7 research outputs found

    Option pricing in stochastic volatility models driven by fractional jump-diffusion processes

    Get PDF
    In this paper, we propose a fractional stochastic volatility jump-diffusion model which extends the Bates (1996) model, where we model the volatility as a fractional process. Extensive empirical studies show that the distributions of the logarithmic returns of financial asset usually exhibit properties of self-similarity and long-range dependence and since the fractional Brownian motion has these two important properties, it has the ability to capture the behavior of underlying asset price. Further incorporating jumps into the stochastic volatility framework gives further freedom to financial mathematicians to fit both the short and long end of the implied volatility surface. We propose a stochastic model which contains both fractional and jump process. Then we price options using Monte Carlo simulations along with a variance reduction technique (antithetic variates). We use market data from the S&P 500 index and we compare our results with the Heston and Bates model using error measures. The results show our model greatly outperforms previous models in terms of estimation accuracy.peer-reviewe

    Innovations in Quantitative Risk Management

    Get PDF
    Quantitative Finance; Game Theory, Economics, Social and Behav. Sciences; Finance/Investment/Banking; Actuarial Science

    Innovations in Quantitative Risk Management

    Get PDF
    Quantitative Finance; Game Theory, Economics, Social and Behav. Sciences; Finance/Investment/Banking; Actuarial Science

    Pricing Compound and Extendible Options under Mixed Fractional Brownian Motion with Jumps

    Get PDF
    This study deals with the problem of pricing compound options when the underlying asset follows a mixed fractional Brownian motion with jumps. An analytic formula for compound options is derived under the risk neutral measure. Then, these results are applied to value extendible options. Moreover, some special cases of the formula are discussed, and numerical results are provided

    Mathematical modelling and risk management in deregulated electricity markets

    Get PDF
    In this thesis we aim to explore how electricity generation companies cope with the transition to a competitive environment in a newly deregulated electricity industry. Analyses and discussions are generally performed from the perspective of a Generator/Producer, otherwise they are undertaken with respect to the market as a whole. The techniques used for tackling the complex issues are diverse and wide-ranging as ascertained from the existing literature on the subject. The global ideology focuses on combining two streams of thought: the production optimisation and equilibrium techniques of the old monopolistic, cost-saving industry and; the new dynamic profit-maximising and risk-mitigating competitive industry. Financial engineering in a new and poorly understood market for electrical power must now take place in conjunction with - yet also constrained by - the physical production and distribution of the commodity

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore