37 research outputs found

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)→min⁥u{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or ℓ1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure

    4D imaging in tomography and optical nanoscopy

    Full text link
    Diese Dissertation gehört zu den Gebieten mathematische Bildverarbeitung und inverse Probleme. Ein inverses Problem ist die Aufgabe, Modellparameter anhand von gemessenen Daten zu berechnen. Solche Probleme treten in zahlreichen Anwendungen in Wissenschaft und Technik auf, z.B. in medizinischer Bildgebung, Biophysik oder Astronomie. Wir betrachten Rekonstruktionsprobleme mit Poisson Rauschen in der Tomographie und optischen Nanoskopie. Bei letzterer gilt es Bilder ausgehend von verzerrten und verrauschten Messungen zu rekonstruieren, wohingegen in der Positronen-Emissions-Tomographie die Aufgabe in der Visualisierung physiologischer Prozesse eines Patienten besteht. Standardmethoden zur 3D Bildrekonstruktion berĂŒcksichtigen keine zeitabhĂ€ngigen Informationen oder Dynamik, z.B. Herzschlag oder Atmung in der Tomographie oder Zellmigration in der Mikroskopie. Diese Dissertation behandelt Modelle, Analyse und effiziente Algorithmen fĂŒr 3D und 4D zeitabhĂ€ngige inverse Probleme. This thesis contributes to the field of mathematical image processing and inverse problems. An inverse problem is a task, where the values of some model parameters must be computed from observed data. Such problems arise in a wide variety of applications in sciences and engineering, such as medical imaging, biophysics or astronomy. We mainly consider reconstruction problems with Poisson noise in tomography and optical nanoscopy. In the latter case, the task is to reconstruct images from blurred and noisy measurements, whereas in positron emission tomography the task is to visualize physiological processes of a patient. In 3D static image reconstruction standard methods do not incorporate time-dependent information or dynamics, e.g. heart beat or breathing in tomography or cell motion in microscopy. This thesis is a treatise on models, analysis and efficient algorithms to solve 3D and 4D time-dependent inverse problems

    Inexact Bregman iteration with an application to Poisson data reconstruction

    Get PDF
    This work deals with the solution of image restoration problems by an iterative regularization method based on the Bregman iteration. Any iteration of this scheme requires to exactly compute the minimizer of a function. However, in some image reconstruction applications, it is either impossible or extremely expensive to obtain exact solutions of these subproblems. In this paper, we propose an inexact version of the iterative procedure, where the inexactness in the inner subproblem solution is controlled by a criterion that preserves the convergence of the Bregman iteration and its features in image restoration problems. In particular, the method allows to obtain accurate reconstructions also when only an overestimation of the regularization parameter is known. The introduction of the inexactness in the iterative scheme allows to address image reconstruction problems from data corrupted by Poisson noise, exploiting the recent advances about specialized algorithms for the numerical minimization of the generalized Kullback–Leibler divergence combined with a regularization term. The results of several numerical experiments enable to evaluat

    Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition

    Get PDF
    This paper focuses on multi-scale approaches for variational methods and corresponding gradient flows. Recently, for convex regularization functionals such as total variation, new theory and algorithms for nonlinear eigenvalue problems via nonlinear spectral decompositions have been developed. Those methods open new directions for advanced image filtering. However, for an effective use in image segmentation and shape decomposition, a clear interpretation of the spectral response regarding size and intensity scales is needed but lacking in current approaches. In this context, L1L^1 data fidelities are particularly helpful due to their interesting multi-scale properties such as contrast invariance. Hence, the novelty of this work is the combination of L1L^1-based multi-scale methods with nonlinear spectral decompositions. We compare L1L^1 with L2L^2 scale-space methods in view of spectral image representation and decomposition. We show that the contrast invariant multi-scale behavior of L1−TVL^1-TV promotes sparsity in the spectral response providing more informative decompositions. We provide a numerical method and analyze synthetic and biomedical images at which decomposition leads to improved segmentation.Comment: 13 pages, 7 figures, conference SSVM 201

    Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    Get PDF
    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP scanner and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in-vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction methods that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of PAT scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.Comment: submitted to "Physics in Medicine and Biology

    Adaptive Proximal Point Algorithms for Total Variation Image Restoration

    Full text link
    corecore