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Semantic Communication in Satellite-borne Edge Cloud Network for Computation Offloading 

 

We highly appreciate the constructive comments and invaluable suggestions from reviewers. 

We have carefully addressed all the review comments and improved the quality of this 

manuscript accordingly. Please find below our detailed response to all the review comments: 

 

• Response to the comments from Review 1 

This is a very solid work on satellite edge offloading. Besides the theoretical analysis, the work 

shines due to the extensive experimental analysis that has been conducted. This allows to see the 

benefits and drawbacks of the different alternatives and understand the effect of every parameter in 

the problem. Also, the system model is very broad and general, encompassing any possible 

communication between the entities. 

 

Response: 

Thanks for the kind words. 

 

In the following I highlight some aspects of the paper, along with some corrections that may be 

addressed: 

 

◼ Comment 1:  

In the last contribution of the paper, last bullet: remove "etc". 

 

Response:  

Thanks for your comment. To address this comment, we have removed the “etc” in the last 

bullet of the last contribution of the paper. 

 

◼ Comment 2:  

•Typo, two stops: "...via Ka-band backhaul links to provide cloud service for users." 

 

Response:  

Thank you for your comment. Based on this comment, we have deleted the extra stop in this 

sentence. 

 

◼ Comment 3:  

Style typo in eq. (4): f_Cloud may be f_{Cloud}? 

 

Response:  

Thank you for your comment. Based on this comment, we have corrected f_Cloud and replaced it 

with  f_{Cloud}. 



 

◼ Comment 4:  

Please consider writing eq. (6) as a full fraction. 

 

Response:  

Thank you for your comment. Based on this comment, we have rewritten the Eq. (6) as a full 

fraction. 

 

◼ Comment 5:  

After eq. (12), what does "special" antenna array mean? 

 

Response:  

Thank you for your comment. The “special” antenna array means the terrestrial-station-terminal 

(TST) antennas operating in the Ka-band have good directivity [1,2]. TST can select multiple 

satellites that have enough angular separations among each other to transmit information. This 

ensures the off-axis antenna gain is lower and the interference is tolerable. 

 

Based on this comment and to clarify, we removed the expression of “special” antenna array 

and explained that the antennas of TSTs provide proper directivity. 

 

◼ Comment 6:  

Typo: "The transmission delay of user c when the task IS transmitted...". 

 

Response:  

Thank you for your comment. Based on this comment, we have added “is” in this sentence. 

 

◼ Comment 7:  

Typo after eq. (13): F \in C, C may be calligraphic. 

 

Response:  

Thank you for your comment. Based on this comment, we corrected C to calligraphic format. 

 

◼ Comment 8:  

Typo in the following line: "...data. We...", remove the stop. 

 

Response:  

Thank you for your comment. To address this comment, we have removed the stop after “… 

data”. 

 

◼ Comment 9:  

Use the "log" notation in eq. (15) for consistency. 

 

Response:  

Thank you for your comment. Based on this comment, we have used the "log" notation 



throughout the paper. 

 

◼ Comment 10:  

In Section II.E or III, introduce a little the concept of federated learning for non-experts. 

 

Response:  

Thank you for your comment. Based on this comment, we have added a brief introduction to 

federated learning in Subsection II.E. 

 

◼ Comment 11:  

Typo: "The federated model then MUST be sent...". 

 

Response:  

Thank you for your comment. Based on this comment, we have added “must” to this sentence. 

 

◼ Comment 12:  

Please, rewrite: "Since more training rounds and the more important parameters should have higher 

privacy sensitivity". 

 

Response:  

Thank you for your comment.  

 

We have rephrased and further explained this sentence in the following. “By increasing the 

number of training epochs, the parameters of the training model become closer to the final 

trained model. Therefore, before training concludes, the version of the model obtained from 

additional training epochs holds greater significance than the model from earlier training epochs. 

Furthermore, the more critical parameters should exhibit higher privacy sensitivity. We denoted 

the privacy leakage for TST b’s encoder training by …”   

 

◼ Comment 13:  

Problem (27) is not explained. Please explain the cost and the constraints. 

 

Response:  

Thank you for your comment. The aim of problem (27) is to select the appropriate satellite to 

perform update training of the semantic coder. In this formulation, we jointly incorporate TSTs' 

training delay and energy consumption. The considered cost in problem (27) is therefore set as 

the training transmission and propagation delay plus the total energy consumption of 

transmission from TSTs to a satellite. We further considered the weighting factors to balance 

latency and energy consumption. The constraints for this optimization problem include the 

maximum acceptable service time due to the mobility of the satellite, the maximum tolerable 

service interruption delay, and the satellite selection factor. 

 

Based on this comment and for further clarification, we have provided a more detailed 

description of the problem's cost and constraints before and after the formulation of the problem 



(27). 

 

◼ Comment 14:  

Revise Algorithm 2, it has many typos and incorrect indices. 

 

Response:  

Thank you for your comment. Based on this comment, we have thoroughly proofread 

Algorithms 1 and 2, and corrected the typos and grammar issues. 

 

◼ Comment 15:  

In "The objective of PSFed during training...", change "objective" by "optimization problem". 

 

Response:  

Thank you for your comment. Based on this comment, we have revised the “objective” in "The 

objective of PSFed during training..." to “optimization problem”. 

 

◼ Comment 16:  

In eq. (30a), remove "arg". 

 

Response:  

Thank you for your comment. Based on this comment, we have removed the “arg” in Eq. (30a) 

 

◼ Comment 17:  

Problem (30) is not explained. Please explain the cost and the constraints. 

 

Response:  

Thank you for your comment. The objective of the problem (30) is to maximise training 

accuracy, i.e., minimize the training loss function, using our proposed PSFed. Therefore, the 

cost function is a loss value formulated according to our PSFed based on Section Ⅱ-E (System 

model-Semantic coder updating) 

 

The constraints in this optimization problem are the time constraints due to satellite mobility 

and service interruption tolerance. Further, we consider the privacy leakage in this problem and 

add that as a constraint. 

 

To address this comment and avoid confusion, we have provided a more detailed description of 

the problem's cost and constraints before and after the formulation of the problem (30). 

 

 

◼ Comment 18:  

The definition of M_{b,r} should be moved to problem (27). 

 

Response:  

Thank you for your comment. We strongly agree with and appreciate your suggestion, we have 



removed the definition of M_{b,r} to problem (27). 

 

◼ Comment 19:  

Typo in gamma variables after eq. (35): a bracket is missing. 

 

Response:  

Thank you for your comment. To address this comment, we have added the bracket after gamma 

variables. 

 

◼ Comment 20:  

In eq. (36a), should Phi_1 be Phi_{c1}? 

 

Response:  

Thank you for your comment. Based on this comment, we have replaced Phi_1 with Phi_{c1}. 

 

◼ Comment 21:  

In eq. (36e), one of the variables x should be power. 

 

Response:  

Thank you for your comment. To address this comment, we corrected Eq. (36e) where one 

variable is x and the other is power. 

 

◼ Comment 22:  

Typo: "γ3cand γ4c", space missing. 

 

Response:  

Thank you for your comment. Based on this comment, we have added the space between “γ3” 

and “and”. 

 

◼ Comment 23:  

"local computing capability and transmission power etc." Remove "etc." Again after eq. (38). 

 

Response:  

Thank you for your comment. Based on this comment, we have removed the “etc.” in this 

sentence. 

 

◼ Comment 24:  

In IV.D: why eq. (36) can be considered 5A? 

 

Response:  

Thank you for your comment. Here, 5A means the decision problem in Eq. (36) can be 

considered as (5 times A) independent subproblems. Further, 5 is five offloading decision 

subproblems, i.e., 1) local computing; 2) offloading the tasks to SEC directly; 3) offloading the 

tasks to SEC via the TST; 4) offloading the tasks to the terrestrial cloud only via the satellite; 



and 5) offloading the tasks to the terrestrial cloud via the TST and the satellite, where A is A 

satellite selection subproblems. This is because we assume that there are A satellites that can be 

selected for TST b. 

 

To clarify, we provided a more detailed and further description of the meaning of 5A. 

 

◼ Comment 25:  

Problem (39) has a closed-form expression. Please, study the convexity of the problem and present 

the solution. 

 

Response:  

Thank you for your comment. Based on this suggestion, we have analysed the convexly of 

problem (39) and provided the solution. 

 

◼ Comment 26:  

"The dual function is...". No, this is the "dual problem". 

 

Response:  

Thank you for your comment. Based on this comment, we have revised the “dual function” to 

“dual problem”. 

 

◼ Comment 27:  

It may be appropriate to point out that eq. (45) is complementary slackness. 

 

Response:  

Thank you for your comment. Based on this comment, we have pointed out that Eq. (45) is 

complementary slackness. 

 

◼ Comment 28:  

"The computation capabilities of SEC on satellite a...", "a" should be a variable. 

 

Response:  

Thank you for your comment. To address this problem, we substituted “a” with a variable 

format. 

 

◼ Comment 29:  

References to Fig. (6) and (7) are swept. Please, fix it. 

 

Response:  

Thank you for your comment. This is due to our inadvertent reversal of the order of presentation 

of Fig. 6 and Fig. 7. To address and for further clarification, we have amended the order of Fig. 

6 and Fig. 7. 

 

[1] Z. Song, Y. Hao, Y. Liu and X. Sun, "Energy-Efficient Multiaccess Edge Computing for 



Terrestrial-Satellite Internet of Things," IEEE Internet of Things Journal, vol. 8, no. 18, pp. 

14202-14218, 15 Sept.15, 2021. 

[2] R. Deng, B. Di, S. Chen, S. Sun and L. Song, "Ultra-dense LEO satellite offloading for 

terrestrial networks: How much to pay the satellite operator?", IEEE Trans. Wireless Commun., 

vol. 19, no. 10, pp. 6240-6254, Oct. 2020. 

 

• Response to the comments from Review 2 

 

◼ Comment 1:  

Advantages:  

++ Innovative Concept: The central idea of integrating SemCom with SEC is both intriguing and 

innovative. Such novel integrations have the potential to pave the way for advanced research in the 

domain. 

++ Logical Flow: The paper presents its ideas with a logical progression, moving from the 

challenges of the current system to the proposed solutions, making it easier for readers to follow the 

authors' line of thought. 

+ Well-Structured: The paper's structure is commendable. Each section has a defined purpose and 

collectively they form a coherent narrative. 

+ Clarity in Presentation: Despite the complexity of the topic, the paper does an admirable job of 

presenting the information with clarity. The use of figures, tables, and other visual aids further 

enhances this clarity. 

+ Robust Methodology: While there are areas for improvement, the methodology's attempt to merge 

SemCom with Federated Learning in SEC networks is commendable. Such an integration, when 

refined, could offer unique solutions to existing challenges in edge environments. 

+ In-depth Analysis: The paper delves deep into the intricacies of the proposed integration. From 

latency to energy consumption and privacy, it presents a well-rounded view of potential benefits and 

challenges. 

 

In conclusion, while there are areas of the paper that require further refinement, the underlying 

concept is strong, and the presentation is organized and structured. With focused revisions 

addressing the provided feedback, this paper has the potential to make a significant contribution to 

the field. 

  

Response:  

Thanks for the kind words. 

 

◼ Comment 2:  

weakness: 

The introduction could benefit from some streamlining for clarity. At times, it felt a bit dense, 

especially for readers not deeply familiar with the topic. Can consider using subheadings or 

paragraph breaks to differentiate key topics, e.g., “Background”, “Challenges”, etc. When 

transitioning between different topics, transitional sentences can make the narrative smoother. 

  



Response:  

Thank you for your comment. Based on this comment, we have added subheadings in 

"Introduction". Furthermore, we have revised the transition between different topics to improve 

the readability of the text. 

 

◼ Comment 3:  

While the paper does a good job introducing MEC and the associated challenges, a brief description 

of what "SemCom" (Semantic Communication) actually entails might be beneficial for readers not 

familiar with the concept. 

  

Response:  

Thank you for your comment. Based on this comment, we have added an extra paragraph in 

“Introduction” to present the concept of semantic communication. 

 

◼ Comment 4:  

Ensure that abbreviations are consistently used once they are defined. For instance, after 

introducing "satellite-borne edge cloud (SEC)", always use "SEC" afterward. 

  

Response:  

Thanks for your comment. Based on this comment, we checked the paper thoroughly and made 

sure that all abbreviations were consistently used as defined.  

 

 

◼ Comment 5:  

When discussing the challenges like latency, energy consumption, and privacy, it might be helpful 

to provide real-world examples or scenarios where these challenges manifest. This can help readers 

understand the practical implications. 

  

Response:  

Thank you for your comment. Based on this comment, we have presented real-world examples 

or scenarios for each challenge in the “Introduction”. 

 

◼ Comment 6:  

The term "novel" is indeed used frequently, particularly in the later part of the introduction where 

the authors outline their contributions. However, the true novelty isn’t thoroughly contrasted against 

existing methods. One reason is for the lack of related work discussion. While the introduction 

mentions several related works and their contributions, it's crucial to provide clear delineation 

points that make the proposed approach "novel". For instance, how does the SemCom-SEC 

framework differ from other frameworks that integrate semantic communication and edge 

computing? For readers, especially reviewers, the novel aspects should be clearly and succinctly 

highlighted. The introduction would benefit from a segment (a paragraph or a set of bullet points) 

dedicated to pinpointing the novelty of the presented work against existing solutions. Any claims of 

novelty should be substantiated either in the introduction or in the sections that follow. The paper 

should have comparisons, possibly both qualitative and quantitative, against existing methods. 



  

Response:  

Thank you for your insightful comment. The SemCom-SEC framework differs from existing 

methods as it integrates semantic communication and edge computing. The existing works’ are 

limited in terms of integrating SemCom with edge computing frameworks. For instance, Qin 

et. al [1] proposed a general SemCom framework involving users and terrestrial base station 

edge cloud. In [2], the SemCom framework only involves users and terrestrial base station edge 

cloud. The difference is that the users in [2] need to provide information to the base stations for 

semantic extraction. These methods, however, involve only the user and the edge cloud. In SEC 

offloading scenarios, the SemCom for offloading framework needs the participation of the users, 

terrestrial-station-terminal, satellites, and terrestrial clouds. Therefore, the existing frameworks 

are not directly applicable to SEC offloading scenarios. The main contribution of our work is 

to propose the SemCom-SEC framework that enables the participation of these entities. 

Furthermore, the proposed framework incorporates the characteristics of SEC networks such 

as satellite mobility. 

 

Based on this comment and for further clarification, we provided specific approaches and the 

design of the relevant references. We also added a new paragraph to summarise the challenges 

faced by the existing works considering the offloading scenario. We further highlighted the 

proposed novel details in each bullet point. 

 

◼ Comment 7:  

The phrasing in certain parts, like "As mentioned previously,", could be avoided. Instead, direct 

referencing to the previous section or subsection would be clearer. 

  

Response:  

Thank you for your comment. Based on this comment, we removed the phrase "as mentioned 

previously" throughout the paper and have replaced it with references to specific chapters.  

 

◼ Comment 8:  

It's essential to clearly state any assumptions made. For instance, why is OFDMA used in the user-

TST link? A brief explanation or citation supporting this choice would be beneficial. 

  

Response:  

Thank you for your comment. To address this comment, we explained the advantages of 

OFDMA on the user-TST link and added more references in Section Ⅱ. In addition, we made 

sure that in the revised paper all the hypotheses were explained. 

 

◼ Comment 9:  

The motivation should be clearly described. E.g., Why SemCom Specifically?: While the potential 

advantages of using SemCom are mentioned (such as reduced communication costs), the paper 

might benefit from a more in-depth discussion on why SemCom is particularly suited for this 

problem over other methods or technologies. Clearer Problem Statement: While the challenges in 

integrating SemCom in SEC are outlined, a more explicit problem statement might help. What 



exactly are the limitations of current SEC networks, and how does SemCom address these limitations? 

How does this integration impact the end-users? 

  

Response:  

Thank you for your comment.  

 

In most cases, offloading massive computing tasks to SEC requires an extremely high 

transmission rate hence large throughput. Therefore, SEC computation offloading is challenged 

by the reliability of transmission and intrinsic limitation of accessible radio spectrum. We argue 

that it is essential to develop techniques to significantly improve the spectrum efficiency of 

SEC offloading systems while maintaining quality of service in offloading.  

 

To the best of our knowledge, semantic communication is the most promising technology to 

exceed the Shannon limit. This is because it employs machine learning to extract the meaning 

of the transmission data and only transmits the meaning of the data, hence, the size of the 

transmitted data is greatly reduced. Furthermore, the received messages restored by machine 

learning are also more robust, i.e., messages are more reliable, than conventional 

communications [3]. Therefore, semantic communication provided unparalleled advantages in 

the considered scenario in terms of spectral efficiency and robustness to path loss. This enables 

users to offload more and more accurate information to the edge cloud within a limited time. 

 

Based on this comment, we have highlighted the motivation of integrating SemCom in SEC 

networks in the “Introduction”. 

 

◼ Comment 10:  

The methodology's attempt to merge SemCom with Federated Learning (FL) in Satellite Edge 

Computing (SEC) networks is commendable. This integration is ambitious and, if effective, could 

present a novel approach to enhancing communication in edge environments. However, I still have 

some comments about the methodology part: 

    a. Scalability: How scalable is the proposed CTPS mechanism, especially when considering 

a massive number of users or large-scale satellite networks? 

    b. Complexity: The methodology combines both SemCom and FL in SEC networks. While 

this is ambitious and could lead to significant advancements, the complexity might make it hard for 

real-world implementation without thorough experimental validation. It would be better to provide 

some analysis on the complexity. 

    c. Game Theory Application: Given the use of the Rubinstein bargaining game, how will the 

system handle players/users who do not act rationally or make unpredictable decisions? 

  

Response:  

Thank you for your comment.  

 

In terms of scalability, CTPS is designed for multiple users. Increasing the number of users 

does not affect the number of calculations of CTPS. Furthermore, although increasing the 

number of satellites linearly increases the number of CPTS calculations, at any given time 



instance, there exist only limited satellites available in the sky per user [4]. 

 

Regarding the complexity, we strongly agree with the reviewer’s comment. Nevertheless, 

semantic communication is considered and demonstrated as an important enabling technology 

for next-generation wireless networks [3]. Hence, it can be also used in satellite-air-terrestrial 

networks which is one of the key application scenarios for next-generation wireless 

communications. In terms of actual complexity, the convergence rate of FL is O(1/T) [5], where 

T is the training times of participants. Therefore, FL can be used to train & update semantic 

coders more quickly and accurately. Furthermore, the proposed method reduces the space 

complexity of FL for satellite-air-terrestrial networks due to reducing the communication cost. 

Since, CTP can be also used in large-scale satellite networks, we argue that the integration of 

these technologies is not only feasible but also necessary. 

 

Finally, regarding the considered game model and reasonability of the players’ decisions, we 

simply assume that all the users are trustworthy. We also note that there is extensive literature 

investigating the identification of anomalous users. Therefore, although we appreciate the 

relevance of this issue, we believe this falls outside of the scope of this work. 

 

Based on this comment, we discussed the potential of our proposed CTPS in large-scale satellite 

networks in Section Ⅳ-D. Furthermore, we added the adopted security assumption during the 

Rubinstein bargaining game in Section Ⅳ-B. 

 

◼ Comment 11:  

One of my prevailing concerns is anchored in the simulation and methodology sections, which, in 

turn, raises foundational questions about the entire paper. The system model and problem 

formulations intricately explore federated learning while seemingly sidestepping the distinct 

challenges and opportunities presented by SemCom. As a result, the integration of SemCom into the 

proposed framework feels superficial, both in theoretical discussion and in the evaluations. We 

cannot know the actual improvement of using this strategy regarding the data size compression, 

latency, and accuracy after encoding-decoding. In the context of research, especially when 

introducing a novel integration such as the one between SemCom and SEC, it's crucial to provide a 

comprehensive evaluation that touches upon all major aspects of the proposed solution. Although 

the rainfall experiments show the robustness and efficiency of SemCom under changing 

environmental conditions, it doesn't directly address the specific advantages of SemCom in terms of 

data size, latency, or accuracy after encoding/decoding. It mainly highlights the robustness of 

SemCom in adverse weather conditions, which is not the complete picture. And specific details 

regarding which semantic encoder or decoder model they used, or how it was implemented, are not 

explicitly mentioned. 

Here are some of the key areas that appear to be missing or not elaborated upon sufficiently in the 

provided text: 

    a. Semantic Compression Evaluation: SemCom, at its core, is about the semantic 

compression of data. There should be a detailed examination of how the proposed methods compress 

data, what the compression ratios are, and the impact of this compression on end-to-end system 

performance. 



    b. Latency after Encoding-Decoding: It would be valuable to understand the added latency 

introduced by the encoding-decoding process, especially since the proposed system focuses on 

computational offloading. 

    c. Quality of Reconstruction: While they do use metrics like PSNR for assessing quality, a 

more thorough examination of the encoding and decoding effects in terms of how well the decoded 

data matches the original and the impact of this process on the overall system performance would 

have been beneficial. Providing some visual examples before/after semantic encoding decoding is 

necessary. 

    d. Comparison with Non-Semantic Methods: For any evaluation to be meaningful, it's 

important to benchmark against traditional non-semantic methods to demonstrate the efficacy of 

using SemCom. 

Although I understand it may be hard to cover all these aspects, the simulation shouldn't come 

across as solely centered on federated learning. Such an approach inadvertently undermines the 

paper's foundational motivations. Incorporating even rudimentary evaluations in this area could 

remarkably elevate the study's merit. 

  

Response:  

Thank you for your comment. Semantic communication (SemCom) is a relatively new 

communication paradigm. The main objective of SemCom is to significantly improve data 

compression rates hence increasing spectrum efficiency and exceeding the Shannon capacity. 

In general, there exist two important research challenges in this area including SemCom 

transceiver design for end-to-end communication and SemCom systems design for networks 

[3].  

 

SemCom transceiver design for end-to-end communication aims to develop a pervasive 

SemCom transceiver for different content transmission. Ideally, such a transceiver can be used 

in any communication system similar to a conventional communication transceiver. Here the 

objective is to demonstrate the advantages of the designed SemCom transceivers over 

conventional communication transceivers. This advantage is often constituted not only in more 

efficient spectrum utilization but also in improving transmission robustness and efficiency. 

 

At the network level, the objective design of SemCom systems is to investigate the distinct 

challenges and opportunities of SemCom transceiver applications in different networks and 

connectivity scenarios. This is mainly because SemCom transceivers have been shown to have 

advantages over conventional transceivers. Nevertheless, SemCom is based on machine 

learning (ML) technology which converts part of the communication load into the computation 

load. Therefore, the network resource allocation architecture is fundamentally different. The 

reallocation of various networks' resources is therefore one of the main challenges in SemCom 

studies [3]. Furthermore, SemCom also requires real-time updating of machine learning models. 

Therefore, designing novel real-time distributed learning approaches in different networking 

scenarios is also considered a challenge in SemCom research [1], [2]. 

 

In this paper we adopted the second approach and based on the research objectives of SemCom 

network system design, assuming that SemCom is actually in service, we considered issues 



such as the additional latency introduced by SemCom and various satellite access methods. To 

do this we proposed an SEC network resource allocation scheme. Furthermore, in case 

SemCom coders (i.e., transceivers) need updating, we considered relevant issues such as 

satellite mobility, and terrestrial-station-terminal quality of service. The special challenge of 

SemCom coder updating, e.g., encoder privacy, is also considered. To do this, PSFed is 

proposed for SemCom coders updating in SEC networks. Simulation results demonstrate the 

effectiveness of our proposed approaches in addressing distinct challenges of SemCom in SEC 

networks. 

 

In this paper we adopted the second approach and based on the research objectives of SemCom 

network system design, assuming that SemCom is actually in service, we considered issues 

such as the additional latency introduced by SemCom and various satellite access methods. To 

do this we proposed an SEC network resource allocation scheme. Furthermore, in case 

SemCom coders (i.e., transceivers) need updating, we considered relevant issues such as 

satellite mobility, and terrestrial-station-terminal quality of service. To do this, PSFed is 

proposed for SemCom coders updating in SEC networks. Simulation results demonstrate the 

effectiveness of our proposed approaches in addressing distinct challenges of SemCom in SEC 

networks.  

 

The SemCom coder model we utilised is based on a classical SemCom coder/transceiver model, 

i.e., [6]. Similar to other SemCom coder studies, this coder improves end-to-end transmission 

performance. We intercepted some of the simulation results from [6] as follows: 

 

Fig. 1 Performance comparison of SemCom coder with conventional coder in different 

compression ratio k/n [6].  

 

 

Fig. 2 Performance comparison of SemCom coder with conventional coder in different signal-

to-noise ratio (SNR) [6]. 



As it is seen, SemCom has an absolute advantage over conventional communication in terms 

of compression ratio, and accuracy (PSNR) in end-to-end transmission. 

                                 

            (a) FedAvg               (b) PSFed               (c) FedRep 

Fig. 3 Visual examples of PSFed and FedRep after semantic coding. 

We also strongly agree with you that a thorough examination of the effects of encoding and 

decoding is essential. We therefore used the widely recognised picture evaluation method 

PSNR for this purpose. We considered visual examples, but the results were not intuitive (Fig. 

3). The image of Fig. 3 is from the CIFAR 10 dataset and is a 32*32 pixel blur. The label of 

this image is "ship". We can observe that the clarity of FedAvg and PSFed is essentially the 

same. But the stern of the boat in FedRep appears blurred (in the red box). This is because 

SemCom not only greatly compresses the transmitted bits but also greatly improves the quality 

of the transmission. The visual examples of models based on different SemCom techniques are 

not perceptive to the human eye. In our previous work [6], instead, we proposed to use proven 

machine learning image recognition models to evaluate the recognition accuracy of images 

before and after transmission/offloading via SemCom. This can be utilised to assess the total 

impact of different semantic communication technologies on our considered offloading systems. 

It further allows evaluation of the image transmission quality from the perspective of the 

machine as this paper is on data offloading in the IoT environments. The numerical results are 

shown in Fig.4. The accuracy here is the proportion of the received object/image recognition 

accuracy to the pre-transmission image recognition accuracy. It is seen that for the offloading 

scenario, PSFed achieves similar accuracy to FedAvg while reducing communication load. 

Further, the accuracy of PSFed is much better than FedRep. We, therefore, argue that using the 

approach in [7] provides an intuitive demonstration of the impact of SemCom on the quality of 

transmission/offloading in an offloading scenario. 

 

Fig. 4 Image recognition accuracy 

To address this comment, we highlighted the difference between SemCom transceiver design 

for end-to-end communication study and SemCom systems design for networks study in 

“Section Ⅱ-A”. We also highlighted the advantage of SemCom over conventional 

communication in Section I. In addition, based on item c in this comment, we provided image 

recognition accuracy before/after semantic encoding decoding to further demonstrate the 

efficiency of our proposed PSFed. Regarding item b in this comment, the extra delay introduced 

by SemCom has been considered in our formulation and the CTPS method was proposed to 



optimize the network resource.  

 

Regarding items a and d in this comment, we appreciate that these comments aim to provide a 

comprehensive assessment of SemCom. We also note that the submitted paper is solely focused 

on the unique challenges of the SemCom system for SEC networks. The pervasive SemCom 

model employed in this paper has been demonstrated to be advantageous regarding items a and 

d. We, therefore, leave investigating a and d to future works. 

 

◼ Comment 12:  

The presentation of the figures lacks visual coherence and alignment. Some figures appear 

excessively large and lack detail, making them less informative. The limited information in the 

figures and their captions does not convey results clearly and efficiently to readers. Figures 5-12, 

in particular, are quite basic; it might be beneficial to group some of them together or align multiple 

figures on the same line rather than dedicating an entire line to each. Enhancing figure captions 

and the content within the figures can not only improve clarity but also free up space for more 

critical sections of the paper. 

  

Response:  

Thank you for your comment. Based on this comment, we have improved the presentation of 

the figures in the revised version of the paper, see, Fig. 5 - Fig. 12. 
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• Response to the comments from Review 3 

 

◼ Comment 1:  



The paper is well written and easy to read. Some revision is needed in Section II.E "In generally", 

Fig.2 Purn instead of "Purning" and Fig.6 and Fig.7 are swapped.  

 

Response:  

Thank you for your kind words. To address this comment, we corrected the above typos and 

amended the order of Figs. 6 and 7 are also swapped. In addition, we have thoroughly proofread 

the manuscript and corrected the typos and grammar issues. 

 

◼ Comment 2:  

The authors may also consider the extension of the used model to include collaborative computing 

of the nearby users with free resources. The satellite availability (due to movement) time to the user 

as well as the base station need to be taken into account and an assumption that every transmission 

period of the base station is less that the satellite appearance time. 

 

Response:  

Thank you for your insightful comment. We have discussed the satellite availability time in 

both Section III and Section IV. However, due to our oversight, it was not explicitly represented 

mathematically. 

 

To address this comment, we added more discussion on satellite availability time for users and 

TSTs in Section II, Sections III and IV. Furthermore, we added the constraint of satellite 

availability time mathematically in Problems (27), (30) and (36). 

 

Regarding extending the used model, we believe including collaborative computing with 

terrestrial free resources is a great idea providing further opportunities for the development of 

satellite edge computing. This submitted paper is however based on a common satellite edge 

offloading scenario without free terrestrial resources, same as [1], [2], and [3]. For instance, in 

a desert, ocean or disaster zone, users are not likely to be supported by additional terrestrial free 

services. Hence, we leave investigating the impact of the nearby free terrestrial resources on 

satellite edge offloading based on semantic communication to future works. 

 

 

◼ Comment 3:  

The privacy leakage model in Section III needs more justification and explanation rather than just 

refereeing to the reference. 

 

Response:  

Thank you for your comment. Previous studies (see, e.g. [4]) show that when reconstructing an 

ML model increasing the number of parameters increases the accuracy of the model following 

a logarithmic function. In SemCom, the accuracy of the SemCom coder represents the accuracy 

of the received data. Therefore, the privacy of the coder model/parameter is closely tied to the 

accuracy. We can adopt a general parameter privacy leakage metric as in [5] and assess model 

parameter leakage by 

Φ𝑏(𝜃𝑏) = 𝜒𝑙𝑜𝑔2(1 + 𝑒
1−

𝑁𝑏+1

𝑛𝑏 ),                                        (25)                                                                            



where 𝜒 is the weight parameter, 𝑁𝑏 is the total number of parameters at the encoder model 

and 𝑛𝑏 is the number of transmitted parameters. In practice Φ𝑏 adopts a value in [0,1], where 

Φ𝑏 =0 indicates that there is no privacy leakage, while a Φ𝑏 =1 indicates fully compromised 

privacy where the same information can be decoded from the leaked model as the original 

model.  

 

By increasing the number of training epochs the parameters of the training model become closer 

to the final trained model. Therefore, the model obtained from more training epochs is more 

important relative to the model obtained from previous training epochs before training is 

finished. Therefore, the private information contained in the parameters is increased over time. 

More important parameters bear higher sensitivity in terms of privacy. Therefore, we rewrite 

the privacy leakage for TST 𝑏’s encoder training as: 

Φ𝑏(𝜃𝑏) = ∑ 𝑊𝑟
𝑅
𝑟=1 𝜒𝑙𝑜𝑔2(1 + 𝑒

1−
∑ 𝐼𝑖𝑛𝑏,𝑖

𝑁𝑏
𝑖

+1

∑ 𝐼𝑗𝑛𝑏,𝑗
𝑛𝑏
𝑗=1 ) ,                             (26)                                                                 

where 𝑟  is the communication rounds and 𝑅  denotes the total number of communication 

rounds (epochs). Also, 𝑊𝑟 is a weight representing the model importance in training round 𝑟. 

Similarly, 𝐼𝑖 is a weight parameter denoting the importance transmitted parameter 𝑖. 

 

Based on this comment and for further clarifications, we added our justifications and explained 

the privacy leakage model in Section III. 

 

◼ Comment 4:  

The authors claims that as the FedRep converges much slowly that PSFed, the total communication 

resources can be considered the same. This is part of the novelty introduced by this paper and more 

accurate calculation is needed in that aspect by generate a table or figures that combine results 

from Fig.4 and Fig.5. 

 

Response:  

Thank you for your comment. The advantage of convergence speed is difficult to specifically 

quantify with dataset discrepancies and with the random nature of training. Nevertheless, the 

convergence speed of our PSFed is superior to FedRep in any of the datasets. Moreover, it can 

be observed in Fig. 5 that FedRep saves ten communication rounds of computational resources 

relative to our PSFed. Combining these two, in the paper, we argue that the required 

communication resource for training in the two methods is "similar", not the "same". 

Importantly, our PSFed achieves significant improvement in accuracy compared to FedRep for 

similar communication resource consumption. 

 

To address this comment and to clarify, we highlighted the cost of required communication 

resource in the two approaches are "similar", not the "same" and we presented our argument. 

In addition, we added discussions of our method and FedRep in terms of convergence speed, 

communication cost and accuracy, combining the results in Fig. 5, Fig. 6, and Fig. 7. 

 



◼ Comment 5:  

Averaging the result over 50 simulation might be not sufficient and more simulations are needed. 

 

Response:  

Thank you for your comment. We strongly agree with you and appreciate your suggestion. 

Based on this comment, we repeated the simulation 200 times. 
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• Response to the comments from Review 4 

 

◼ Comment 1:  

It is not obvious why on the last paragraph of page 3, authors has mentioned that semantic 

communication is necessary to be updated due to the mobility of the users. Why the information 

transmitted depends on the mobility of the users. 

 

Response:  

Thank you for your comment. In this paper, we considered an offloading scenario. The user 

transmits tasks that require offloading to a satellite or terrestrial cloud for faster processing. 

These tasks may include scene perception or augmented reality functions. For example, 

offloading scene perception tasks involves transmitting images or videos of the scene to the 

edge cloud for processing. Since scenes change as the user moves, the semantic coder is 

content-oriented and needs to be updated with different content. Consequently, changes in the 

images and videos of the scenes affect the transmitted content. As a result, the mobility of users 

leads to the updating of multiple content-oriented semantic coders. 

 

Based on this comment and to clarify, we revised the presentation of page 3’s last paragraph. 

In addition, we explained why user mobility affects changes in transmitted information and 



updates to semantic coders. 

 

◼ Comment 2:  

What is d in (5)? 

 

Response:  

Thank you for your comment. The variable 𝑑, i.e., 𝑑0 in Eq. (5) represents a “sub-carrier 𝑑0” 

in the link of user 𝑐 to TST 𝑏. In Eq. (5), 𝐵𝑑0

𝑐𝑏 , 𝑝𝑐,𝑑0

𝑐𝑏  and 𝑔𝑐,𝑑0

𝑐𝑏  are bandwidth, transmission 

power and the channel gain on this sub-carrier 𝑑0 in the link of user 𝑐 to TST 𝑏. 

 

Based on this comment and to clarify, we have reformulated the introduction of the parameters 

in this paragraph and highlighted what is 𝑑0 in Eq. (5). 

 

◼ Comment 3:  

In equation (9) and (12), how is the channel gain defined? and how is the channel gain distinguished 

from path loss? 

 

Response:  

Thank you for your insightful comment. We view channel gain as a factor influencing 

transmission power variation due to channel characteristics. Path loss is indeed a significant 

component that contributes to the channel gain. However, we aim to better illustrate to our 

readers the benefits of semantic communication under various path loss scenarios and 

mathematically establish why it offers advantages compared to conventional communication. 

Therefore in Eq. (9) and Eq. (12), similar to [1], we separated the path loss. The channel gain 

here is the gain with the path losses removed. 

 

To address this comment, we added the definition of channel gain after Eq. (9) and explained 

why we list the path loss separately rather than integrating it into channel gain in the formula. 

 

◼ Comment 4:  

Authors should give the reference to (12). 

 

Response:  

Thank you for your comment. We mistakenly wrote semantic communication processing time 

from Eq. (13) into Eq. (12). However, this mistake does not affect our subsequent derivations 

and simulations. Here, Eq. (12) is similar to Eq. (9) and is still based on the conventional 

Shannon transmission theorem. We thus have not provided relevant references. 

 

Based on this comment and to clarify, we deleted the incorrectly written, i.e., semantic 

communication processing time in Eq. (12). Further, we have thoroughly proofread the 

manuscript, and corrected such mistakes. 

 

◼ Comment 5:  



The delay in (13) is the transmission delay of all offloaded users to satellite a and it can not say that 

it is the transmission delay of user c. Authors needs to clarify this. 

 

Response:  

Thank you for your comment. The transmission delay in Eq. (13) is the transmission delay of 

all users. 

 

To address this comment, we have clarified the definition of Eq. (13).   

 

◼ Comment 6:  

Some texts are not complete say "Since the computation task calculation result is often much smaller 

than the offloaded data." in page 4. 

 

Response:  

Thank you for your comment.  

 

To address this comment, we replaced the full stop with a comma and rephrased the sentence 

as: “Since the computation task calculation result is often much smaller than the offloaded data, 

we thus ignore the backhaul transmission delay links similar to [23] and [24]”. 

 

◼ Comment 7:  

Maximization in (27a) is taken on which parameter? 

 

Response:  

Thank you for your comment. We can express the Eq. (27a) as: 

min
x𝑎

∑ 𝑥𝑎(𝛼 max {
𝑀𝑏,𝑟

𝑅𝑏
𝑏𝑎 +

2ℎ𝑏𝑎

𝑐𝑙
|𝑏 ∈ ℬ}𝐴

𝑎=1 + ∑ 𝛽𝐵
𝑏=1 𝑝𝑏

𝑏𝑎 𝑀𝑏,𝑟

𝑅𝑏
𝑏𝑎 ),                (27a)                                               

where max {
𝑀𝑏,𝑟

𝑅𝑏
𝑏𝑎 +

2ℎ𝑏𝑎

𝑐𝑙
|𝑏 ∈ ℬ}  is the training transmission delay (

𝑀𝑏,𝑟

𝑅𝑏
𝑏𝑎  ) and propagation 

delay (
2ℎ𝑏𝑎

𝑐𝑙
), identified by the terrestrial-station-terminal (TST) with the longest transmission 

and propagation time. Moreover, ∑ 𝑝𝑏
𝑏𝑎 𝑀𝑏,𝑟

𝑅𝑏
𝑏𝑎

𝐵
𝑏=1   is the total energy consumption of 

transmission from TSTs to a satellite. Further, 𝛼 and 𝛽 are weight parameters to balance the 

importance and unit of latency and energy consumption. The entire Eq. (27a) is taking into 

account TSTs' training delay and energy consumption jointly.  

 

To address this comment and for clarification, we have presented the significance of each 

parameter in detail and highlighted the design and the meaning of Eq. (27a).  

 

◼ Comment 8:  

Authors should explain constraint (27b). 

 



Response:  

Thank you for your comment. We can express the Eq. (27b) as: 

∑
𝑀𝑏,𝑟

𝑅𝑏𝑎
𝑅
𝑟=1 < 𝑡𝑏

′ , ∀ 𝑏                                                   (27b) 

where 𝑀𝑏,𝑟  is the coder model size in communication round 𝑟  and 𝑡𝑏
′   is the maximum 

tolerable service interruption time. Moreover, 𝑅𝑏𝑎  is the transmission rate from TST 𝑏  to 

satellite 𝑎 and 𝑅 is the total training communication rounds. The constraint Eq. (27d) denotes 

the transmission time of the TST for training the semantic model to be less than the maximum 

tolerable service interruption time. 

 

To address this comment, we have explained constraint (27b) in detail. 

 

◼ Comment 9:  

It seems that processing choice 4 in page 7 wants to offload data to the cloud through satellite. This 

is while they have mentioned that this processing is for directly offloading date from user to the 

cloud. Authors should clarify this. 

 

Response:  

Thank you for your insightful comment. Choice 4 is to offload the user’s task to the terrestrial 

cloud through the satellite. 

 

Based on this comment, we revised the presentation of choice 4 and clarified that this choice is 

to offload data to the cloud through satellite.  

 

◼ Comment 10:  

In equation (34), why propagation from satellite to the cloud is not considered? 

 

Response:  

Thank you for your comment. In Eq. (34), 𝑡𝑐
𝑝𝑟𝑜𝐶

  is the propagation delay for user 𝑐  who 

chooses to offload the task to the terrestrial cloud. We defined it in Eq. (14). 

𝑡𝑐
𝑝𝑟𝑜𝐶

=
4ℎ

𝑐𝑙
 ,                                                                   (14) 

where 𝑐𝑙  is the speed of light and ℎ  is the distance between users and satellite 𝑎 . Due to the 

mobility of satellites, the distance from the satellite to the terrestrial cloud is approximated by ℎ. In 

addition, here, we consider 4 propagation processes, i.e., user-satellite, satellite-cloud, cloud-

satellite and satellite-cloud. Therefore, we already consider the propagation delay from satellite 

to the cloud. 

 

Based on this comment, we highlighted the propagation delay process considered in Eq. (14). 

 

◼ Comment 11:  

What is t_a^{cloud} which has been used in (35)? It is not defined before. 

 

Response:  



Thank you for your comment. Here, t_a^{cloud} is the transmission delay between satellite and 

cloud. It has been defined at the end of Section II-C. 

 

Based on this comment and for further clarification, we have added a reminder of the definition 

of t_a^{cloud} after Eq. (35). 

 

◼ Comment 12:  

What is the value that has been considered for the energy factor ε in the simulation result section? 

 

Response:  

Thank you for your comment. The energy factor ε is set as 10−26 as in [2]. To address this 

comment, we have added this in Subsection Ⅴ-A “simulation setting”.  

 

◼ Comment 13:  

It is suggested that authors explain in detail FedRep and FeAvg schemes as used for the benchmarks. 

 

Response:  

Thank you for your comment. Based on this comment, we have added detailed explanations of 

FedAvg and FedRep in Section Ⅱ-E and simulation settings. 

 

◼ Comment 14:  

In Fig. 8, why CTPS and "CTPS without game" perform nearly the same and what is the conclusion 

from this observation? 

 

Response:  

Thank you for your comment. This is because in case the number of users is small, the TST can 

satisfy all the number of sub-carriers requested by users. In cases where the number of users is 

small, the proposed CTPS thus maintains almost the same processing cost as "CTPS without 

game". By increasing the number of users, TST becomes unable to satisfy all the requests and 

CTPS starts to show its advantage in reducing the cost. We expect this advantage to increase 

by further increasing the number of users. This is because the optimal reallocation of resources 

through our design game scheme increases the efficiency of network resource utilisation. 

 

Based on this comment and for further clarification, we highlighted the relationship between 

CTPS and "CTPS without game" and provided the conclusion of the observation. 
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Abstract

The low earth orbit (LEO) satellite-borne edge cloud (SEC) and machine learning (ML) based semantic communication
(SemCom) are both enabling technologies for 6G systems facilitating computation offloading. Nevertheless, integrating SemCom
into the SEC networks for user computation offloading introduces semantic coder updating requirements as well as additional
semantic extraction costs. Offloading user computation in SEC networks via SemCom also results in new functional challenges
considering, e.g., latency, energy, and privacy. In this paper, we present a novel SemCom-assisted SEC (SemCom-SEC) framework
for computation offloading of resource-limited users. We then propose an adaptive pruning-split federated learning (PSFed) method
for updating the semantic coder in SemCom-SEC. We further show that the proposed method guarantees training convergence
speed and accuracy. This method also improves the privacy of the semantic coder while reducing training delay and energy
consumption. In the case of trained semantic coders in service, for the users processing computational tasks, the main objective
is to minimise the users’ delay and energy consumption, subject to sustaining users’ privacy and fairness amongst them. This
problem is then formulated as an incomplete information mixed integer nonlinear programming (MINLP). A new computational
task processing scheduling (CTPS) mechanism is also proposed based on the Rubinstein bargaining game. Simulation results
demonstrate the proposed PSFed and game theoretical CTPS mechanism outperforms the baseline solutions reducing delay and
energy consumption while enhancing users’ privacy.

Index Terms

Satellite-borne edge cloud, SemCom, computation offloading, delay, energy consumption, privacy.

I. INTRODUCTION

A. Background

MULTI-ACCESS edge computing (MEC) is emerging as one of the key techniques for next-generation wireless com-
munication systems [2]. MEC enables the development of Internet of Things (IoT) applications and improves network

performance and quality of service (QoS) [3]. MEC brings cloud services closer to the users at the network edge, e.g., base
stations (BSs), and roadside units (RSUs) providing them with abundant computational resources. Therefore, users can offload
their computationally intensive tasks to the MEC for faster processing.

Nevertheless, users located in remote areas or disaster zones might not be able to connect to terrestrial edge cloud network
infrastructures. Alternatively, such under-served users may offload their computationally intensive tasks to remote core cloud
servers via Geosynchronous Equatorial Orbit (GEO) or Medium Earth Orbit (MEO) satellites. In addition to the costs, the
corresponding propagation latency to and from the satellite platforms however impedes the delay requirements of these users.
Using Low Earth Orbit (LEO) satellites can partly address this issue by providing lower propagation latency as their orbits
are much closer to the ground compared to GEO and MEO satellites. Comparing to GEO and MEO, constellations of LEO
satellites also provide low-cost, high-throughput services and extensive radio coverage. To further reduce the propagation delay,
the satellite-borne edge cloud (SEC) setting was proposed, where the offloaded processing is conducted on board the LEO
satellite, hence reducing the propagation delay by a factor of 2 [4], [5].

Adopting SEC for users in remote areas or disaster zones has been recently investigated in [6] and [7]. The authors in [6],
and [7] mainly focused on developing offloading decisions that minimise offloading delay or energy consumption for cases
where users have direct radio links to the satellites. (e.g., in C-Band). An alternative access scenario is proposed in [8], where
the user transmits to the SEC indirectly through an intermediary terrestrial-station-terminal (TST). In this approach, the user
transmission to the TST is on a C-band radio link and TST communicates to the SEC through a K-band radio link. Wang et
al. [9] also proposed a dual-edge cloud network, where the edge servers are placed on both BSs and LEO satellites. In this
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approach, a BS acts as a TST to assist users with computation offloading to the SEC. Similarly, [10] proposed an energy-
efficient strategy for terrestrial users to offload computing tasks to the SEC via TSTs. Tang et al. [11] further investigated
the impact of the core cloud on users’ offloading decisions. They then proposed a minimal energy consumption computing
offloading decision method, where users access SEC directly.

B. Challenges: SEC for user offloading

The approaches mentioned above frequently confine their investigations to a singular connectivity scenario between users and
the SEC. In essence, by concentrating solely on specific performance aspects, such as energy consumption or latency, potential
privacy concerns and associated risks to users are disregarded. This poses inherent risks to users. For example, prioritizing
latency without considering energy consumption and privacy may lead to a user in the desert swiftly losing the ability to
communicate, with this information potentially accessible by a third party. To address this issue, in this paper, we investigate
SEC incorporating various access modalities, task processing entities, latency, energy consumption, and privacy of users.

Moreover, in the majority of instances, offloading substantial computing tasks to the SEC demands an exceptionally high
transmission rate and substantial throughput. Consequently, alongside considerations of latency, energy efficiency, and data
privacy, the computation offloading to SEC encounters a fundamental constraint—the inherent limitation of accessible radio
spectrum. Hence, it is imperative to devise techniques that markedly enhance the spectrum efficiency of these systems, all the
while upholding the quality of service (QoS) in the offloading process. A promising approach to address this issue is semantic
communication (SemCom) based on machine learning (ML) [12].

SemCom leverages ML techniques for information transmission. A goal-oriented semantic encoder, powered by ML, selectively
extracts semantic information from the transmitted or offloaded content. Rather than transmitting raw data, only the essential
semantic information is conveyed, later decoded by the ML-based semantic decoder. This approach significantly enhances
spectrum efficiency by balancing the communication load against the computational load through machine learning. Moreover,
it mitigates the impact of unstable radio links, such as variable path loss due to weather conditions commonly observed in
high-frequency satellite links. SemCom thus plays a pivotal role in the significant enhancement of the performance and speed
of offloading. The integration of SemCom and SEC for computation offloading presents a promising solution to address the
challenges of task offloading in the next generation of wireless communications.

C. Challenges: SemCom for SEC

Integrating SemCom and SEC for computation offloading requires a carefully designed architecture. Such an architecture needs
to consider various possible task-processing entities (satellites and terrestrial cloud) and various user access methods (direct and
indirect) to the SEC network. Furthermore, goal-oriented ML-based SemCom coders need to be updated in real-time according
to new transmission content [13].

In the SEC network, updating the semantic coder presents several emerging challenges, e.g., mobility of SEC, low tolerance of
service interruption and energy consumption, and privacy. However, the existing distributed learning frameworks designed for
SemComs in generic networks (e.g., [14]–[16]) do not seamlessly translate to the SEC network. For instance, Xie and Qin [14]
introduced a pruned lite ML model tailored for distributed semantic coders. Their approach focuses on refining trained models
rather than updating goal-oriented coders. Similarly, Qin et al. [16] proposed a general SemCom framework involving users
and terrestrial base station edge clouds. In [15], the SemCom framework also includes users and terrestrial base station edge
clouds, with the distinction that users in [15] must provide information to base stations for semantic extraction. However, these
frameworks suffer from prolonged service interruptions, increased energy consumption, and heightened privacy risks within
SEC networks. Furthermore, these methods only engage users and the edge cloud. In SEC offloading scenarios, the SemCom for
offloading framework necessitates the active participation of all parties including users, terrestrial-station-terminal, satellites, and
terrestrial clouds. The aforementioned research underscores the critical need to develop efficient distributed learning methods
for updating semantic coders in SemCom SEC networks.

In addition to the above, SemCom alters the transmission paradigm of SEC networks by increasing the computational load
while reducing the communication load. Users are therefore required to develop optimal computational task strategies in case
trained semantic coders are utilised for computation offloading. Such strategies need to be developed taking into account not
only scenarios specific to SemCom in the SEC, but also operational factors that have not been considered in the existing SEC
offloading research. Such factors include using both access modalities, the task processing entities, latency, energy consumption
and privacy.

D. Contributions

To tackle the above-mentioned challenges, in this paper, we propose a novel SemCom-assisted SEC (SemCom-SEC) framework
for terrestrial users’ computation offloading. In our proposed method, we split the SemCom service into in-maintenance
(i.e., semantic coders need updating) and in-service (i.e., trained semantic coders are utilised for computation offloading)
scenarios. For the in-maintenance scenario, we investigate real-time updating of deployed semantic coders in SemCom-SEC.



A pruning-split federated learning (PSFed) approach is then proposed to update semantic coders considering offloading QoS
while privacy-preserving. For the in-service scenario, we study the computational task processing challenge of terrestrial users
in the new SemCom paradigm. We then propose a new computational task processing scheduling (CTPS) mechanism based
on the Rubinstein bargaining game to minimise the users’ processing delay and energy consumption while preserving users’
privacy. The main contributions of this paper are summarised as follows:

• We integrate the SemCom and SEC networks and propose a novel SemCom-SEC framework enabling task offloading for
under-served users. Diverging from current SemCom frameworks, which exclusively factor in users and terrestrial edge
clouds, the envisioned framework extends its reach by deploying semantic coders on both the TSTs and satellites. Further-
more, SemCom-SEC accommodates a variety of user task-processing approaches and access modalities. Computational
tasks for users can occur locally, at SEC, or in the core cloud server. Additionally, users possess the flexibility to access
LEO satellites either directly or through the semantic encoder-equipped TST.

• We then propose a PSFed approach for semantic coder updating for the SemCom-SEC framework enabling computation
offloading. PSFed adaptively “splits” and “prunes” the semantic coders for federated aggregation subject to various users’
personalised conditions. In contrast to the conventional “split” and “prunes” models, the semantic coder model components
remain intact after updating. PSFed reduces the consumption of training communication resources and improves the privacy
of the trained encoder while enhancing the training convergence speed and model accuracy.

• We introduce an innovative CTPS mechanism, distinct from previous studies that only address partial performance
considerations. Our approach takes a comprehensive stance, jointly addressing user privacy, delay, energy consumption, and
fairness to tackle the novel challenge of incomplete information task processing scheduling in SemCom-SEC. The CTPS
operates in two steps: firstly, a game-theoretic model is crafted to transform this mixed-integer nonlinear programming
(MINLP) problem from incomplete information, stemming from privacy concerns, into a complete information problem.
In the second step, the converted complete information MINLP problem is decomposed and solved through the application
of the Lagrangian dual decomposition method.

The rest of the paper is organised as the following. Section II presents the system model of the proposed SemCom-SEC
framework. In Section III and Section IV, we then investigate the unique challenges and corresponding solutions for SemCom
in-maintenance and in-service scenarios, respectively. The performance of the proposed PSFed and CTPS are then evaluated
and analysed by simulations in Section V. Finally, conclusions are drawn in Section VI.

Fig. 1: The proposed SemCom-SEC framework.



II. SYSTEM MODEL

In this section, the system model of the proposed SemCom-SEC is introduced. We then provide the computing, communication,
path loss and semantic coder training model.

A. System description

Consider the SemCom-SEC (Fig.1), where terrestrial users are located in areas without having access to terrestrial edge service.
Users can offload computation-intensive tasks to LEO SEC. In practice, an LEO satellite constellation is similar to a cellular
network operating above the ground [17]. whereas the space cellular network is on the move, while ground users are relatively
stationary.

We consider both types of approaches for users to access the SEC for computation offloading [8]. Users can communicate
with LEO satellites directly through a C-band user-satellite radio link. Furthermore, they are also allowed to indirectly access
the SEC through a TST via a C-band link to TST, and a Ka-band link between TST and SEC. The terrestrial C-band user-TST
link spectrum resources are utilised in an orthogonal frequency division multiple access (OFDMA) setting to optimise the
utilisation of terrestrial radio resources [10].

To improve the spectrum efficiency and QoS of SEC networks, semantic coders are deployed on the TSTs and LEO satellites
for transmitting offloaded tasks over Ka-band. This is due to TSTs being primarily responsible for transmitting significant
amounts of tasks to satellites and requiring extremely high spectral efficiency. Furthermore, their service area is fixed and the
content to assist in task offloading (e.g., scene perception task, augmented reality task) only minimally varies. The mobility
of the users causes the fact that the offloading content is often variable. For instance, the content of the transmission when
offloading a scene perception task varies depending on the scene. The content-oriented semantic coders need to be constantly
updated as the user moves. We thus consider factors such as utilisation, and reliability, for which goal-oriented SemCom is
most appropriate for the TST-satellite link in SEC networks. Moreover, due to the dynamic nature of the system and the limited
storage resources of LEO satellites, it is not viable to store semantic decoders for all TSTs on the route. The semantic coders
are therefore stored on the TST. Similarly, for economic and satellite storage resources considerations, at least the trained
decoder of TSTs should be the same for the same transmission task. The TST delivers the related semantic decoders to the
corresponding satellite when it needs to perform SemCom. Furthermore, LEO satellites can alternatively connect to the cloud
servers on the terrestrial network via Ka-band backhaul links to provide cloud service for users.

In this model, a user may process indivisible computational tasks in either of the following five scenarios: 1) computing locally;
2) offloading the tasks to SEC over the user-satellite link; 3) offloading the tasks to the SEC via TST; 4) offloading the tasks
to terrestrial cloud over the user-satellite link; 5) offloading the tasks to the terrestrial cloud via TST-satellite link.

B. Computiong models

Denote the set of LEO satellites as A = {1, 2, ..., a, ..., A} and set of TSTs as B = {1, 2, ..., b, ..., B}. A TST b is on the
terrestrial and provides service to C users within the coverage as a small cell in which the set of users in TST b’s service
range is denoted by C = {1, 2, ..., c, ..., C}. We consider each terrestrial user c to have indivisible computational sensitive tasks
with the size in bits of mc ∈ {m1,m2, ...,mc, ...,mC}, and the CPU cycles needed to execute one bit of tasks is δ. The local
computation task latency of the user c can be given by

tLC
c =

δmc

fc
, (1)

where fc is user c’s CPU-cycle frequency with the unit cycles/s. The energy required to calculate locally is hence expressed
as [1]:

ELC
c = pLC

c tLC
c = εf3c

δmc

fc
= εδmcf

2
c , (2)

where pLC
c = εf3c is the power needed to be computing locally and ε is the energy factor related to the electronics [18].

Similarly, if user c chooses to offload the tasks to SEC or the terrestrial cloud, the computational latency can be obtained by

tSEC
c =

δmc

fa
, (3)

tCloud
c =

δmc

fCloud
, (4)

where fa and fCloud are the CPU-cycle frequency of the LEO satellite a being offloaded to and terrestrial cloud, respectively.
Similar to [11] and [19], we assume that all LEO satellites have similar computing capabilities.



C. Communication models

There are two options for each user to access LEO satellites, i.e., directly access the LEO satellite or via a semantic encoder
deployed on the TST. The total bandwidth of the C-band user-TST link is divided into D0 orthogonal sub-carriers based on
OFDMA manner [10]. The transmission rate of the user c to the TST b on a sub-carrier d0 in this link is

rcbc,d = Bcb
d0

log2(1 +
pcbc,d0

gcbc,d0

σ2
0

), (5)

where Bcb
d0

, pcbc,d0
and gcbc,d0

are bandwidth, transmission power and the channel gain on sub-carrier d0 in the user-TST link,
separately. Further, in (5), σ2

0 is the noise power in this link. Hence, the transmission delay from user c to TST b is

tcbc =
mc∑D0

d0=1 x
cb
d0
rcbc,d0

, (6)

where xcbd0
∈ 0, 1 is the allocation indicator of user-TST over the C-band. In the case of a sub-carrier d0 in C-band is allocated

to user c to offload the tasks, xcbd0
= 1; otherwise, xcbd0

= 0. Therefore, the transmission energy is

Ecb
c = tcbc

D0∑
d0=1

xcbd0
pcbc,d0

. (7)

If user c chooses to access satellite a directly, due to the ultra-long propagation distance, the propagation delay is not negligible
and the round-trip propagation delay is

tproac =
2h

cl
, (8)

where h is the distance between user c and satellite a, cl is the speed of light. We assume the users in the same TST, this
TST and terrestrial cloud have the same distance to the satellite a. Moreover, path loss should be considered when transmitting
over long distances. We are not concentrating on the path loss in the user-TST link because they communicate in a small cell
range and haven’t got a significant impact on the transmission delay. The transmission rate from the user c to satellite a thus
can be denoted by

Rca
c = Bca

c log2(1 +
pcac g

ca
c

σ2
0PL

ca
c

), (9)

where Bca
c , pcac and gcac are bandwidth, transmission power, and channel gain from the user c to satellite a, respectively.

Furthermore, PLca
c is the path loss. Note that the path loss affects the channel hence the channel gain. Nevertheless, to

better demonstrate the advantages of SemCom, similar to [20], we present the path loss separately in the formula to facilitate
subsequent analysis. Normally, the path loss PL for the satellite channels mainly consists of free-space path loss PLf and
atmospheric (rainfall) loss PLr [20]. Hence, we assume the total path loss PL = PLf + PLr. We will specify these losses
later. We then have the transmission delay and energy consumption when user c accesses the SEC a directly, which are given
by

tcac =
mc

Rca
c

, (10)

Eca
c = tcac p

ca
c . (11)

In contrast to users, the transmission process from TST b to satellite a integrates SemCom. It thus increases the computing
delay while significantly decreasing the data required to be transmitted. The transmission rate of TST can be expressed as:

Rba
b = Bba

b log2(1 +
pbab g

ba
b

σ2
0PL

ba
b

), (12)

where Bba
b , PLba

b , P ba
b and gbab are bandwidth, path loss, transmission power and the channel gain in TST b-satellite a link,

respectively. In addition, since antennas of TSTs have good directivity, they can communicate with multiple LEO satellites
via Ka-band and the corresponding interference can be ignored [10], [21], [22]. Therefore, the transmission delay of all users’
tasks are transmitted from TST b to satellite a is

tbac =

∑F
j=1 ψmj

Rba
b

+

∑F
j=1mj

Rba
SemCom

, (13)

where F is the number of users allocated to offloading the task to satellite a and F ∈ C. Furthermore, ψ is the compression
ratio and the Rba

SemCom is the rate of semantic extraction and semantic parsing, i.e., computing delay during data transmission.



Since the computation task calculation result is often much smaller than the offloaded data, it is reasonable to ignore the
backhaul transmission delay (see also [23] and [24]. Moreover, estimating the number of subcarriers provided by satellite a
to user c is difficult due to the large number of satellite service users. We assume that the satellite transmits user data to
the ground cloud with a constant transmission rate Ra

c similar to [11]. The transmission delay between satellite and cloud
tCloud
a thus equals mc/R

a
c . Due to the mobility of satellites, the distance from the satellite to the terrestrial cloud is difficult to

precisely inform users, we thus use h to estimate the distance between the satellite and the terrestrial cloud. The propagation
delay where user c chooses to offload to the terrestrial cloud is

tproCc = 2tproac =
4h

cl
. (14)

D. Path loss model

As mentioned in Section II-C, the path loss for the terrestrial-satellite channel is mainly free-space path loss PLf and
atmospheric (rainfall) loss PLr. Free-space path loss is a basic power loss that increases depending on the communication
distance. In dB, PLf is [25]

PLf (dB) = 92.44 + 20 log(h) + 20 log(f), (15)

where h is the communication distance unit in km, and f is the operating frequency with the unit of GHz.

Atmospheric loss is a type of signal absorption and scattering due to meteorological causes, i.e., mainly related to rainfall.
The rain attenuation is described by [26]

PLr(dB) = ξLE , (16)

where ξ is the frequency-dependent parameter unit in dB/km and LE is the effective path length unit in km. We first introduce
the calculation method of ξ as:

ξ = k(R0.001)
v, (17)

where R0.001 is the rainfall rate, unit in mm/h. Further, k and v are coefficients given as:

k = [kH + kV + (kH − kV )cos2(ω)cos(2τ)]/2, (18)

v = [kHvH + kV vV + (kHvH − kV vV )cos2(ω)cos(2τ)]/2, (19)

where τ = π/4 for circular polarization and ω is the elevation angle between terrestrial transmitter and satellite. Moreover,
kH , kV , vH , and vV are coefficients related to operating frequency f and can be found out the specific value from [27]

LE , is therefore
LE = LRv0.001, (20)

where LR is the distance parameter related to rainfall height and v0.001 is the adjustment factor. We have

v0.001 =
1

1 +
√
sin(ω)( 31(1−e

−( ω
1+χ

)
)
√
LRξ

f2 − 0.45)
, (21)

where χ equals 36-—latitude— in the case of latitude less than 36o, or equals 0. In most scenarios

LR =
hR − hs
sin(ω)

(22)

where hR is the rain height relative to the mean sea level and hs is the altitude of the terrestrial transmitter, all units in km.

E. Semantic coder training model

In general distributed learning frameworks based on FedAvg [28], the training process requires multiple distributed participants
and a federated aggregation node. Participants train their ML models locally and upload them to the federated aggregation
node at fixed communication rounds. The federated aggregation node aggregates all the models and then returns the aggregated
model to the participants for further training. This enables participants to update the model without sharing private training
data. The goal of FL is to collaboratively train a global coder model among multiple TSTs while keeping TSTs’ local data
private. We set the Xb = {xbin}

sb
b=1 as the data set of the TST b, where xbin is the in-th input sample and sb is the size of the

data set. The objective of FedAvg can be denoted by

min
Θ

1

B

B∑
b=1

Lb(θb), (23)



where θb is the coder model parameter of the TST b and Θ = θ1, θ2, ..., θb. Further, Lb(θb) is the loss function of the TST b
trained by Xb. We utilise the mean squared error (MSE) loss as the loss function in this paper. We have

Lb(θb) =
1

sb

sb∑
in=1

LMSE(θb;xb,in, x̂b,in), (24)

where x̂b,in is the fitting output and LMSE is the MSE loss.

Fig. 2: The schematic of the proposed PSFed in one communication round. The workflow contains the following 6 steps: ➀
TSTs choose optimal SEC for federated aggregation jointly; ➁ local training on private data; ➂ the TST’s coder model is
split into the encoder and decoder part; ➃ the TSTs prune the encoder model according to parameter importance; ➄ each TST
uploads the model for federated aggregation; ➅ the TSTs download the personalised models and replace the corresponding
parameters.

III. UPDATING THE SEMANTIC CODERS

Employing general FL frameworks for SemComs, TSTs need to upload encoder and decoder models to the SEC to implement
federated aggregation after one communication round of training. Therefore, the federated model must be sent back to TSTs
for the next communication round of training. However, uploading and downloading all coder models by TSTs would cause
long-term interruptions of the offloading-assisted service, significant energy consumption, and lead to privacy leakage of entire
coder models. Previous studies, e.g. [29] show that when reconstructing an ML model, increasing the number of parameters
increases the accuracy of the model following a logarithmic function. In SemCom, the accuracy of the SemCom coder represents
the accuracy of the received data. Therefore, the privacy of the coder model/parameter is closely tied to the accuracy. We can
adopt a general parameter privacy leakage metric as in [30] and assess model parameter leakage by

Θb(θb) = χ log2(1 + e
1−Nb+1

nb ), (25)

where χ is the weight parameter, Nb is the total number of parameters at the encoder model and nb is the number of parameters
transmitted. In practice, Θb adopts a value in [0,1], where Θb = 0 indicates that there is no privacy leakage, while a Θb = 1
indicates fully compromised privacy where the same information can be decoded from the leaked model as the original model.

By increasing the number of training epochs the parameters of the training model become closer to the final trained model.
Therefore, the model obtained from more training epochs is more important relative to the model obtained from previous
training epochs before training is finished. In other words, the private information contained in the parameters is increased



over time. More important parameters bear higher sensitivity in terms of privacy. Therefore, we rewrite the privacy leakage
for TST b’s encoder training as:

Θb(θb) =

R∑
r=1

Wrχ log2(1 + e
1−

∑Nb
i

Iinb,i+1∑Nb
i

Iinb,i ), (26)

where r is the communication rounds and R is the total rounds. Also, Wr is the model importance weight of training round
r. Similarly, Ii is a weight parameter denoting the importance transmitted parameter i.

In the proposed PSFed (Fig. 2), the goal is to collaboratively train semantic coder models among multiple TSTs while reducing
network service interruptions, and energy consumption, and decreasing the degree of privacy leakage. Due to the high mobility
of satellites, we note that all TSTs are not always within the same satellite service area. TSTs are therefore required to select
the most appropriate satellite for each model aggregation round from the multiple satellites based on real-time circumstances.
Taking into account TSTs’ training delay and energy consumption jointly, the satellite selection algorithm is denoted by

min
xa

A∑
a=1

xa(αmax {Mb,r

Rba
b

+
2hba

cl
|b ∈ B}+

B∑
b=1

βpbab
Mb,r

Rba
b

), (27a)

s.t.

A∑
a=1

xa = 1,∀b (27b)

xa = {0, 1}, (27c)
R∑

r=1

Mb,r

Rba
b

≤ t
′

b,∀b (27d)

max {Mb,r

Rba
b

+
2hba

cl
|b ∈ B} < t

′

a,∀a (27e)

where max {Mb,r

Rba
b

+ 2hba

cl
|b ∈ B} is the training transmission and propagation delay, identified by the TST with the longest

transmission and propagation time. Here, A is the number of accessible satellites of all TSTs, and hba is the distance between
TST b and satellite a. Further,

∑B
b=1 βp

ba
b

Mb,r

Rba
b

is the total energy consumption of transmission from TSTs to a satellite. In
(27a), α and β are weight parameters to balance the importance and unit of latency and energy consumption. Furthermore, pbab
is the transmission power of TST b to satellite a, and xa is the federated decision for all TSTs. Constraint (27d) ensures that
the transmission time of the TST for training the semantic model remains less than the maximum tolerable service interruption
time. Also, Mb,r is the coder model size in communication round r, t

′

b is the maximum tolerable service interruption time
and t

′

a is the maximum service time of the satellite a in this region. The optimization problem in (27) is a simple 0,1 linear
programming and hence can be easily solved.

During training in each communication round, we split the coder model into an encoder and a decoder. Only the decoder
model needs entire federated aggregation. This is due to LEO satellites having limited storage capacity, it is not practical to
use individual decoder models for each task of each TST. The semantic coders are therefore stored on the TST. For economic
considerations, we argue that TSTs require a shared decoder model to be used. We then encourage TSTs to assess the importance
of the encoder parameters during the local training phase. Inspired by continual learning [31], changes in parameters with
different importance have a different impact on the output results. We thus evaluate parameter importance according to the
implications of parameter changes on the loss function. We express the change in the loss by

Lb(θb + δ)− Lb(θb) ≈
sb∑
i=1

gb,iδb,i, (28)

where gi is the gradient and δi is the update of parameter i during this parameter assessment period of the TST b. Setting
gi =

∂Lb

∂θb,i
during online training, the parameter importance weight is

Ii = −
∂Lb

∂θb,i
δb,i. (29)

Subsequently, to reduce the training communication cost, we prune the encoder models uploaded by TSTs according to
parameter importance. Parameters with high importance contain most of the valid information [32] and therefore can provide
further valid information to the aggregated model than lower-important parameters. The lower-importance parameters are thus
encouraged to be pruned. The pruning here differs from the conventional ML studies. It is not the deletion of the training model
parameters, but the non-transmission of the pruned parameters for federated aggregation. The corresponding SEC generates a



Algorithm 1 PSFed

Input: dataset {X1, X2, ..., Xb}, model size {M1,M2,...,Mb} and total communication rounds R
Output: trained coder models {θ1, θ2, ..., θb}
Initialize: the TSTs’ model parameters and the importance weight of parameters SECs:

1: for each communication round r ∈ R :
2: Y r+1

b , θr+1
b ←− TST update(θrb )

3: Update {θb,1, θb,2, ..., θb,Nb
} according to Y r+1

b and θr+1
b

4: end for
TSTs:

1: TST b receives θb from the SEC
2: TSTs choose the optimal SEC for federated aggregation
3: for each TST in parallel:
4: for each local training epoch:
5: Loss ←− 1

sb

∑sb
in=1 LMSE(θb;xb,in, x̂b,in)

6: end for
7: foreach encoder parameter i:
8: Ii = − ∂Lb

∂θb,i
δb,i

9: end for
10: Splitting coder model and pruning encoder model based on Ii in the case of satisfying:{∑R

r=1
Mb,r

Rba
b

≤ t′b
Θb(θ

r
b ) ≤ Θ

′

b
11: Obtain θrb to be shared
12: return: θrb
13: end for

global encoder model and a global decoder model based on the federated aggregation of the number of the received parameters.
Once TST receives the global decoder model and personalised pruned global encoder model, it merely substitutes the local
decoder and substitutes important parameters of the local encoder. It trains the individual local coder again based on the
personal encoder model and the global decoder model in the next communication round of training.

Furthermore, the closer to the completion of the training, the higher the importance of the parameters. To further reduce the
privacy leakage degree, our proposed PSFed progressively increases the pruning ratio according to the number of communication
rounds. This is until the coder model is split and only the decoder model is federated aggregated. The more important privacy
training models are thus kept local.

The objective of PSFed during training is to minimise the training loss, therefore,

min
Θ,Y

B∑
b=1

Lb(y
1
bθb,1, y

2
bθb,2, ..., y

n
b θb,Nb

), (30a)

s.t.

R∑
r=1

Mb,r

Rba
b

≤ t
′

b,∀b (30b)

max {Mb,r

Rba
b

+
2hba

cl
|b ∈ B} < t

′

a,∀a (30c)

R∑
r=1

Wrχ log2(1 + e
1−

∑Nb
i

Iinb,i+1∑Nb
i

Iinb,i ) ≤ Θ
′

b,∀b (30d)

where ynb ∈ [0, 1] is the aggregation weight vector of parameter i in TST b. It acts similar to the weighted average in FedAvg.
Since each TST uploads a different number and location of parameters in the same model, the proportion of each parameter
that is weighted is different. The ynb for various parameters also different and Y = y1, y2, ..., yb. Further, Θ

′

b is privacy leakage
consideration and Θ

′

b is the maximum tolerable leakage The procedure of the PSFed is demonstrated in Algorithm 1.



IV. THE SEMANTIC CODERS IN SERVICE

In this section, the problem of users’ computational task processing schedule for SemCom-SEC is presented first. We then
detail the proposed CTPS.

A. Computational task processing

In service offloading decision-making, we consider the SemCom-SEC with C users severed by one TST b in A satellite
coverage. Each user has five task processing choices, 1) local computing; 2) offloading the tasks to SEC directly; 3) offloading
the tasks to SEC via the TST; 4) offloading the tasks to the terrestrial cloud only via the satellite; 5) offloading the tasks to
the terrestrial cloud via the TST and the satellite. We firstly list the user c’s cost functions in terms of processing delay and
energy consumption for each option in order as follows based on Section II:

Φc1 = αtLC
c + βELC

c , (31)

Φc2 = α(tproac + tcac + tSEC
c ) + βEca

c , (32)

Φc3 = α(tproac + tcbc + tbac + tSEC
c ) + βEcb

c , (33)

Φc4 = α(tproac + tcac + tCloud
c + tCloud

a ) + βEca
c , (34)

Φc5 = α(tproCc + tcbc + tbac + tCloud
c + tCloud

a ) + βEcb
c , (35)

where Φc is the actual processing cost when the user c sizing a task. It is related to user task processing decisions, the
transmission power, and the number of subcarriers allocated. In the above, tCloud

a is the transmission delay between satellite
and cloud as mentioned in Section II-C. We also utilise γc = {0, 1} to represent the offloading decision of user c and
γc ∈ {γ1c, γ2c, γ3c, γ4c}. If user c chooses one processing strategy, the indicator for the corresponding strategy equals 1,
otherwise equals 0. We argue that the optimal decision for a user is to minimise the latency and energy consumption of the
processing tasks. Mathematically, the optimisation task processing strategy problem of user c thus can be formulated as a
MINLP problem:

min
γc,fc,pcb

c,d0
,mc,d0

,pca
c

A∑
a=1

Φc = (1− γ1c − γ2c − γ3c − γ4c)Φc1 + γ1cΦc2 + γ2cΦc3 + γ3cΦc4 + γ4cΦc5, (36a)

s.t. fcloud ≥ fa ≥ fc,max ≥ 0, (36b)
γ1c, γ2c, γ3c, γ4c ∈ {0, 1}, (36c)
γ1c + γ2c + γ3c + γ4c ≤ 1, (36d)
D0∑

d0=1

xcbd0
pcbc,d0

≤ Pc,max, (36e)

P ca
c ≤ Pc,max, (36f)

xcbd0
∈ {0, 1}, (36g)

D0∑
d0=1

xcbd0
≤ D0, (36h)

t∗ < t
′

a. (36i)

The constraint (36b) guarantees that edge and cloud have strong computing capability that is not less than users’ maximum
computing capability fc,max. Constraints (36c) and (36d) show the relationship between γ1c, γ2c, γ3c and γ4c. In constraints
(36e) and (36f), Pc,max is the maximum available transmission power of user c to TSTs or satellites. The constraint (36g)
denotes the subcarrier allocation indicator. The constraint (36h) means that the number of allocated subcarriers should not
exceed the total number of sub-carriers. The constraint (36i) is to ensure the optimal decision’s transmission time t∗ is less
than the time t

′

a available to access satellite a.

The problem in (36) is an MINLP problem with incomplete information due to privacy concerns. This is because users need
the allocation of subcarriers to make decisions. Nevertheless, such information is relevant to decisions and privacy information
(e.g., local computing capability and transmission power) from other users. This MINLP problem thus is computationally
complex and hard to solve.



B. CTPS

In this paper, we propose a CTPS mechanism (see, Fig. 3) to minimise the delay and energy consumption of users to process
computational tasks, while privacy-preserving and equitable. We assume all the participants are trustworthy It is divided into
two steps. Firstly, it converts the optimisation task processing strategy problem with privacy considerations into a complete
information problem based on the Rubinstein bargaining model [33] equitably. Subsequently, users develop the optimisation
task processing strategies by solving the complete information MINLP problem of Eq. (36). We detail our CTPS mechanism
as follows.

Fig. 3: Proposed CTPS mechanism.

C. First step of the CTPS mechanism

We enable users to communicate/bargain with TST several times so that subcarriers are allocated fairly without privacy leakage
based on the Rubinstein bargaining game. TST acts as the bidder and the user has the option to continue the game or leave the
game. The gaming process is limited to two periods. In the first period, the users send the offloading request to the TST. Upon
receiving users’ offloading requests, without loss of generality and fairness, TST allocates the number of C-band sub-carriers
based on the size of the tasks offloaded by users. Further, the transmission delay of the TST to the satellite and semantic
extraction delay are also notified via this communication.

To achieve the game-perfect equilibrium, the cost function for user c to assess to continue participating in the game can be
denoted by

µ
′

c = ϵιΦ
′

c, Φ
′

c = {Φc3,Φc5}, (37)

where ι ∈ (0, 1) is the bargaining discount factor that represents the revenue loss value for the second-period communication
due to the bargaining process being time and energy-consuming. Further, ϵ ≥ 1 is the weight parameter to evaluate the further
possible benefit by applying offloading again via the TST b, i.e., remaining engaged in the game. This is attributable to some
users abandoning their requests for TST offloading due to not being allocated a satisfactory number of C-band subcarriers.
The actual number of subscribers should eventually be greater than or equal to this allocation. Simultaneously, the strategies of
various users also affect the user-satellite link interference for different users. In order to estimate the influence of interference,
pricing is a frequently utilised method in the game theory employed studies [34]. We hence rewrite the part of the cost function
for user c considering interference pricing as:

µ
′′

c = Φ
′′

c + αϱmcϖ, Φ
′′

c = {Φc2,Φc4}, (38)



where ϱ is the factor for the interference related to the number of users, transmission power, and channel gain. Further,
ϖ ∈ [0, 1] is the proportion to denote the anticipation rate of not performing local computing users, thus predicting the fraction
of time in which interference is received.

Finally, the incomplete information MINLP problem is converted to a complete information MINLP problem. Users thus could
develop the optimal processing decision based on allocated subcarriers and the calculation frequency or transmitting power in
the second step.

D. Second step of the CTPS mechanism

In the second step, users make the decision based on the complete information MINLP problem of Eq. (36) to minimise the
latency and energy consumption of the processing tasks. The maximum number of satellites expected to be accessible at the
same time is extremely limited [22]. The decision problem Eq. (36) can be considered as 5 · A independent subproblems,
where 5 is five offloading decision subproblems and A is A satellite selection subproblems. In case of the local computing,
the best user c’s CPU-cycle frequency fc is only related to local computing costs. We thus can express the fc optimisation
subproblem as:

min
fc

Φc1 = α
δmc

fc
+ βεδmcf

2
c , (39a)

s.t. (36b). (39b)

We can express the first-order derivative of (39a) as: −α δmc

f2
c

+2βεδmcfc. Eq. (39a) monotonically increases in the constraint
(39b), hence fc = fc,max.

In addition, in case the user needs to employ TSTs, the user needs to derive the optimal subcarrier task allocation strategy mc,d0

and subcarrier transmission power pcbc,d0
. To model and optimise the transmission power, in CTPS, we assume each subcarrier

in the same link accomplishes the transmission tasks at the same time for fully using spectrum resources in a synchronous
manner based on previous studies [23], [35]. As the allocated subcarrier for user c is known, we set η to denote the number
of allocated subcarriers. We can simplify the optimisation problem associated with TST as:

min
mc,d0

,pcb
c,d0

D0∑
d0=1

(
αxcbd0

mc,d0

ηrcbc,d0

+
βpcbc,d0

xcbd0
mc,d0

rcbc,d0

), (40a)

s.t. (36e), (36g), (36h), (40b)
D0∑

d0=1

xcbd0
mc,d0

= mc. (40c)

We only need to consider the situation that xcbd0
= 1. By relaxing constraints, we have the Lagrangian function for Eq. (40a)

as:

L =

D0∑
d0=1

xcbd0
(
αmc,d0

ηrcbc,d0

+
βpcbc,d0

mc,d0

rcbc,d0

)

+ φ(

D0∑
d0=1

xcbd0
pcbc,d0

− Pc,max) + λ(mc −
D0∑

d0=1

xcbd0
mc,d0

), (41)

where φ and λ are the Lagrangian multipliers. The dual problem thus is minmc,d0
,pcb

c,d0

L. Then, we can observe that Eq. (41)
can be further decomposed into D0 independent subproblems, and the actual objective function in each d0 subproblem can be
denoted by

min
mc,d0

,pcb
c,d0

Ld0
=
αmc,d0

ηrcbc,d0

+
βpcbc,d0

mc,d0

rcbc,d0

+ φpcbc,d0
+ λmc,d0

. (42)

For simplicity, we define

Hd0
=

α

ηrcbc,d0

+
βpcbc,d0

rcbc,d0

. (43)



According to Karush-Kuhn-Tucker conditions, taking the partial derivatives of Ld0
with respect to pcbc,d0

and mc,d0
, respectively.

We have



∂Ld0

∂pcbc,d0

= mc,d0

∂Hd0

∂pcbc,d0

+ φ = 0 (44a)

∂Ld0

∂mc,d0

= Hd0
− λ = 0 (44b)

φ(

D0∑
d0=1

xcbd0
pcbc,d0

− Pc,max) = 0. (44c)

Thus, we have 
φ = 0,

D0∑
d0=1

xcbd0
pcbc,d0

≤ Pc,max, (45a)

φ > 0,

D0∑
d0=1

xcbd0
pcbc,d0

= Pc,max, (45b)

where (45) is complementary slackness. For (45a), pcbc,d0
can be directly solved by (44) causing mc,d0

̸= 0. After deriving the
optimal pcbc,d0

, mc,d0
can be easily solved as all subcarriers have the same subcarrier completion time. Only if the solution∑D0

d0=1 p
cb
c,d0

= Pc,max, we need to consider Eq. (45b). In that case, the Lagrangian multipliers can be obtained by the sub-
gradient method and further achieve the optimal pcbc,d0

, mc,d0 . Moreover, as we utilise the Lagrangian dual decomposition
method, the solution may have a duality gap. However, this gap should approach zero and can be ignored in practical systems
as the number of subcarriers D0 is large enough [10].

Therefore, users can make the decision based on the computation cost of various alternatives, without compromising privacy.
Throughout the CTPS, the user is only communicated externally about the size of the tasks being processed. It also needs to
be known by TST during the offloading process. Hence the CTPS protect the privacy of computing power, transmit power,
etc. Further, the computational complexity is linearly related to D0 and A, whereas both D0 and A are finite. CTPS thus can
be used in large-scale satellite networks. The CTPS and offloading decision process is summarised as Algorithm 2.

V. SIMULATION RESULTS

A. Simulation setting

In this section, we evaluate the performance of the present PSFed and CTPS. In the simulations, if not specifically mentioned,
we set the parameters as follows. The LEO satellites’ coverage radius is 280 km and the vertical altitude is 780km based on
the Iridium satellite system [36]. The frequencies of the C-band and the Ka-band are 4.5 GHz and 30 GHz separately based
on 3GPP specifications [37]. We assume the number of C-band subcarriers is 128, the maximum transmission power of users
is 23 dBm and the transmit power of each TST is 30 dBm [10]. The offloading task is assumed an image recognition task and
the semantic coder is considered an autoencoder based on the convolutional autoencoder (CAE) similar to [38].

Communication rounds for the proposed PSFed to aggregate the semantic encoder are 20 rounds. The coder settings are listed
in Table I. Furthermore, we set the number of CPU cycles for computing one bit δ as 120 cycles/bit, which is from the real
applications [18]. We assume all users have the same CPU frequency fc, and set it as 0.5 × 109 cycles/s. The computation
capabilities of SEC on satellite a and the cloud server are 3×109 cycles/s and 10×109 cycles/s, respectively [11]. The energy
factor ε is set as 10−26 [10].

Moreover, we assume weight parameters of latency and energy consumption are set as α = 0.5 and β = 0.5, and weight
parameters in bargain process ι and ϵ are all considered as 1. In addition, the atmospheric loss is adopted, and the related
coefficients are shown in Table II [27]. The simulation parameters are also listed in Table III.

B. Performance evaluation of PSFed

Fig. 4 illustrates the convergence speed of the different frameworks under different transmission tasks. The TSTs’ images are
from CIFAR 10 [39], CIFAR 100 [40] and MNIST [41] image datasets and TSTs perform federated aggregation after every
five local epochs. Based on the feasibility in SEC networks, we compare the proposed PSFed with the generalised learning
approach for SemCom [15], [16], i.e., FL frameworks based on the FedAvg [28].



Algorithm 2 CTPS

Input: Tasks mc generation
Output: The computation offloading and resource allocation result γc, fC , pcbc,d0

,mc,d0 , x
cb
d0

1: Initialize the optimal TST transmission power pbab
2: Obtain necessary information xcbd0

after first period game
3: Obtain the necessary information xcbd0

after first period game
4: Calculate optimally fc
5: Relax Eq. (40)
6: if φ = 0:
7: pcbc,d0

←− ∂Hd0

∂pcb
c,d0

8: mc,d0 ←−
mcp

cb
c,d0∑D0

d0=1 xcb
d0

pcb
c,d0

9: else:
10: pcbc,d0

←− Eq. (44)

11: mc,d0
←− mcp

cb
c,d0

Pc,max

12: end if
13: Find the maximum Φc and derive γc
14: if γc3 + γc5 = 1:
15: Obtain the necessary information xcbd0

after the second period game
16: Obtain updated pcbc,d0

and mcb
c,d0

17: end if
18: Find the maximum Φc and derive γc

TABLE I: The setting of the CAE

Encoder Neuron num Decoder Neuron num
Conv+ReLU 512 transConv+ReLU 10
Conv+ReLU 256 transConv+ReLU 32
Conv+ReLU 128 transConv+ReLU 64
Conv+ReLU 64 transConv+ReLU 128
Conv+ReLU 32 transConv+ReLU 256

Conv+Sigmod 10 transConv+Sigmod 512

TABLE II: Rainfall coefficients

C-band Value Ka-band Value
kH 0.0001340 kH 0.2403
kV 0.0002347 kV 0.2291
vH 1.6948 vH 0.9485
vV 1.3987 vV 0.9129

TABLE III: Simulation parameters

Parameters Default values
The coverage radius of LEO satellites 280 km

Ka-band carrier frequency 30 GHZ
C-band carrier frequency 4.5GHZ

Number of C-band subcarriers 128
The maximum transmit power of each user 23dBm

Transmit power of TST 30 dBm
h 780km
δ 120
ε 10−26

fc 0.5× 109 cycles/s
fa 3× 109 cycles/s

fCloud 10× 109 cycles/s
α, β 0.5
ι, ϵ 1

Based on the existing FL methods that are potentially for SEC SemCom, FedRep [42] is also compared to demonstrate the
effectiveness of our PSFed. The FedRep is based on the Fedavg but only aggregates part of the training model during each



communication round. We set it to only aggregate SemCom decoder to adapt the SemCom-SEC. Moreover, we set the training
sample to 5000 images per TST to reflect the differences between the frameworks more effectively. It can be observed that
our PSFed achieves similar convergence rates to the FedAvg and is much better than the FedRep, regardless of the dataset.
This is because our method aggregates important weights in the early stages of training and therefore accelerates convergence
similarly to the FedAvg with all parameters aggregated.

(a) CIFAR 10 dataset (b) CIFAR 100 dataset (c) MNIST dataset

Fig. 4: Convergence speed of various learning algorithms with different datasets.

In Fig. 5, we compare the total communication cost of PSFed, FedRep and FedAvg during training. We assume that each
neuron transmitted consumes the same amount of communication resources. The communication cost is therefore defined as
the number of neurons transmitted during communication. It is seen that the PSFed expenses are approximately the same
communication cost as the FedAvg in the early stages of training. The growth then gradually slows down and increases at
the same magnitude as the FedAvg after round 20. This is because the PSFed gradually decreases the number of weights
aggregated by the encoder model.

It is also seen that in round 20, the number of aggregated weights for the encoder model is 0, the same as the FedRep, only
the decoder model is aggregated. Therefore, the PSFed only consumes additional communication resources for the importance
weight aggregation than the FedRep. Considering that the FedRep converges much more slowly than the proposed PSFed,
the total communication resource consumption can be considered to be similar. However, in comparison to the FedAvg, the
communication consumption of our PSFed decreases by 40.50% in round 50.

C. Performance evaluation CTPS

Fig. 5: Communication cost of various learning
approaches.

Fig. 6: Privacy leakage of various learning ap-
proaches.

We evaluate the total model privacy leakage during training in Fig. 6 according to Eq. (26). We assume that the model in
each communication round has the same importance and that each neuron is of equal importance. It can be observed that
PSFed is initially similar to FedAvg leakage and subsequently follows the same growth trend as FedRep. This is equally due
to the number of PSFed decreasing importance weight aggregations. After training, both the PSFed and the FedRep encoder
models are saved locally. It is foreseeable that if the importance of each round of communication changes, the PSFed would
be extremely close to the FedRep in terms of total privacy leakage. In addition, the privacy leakage of PSFed should widen
the gap with FedAvg, even though the privacy leakage of our PSFed already decreases by 51.43% in round 50 in comparison
to FedAvg in the same importance.



In Fig. 7, the accuracy of the different frameworks under different transmission tasks is shown. We evaluate the accuracy
utilising Peak Signal-to-Noise Ratio (PSNR), a general metric for evaluating image transmission in SemCom [38]. We have

PSNR = 10 log
MAX2

MSE
(dB), (46)

where MAX is the maximum value for a pixel and MSE is the mean squared deviation. Since different datasets have
different MAX , we assume that the learning method with the smaller MSE has a higher accuracy. It is seen that the FedRep
is significantly the least accurate with different datasets trained. The accuracy of PSFed is similar to FedAvg but slightly
FedAvg higher. Because encoder models of both PSFed and FedRep are kept at the TST that are not aggregated when training
is completed. Some aggregation information thus is lacking. However, the average training accuracy of the PSfed decreased by
only 0.33% relative to the FedAvg due to the important weight aggregation acting as pre-training. Compared to the FedAvg,
the accuracy loss of the PSfed deems acceptable given the significant communication cost and privacy concerns of the former.

Fig 7(b) further demonstrates the effect of image transmission accuracy on offloading via different approaches. We employed
commonly used ML models for image recognition to identify the accuracy of images before/after transmission. The accuracy
here is the proportion of the received object/image recognition accuracy to the pre-transmission image recognition accuracy. It
can be seen that with the same trend as Fig. 7(b) FedRep has the significantly lowest accuracy while our method is similar to
FedAvg but slightly lower. Figs. 5, 6, and 7 collectively suggest that PSFed achieves the fastest convergence rate, the lowest
communication cost, and a high accuracy rate.

Fig. 8 illustrates the impact of users in one TST coverage on the total cost. As users are not always able to offload tasks via the
TST, the proposed CTPS is compared with the local computing, offloading to the SEC directly, offloading to the cloud directly
and CTPS without the game. The task size for each user is randomly generated over a range of 5 kb-300kb and subjected to
200 times replications of the simulation. Fig.8 shows that the total cost grows with the number of users. This is because raising
the number of users increases the corresponding number of computing tasks and thus the total cost of users. The total cost of
the proposed CTPS always keeps the total cost to the minimum and the advantage increases as the number of users increases.
In addition, in cases where the number of users is small, the proposed CTPS thus maintains almost the same processing cost as
”CTPS without game”. By increasing the number of users, TST becomes unable to satisfy all the requests and CTPS starts to
show its advantage in reducing the cost. We expect this advantage to increase by further increasing the number of users. This
is because the optimal reallocation of resources through our design game scheme increases the efficiency of network resource
utilisation.

In Fig. 9, we show the offloading and computing cost of a single user versus the size of generating tasks. It is observed that
the cost increases with the data size for all schemes. Our proposed mechanism always has a lower cost compared to the other
three approaches. In case the data size is small (10 kb), our CPTS choose local computing as the optimal option. As the data
size grows, the local computing latency and energy consumption increase, and CTPS chooses other minimum cost strategies,
i.e., offload tasks to the SEC via the TST. After 250kb, the optimal value of our mechanism fluctuates. This is due to the data
size being large enough, and the best strategy changes to offload tasks to the cloud via a TST. Therefore, the processing of
the single-user tasks can be performed efficiently via our proposed processing strategy.

(a) MSE (b) Recognise accuracy matches after coding

Fig. 7: Accuracy of various learning algorithms with different datasets.

Fig. 10 demonstrates the importance of integrating SemCom into SEC networks in future communication environments. We
set the user and the TST to maintain the same status to transmit to LEO satellites in different rainfall environments. It can be
observed that as the rainfall probability increases, the task transmission cost of TST without SemCom exhibits a significant
increase. Because the Ka-band frequency is extremely high and is strongly influenced by rainfall-induced path loss. In contrast,



Fig. 8: Communication cost of various learning
approaches.

Fig. 9: Privacy leakage of various learning ap-
proaches.

the processing costs for users transmitting via C-band are only slightly increasing. Since the C-band frequency is smaller than
the Ka-band frequency and thus tolerates less path loss. Nevertheless, the TST configuration with the semantic encoder spends
the least processing cost. Furthermore, the processing cost did not increase significantly with the increase in rainfall rate. This
is because the latency of semantic extraction is not affected by the environment. The improved spectrum efficiency also reduces
the impact of rainfall-induced path loss. Therefore, the integration of SemCom in SEC networks is necessary.

Fig. 10: The usefulness of SemCom in the network.

In Fig. 11, the influence of α and β on user strategies are investigated and the data size is from 5kb to 300kb simulated 50
times. The energy consumption weight β is always set as 0.5. We list the proportion of users that do not choose to offload via
TST. It can be noticed that as the number of users increases, the unwillingness to offload increases due to the reduced number
of subcarriers being allocated to them. However, users are always more reluctant to offload via TST in case the delay is more
important (i.e., bigger α). These provide a criterion for the appropriate α and β to be chosen.

Fig. 11: Impact of α and β on strategy developing.



VI. CONCLUSION

In this paper, we investigated the integration of SemCom and SEC networks for terrestrial resource-limited users’ computation
offloading. We further proposed a novel SemCom-SEC framework for computation offloading. In addition, we examined
the challenges that SemCom confronts in the proposed framework. For analysis, we then considered the challenges in two
different scenarios. For the in-maintenance SemCom service, we proposed PSFed for the semantic coder update challenge. In
the in-service SemCom service, we presented a game theoretical CTPS mechanism for task processing decision challenges of
users. Compared with the general learning approach for semantic coder updating in SEC networks, simulation studies indicate
that, on average, the proposed PSFed saves 40.50% of communication resources and further reduces privacy risk by 51.43%.
Nevertheless, the training accuracy and convergence speed of PSFed and the general learning approach almost remain the
same.
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