1,608 research outputs found

    Text Classification: A Review, Empirical, and Experimental Evaluation

    Full text link
    The explosive and widespread growth of data necessitates the use of text classification to extract crucial information from vast amounts of data. Consequently, there has been a surge of research in both classical and deep learning text classification methods. Despite the numerous methods proposed in the literature, there is still a pressing need for a comprehensive and up-to-date survey. Existing survey papers categorize algorithms for text classification into broad classes, which can lead to the misclassification of unrelated algorithms and incorrect assessments of their qualities and behaviors using the same metrics. To address these limitations, our paper introduces a novel methodological taxonomy that classifies algorithms hierarchically into fine-grained classes and specific techniques. The taxonomy includes methodology categories, methodology techniques, and methodology sub-techniques. Our study is the first survey to utilize this methodological taxonomy for classifying algorithms for text classification. Furthermore, our study also conducts empirical evaluation and experimental comparisons and rankings of different algorithms that employ the same specific sub-technique, different sub-techniques within the same technique, different techniques within the same category, and categorie

    Working in Detail: How LSTM Hyperparameter Selection Influences Sentiment Analysis Results

    Get PDF
    Sentiment analysis of written customer reviews is a powerful way to generate knowledge about customer attitudes for future marketing activities. Meanwhile, Deep Learning as the most powerful machine learning method is of particular importance for sentiment analysis tasks. Due to this current relevance, an LSTM network based on a literature review to solve the challenging classification task of the IMDB LargeMovie Dataset is created. Hyperparameters are varied separately from each other to better understand their single influences on the overall model accuracy. Furthermore, we transformed variants with positive impacts into a final model in order to investigate whether the impacts can be cumulated. While preparing the amount of training data and the number of iteration steps resulted in a higher accuracy, pre-trained word vectors and higher network capacity did not work well separately. Even though implementing the variants with positive influences together raised the model´s performance, the improvement was lower than some single variants

    Effective pattern discovery for text mining

    Get PDF
    Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance

    Molding CNNs for text: non-linear, non-consecutive convolutions

    Full text link
    The success of deep learning often derives from well-chosen operational building blocks. In this work, we revise the temporal convolution operation in CNNs to better adapt it to text processing. Instead of concatenating word representations, we appeal to tensor algebra and use low-rank n-gram tensors to directly exploit interactions between words already at the convolution stage. Moreover, we extend the n-gram convolution to non-consecutive words to recognize patterns with intervening words. Through a combination of low-rank tensors, and pattern weighting, we can efficiently evaluate the resulting convolution operation via dynamic programming. We test the resulting architecture on standard sentiment classification and news categorization tasks. Our model achieves state-of-the-art performance both in terms of accuracy and training speed. For instance, we obtain 51.2% accuracy on the fine-grained sentiment classification task

    Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm

    Full text link
    NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-the-art performance on 8 benchmark datasets within sentiment, emotion and sarcasm detection using a single pretrained model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches.Comment: Accepted at EMNLP 2017. Please include EMNLP in any citations. Minor changes from the EMNLP camera-ready version. 9 pages + references and supplementary materia

    An information-theoretic framework for semantic-multimedia retrieval

    Get PDF
    This article is set in the context of searching text and image repositories by keyword. We develop a unified probabilistic framework for text, image, and combined text and image retrieval that is based on the detection of keywords (concepts) using automated image annotation technology. Our framework is deeply rooted in information theory and lends itself to use with other media types. We estimate a statistical model in a multimodal feature space for each possible query keyword. The key element of our framework is to identify feature space transformations that make them comparable in complexity and density. We select the optimal multimodal feature space with a minimum description length criterion from a set of candidate feature spaces that are computed with the average-mutual-information criterion for the text part and hierarchical expectation maximization for the visual part of the data. We evaluate our approach in three retrieval experiments (only text retrieval, only image retrieval, and text combined with image retrieval), verify the framework’s low computational complexity, and compare with existing state-of-the-art ad-hoc models
    • …
    corecore