53 research outputs found

    5G embraces satellites for 6G ubiquitous IoT : basic models for integrated satellite terrestrial networks

    Get PDF
    Terrestrial communication networks mainly focus on users in urban areas but have poor coverage performance in harsh environments, such as mountains, deserts, and oceans. Satellites can be exploited to extend the coverage of terrestrial fifth-generation (5G) networks. However, satellites are restricted by their high latency and relatively low data rate. Consequently, the integration of terrestrial and satellite components has been widely studied, to take advantage of both sides and enable the seamless broadband coverage. Due to the significant differences between satellite communications (SatComs) and terrestrial communications (TerComs) in terms of channel fading, transmission delay, mobility, and coverage performance, the establishment of an efficient hybrid satellite-terrestrial network (HSTN) still faces many challenges. In general, it is difficult to decompose a HSTN into a sum of separate satellite and terrestrial links due to the complicated coupling relationships therein. To uncover the complete picture of HSTNs, we regard the HSTN as a combination of basic cooperative models that contain the main traits of satellite-terrestrial integration but are much simpler and thus more tractable than the large-scale heterogeneous HSTNs. In particular, we present three basic cooperative models, i.e., model X, model L, and model V, and provide a survey of the state-of-the-art technologies for each of them. We discuss future research directions towards establishing a cell-free, hierarchical, decoupled HSTN. We also outline open issues to envision an agile, smart, and secure HSTN for the sixth-generation (6G) ubiquitous Internet of Things (IoT)

    Radio Resource Management for Unmanned Aerial Vehicle Assisted Wireless Communications and Networking

    Get PDF
    In recent years, employing unmanned aerial vehicles (UAVs) as aerial communication platforms or users is envisioned as a promising solution to enhance the performance of the existing wireless communication systems. However, applying UAVs for information technology applications also introduces many new challenges. This thesis focuses on the UAV-assisted wireless communication and networking, and aims to address the challenges through exploiting and designing efficient radio resource management methods. Specifically, four research topics are studied in this thesis. Firstly, to address the constraint of network heterogeneity and leverage the benefits of diversity of UAVs, a hierarchical air-ground heterogeneous network architecture enabled by software defined networking is proposed, which integrates both high and low altitude platforms into conventional terrestrial networks to provide additional capacity enhancement and expand the coverage of current network systems. Secondly, to address the constraint of link disconnection and guarantee the reliable communications among UAVs as aerial user equipment to perform sensing tasks, a robust resource allocation scheme is designed while taking into account the dynamic features and different requirements for different UAV transmission connections. Thirdly, to address the constraint of privacy and security threat and motivate the spectrum sharing between cellular and UAV operators, a blockchain-based secure spectrum trading framework is constructed where mobile network operators and UAV operators can share spectrum in a distributed and trusted environment based on blockchain technology to protect users' privacy and data security. Fourthly, to address the constraint of low endurance of UAV and prolong its flight time as an aerial base station for delivering communication coverage in a disaster area, an energy efficiency maximization problem jointly optimizing user association, UAV's transmission power and trajectory is studied in which laser charging is exploited to supply sustainable energy to enable the UAV to operate in the sky for a long time

    Link Scheduling in UAV-Aided Networks

    Get PDF
    Unmanned Aerial Vehicles (UAVs) or drones are a type of low altitude aerial mobile vehicles. They can be integrated into existing networks; e.g., cellular, Internet of Things (IoT) and satellite networks. Moreover, they can leverage existing cellular or Wi-Fi infrastructures to communicate with one another. A popular application of UAVs is to deploy them as mobile base stations and/or relays to assist terrestrial wireless communications. Another application is data collection, whereby they act as mobile sinks for wireless sensor networks or sensor devices operating in IoT networks. Advantageously, UAVs are cost-effective and they are able to establish line-of-sight links, which help improve data rate. A key concern, however, is that the uplink communications to a UAV may be limited, where it is only able to receive from one device at a time. Further, ground devices, such as those in IoT networks, may have limited energy, which limit their transmit power. To this end, there are three promising approaches to address these concerns, including (i) trajectory optimization, (ii) link scheduling, and (iii) equipping UAVs with a Successive Interference Cancellation (SIC) radio. Henceforth, this thesis considers data collection in UAV-aided, TDMA and SICequipped wireless networks. Its main aim is to develop novel link schedulers to schedule uplink communications to a SIC-capable UAV. In particular, it considers two types of networks: (i) one-tier UAV communications networks, where a SIC-enabled rotary-wing UAV collects data from multiple ground devices, and (ii) Space-Air-Ground Integrated Networks (SAGINs), where a SIC-enabled rotary-wing UAV offloads collected data from ground devices to a swarm of CubeSats. A CubeSat then downloads its data to a terrestrial gateway. Compared to one-tier UAV communications networks, SAGINs are able to provide wide coverage and seamless connectivity to ground devices in remote and/or sparsely populated areas

    A survey of blockchain and artificial intelligence for 6G wireless communications

    Get PDF
    The research on the sixth-generation (6G) wireless communications for the development of future mobile communication networks has been officially launched around the world. 6G networks face multifarious challenges, such as resource-constrained mobile devices, difficult wireless resource management, high complexity of heterogeneous network architectures, explosive computing and storage requirements, privacy and security threats. To address these challenges, deploying blockchain and artificial intelligence (AI) in 6G networks may realize new breakthroughs in advancing network performances in terms of security, privacy, efficiency, cost, and more. In this paper, we provide a detailed survey of existing works on the application of blockchain and AI to 6G wireless communications. More specifically, we start with a brief overview of blockchain and AI. Then, we mainly review the recent advances in the fusion of blockchain and AI, and highlight the inevitable trend of deploying both blockchain and AI in wireless communications. Furthermore, we extensively explore integrating blockchain and AI for wireless communication systems, involving secure services and Internet of Things (IoT) smart applications. Particularly, some of the most talked-about key services based on blockchain and AI are introduced, such as spectrum management, computation allocation, content caching, and security and privacy. Moreover, we also focus on some important IoT smart applications supported by blockchain and AI, covering smart healthcare, smart transportation, smart grid, and unmanned aerial vehicles (UAVs). Moreover, we thoroughly discuss operating frequencies, visions, and requirements from the 6G perspective. We also analyze the open issues and research challenges for the joint deployment of blockchain and AI in 6G wireless communications. Lastly, based on lots of existing meaningful works, this paper aims to provide a comprehensive survey of blockchain and AI in 6G networks. We hope this surve..

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio
    • …
    corecore