliminate the predictable.

They lead us to a class of grammars in which both the input and nonterminals are represented

in terms of words.

Given that our only unit of representation is the word, compression of the input or a nonter-

minal reduces to writing out a sequence of word indices. For simplicity, these words are drawn

independently from a probability distribution over a single dictionary; this language model

has been called a multigram [14]. Figure 3 presents a complete description of thecatinthehat,

in which the input and six words used in the description are decomposed using a multigram

language model. This is a contrived example, and does not represent how our algorithm would

analyze this input. The input is represented by four words, thecat+i+n+thehat. The surface

form of a word w is given by surf(w), and its representation by rep(w). The total number of

times the word is indexed in the combined description of the input and the dictionary is c(w).

Using maximum-likelihood estimation, the probability p(w) of a word is computed by normal-

izing these counts. Assuming a clever coding, the length of a word w's index is � log p(w). The

7Just as in the work of Cartwright and Brent [7], Della Pietra et al [15], Olivier [27], and Wol� [40, 41].
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surf(w) rep(w) c(w) p(w) � log p(w) jrep(w)j

the t+h+e 2 2/17 3.09 10.27

at a+t 2 2/17 3.09 6.18

t 2 2/17 3.09

h 2 2/17 3.09

cat c+at 1 1/17 4.09 7.18

hat h+at 1 1/17 4.09 6.18

thecat the+cat 1 1/17 4.09 7.18

thehat the+hat 1 1/17 4.09 7.18

e 1 1/17 4.09

a 1 1/17 4.09

c 1 1/17 4.09

i 1 1/17 4.09

n 1 1/17 4.09

thecat+i+n+thehat 16.36

60.53

Figure 3: A possible description of thecatinthehat, with length 60.53.

cost of representing a word in the dictionary is the total length of the indices in its representa-

tion; this is denoted by jrep(w)j above.8 (Terminals have no representation or cost.) The total

description length is this example is 60:53 bits, the summed lengths of the representations of

the input and all the nonterminals. This is longer than the \empty" description, containing

no nonterminals: for this short input the words we contrived were not justi�ed. But because

only 16:36 bits of the description were devoted to the input, doubling it to thecatinthehatthe-

catinthehat would add no more than 16:36 bits to the description length, whereas under the

empty grammar the description length doubles. That is because in this longer input, the se-

quences thecat and thehat appear more often than independent chance would predict, and are

more succinctly represented by a single index than by writing down their letters piecemeal.

This representation is a generalization of that used by the LZ78 [42] coding scheme. It is

therefore capable of universal compression, given the right estimation scheme, and compresses

a sequence of identical characters of length n to size O(logn). It has a variety of other pleasing

properties. Because each word appears in the dictionary only once, common idiomatic or

suppletive forms do not unduly distort the overall picture of what the \real" regularities are,

and the fact that commonly occuring patterns are compiled out into words also explains how

a phrase like /w��c�du'n/ can be recognized so easily.

8Of course, the number of words in the representation must also be written down, but this is almost always

negligible compared to the cost of the indices. For that reason, we do not discuss it further. The careful reader

will notice an even more glaring omission- nowhere are word indices paired with words. However, if words are

written in rank order by probability, they can be uniquely paired with Hu�man codes given only knowledge of

how many codes of each length exist. For large grammars, the length of this additional information is negligible.
We have found that Hu�man codes closely approach the arithmetic-coding ideal for this application.
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6 Finding the Optimal Grammar

The language model in �gure 3 looks suspiciously like a stochastic context-free grammar, in

that a word is a nonterminal that expands into other words. Context-free grammars, stochastic

or not, are notoriously di�cult to learn using unsupervised algorithms. As a general rule, CFGs

acquired this way have neither achieved the entropy rate of theoretically inferior Markov and

hidden Markov processes [8], nor settled on grammars that accord with linguistic intuitions

[6, 28] (for a detailed explanation of why this is so, see de Marcken [13]). However disappointing

previous results have been, there is reason to be optimistic. First of all, as described so far

the class of grammars we are considering is weaker than context-free: there is recursion in the

language that grammars are described with, but not in the languages these grammars generate.

In fact, the grammars make no use of context whatsoever. Expressive power has not been the

principle downfall of CFG induction schemes, however: the search space of stochastic CFGs

under most learning strategies is riddled with local optima. This means that convergence to

a global optimum using a hill-climbing approach like the inside-outside algorithm [1] is only

possible given a good starting point, and there are arguments [6, 13] that algorithms will not

usually start from such points.

Fortunately, the form of our grammar permits the use of a signi�cantly better behaved

search algorithm. There are several reasons for this. First, because each word is decomposable

into its representation, adding or deleting a word does not drastically alter the character of

the grammar. Second, because all of the information about a word necessary for parsing is

contained in its surface form and its probability, its representation is free to change abruptly

from one iteration to the next, and is not tied to the history of the search process. Finally,

because the representation of a word serves as a prior that discriminates against unnatural

words, search tends not to get bogged down in linguistically implausible grammars.

The search algorithm we use is divided into four stages. In stage 1, the Baum-Welch [2]

procedure is applied to the input and word representations to estimate the probabilities of the

words in the current dictionary. In stage 2 new words are added to the dictionary if this is

predicted to reduce the combined description length of the dictionary and input. Stage 3 is

identical to stage 1, and in stage 4 words are deleted from the dictionary if this is predicted to

reduce the combined description length. Stages 2 and 4 are a means of increasing the likelihood

of the input by modifying the contents of the dictionary rather than the probability distribution

over it, and are thus part of the maximization step of a generalized expectation-maximization

(EM) procedure [16]. Starting from a dictionary that contains only the terminals, these four

stages are iterated until the dictionary converges.

6.1 Probability Estimation

Given a dictionary, we can compute word probabilities over word and input representations

using EM; for the language model described here this is simply the Baum-Welch procedure.
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For a sequence of terminals 0tn (text characters or phonemes), and a word w that can span a

portion of the sequence from k to l (surf(w) = ktl), we write k

w
! l. Since there is only one

state in the hidden Markov formulation of multigrams (word emission is context-independent),

the form of the algorithm is quite simple:

�k � p(0tk) =
P

k
w

!l
p(w)�l:

�k � p(ktn) =
P

k
w

!l
p(w)�l:

p(l
w
! kj0tn) �

p(0tn; k
w
! l)

p(0tn)
=

�lp(w)�k

�0

:

with �0 = �n = 1. Summing the posterior probability p(k
w
! lj0tn) of a word w over all

possible locations produces the expected number of times w is used in the combined description.

Normalizing these counts produces the next round of word probabilities. These two steps are

iterated until convergence; two or three iterations usually su�ce. The above equations are

for complete-likelihood estimates, but if one adopts the philosophy that a word has only one

representation, a Viterbi formulation can be used. We have not noticed that the choice leads

to signi�cantly di�erent results in practice9, and a Viterbi implementation can be simpler and

more e�cient.

There are two complications that arise in the estimation. The �rst is quite interesting.

For a description to be well-de�ned, the graph of word representations can not contain cycles:

a word can not be de�ned in terms of itself. So some partial ordering must be imposed on

words. Under the concatenative model that has been discussed, this is easy enough, since the

representation of a word can only contain shorter words. But there are obvious and useful

extensions that we have experimented with, such as applying the phoneme-to-phone model at

every level of representation, so that a word like wanna can be represented in terms of want

and to. In this case, a chicken-and-egg problem must be solved: given two words, which comes

�rst? It is not easy to �nd good heuristics for this problem, and computing the description

length of all possible orderings is obviously far too expensive.

The second problem is that when the forward-backward algorithm is extended with the

bells-and-whistles necessary to accommodate the phoneme-to-phone model (even ignoring the

phone-to-speech layer), it becomes quite expensive, for three reasons. First, a word can with

some probability match anywhere in an utterance, not just where characters align perfectly.

Second, the position and state of the read head for the phone-to-phoneme model must be

incorporated into the state space. And third, the probability of the word-to-phone mapping

is now dependent on the �rst phoneme of the next word. Without going into the lengthy

details, our algorithm is made practical by prioritizing states for expansion by an estimate of

their posterior probability, computed from forward (�) and backward (�) probabilities. The

algorithm interleaves state expansion with recomputation of forward and backward probabilities

as word matches are hypothesized, and prunes states that have low posterior estimates. Even

so, running the algorithm on speech is two orders of magnitude slower than on text.

9All results in this paper except for tests on raw speech use the complete-likelihood formulation.
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6.2 Adding and Deleting Words

The governing motive for changing the dictionary is to reduce the combined description length

of U and G, so any improvement a new word brings to the description of an utterance must

be weighed against its representation cost. The general strategy for building new words is to

look for a set of existing words that occur together more often than independent chance would

predict.10 The addition of a new word with the same surface form as this set will reduce the

description length of the utterances it occurs in. If its own cost is less than the reduction,

the word is added. Similarly, words are deleted when doing so would reduce the combined

description length. This generally occurs as shorter words are rendered irrelevant by longer

words that model more of the input.

Unfortunately, the addition or deletion of a word from the grammar could have a substantial

and complex impact on the probability distribution p(w). Because of this, it is not possible to

e�ciently gauge the exact e�ect of such an action on the overall description length, and various

approximations are necessary. Rather than devote space to them here, they are described in

appendix B, along with other details related to the addition and deletion of words from the

dictionary.

One interesting addition needed for processing speech is the ability to merge changes that

occur in the phoneme-to-phone mapping into existing words. Often, a word is used to match

part of a word with di�erent sounds; for instance doing /du*8/ may initially be analyzed as

do /du/ + in /*n/, because in is much more probable than -ing. This is a common pair that

will be joined into a single new word. Since in most uses of this word the /n/ changes to a

/8/, it is to the algorithm's advantage to notice this and create /du*8/ from /du*n/. The other

possible approach, to build words based on the surface forms found in the input rather than

the concatenation of existing words, is less attractive, both because it is computationally more

di�cult to estimate the e�ect of adding such words, and because surface forms are so variable.

7 Experiments and Results

There are at least three qualities we hope for in our algorithm. The �rst is that it captures

regularities in the input, using as e�cient a model as possible. This is tested by its performance

as a text-compression and language modeling device. The second is that it captures regularity

using linguistically meaningful representations. This is tested by using it to compress unseg-

mented phonetic transcriptions and then verifying that its internal representation follows word

boundaries. Finally, we wish it to learn given even the most complex of inputs. This is tested

by applying the algorithm to a multi-speaker corpus of continuous speech.

10In our implementation, we consider only sequences of two or three words that occurs in the Viterbi analyses

of the word and input representations.
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j ordinaryj carejyj williamsj,j armed withj aj pistolj,j stoodj byj at thej j polljsj to insurej orderj.j "thisj

wasj thej cooljestj,j calmjestj j electionj i ever sawj�,j coljquijttj policemanj tojmj williamsj said.j j "bejingj

at thej polljsj wasj just likej beingj atj churchj.j i didn'tj j smellj aj dropj ofj liquorj, and wej didn't

havej a bit ofj troublej j".j thej campaignj leadingj to thej electionj was notj soj quietj j, howeverj.j it

wasj markedj byj controversyj,j anonymousj midnightj phonej j callsj andj veiledj threatsj ofj violencej.j

j the formerj countyj j school superintendentj,j georgej p&j calljanj,j shotj himselfj to deathj j marchj

18j,j fourj days afterj hej resignedj hisj postj in aj disputej j with thej countyj school boardj.j j during

thej electionj campaignj,j j bothj candidatesj,j davisj andj bushj,j reportedlyj receivedj anonymousj j

telephone callsj.j ordinaryj williamsj said hej, too,j wasj subjected toj j anonymousj callsj soonj afterj hej

scheduledj thej electionj.j j j manyj localj citizensj fearedj thatj there would bej irregularitiesj j at thej

polljsj, andj williamsj gotj himselfj aj permitj to carryj aj j gunj andj promisedj anj orderlyj electionj.j

Figure 4: The top-level segmentation of the �rst 10 sentences of the test set, previously unseen

by the algorithm. Vertical bars indicate word boundaries.

7.1 Text Compression and Language Modeling

The algorithm was run on the Brown corpus [18], a collection of approximately one million words

of text drawn from diverse sources, and a standard test of language models. We performed a

test identical to Ristad and Thomas [32], training on 90% of the corpus11 and testing on the

remainder. Obviously, the speech extensions discussed in section 4 were not exercised.

After �fteen iterations, the training text is compressed from 43,337,280 to 11,483,361 bits,

a ratio of 3.77:1 with a compression rate of 2.12 bits/character; this compares very favorably

with the 2.95 bits/character achieved by the LZ77 based gzip program. 9.5% of the description

is devoted to the parameters (the words and other overhead), and the rest to the text. The

�nal dictionary contains 30,347 words. The entropy rate of the training text, omitting the

dictionary and other overhead, is 1.92 bits/character. The entropy rate of this same language

model on the held-out test set (the remaining 10% of the corpus) is 2.04 bits/character. A

slight adjustment of the conditions for creating words produces a larger dictionary, of 42,668

words, that has a slightly poorer compression rate of 2.19 bits/character but an entropy rate on

the test set of 1.97 bits/character, identical to the base rate Ristad and Thomas achieve using a

non-monotonic context model. So far as we are aware, all models that better our entropy �gures

contain far more parameters and do not fare well on the total description-length (compression

rate) criterion. This is impressive, considering that the simple language model used in this

work has no access to context, and naively reproduces syntactic and morphological regularities

time and time again for words with similar behavior.

Figure 4 presents the segmentation of the �rst 10 sentences of the held-out test set, and

�gure 5 presents a subset of the �nal dictionary. Even with no special knowledge of the space

character, the algorithm adopts a policy of placing spaces at the start of words. The words

in �gure 5 with rank 1002 and 30003 are illuminating: they are cases where syntactic and

11The �rst 90% of each of the 500 �les. The alphabet is 70 ascii characters, as no case distinction is made.

The input was segmented into sentences by breaking it at all periods, question marks and exclamation points.

Compression numbers include all bits necessary to exactly reconstruct the input.
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Rank � logp(w) jrep(w)j c(w) rep(w)

0 4.653 38236.34 .

1 4.908 32037.72 ,

2 5.561 20.995 20369.20 [ [the]]

3 5.676 18805.20 s

4 5.756 17.521 17791.95 [[ an]d]

5 6.414 22.821 11280.19 [ [of]]

6 6.646 18.219 9602.04 [ a]

100 10.316 754.54 o

101 10.332 20.879 746.32 [ [me]]

102 10.353 24.284 735.25 [ [two]]

103 10.369 21.843 727.30 [ [time]]

104 10.379 23.672 722.46 [ (]

105 10.392 18.801 715.74 ["?]

106 10.434 694.99 m

500 12.400 19.727 177.96 [ce]

501 12.400 177.94 2

502 12.401 21.364 177.86 [[ize]d]

503 12.402 16.288 177.72 [[   ][ but]]

504 12.403 21.053 177.60 [ [con]]

505 12.408 21.346 176.94 [[ to][ok]]

506 12.410 24.251 176.74 [ [making]]

1000 13.141 22.861 106.50 [[ require]d]

1001 13.141 22.626 106.49 [i[ous]]

1002 13.142 17.065 106.39 [[ed by][ the]]

1003 13.144 29.340 106.24 [[ ear][lier]]

1004 13.148 24.391 105.96 [ [paid]]

1005 13.148 20.041 105.94 [be]

1006 13.149 21.355 105.89 [[ clear][ly]]

28241 18.290 33.205 3.00 [[ massachusetts][ institute of technology]]

30000 18.875 60.251 2.00 [[ norman][ vincent][ pea][le]]

30001 18.875 61.002 2.00 [[ pi][dding][ton][ and][ min]]

30002 18.875 69.897 2.00 [[ **f where the maximization is][ over]

[ all][ admissible][ policies]]

30003 18.875 69.470 2.00 [[ stick to][ an un][charg][ed][ surface]]

30004 18.875 63.360 2.00 [[ mother][-of-]p[ear]l]

30005 18.875 61.726 2.00 [[ gov&][ mar][vin][ griffin]]

30006 18.875 55.739 2.00 [[ reacted][ differently][ than][ they had]]

Figure 5: Some words from the dictionary with their representations, ranked by probability.
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this is a book ?

what do you see in the book ?

how many rabbits ?

how many ?

one rabbit ?

uhoh trouble what else did you forget at school ?

we better go on Monday and pick up your picture and your dolly .

would you like to go to that school ?

there 're many nice people there weren't there ?

did they play music ?

oh what shall we do at the park ?

oh good good good .

I love horses .

here we go trot trot trot trot .

and now we 'll go on a merry go round .

Figure 6: Several short excerpts from the Nina portion of the CHILDES database.

morphological regularities are su�cient to break word boundaries; solutions to this \problem"

are discussed in section 8. Many of the rarer words are uninteresting coincidences, useful for

compression only because of the peculiarities of the source.12

7.2 Segmentation

The algorithm was run on a collection of 34,438 transcribed sentences of mothers' speech to

children, taken from the Nina portion of the CHILDES database [26]; a sample is shown in

�gure 6. These sentences were run through a simple public-domain text-to-phoneme converter,

and inter-word pauses were removed. This is the same input described in de Marcken [12].

Again, the phoneme-to-phone portion of our work was not exercised; the output of the text-

to-phoneme converter is free of noise and makes this problem little di�erent from that of

segmenting text with the spaces removed.

The goal, as in Cartright and Brent [7], is to segment the speech into words. After ten

iterations of training on the phoneme sequences, the algorithm produces a dictionary of 6,630

words, and a segmentation of the input. Because the text-to-phoneme engine we use is par-

ticularly crude, each word in the original text is mapped to a non-overlapping region of the

phonemic input. Call these regions the true segmentation. Then the recall rate of our algorithm

is 96.2%: fully 96.2% of the regions in the true segmentation are exactly spanned by a single

word at some level of our program's hierarchical segmentation. Furthermore, the crossing rate

is 0.9%: only 0.9% of the true regions are partially spanned by a word that also spans some

phonemes from another true region. Performing the same evaluations after training on the �rst

30,000 sentences and testing on the remaining 4,438 sentences produces a recall rate of 95.5%

and a crossing rate of 0.7%.

12The author apologizes for the presumably inadvertent addition of word 28241 to the sample.
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Although this is not a di�cult task, compared to that of segmenting raw speech, these �gures

are encouraging. They indicate that given simple input, the program very reliably extracts

the fundamental linguistic units. Comparing to the only other similar results we know of,

Cartwright and Brent's [7], is di�cult: at �rst glance our recall �gure seems dramatically better,

but this is partially because of our multi-level representation, which also renders accuracy rates

meaningless. We are not aware of other reported crossing rate �gures.

7.3 Acquisition from Speech

The experiments we have performed on raw speech are preliminary, and included here princi-

pally to demonstrate that our algorithm does learn words even in the very worst of conditions.

The conditions of these initial tests are so extreme to make detailed analysis irrelevant, but we

believe the �nal dictionaries are convincing in their own right.

A phone-to-speech model was created using supervised training13 on the TIMIT continuous

speech database. Speci�cally, the HTK HMM toolkit developed by Young and Woodland was

used to train a triphone based model on the `si' and `sx' sentences of the database. Tests on

the TIMIT test set put phone recall at 55.5% and phone accuracy at 68.7%. These numbers

were computed by comparing the Viterbi analyses of utterances under a uniform prior to

phoneticians' transcriptions. It should be clear from this performance level that the input to

our algorithm will be very, very noisy: some sentences with their transcriptions and the output

of the phone recognizer are presented in �gure 7. Because of the extra computational expense

involved in summing over di�erent phone possibilities only the Viterbi analyses were used;

errors in the Viterbi sequences must therefore be compensated for by the phoneme-to-phone

model. We intend to extend the search to a network of phones in the near future.

We ran the algorithm on the 1890 `si' sentences from TIMIT, both on the raw speech using

the Viterbi analyses and on the cleaner transcriptions. This is a very di�cult training corpus:

TIMIT was designed to aid in the training of acoustic models for speech recognizers, and as a

consequence the source material was selected to maximize phonetic diversity. Not surprisingly,

therefore, the source text is very irregular and contains few repetitions. It is also small. As a

�nal complication, the sentences in the corpus were spoken by hundreds of di�erent speakers

of both sexes, in many di�erent dialects of English. We hope in the near future to apply the

algorithm to a longer corpus of dictated Wall Street Journal articles; this should be a fairer

test of performance.

The �nal dictionary contains 1097 words after training on the transcriptions, and 728 words

13The ethics of using supervised training for this portion of an otherwise unsupervised algorithm do not overly

concern us. We would prefer to use a phone-to-speech model based directly on acoustic-phonetics, and there is

a wide literature on such methods, but the HMM recognizer is more convenient given the limited scope of this
work. It is unlikely that the substitution of a di�erent model would reduce the performance of our algorithm,

given the high error rate of the HMM recognizer. We also test our algorithm on some of the same speech used

for training the models, because there is a very limited amount of data available in the corpus. Again, for these
preliminary tests this should not be a great concern.
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Bricks are an alternative.

br*kstarn=ltrn't*v(trans.)

br'kzar�n=ltr'n't*v(rec.)

Fat showed in loose rolls beneath the shirt.

f�t�soudt'nlusroulzb'niS'�srt(trans.)

f�t�s�di*nd���l'swrltsp'tni'S�'�srt(rec.)

It su�ers from a lack of unity of purpose and respect for heroic leadership.

'ts�frzfr�m�l�k'vyun'ti�vprp's�nr'sp�ktfr$rou'klitr�s*p(trans.)

'tsS�przfrnal�k�dki'n*ds-i'prp�s'nr'spb�ktfrhr�l'klir�s�p(rec.)

His captain was thin and haggard and his beautiful boots were worn and shabby.

h*zk�pt'nw�sS*n�n$�grd'n*zbyutubuts-wrw=rn'n-�s�bi(trans.)

h*zkat�nw�st��n�nh�g*rd�n*'zpbyut'dblouktz-wrw=rn'8�s�bi(rec.)

The reasons for this dive seemed foolish now.

�'riz�nzfr�*sdaivsimdful'�s-nau(trans.)

�'ris�nsp�d'stbaieibpsi8gdounl'�s-naul(rec.)

Figure 7: The �rst 5 of the 1890 sentences used to test our algorithm; both the transcriptions

and the phone recognizer's output are shown. TIMIT's phone set has been mapped into the set

from appendix A; in the process some information has been lost (for instance, the epenthetic

vowels that often occur before syllabic consonants have been deleted).

after training on the speech. Most of the di�erence is in the longer words: as might be

expected, performance is much poorer on the raw speech. Figure 8 contains excerpts from both

dictionaries and several segmentations of the transcriptions. Except for isolated sentences, the

segmentations of the speech data are not particularly impressive.

Despite the relatively small size of the dictionary learned from raw speech, we are very

happy with these results. Obviously, there are real limits to what can be extracted from a

short, noisy data set. Yet our algorithm has learned a number of long words well enough that

they can be reliably found in the data, even when the underlying form does not exactly match

the observed input. In many cases (witness sometime, maybe, set aside in �gure 8) these words

are naturally and properly represented in terms of others. We expect that performance will

improve signi�cantly on a longer, more regular corpus. Furthermore, as will be described in

the next section, the algorithm can be extended to make use of side information, which has

been shown to make the word learning problem enormously easier.

8 Extensions

Words are more than just sounds{ they have meanings and syntactic roles, that can be learned

using very similar techniques to those we have already described. Here we very briey sketch

what such extensions might look like.
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Speech Transcriptions

Rank rep(w) Interpretation Rank rep(w) Interpretation

0 t 100 [��r] there, their

1 d 101 [w*]

2 s 102 [�[�r]] other

3 k 103 [s�m] some

20 ['z] -es, is 500 [p[=i]nt] point

21 [*n] in 501 [k*d]

22 [hi] he 502 ['[bl]] -able

23 [�n] 503 [s[tei]] stay

24 v 504 [[d�j�nr]l] general

25 [��] the 740 [[pra][bl]]

250 [[pr]i] pre- 741 [[aidi]�zr]

251 [[w�]l] well 742 [[f*l]m] �lm

252 [d*t] 743 [*bu]

253 [asp] 744 [fVt] foot

254 [�[�r]] other 745 [f[lau]] ow(er)

310 [[mei][bi]] maybe 746 [l[�t]r] latter

311 [[wi]8] 747 [[s�m][taim]] sometime

312 [n[�vr]] never 748 [�la[d�j]['kl]] -ological

313 [[ai]'t] 749 [[kw�]�s[t�c]] quest(ion)

314 [i[t�c]] each 1070 [[�n][f=r][t�c]] unfort(unate)

315 [l[�t]] let 1071 [[t']p�[kl]] typical

714 [[wV]t[�vr]] whatever 1072 [t[*st][w'z]]

715 [[�'][t�c*l]d] the child(ren) 1073 [[s�t][�saidt]] set aside

716 [s*s[�m]] system 1074 [[ri]z[�l]] resul(t)

717 [[k�m]p[��]] 1075 [[pr]uv[i8]] proving

718 [b'[k�m]] become 1076 [p[l�]�zr] pleasure

Cereal grains have been used for centuries to prepare fermented beverages.

s*rilgreinzh�vbinyuzdfrs�ntrizt�prp�rfrm�n'db�vr'd�j'z(trans.)

s[*ri]l[greitd][h�vri]n[yuzd][fr][s�ntr]iz[t�][pr][p�r][fr][m�ni]d[b�vrid�j]['z]

This group is secularist and their program tends to be technological.

�*sgrup*s�ky'lr*st'n��rprougr�mt�nzt'bit�kn�lad�j'kl(trans.)

[�*s][grup]*s[�gy']l[r*st]['n][��r][prougr�m][t�n]z[t'bi][t�ks][�lad�j'kl]

A portable electric heater is advisable for shelters in cold climates.

�p=rt�bl�l�ktr'khitr'z'dvaiz'blfr�s�ltrznkoul-klaim'ts(trans.)

�[p=rt][�bl][�l�ktr'k][hi]tr['z]['dvaiz]['bl][fr][�s�ltr]znk[oul]-k[lai][m't]s

Figure 8: Excerpts from the dictionaries after processing TIMIT data, and three segmentations

of the transcripts.
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8.1 Word Meanings

An implicit assumption throughout this paper is that sound is learned independently of mean-

ing. In the case of child language acquisition this is plainly absurd, and even in engineering

applications the motivation for learning a sound pattern is usually to pair it with something else

(text, if one is building a dictation device, or words from another language in the case of machine

translation). The constraint that the meaning of a sentence places on the words in it makes

learning sound and meaning together much easier than learning sound alone (Siskind [33, 34, 35],

de Marcken [12]).

Let us make the naive assumption that meanings are merely sets (the meaning of /��/

might be ft; h; eg, or the meaning of temps perdu might be fpast; timesg)14. If the meaning of

a sentence is a function of the meanings of the words in the sentence (such as the union), then

the meaning of a word should likewise be that function applied to the meanings of the words in

its representation. There must be some way to modify this default behavior, such as by writing

down elements that occur in a word's meaning but not in the meanings of its representation

and vice versa.

Assume that with each utterance u comes a distribution over meaning sets, f(�), that reects

the learner's prior assumptions about the meaning of the utterance. This side information can

be used to improve compression. The learner �rst selects whether or not to make use of the

distribution over meanings (in this way it retains the ability to encode the unexpected, such as

colorless green ideas sleep furiously). If meaning is used, then u is encoded under pG(ujf) rather

than pG(u). As an example of why this helps, imagine a situation where f(M) = 0 if m 2M .

Then since there is no chance of a word with meaning m occurring in the input, all words with

that meaning can e�ectively be removed from the dictionary and probabilities renormalized.

The probabilities of all other words will increase, and their code lengths shorten. Since word

meanings are tied to compression, they can be learned by altering the meaning of a word when

such a move reduces the combined description length.

We have eshed out this extension more fully and conducted some initial experiments, and

the algorithm seems to learn word meanings quite reliably even given substantial noise and

ambiguity. At this time, we have not conducted experiments on learning word meanings with

speech, though the possibility of learning a complete dictation device from speech and textual

transcripts is not beyond imagination.

8.2 Surface Syntax

One of the major inadequacies of the simple concatenative language model we have used here

is that it makes no use of context, and as a consequence grammars are much bigger than

they need to be, and do not generalize as well as they could. The algorithm also occasionally

produces words that cross real-word boundaries, like ed by the (see �gure 5). This is an

14Siskind [35] argues that it is easy to extend a program that learns sets to learn structures over them.
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example of a regularity that arises because of several interacting linguistic processes that the

algorithm can not capture because it has no notion of abstract categories. We would prefer

to capture this pattern using a form more like <vroot>ed by the<noun>, with an internal

representation that conformed to our linguistic intuitions. But before we can admit surface

forms with underspeci�ed categories, there must be some means of \�lling in" these categories.

Happily, this can be done without ever leaving the concatenative framework, by representing

tree structure with extended left derivation strings. Notice that <vroot>ed by the<noun> is

the fringe of the parse tree

[vp[verb<vroot>ed][pp[ by][np[ the]<noun>]]].

This tree can be represented by the left derivation string

[vp<verb><pp>][verb<vroot>ed]�[pp[ by]<np>][np[ the]<noun>]�

where the symbol � indicates that an underspeci�ed category like vroot is not expanded. Thus,

we have a means of representing sequences of terminals and abstract categories by concatenating

context-free rules that look very much like words. This suggests merging the notion of rule

and word. Then words are sequences of terminals and abstract categories that are represented

by concatenating words and �'s. The only signi�cant di�erences between this model and our

current one is that words are linked to categories, and that there must be some mechanism for

creating abstract categories. The �rst di�erence disappears if each word has its own category;

in essence, the category takes the place of the word index. In fact, if the notion of a category

replaces that of a word, then the representation of a category is now a sequence of categories

(and �'s). At this point, the only remaining hurdle is the creation of abstract categories (which

represent sets of other categories).15 We will not explore this further here.

Although we are just beginning work in this area, this close link between our current

representation and context-free grammars gives us great hope that we can learn CFG's that

compete with or better the best Markov models for prediction problems, and produce plausible

phrase structures.

8.3 Applications

The algorithm we have described for learning words has several properties that make it a par-

ticularly good tool for solving language engineering problems. First of all, it reliably reproduces

linguistic structure in its internal representations. This can not be said of most language mod-

els, which are context based. Using our algorithm for text compression, for instance, enables

the compressed text to be searched or indexed in terms of intuitive units like words. Together

with the fact that the algorithm compresses text extremely well (and has a rapid decompres-

sion counterpart), this means it should be useful for o�-line compression of databases like

15This is not quite true; depending on the interpretation of the probability of a category given an abstract

category, probability estimation procedures can change dramatically.
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encyclopedias.

Secondly, the algorithm is unsupervised. It can be used to construct dictionaries and extend

existing ones without expensive human labeling e�orts. This is valuable for machine translation

and text indexing applications. Perhaps more importantly, because the algorithm constructs

dictionaries from observed data, its entries are optimized for the application at hand; these sorts

of dictionaries should be signi�cantly better for speech recognition applications than manually

constructed ones that do not necessarily reect common usage, and do not adapt themselves

across word boundaries (i.e. no wanna like words).

Finally, the multi-layer lexical representation used in the algorithm is well suited for tasks

like machine translation, where idiomatic sequences must be represented independently of the

words they are built from, while at the same time the majority of common sequences function

quite similarly to the composition of their components.

9 Related Work

This paper has touched on too many areas of language and induction to present an adequate

survey of related work here. Nevertheless, it is important to put this work in context.

The use of compression and prediction frameworks for language induction is quite common;

Chomsky [9] discussed them long ago and notable early advocates include Solomono� [37].

Olivier [27] and Wol� [40, 41] were among the �rst who implemented algorithms that attempt

to learn words from text using techniques based on prediction. Olivier's work is particularly

impressive and very similar to practical dictionary-based compression schemes like LZ78 [42].

More recent work on lexical acquisition that explicitly acknowledges the cost of parameters

includes Ellison [17] and Brent [4, 5, 7]. Ellison has used three-level compression schemes to

acquire intermediate representations in a manner similar to how we acquire words. Our contri-

butions to this line of research include the idea of recursively searching for regularities within

words and the explicit interpretation of hierarchical structures as a linguistic representation

with the possibility of attaching information at each layer. Our search algorithm is also more

e�cient and has a wider range of transformations available to it than other schemes we know

of, though such work as Chen [8] and Stolcke [39] use conceptually similar search strategies

for grammar induction. Recursive dictionaries themselves are not new, however: a variety

of universal compression schemes (such as LZ78) are based on this idea. These schemes use

simple on-line strategies to build such representations, and do not perform the optimization

necessary to arrive at linguistically meaningful dictionaries. An attractive alternative to the

concatenative language models used by all the researchers mentioned here is described by Della

Pietra et al [15].

The unsupervised acquisition of words from continuous speech has received relatively little

study. In the child psychology literature there is extensive analysis of what sounds are available

to the infant (see Jusczyk [22, 23]), but no emphasis on testable theories of the actual acquisition
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process. The speech recognition community has generally assumed that segmentations of the

input are available for the early stages of training. As far as we are aware, our work is the �rst

to use a model of noise and phonetic variation to link speech to the sorts of learning algorithms

mentioned in the previous paragraph, and the �rst attempt to actually learn from raw speech.

10 Conclusions

We have presented a general framework for lexical induction based on a form of recursive

compression. The power of that framework is demonstrated by the �rst computer program

to acquire a signi�cant dictionary from raw speech, under extremely di�cult conditions, with

no help or prior language-speci�c knowledge. This is the �rst work to present a complete

speci�cation of an unsupervised algorithm that learns words from speech, and we hope it will

lead researchers to study unsupervised language-learning techniques in greater detail. The

fundamental simplicity of our technique makes it easy to extend, and we have hinted at how

it can be used to learn word meanings and syntax. The generality of our algorithm makes it a

valuable tool for language engineering tasks ranging from the construction of speech recognizers

to machine translation.

The success of this work raises the possibility that child language acquisition is not depen-

dent on supervisory clues in the environment. It also shows that linguistic structure can be

extracted from data using statistical techniques, if su�cient attention is paid to the nature

of the language production process. We hope that our results can be improved further by

incorporating more accurate models of morphology and phonology.
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A Phonetic Model

This appendix presents the full set of phonemes (and identically, phones) that are used in the

experiments described in section 7.3, and in examples in the text. Each phoneme is a bundle

of speci�c values for a set of features. The features and their possible values are also listed

below; the particular division of features and values is somewhat unorthodox, largely because

of implementation issues. If a feature is unspeci�ed for a phoneme, it is because that feature is

(usually for physiological reasons) meaningless or redundant given other settings: reduced and

high are de�ned only for vowels; low, back and round are de�ned only for unreduced vowels;

ATR is de�ned only for unreduced vowels that are +high or -back, -low. continuant is de�ned

only for consonants; articulator for all consonants except laterals and rhotics; nasality is de�ned

only for stops; sonority is de�ned only for sonorants; anterior and distributed are de�ned only

for coronals; voicing is de�ned only for non-sonorant, non-nasal consonants and laryngeals. See

Kenstowicz [25] for an introduction to such feature models.

Symbol Example Features Symbol Example Features

b bee C,stop,lab,-n,-v h hay laryngeal,-v

p pea C,stop,lab,-n,+v $ ahead laryngeal,+v

d day C,stop,cor,-n,-v,+a,-d * bit V,full,+h,-l,-b,-r,-ATR

t tea C,stop,cor,-n,+v,+a,-d i beet V,full,+h,-l,-b,-r,+ATR

g gay C,stop,dors,-n,-v V book V,full,+h,-l,+b,+r,-ATR

k key C,stop,dors,-n,+v u boot V,full,+h,-l+b,+r,+ATR
�j joke C,fric,cor,-v,-a,-d � bet V,full,-h,-l,-b,-r,-ATR

�c choke C,fric,cor,+v,-a,-d e base V,full,-h-l,-b,-r,+ATR

s sea C,fric,cor,-v,+a,-d � but V,full,-h,-l,+b,-r

�s she C,fric,cor,-v,-a,+d o bone V,full,-h,-l,+b,+r

z zone C,fric,cor,+v,+a,-d � bat V,full,-h,+l,-b,-r

�z azure C,fric,cor,+v,-a,+d a bob V,full,-h,+l,+b,-r

f fin C,fric,lab,-v = bought V,full,-h,+l,+b,+r

v van C,fric,lab,+v ' roses V,reduced,+h

S thin C,fric,cor,-v,+a,+d � about V,reduced,-h

� then C,fric,cor,+v,+a,+d - silence silence

m mom C,stop,lab,+n

n noon C,stop,cor,+n,+a,-d

8 sing C,stop,dors,+n

l lay C,sonorant,lateral

r ray C,sonorant,rhotic

w way C,sonorant,lab

y yacht C,sonorant,cor,+a,-d
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Feature Values � �

consonantal silence, C (consonant), V (vowel), laryngeal 0 0

continuant stop, fric (fricative), sonorant 0.01 1

sonority lateral, rhotic, glide 0 0

articulator lab (labial), cor (coronal), dors (dorsal) 0 1

anterior +a (anterior), -a (not anterior) 0.02 1

distributed +d (distributed), -d (not distributed) 0.02 1

nasality +n (nasal), -n (non-nasal) 0.01 1

voicing +v (voiced), -v (unvoiced) 0.01 1

reduced reduced, full 0.15 0

high +h (high), -h (not high) 0.01 0

back +b (back), -b (front) 0.01 0

low +l (low), -l (not low) 0.01 0

round +r (rounded), -r (unrounded) 0.01 0

ATR +ATR, -ATR 0.01 0

Modeling the Generation of a Phone

Both phonemes and phones are bundles of articulatory features (phonemes representing the

intended positions of articulators, phones the actual positions). As mentioned above, in

certain cases the value of a feature may be �xed or meaningless given the values of oth-

ers. We assume features are generated independently: with i ranging over free features,

the functions in �gure 2 can be written pI(s) =
Q
i p

i
I(s

i), pM (sjq; u) =
Q
i p

i
M(sijqi; ui), and

pC(sjq; u; n) =
Q
i p

i
C(s

i
jq
i
; u

i
; n

i). Feature selection for insertion is under a uniform distribu-

tion; for mapping and copying it depends on the underlying phoneme and immediate context:

p
i
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i
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i) + �
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i
; q

i))=Zi(qi; ui; ni):

Here, the Z's are normalization terms; �i is a 0-1 coe�cient that determines whether a feature

assimilates; �i determines the amount of noise in the mapping (generally in the range of 0:01

but as high as 0:15 for the vowel-reduction feature); and �q and �n determine the relative

weighting of the input features (both are equal to 0:15 in the experiments we describe in this

paper). Values for �i and �
i can be found in the chart above.

B Adding and Deleting Words

This appendix is a brief overview of how the approximate change in description length of adding

or deleting a word is computed. Consider the addition of a word X to the grammar G (creating

G
0). X represents a sequence of characters and will take the place of some other set of words
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used in the representation of X . Assume that the count of all other words remains the same

under G
0. Let c(w) be the count of a word w under G and c

0(w) be the count under G
0.

Denote the expected number of times under G that the word w occurs in the representation

of X by c(wjX), and the same quantity under G0 with c
0(wjX). Finally, let C =

P
c(w) and

C
0 =
P
c
0(w). Then

c
0(w) � c(w) + c

0(wjX)� c
0(X)c(wjX):

p
0(w) =

c
0(w)

C
0

�

c(w) + c
0(wjX)� c

0(X)c(wjX)

C + (
P
c
0(wjX)) + c

0(X) (1�
P
c(wjX))

:

p
0(X) =

c
0(X)

C
0

�

c
0(X)

C + (
P
c
0(wjX)) + c

0(X) (1�
P
c(wjX))

:

To compute these values, estimates of c0(X) and c
0(wjX) must be available (these are not

discussed further). These equations give approximate values for probabilities and counts after

the change is made. The total change in description length from G to G0 is given by

� � �c
0(X) log p0(X) +

X

w

�
�c

0(w) log p0(w)� �c(w) log p(w)
�
:

This equation accounts for changing numbers and lengths of word indices. It is only a rough

approximation, accurate if the Viterbi analysis of an utterance dominates the total probability.

If � < 0 then X is added to the grammar G. An important second order e�ect (not discussed

here) that must also be considered in the computation of � is the possible subsequent deletion of

components of X . Many words are added simultaneously: this violates some of the assumptions

made in the above approximations, but unnecessary words can always be deleted.

If a word X is deleted from G (creating G
0) then in all places X occurs words from its

representation must be used to replace it. This leads to the estimates

c
0(X) = 0:

c
0(w) � c(w) + c(wjX)(c(X)� 1):

p
0(w) =

c
0(w)

C
0

�

c(w) + c(wjX)(c(X)� 1)

C � c(X) + (
P
c(wjX))(c(X)� 1)

:

� � �� c(X) log p(X) +
X

w

�
�c

0(w) log p0(w)��c(w) log p(w)
�
:

Again, X is deleted if � < 0. Any error can be �xed in the next round of word creation, though

it can improve performance to avoid deleting any nonterminal whose representation length has

increased dramatically as a result of other deletions.
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