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its semantic content, e.g., all pictures with flowers or all high-pitched singers. Thus, the 

extension of existing search engines to support multimedia information becomes a critical 

aspect.  

Nowadays, conventional search engines that make use of semantics on the information 

side depend on manual annotations and other information extracted from the surrounding 

content, e.g., HTML links in case of Web content. This way of extracting multimedia 

semantics is flawed and costly. Our daily routines are intrinsically attached to systems 

that allow us to search for specific news articles, scientific papers, photos, music, videos, 

or information in general. Demand for techniques that handle multimedia documents is 

increasing with the wide spread use of multimedia dedicated applications, e.g., 

www.getty.com, www.corbis.com, www.flickr.com and www.lastfm.com. All these 

applications use manual annotations done by users and metadata provided by content 

owners to enable multimedia search. Thus, doing the entire process automatically, or 

even semi-automatically, can greatly decrease the operational and maintenance costs of 

such applications. 

The automated method that we shall propose explores low-level features of multimedia to 

infer the presence of concepts to enable search-by-keyword. We group low-level features 

into sparse feature spaces and dense feature spaces. Audio, text and visual features fall 

into one of these two categories. However, in this paper we only consider text and visual 

data. As shall be discussed we employ two methods to deal with sparse feature spaces 

(the average mutual information) and dense feature spaces (hierarchical-EM). Keyword 

models are estimated as a maximum-entropy model in the representation selected by the 

minimum description length criterion. The following section will formalise the problem 

addressed in this paper. 

1.1 Problem Definition 

To infer the presence of concepts in multimedia documents, a new breed of information 

retrieval model is required: one that seamlessly integrates heterogeneous data. Thus, in 

this paper we assume that in any given collection D  of N  multimedia documents 

 ! "1 2, , ..., ,Nd d d#D  (1) 

each document is characterized by a vector 

 $ %, , ,j jj j
T V Wd d d d#  (2) 

composed by a feature vector Td  describing the text part of the document, a feature 

vector Vd  describing the visual part of the document, and a keyword vector Wd  

describing the semantics of the document. More specifically, we have: 

! The feature vector Td  contains text based features such as text terms obtained 

via a stemmer, bag-of-word, part-of-speech or named entities 

! The feature vector Vd  contains low-level visual features such as texture, colour 

or shape 



3 

! The feature vector Wd  contains keyword confidence scores concerning the 

presence of the corresponding concept in that document 

Algorithms and techniques to compute low-level text and visual features are widely 

studied. There is no single best way to use keyword features representing multimedia 

information because of the ambiguity and subjectivity of the information that they try to 

describe – the semantic content of a multimedia document. The semantic description of 

multimedia information, the feature vector Wd , is the core topic of this paper. To 

describe the semantics of multimedia information we define the set  

 ! "1,..., Lw w#W  (3) 

as a vocabulary of L  keywords. These keywords are linguistic representations of abstract 

or concrete concepts that we want to detect in multimedia documents. The feature vector 

Wd  is formally defined as 

 $ %,1 ,2 ,, ,...,j j j j
W W W W Ld d d d#  (4) 

where each component ,
j
W td  is a score indicating the confidence that keyword tw  is 

present in that particular document. The concepts may not be explicitly present in the 

multimedia information, methods are required to compute the likelihood that the keyword 

is actually present in the multimedia document. 

Equation (2) shows us the other information that we have about documents: text and 

visual feature. Thus, to compute the components of the keyword vector 
j
Wd  we shall use 

text and visual feature data. This leads us to the definition of each component of the 

keyword vector as 

 $ %, 1 | , ,j jj j
W t t T V td p y d d !# #  (5) 

where the random variable ! "1,0j
ty #  indicates the presence/not-presence of keyword 

tw  on document jd  given its text feature vector 
j
Td , its visual feature vector 

j
Vd  and 

the keyword model t! . Equation (2) integrates heterogeneous representations of a 

multimedia document (text, image and semantic) and Equation (5) will make multimedia 

information searchable with the same type of queries for all type of media. 

1.2 Organization 

In [Magalhães and Rüger, 2007] we introduced an information-theoretic framework for 

Equation (5). The current paper proposes and presents a definitive and thorough account 

of our framework, [Magalhães, 2008]. In section 3 we shall propose a statistical 

framework that can simultaneously model text-only documents, image-only documents, 

and documents with both text and images. Section 4 details the estimation of an optimal 

feature space to represent multimedia information and Section 5 details the estimation of 

keyword models in that feature space. Section 6 presents a thorough evaluation of the 

framework. Next, we shall discuss related work. 
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2. RELATED WORK 

In text retrieval, the search process is triggered by a text query that can be directly 

matched to the corpus of the documents in the collection. Since we want to offer a 

common query interface for both text and images we need to define a common 

vocabulary of keywords to query all possible types of documents. Therefore the present 

work is related to text topic detection, image annotation and multimodal content 

annotation. We will now look at these three areas with a view to seamlessly integrate text 

and image data into the same framework. 

Text topic detection models pre-process data by removing stop-words and rare words, 

stemming, and finally term-weighting. Due to the high-dimensional feature space of text 

data most text categorization algorithms are linear models such as naïve Bayes 

[McCallum and Nigam, 1998], maximum entropy [Nigam, Lafferty and McCallum, 

1999], Support Vector Machines [Joachims, 1998], regularized linear models [Zhang and 

Oles, 2001], and Linear Least Squares Fit [Yang and Chute, 1994]. Joachims [1998] 

applies SVMs directly to the text terms. Text is ideal for applying SVMs without the need 

of a kernel function because data is already sparse and high-dimensional. Linear models 

fitted by least squares such as the one by [Yang and Chute, 1994] offer good precision, 

and in particular regularized linear methods, such as the one we propose and the one by 

[Zhang and Oles, 2001], perform similarly to SVMs, with the advantage of yielding a 

probability density model. The maximum entropy classification model proposed by 

[Nigam, Lafferty and McCallum, 1999] defines a set of features that are dependent on the 

class being evaluated while we use a unique set of features for all keywords. The 

proposed maximum entropy framework has the same characteristics and performance as 

linear models (logistic regression, least squares) but with the crucial advantage that while 

these approaches have no automatic mechanism to select a vocabulary size we use the 

minimum description length principle to select its optimal size. Yang [1999], and Yang 

and Liu [1999] have compared a number of topic detection algorithms and reported their 

performances on different text collections. Their results indicate that k-Nearest 

Neighbour, SVMs, and LLSF are the best classifiers. Note that nearest neighbour 

approaches have certain characteristics (see [Hastie, Tibshirani and Friedman, 2001]) that 

make them computationally too complex to handle large-scale indexing. 

The simplest image annotation models deploy a traditional multi-class supervised 

learning model and learn the class-conditional probability density distribution of each 

keyword w  given its training data x . Bayes law is used to model $ %|p x w , the feature 

data density distribution of a given keyword. Several techniques to model $ %|p x w  with 

different types of probability density distributions have been proposed: Yavlinsky et al. 

[2005] deployed a nonparametric distribution; Carneiro and Vasconcelos [2005] a semi-

parametric density estimation; Westerveld and de Vries [2003] a finite-mixture of 

Gaussians; while Vailaya et al. [2001] apply a vector quantization technique. Density 

based approaches are among the most successful. However, density distributions are not 

adequate for text because the density models do not get enough support from such sparse 

data. Other types of approaches are based on a translation model between keywords and 

images (global, tiles or regions). Inspired by automatic text translation research, Duygulu 
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et al. [2002] developed a method of annotating images with words. First, regions are 

created using a segmentation algorithm like normalised cuts. For each region, features are 

computed and then blobs are generated by clustering the image features for these regions 

across an image collection. The problem is then formulated as learning the 

correspondence between the discrete vocabulary of blobs and the image keywords. 

Following the same translation approach [Jeon, Lavrenko and Manmatha, 2003; 

Lavrenko, Manmatha and Jeon, 2003; Feng, Lavrenko and Manmatha, 2004] have 

developed a series of translation models that use different models for keywords 

(multinomial/binomial) and images representations (hard clustered regions, soft clustered 

regions, tiles). Hierarchical models have also been used in image annotation such as 

Barnard and Forsyth’s [2001] generative hierarchical aspect model inspired by a 

hierarchical clustering/aspect model. The data are assumed to be generated by a fixed 

hierarchy of nodes with the leaves of the hierarchy corresponding to soft clusters. Blei 

and Jordan [2003] propose the correspondence latent Dirichlet allocation model; a 

Bayesian model for capturing the relations between regions, words and latent variables. 

The exploitation of hierarchical structures (either of the data or of the parameters) 

increases the number of parameters (model complexity) to be estimated with the same 

amount of training data. 

Maximum entropy models have also been applied to image annotation [Jeon and 

Manmatha, 2004; Argillander, Iyengar and Nock, 2005] and object recognition 

[Lazebnik, Schmid and Ponce, 2005]. All these three approaches have specific features 

for each class (keywords in our case) which increases the complexity of the system. It is 

curious to note the large difference in precision results between [Jeon and Manmatha, 

2004] and [Argillander, Iyengar and Nock, 2005]. We believe that it is related to the lack 

of regularization and to a differing number of features. These approaches were not as 

successful as density estimation based models as maximum entropy works best in a high-

dimensional sparse feature spaces. The proposed maximum entropy framework tackles 

this problem by expanding the feature space in a similar spirit to Hoffman’s probabilistic 

Latent Semantic Indexing [Hofmann, 1999]. 

These single-modality based approaches are far from our initial goal but by analysing 

them we can see which family of models can be used to simultaneously model text, 

image, and multi-modal content. Each modality captures different aspects of that same 

reality, thus carrying valuable information about each keyword of the vocabulary. The 

simplest approach to multi-modal analysis is to design a classifier per modality and 

combine the output of these classifiers. Westerveld, et al. [2003] combine the visual 

model and the text model under the assumption that they are independent, thus the 

probabilities are simply multiplied. Naphade and Huang [2001] model visual features 

with Gaussian Mixtures Models (GMM), audio features with Hidden Markov Models 

(HMM) and combine them in a Bayesian network. In multimedia documents the different 

modalities contain co-occurring patterns that are synchronised/related in a given way 

because they represent the same reality. Synchronization/relation and the strategy to 

combine the multi-modal patterns is a key point of the Semantic pathfinder system 

proposed by [Snoek, Worring et al., 2006; Snoek, Gemert et al., 2006]. Their system uses 
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a feature vector that concatenates a rich set of visual features, text features from different 

sources (ASR, OCR), and audio features. Three types of classifiers are available: logistic 

regression (which without regularization is known to over-fit [Chen and Rosenfeld, 

1999]), Fisher linear discriminant, and SVMs (offering the best accuracy). The fusion of 

the different modalities is possible to be done at different levels and it is chosen by cross-

validation for each keyword. The extremely high computational complexity required to 

compute the visual features and to iteratively select the best classifier, the best type of 

fusion, and the SVMs parameter optimization are serious drawbacks of this system. 

IBM’s Marvel system [Amir et al., 2005] has a similar architecture with different 

learning algorithms to analyse the semantics of multimedia content. These two 

approaches offer the best performance on the TRECVID2005 conference. Both 

approaches combine the high-dimensional sparse text features and the low-dimensional 

dense features on the same feature vector. This might represent a problem for the 

optimization procedure because the information present in each dimension can be very 

different. Ideally each dimension should contain the same amount of information and the 

data density/sparseness should be similar across the entire feature space. The first step of 

our framework aims to find this optimal trade-off point by compressing the text feature 

space dimension and by expanding the visual feature space dimension. 

3. AN INFORMATION-THEORETIC FRAMEWORK 

Our first objective is to compute the components of keyword feature vectors Wd  

representing the semantics of multimedia documents. For this, we will estimate and select 

a model, from a set &  of candidate models that best represents the keyword tw  in terms 

of text data and visual data. The statistical model t! ' &  of equation (5) can assume 

many forms (e.g., nearest neighbour, neural networks, linear models, support vector 

machines) according to the family of algorithms and also to the complexity of the specific 

algorithm within a particular family of algorithms. The choice of the family of algorithms 

is done by examining the requirements that multimedia information retrieval applications 

face in a real world scenario: 

1) Arbitrary addition and removal of keywords to/from the query vocabulary 

2) Easy update of existing keyword models with new training data 

3) Seamless integration of heterogeneous types of data 

4) Computationally efficient indexing of multimedia information 

5) Good retrieval effectiveness 

The first two requirements concern an important practical aspect in large-scale 

multimedia indexes – the integrity of the index when keyword models are modified. 

When a keyword model is modified (added, removed or updated) the index can be 

affected in two ways: if keyword models are dependent then the entire index becomes 

obsolete; if keyword models are independent then only the part of the index concerning 

that keyword becomes obsolete. This leads to a solution where keyword models are 
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independent so that a modification in one keyword model will have a minor influence on 

the indexes. Thus, presence of keywords shall be represented by Bernoulli random 

variables ty . 

The remaining three requirements can be difficult to accommodate in a unifying model: 

supporting multi-modal information, being able to quickly index new multimedia content 

and achieving a good accuracy. When modelling multi-modal keywords, one has to deal 

with both dense feature spaces and sparse features spaces. On one hand visual feature 

data can be very dense making its modelling difficult due to the irregular frontiers caused 

by keyword cross-interference. Expanding the original feature space into higher-

dimensional ones results in a sparser feature space where the classes’ separation can be 

made easier. On the other hand, text feature spaces are typically too sparse making their 

modelling difficult because there is not enough support data to estimate the details of 

keyword models. In these situations we have to compress the feature space into a lower 

dimensional space where data is compressed into a more dense space. These 

transformations of the original feature space into a space where the data is optimally 

distributed is represented as 

 $ % $ % $ %$ %T VF , F , F ,j jj j
T V T Vd d d d#  (6) 

where $ %TF j
Td  correspond to the text data transformation and $ %VF j

Vd  correspond to 

the visual data transformation. This renders the final expression for the components of 

keyword feature vectors as 

 $ %$ %, 1 | F , , .j jj j
W t t T V td p y d d !# #  (7) 

The transformation of multimedia document features only needs to be computed once for 

all keyword models. In other words, the transformation is independent of the keyword 

models. The interesting implication of this fact is that it can reduce the indexing 

computational complexity: because the transformation generates a high-dimensional 

space, one can limit the keyword model search space &  to the family of linear models, 

which have a very low computational complexity in the classification phase (but not 

necessarily in the learning phase). Besides the low computational complexity, linear 

models offer other interesting advantages: support of high-dimensional data (easy 

integration of heterogeneous data), naturally embedded background knowledge in the 

form of priors (ideal for keyword model update) and good accuracy (retrieval 

effectiveness). 

4. OPTIMAL DATA REPRESENTATION 

The transformations $ %TF Td  and $ %VF Vd  change the representation of the original text 

and visual feature spaces. As mentioned, transformations $ %TF Td  and $ %VF Vd  will 

adopt specific strategies adequate to the characteristics of each type of data. However, in 

both cases there is the problem of selecting the optimal transformation from the large 

number of possible transformations and their varying complexities. In practice, the 
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selection of the optimal transformation is equivalent to old questions like “how many text 

features?” and “how many visual clusters?” that are usually addressed by some heuristic 

method. In this section we shall formally address this problem. The proposed feature 

space transformations are inspired by information theory: the space transformation F  can 

be seen as a codebook composed by a set of T VM M M# (
 
codewords representing 

the data space. Given the codebook of a feature space one is able to represent all samples 

of that feature space as a linear combination of keywords from that codebook. 

Information theory [Cover and Thomas, 1991] provides us with a set of information 

measures that not only assess the amount of information that one single source of data 

contains, but also the amount of information that two (or more) sources of data have in 

common. Thus, we employ the minimum description length criterion [Rissanen, 1978], to 

infer the optimal complexity TM  and VM  of each feature space transformation 

$ %TF Td  and $ %VF Vd . Note that we use the word “optimal” from an information theory 

point of view. The treatment of the model selection problem presented in this section is 

based on [Hastie, Tibshirani and Friedman, 2001] and [MacKay, 2004]. 

4.1 Assessing the Data Representation Error 

The process of changing the original feature space representation into the new 

representation with a given candidate transformation F̂  has an associated error. If we 

represent F̂  as the estimated transformation, and G  as the lossless transformation that 

we are trying to estimate, we can compute the mean-squared deviation between the 

estimated model and the desired response as the error 

 
$ % $ % $ %$ %

$ % $ %$ % $ % $ %

2

2 22

ˆErr E F

ˆ ˆ ˆE F F E F .e

d G d d

d G d E d d"

) *
# +, -

, -. /
) * ) ) * *# ( + ( +, - , , - -. / . . / /

D
 (8) 

The first term is the variance of the modelled process and cannot be avoided. The second 

term measures the difference between the true mean of the process and the estimated 

mean. The third term is the variance of the estimated model around its mean. The above 

expression can be written as: 

 $ % $ %$ % $ %$ %2 2 ˆ ˆErr Bias F Variance Fed d d"# ( (
D  (9) 

The more complex we make the candidate transformation F̂  the lower the bias but higher 

the variance. Equation (9) expresses the transformation bias-variance tradeoff: simple 

transformations can only represent the training data’s coarse details (high bias) causing a 

high prediction error (high variance) because the transformation ignores important 

aspects of the data structure; complex transformations can represent training data 

structures in great detail (low bias) but the prediction error increases (high variance) 

because the transformation do not generalise to other data. The optimal transformation is 

the one that achieves the best generalization error on the new unseen samples. There are 

two types of methods to select the transformation that has the best generalization error. 

Empirical methods use validation data different from the training data to assess the model 
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generalization error on the test data, e.g., cross-validation and bootstrap. Criteria based 

methods provide an estimate of the model generalization error on the test data based on 

the error on the training data and the complexity of the model, e.g., Bayesian Information 

Criterion. The minimum description length criterion is in the later group, and we chose it 

as the model selection criterion for the feature space transformation. 

4.2 The MDL Principle 

Model selection is a widely studied subject, see [Hastie, Tibshirani and Friedman, 2001], 

and the minimum description length (MDL) criterion is among the most common criteria 

of model selection. Rooted in information theory, the MDL principle was initially 

thought of as a method to find the minimum number of bits required to transmit a 

particular message msg . To transmit this message a codebook cbk  such as Huffman 

coding can be used to compress the message. Thus, the total number of bits required to 

transmit the message is 

 $ % $ % $ %DL , DL | DL ,msg cbk msg cbk cbk# (  (10) 

corresponding to the description length of the message msg  encoded with the codebook 

cbk  plus the description length of the codebook cbk . The MDL principle says that the 

optimal trade-off between these two quantities is achieved with the codebook mincbk  that 

minimizes the above expression. The minimum description length is written as 

 $ % $ % $ %min minMDL DL | DL ,msg msg cbk cbk# (  (11) 

where mincbk  is the optimal codebook that allows the message msg  to be transmitted 

with the minimum number of bits. 

The relation between the MDL criterion and the problem of model selection is 

straightforward: it assesses the trade-off between the data likelihood (the message) under 

a given model (the codebook) and the complexity of that model. In the problem we are 

addressing, the data D  will be transformed into a new feature space by a transformation 

F̂ . Hence, Equation (10) is written as the sum of the likelihood of the data D  on the new 

feature space and the complexity of the feature space transformation F̂ . Formally, we 

have 

 $ % $ %ˆ ˆDL F log | F log ,
2

i i
d

npars
, p d N

'

# + ( 01
D

D  (12) 

where npars  is the number of parameters of the transformation F̂ , and N  is the 

number of samples in the training dataset. Hence, the MDL criterion is designed “to 

achieve the best compromise between likelihood and … complexity relative to the sample 

size ”, [Barron and Cover, 1991]. Finally, the optimal feature space transformation is the 

one that minimizes Equation (12), which results in 

 $ %
F̂

ˆF argmin DL F, .# D  (13) 
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The MDL criterion provides an estimate of the model error on the test data. Note that it is 

not an absolute estimate – it is only relative among candidate models. The minimum 

description length approach is formally identical to the Bayesian Information Criterion 

but is motivated from an information-theoretic perspective, see [MacKay, 2004]. 

4.3 Independent Features Processing 

When modelling multi-modal keywords, one has to deal with heterogeneous feature 

spaces. Different features capture different aspects of data in a compressed way – e.g., the 

dominant colour of an image, the pitch of a two seconds audio segment, or a bag of 

words of a one hundred pages document. The resulting feature spaces can be either low-

dimensional and dense or high-dimensional and sparse. Note that if the computed feature 

space is high-dimensional and dense then one can probably use the original data itself (or 

a scaled down version of it). 

Specific feature spaces require specific processing methods, for example, imagine a 

single dimension of a colour moments feature space and a single dimension of bag-of-

words feature space. Their distributions across a given dataset are quite different posing 

disparate challenges and demanding for different transformations. For this reason, we 

processed feature spaces independently. 

Since we are processing features independently and combining them, one must assess the 

representation error of the data under each specific transformation. Thus, a common 

criterion to select the transformation for each specific feature space is a key aspect in the 

framework. The common criterion guarantees that the optimal value (the minimum) is 

selected for all feature spaces. 

This approach has the advantage of creating a generic framework capable of handling 

heterogeneous sources of data. Finally, note that if one has a homogeneous set of 

features, we could apply the same kind of treatment to all feature spaces or even model 

the keywords directly in the original feature space. However, this is generally not the case 

with multimodal data. 

4.4 Dense Space Transformations 

Some of the input feature spaces (depending on its media type) can be very dense making 

their modelling difficult due to cross-interference between classes. Expanding the 

original feature space into higher-dimensional ones results in a sparser feature space 

where the modelling of the data can be easier. This technique is applied by many related 

methods such as kernels. The low-level visual features that we use are dense and low-

dimensional: hence, keyword data may overlap thereby increasing the cross-interference. 

This means that not only the discrimination between keywords is difficult but also that 

the estimation of a density model is less effective due to keyword data overlapping. One 

solution is to expand the original feature space into a higher-dimensional feature space 

where keywords data overlap is minimal. Thus, we define FV  as the transformation that 

increases the number of dimensions of a dense space with m  dimensions into an optimal 

space with 
V
k  dimensions 
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 $ %
$ %

$ %

,1 ,1 ,
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,1 ,,

f ,...,

F ,..., , .

f ,...,
V

T

V V V m

V V m V

V V mV k

d d

d d k m

d d

) *
, -
, -

# , -
, -
, -
, -. /

! "  (14) 

In other words, for an input feature space with m  dimensions the transformation 

$ %,1 ,F ,...,V V V md d  generates a Vk  dimensional feature space with Vk m" , where each 

dimension i  of the new feature space corresponds to the function $ %, ,1 ,f ,...,V i V V md d . 

The optimal number of such functions, Vk , will be selected by the MDL principle and 

the method to estimate the functions is defined next. 

4.4.1 Visual Transformation by Vector Quantization 

The original visual feature vector $ %,1 ,,...,V V V md d d#  is composed of several low-level 

visual features with a total of m  dimensions. These m  dimensions span J  visual 

feature types (e.g., marginal HSV colour moments, Gabor filters and Tamura), i.e., the 

sum of the number of dimensions of each one of the J  visual feature space equals m . 

This implies that each visual feature type j  is transformed individually by the 

corresponding $ %V, ,F j V jd  and the output is concatenated into the vector 

 $ % $ % $ %$ %V ,1 ,1 , ,F F , ..., F
V V V V j V j
d d d# , (15) 

where the dimensionality of the final VF  transformation is the sum of the dimensionality 

of each individual visual feature space transformation V,F j , i.e., 

 ,1 , ,... ...V V V j V Jk k k k# ( ( ( ( . (16) 

The form of visual feature space transformations V,F j  is based on Gaussian mixture 

density models. The components of a GMM capture the different modes of the problem’s 

data. Each component shall correspond to a dimension of the optimal feature space where 

modes are split and well separated, thereby creating a feature space where keywords can 

be modelled with a simple and low cost algorithm. The transformations are defined under 

the assumption that subspaces are independent. This allows us to process each visual 

feature subspace j  individually and model it as a Gaussian mixture model (GMM) 

 $ % $ % $ %
,

2
, , ,

1

| | ,
V jk

V V j m j V m j m j

m

p d p d p d# $ % "
#

# # 1 , (17) 

where Vd  is the low-level feature vector, j#  represents the set of parameters of the 

model of the j  visual feature subspace: the number ,V jk  of Gaussians components, the 

complete set of model parameters with means ,m j% , covariances 2
,m j" , and component 

priors ,m j$ . The component priors have the convexity constraint 1, ,,..., 0
Vj k j$ $ 2  and 

,

,1
1V jk

m jm
$

#
#1 . Thus, for each visual feature space j , we have the Gaussian mixture 

model with ,V jk  components which now defines the transformation, 
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$ %

$ %
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1, 1, 1,

V,

2
, , ,

| ,

F

| ,
V j V V

T

j V j j

j V

k j V k j k j

p d

d

p d

$ % "

$ % "

) *
, -
, -
, -#
, -
, -
, -. /

! , (18) 

where each dimension corresponds to a component of the mixture model. Figure 1 

illustrates two-dimensional samples of a dataset and a density model of those data points, 

more specifically, a GMM with three components. In this explanatory example, the 

original space has two dimensions while the new feature space shall have three 

dimensions. This way, when the amount of data points is large enough, we can compute a 

GMM with a large number of components. 

 

Figure 1. Example of feature space expansion with a GMM.  

The critical question arising from equation (18) is that one does not know the optimal 

complexity of the GMM in advance. The complexity is equivalent to the number of 

parameters, which in our case is proportional to the number of mixture components ,V jk : 

 
$ %

, , ,

dim dim 1
dim ,

2

j j

j V j j V j V jnpars k k k
0 (

# ( 0 (  (19) 

where dimj  is the dimensionality of the visual subspace j . Note the relation between 

this equation and Equation (12). To address the problem of finding the ideal complexity 

we implemented a hierarchical EM algorithm that starts with a large number of 

components and progressively creates different GMM models with a decreasing number 

of components. 

Hierarchical EM 

The hierarchical EM algorithm was implemented in C++ and it is based on the one 

proposed by Figueiredo and Jain [2002]. It follows the component-wise EM algorithm 

with embedded component elimination. The mixture fitting algorithm presents a series of 

strategies that avoids some of the EM algorithm’s drawbacks: sensitivity to initialization, 

possible convergence to the boundary of the parameter space and the estimation of 

different feature importance. 
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The algorithm starts with a number of components that is much larger than the real 

number and gradually eliminates the components that start to get few support data 

(singularities). This avoids the initialization problem of EM since the algorithm only 

produces mixtures with components that have enough support data. Component stability 

is checked by assessing its determinant (close to singularity) and its prior (few support 

data). If one of these two conditions is not met, we delete the component and continue 

with the remaining ones. This strategy can cause a problem when the initial number of 

components is too large: no component receives enough initial support causing the 

deletion of all components. To avoid this situation, component parameters are updated 

sequentially and not simultaneously as in standard EM. That is: first update component 1 

parameters $ %2
1 1,% " , then recompute all posteriors, update component 2 parameters 

$ %2
2 2,% " , recompute all posteriors, and so on. After finding a good fit for a GMM with k  

components, the algorithm deletes the weakest component and restarts itself with 1k +  

Gaussians and repeats the process until a minimum number of components is reached. 

Each fitted GMM is stored and in the end the set of fitted models describe the feature 

subspace at different levels of granularities.  

The hierarchical EM algorithm for Gaussian mixture models addresses the objective of 

finding the optimal feature space by (1) creating transformations with different 

complexities and (2) splitting data modes into different space dimensions, hence enabling 

the application of low-cost keyword modelling algorithms. 

4.4.2 Experiments 

Experiments assessed the behaviour of the hierarchical EM algorithm on a real world 

photographic image collection. The collection is a 4,500 images subset of the widely used 

Corel CDs Stock Photos, see [Duygulu et al., 2002]. The low-level visual features that we 

use in our implementation are: 

! Marginal HSV distribution moments: this 12 dimensional colour feature 

captures the 4 central moments of each colour component distribution;  

! Gabor texture: this 16 dimensional texture feature captures the frequency 

response (mean and variance) of a bank of filters at different scales and 

orientations; and  

! Tamura texture: this 3 dimensional texture feature is composed of the image’s 

coarseness, contrast and directionality. 

The evolution of the model likelihood and complexity with a decreasing number of 

components are the two most important characteristics of the hierarchical EM that we 

wish to study. The algorithm is applied to individual visual feature subspaces. Each 

GMM model starts with , 200V jk #  Gaussians, and the algorithm fits models with a 

decreasing number of components until a minimum of a single Gaussian. One of the 

assumptions of the minimum description length principle is that the number of samples is 

infinite. Thus, to increase the accuracy of the MDL criterion we created 3 by 3 tiles of the 

training images. This increased the number of training samples by a factor of 9, which 
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greatly improves the quality of the produced GMMs because of the existence of more 

data to support the model parameters. 

4.4.3 Results and Discussion 

An advantage of the chosen algorithm to find the optimal transformation is its natural 

ability to generate a series of transformations with different levels of complexity. This 

allows assessing different GMMs with respect to the trade-off between decreasing levels 

of granularity and their fit to the data likelihood.  
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Figure 2. Model selection for the Gabor filters features (Corel5000). 

Figure 2 illustrates the output of a GMM model fitting to the output of one Gabor filter. 

The minimum description length curve (solid line) shows the trade-off between the 

models complexity (dashed line) and the models likelihood (dotted line). Note that we are 

actually plotting –log-likelihood for better visualization and comparison. The models 

likelihood curve is quite stable for models with a large number of components (above 

40). On the other extreme of the curve one can see that for models with fewer than 40 

components the likelihood start to exhibit poorer performance. The small glitches in the 

likelihood curve are the result of component deletion from a particularly good fit (more 

noticeable between 10 and 20 components). This effect is more visible when a 

component has been deleted from a model with a low number of components because the 

remaining ones are not enough to cover the data that was supporting the deleted one. The 

model complexity curve shows the penalty increasing linearly with the number of 

components according to Equation (19). The most important curve of this graph is the 

minimum description length curve. At the beginning, it closely follows the likelihood 

curve because the complexity cost is low. As the model complexity increases, the model 

likelihood also becomes better but no longer at the same rate as initially (less than 10 

components). This causes the model penalty to take a bigger part in the MDL formula, 

and after 20 components the MDL criterion indicates that those models are not better than 

previous ones. Thus, according to the MDL criterion the optimal transformation for this 

Gabor filter is the model with 18 components. 
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Figure 3. Model selection for the Tamura features (Corel5000). 
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Figure 4. Model selection for the marginal moments of HSV colour 
histogram features (Corel5000). 

The selection of the transformation of the Tamura visual texture features is illustrated in 

Figure 3. The behaviour is the same as for the Gabor features with the only difference 

that the change from the descending part of the MDL curve to the ascending part is not so 

pronounced. This indicates that the optimal model, , 39V jk # , is not so distinct from the 

neighbouring models with ,V jk  between 30 and 50. Finally, Figure 4 illustrates the 

optimal transformation selection experiments for a colour channel of the marginal HSV 

colour moments histograms. The behaviour is again similar to the previous ones and the 

optimal model, , 12V jk # , is quite distinct from the surrounding neighbours. Note that 

the likelihood curve glitches are again present in this feature space which is an indication 

that the GMMs are well fitted to the data with a low number of components and that a 

deletion of a component leaves uncovered data causes the likelihood jitter. 
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4.5 Sparse Space Transformations 

Text features are high-dimensional sparse data, which pose some difficulties to 

parametric generative models because each parameter receives little data support. In 

discriminative models one observes over-fitting effects because the data representation 

might be too optimistic by leaving out a lot of the underlying data structure information. 

High-dimensional sparse data must be compressed into a lower dimensional space to ease 

the application of generative models. This optimal data representation is achieved with a 

transformation function defined as 

 $ %
$ %

$ %

,1 ,1 ,

T ,1 ,

,1 ,,

f ,...,

F ,..., ,

f ,...,
T

T

T T T n

T T n T

T T nT k

d d

d d k n

d d

) *
, -
, -

# , -
, -
, -
, -. /

! # , (20) 

where n  is the number of dimensions of the original sparse space, and Tk  is the number 

of dimensions of the resulting optimal feature space.  In other words, the sparse spaces 

transformation $ %T ,1 ,F ,...,T T nd d  receives as input a feature space with n  dimensions 

and generates a Tk  dimensional feature space, where each dimension i  of the new 

optimal feature space corresponds to the function $ %, ,1 ,f ,...,T i T T nd d . The optimal 

number of such functions will be selected by the MDL principle, and the method to 

estimate the functions is defined next. 

4.5.1 Text Codebook by Feature Selection 

To reduce the number of dimensions in a sparse feature space we rank terms 1,..., nt t  by 

their importance to the modelling task and select the most important ones. The 

information gain criterion ranks the text terms by their importance, and the number of 

text terms is selected by the minimum description length. The criterion to rank the terms 

is the average mutual information technique, also referred to as information gain [Yang, 

1999], expressed as 

 $ % $ %
1

1
IG MU ,

L

i j i
j

t y t
L #

# 1 , (21) 

where it  
is term i , and jy  indicates the presence of keyword jw . The information gain 

criterion is the average of the mutual information between each term and all keywords. 

Thus, one can see it as the mutual information between a term it  
and the keyword 

vocabulary. The mutual information criterion assess the common entropy between a 

keyword entropy $ %jH y  and the keyword entropy given a term it , $ %|j iH y t . 

Formally the mutual information criterion is defined as 

 $ % $ %
$ %
$ % $ %! " ,

,
,

0;1 ,

,
MU , , log

j T i

j T i

j i j T i
y d j T i

p y d
y t p y d

p y p d#

# 1 1 , (22) 
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where ,T id  is the number of occurrences of term it  in document d . Yang and Pedersen 

[1997] and Forman [2003] have shown experimentally that this is one of the best criteria 

for feature selection. A document d  is then represented by Tk  text terms as the mixture 

 $ % $ % ,

1 1

| ,
T Tk k

T i

i i i
i i

d
p d p t d

d
$ $

# #

# #1 1  (23) 

where ,T id  is the number of occurrences of term it  in document d . The parameters of 

the above mixture are the priors i
$  of corresponding term it . This results in a total 

number of parameters 

 .
T

npars k#  (24) 

A list of models is constructed by progressively adding terms to each model according to 

the order established by the information gain criterion. In this particular case of sparse 

text features the complexity of the transformation is equivalent to the number Tk  of text 

terms. The application of the MDL criterion in Equation (12) is now straightforward. 

Finally, terms are weighted by their inverse document frequency, resulting in the feature 

space transformation function 

 $ % $ %
$ %$ %

, ,

,

f log ,
DF

T i T T r i

T r i

N
d d

d

3 456 56 56# + 0 56 56 5567 8

 (25) 

where N  is the number of documents in the collection, $ %,DF T id  is the number of 

documents containing the term it , and $ %r i  is a permutation function that returns the i th 

text term of the information gain rank. 

4.5.2 Experiments 

Experiments assessed the behaviour of the information gain criterion on the Reuters news 

collection. The dataset was processed as follows: a text document is represented by the 

feature vector $ %,1 ,,...,T T T nd d d#  obtained from the text corpus of each document by 

applying several standard text processing techniques [Yang, 1999]. Stop words are first 

removed to eliminate redundant information, and rare words are also removed to avoid 

over-fitting [Joachims, 1998]. After this, the Porter stemmer [Porter, 1980] reduces words 

to their morphological root, which we call term. Finally, we discard the term sequence 

information and use a bag-of-words approach. These text pre-processing techniques 

result in a feature vector $ %,1 ,,...,T T T nd d d# , where each ,T id  is the number of 

occurrences of term
 i
t  in document d . 

4.5.3 Results and Discussion 

The evolution of the model likelihood and complexity with an increasing number of 

terms is again the most important characteristic that we wish to study. Figure 5 illustrates 

the model likelihood (dotted line) versus the model complexity (dashed line) and the 
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minimum description length criterion as a measure of their trade-off. Note that the graph 

is actually showing the –log-likelihood for easier visualization and comparison. 

Figure 5 illustrates the improving likelihood as new terms are added to the feature space. 

The curve smoothness observed in this graph is due to the scale of the x-axis (100 times 

greater than in the images case) and to the fact that neighbouring terms have similar 

information value. The problem of selecting the dimensionality of the optimal feature 

space is again answered by the minimum description length criterion that selects a feature 

space with 972 dimensions. It is interesting to notice that the MDL selects a low 

dimensionality reflecting a model with lower complexity than others with better 

likelihood but higher complexity. Note that if we had more samples (in this dataset the 

number of samples is limited to 7,770) we would be able to select a more complex model 

(remember that the MDL criterion assumes an infinite number of samples). Moreover, 

information gain is a feature selection method that ranks terms by their discriminative 

characteristics and does not actually try to faithfully replicate the data characteristics. 

This is in contrast with the hierarchical EM method used for the dense feature spaces that 

is a pure generative approach. 
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Figure 5. Model selection for the bag-of-word features (Reuters). 

5. KEYWORD MODELS 

Keywords are present in multimedia documents according to complex patterns that 

reflect their dependence and correlations. Different probability distributions can be 

applied to capture this information, also Bayesian networks can be used to define 

complex distributions that try to represent complex keyword interactions. Section 3 

discussed why the assumption of keyword independence is a good choice in multimedia 

information retrieval, and we define keywords as Bernoulli random variables with 

 $ % $ %1 1 0 ,tw

t tp y p y# # + # #
D

D
 (26) 
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where ty  is a particular keyword, D  is the size of the training collection and 
tw

D  is 

the number of documents in the training collection containing keyword t
w . In the 

previous section we proposed a probabilistic framework $ %$ %| F ,t tp y d !  where $ %F d  

is a visual and text data transformation that creates a unified multi-modal feature space, 

and a keyword t
w  is represented in that feature space by a model t! . We will ignore the 

feature type and use a plain vector to represent the low-level features of a document as 

 $ % $ % $ %$ % $ %T V 1F F , F , ..., .jj j
T V M

d d d f f# #  (27) 

One of the goals of the proposed $ %F d  transformation is the creation of an optimal 

feature space, where simple and scalable keyword models t!  
can be used. This section 

will propose the application of linear models to address this particular problem. The 

setting is a typical supervised learning problem, where documents are labelled with the 

keywords that are present in that document. Thus, we define  

 $ %1 ,..., ,j jj
Ly y y#  (28) 

as the binary vector of keyword annotations of document j , where each 
j
ty  indicates the 

presence of keyword t
w  in document j  if 1j

ty # . Note that a perfect classifier would 

have $ % 0Wy d+ #  on a new document. The annotations vector jy  is used to estimate 

keyword models and to test the effectiveness of the computed models. 

5.1 Keywords as Logistic Regression Models 

Logistic regression is a statistical learning technique that has been applied to a great 

variety of fields, e.g., natural language processing [Berger, Pietra and Pietra, 1996], text 

classification [Nigam, Lafferty and McCallum, 1999], and image annotation [Jeon and 

Manmatha, 2004]. In this section we employ a binomial logistic model to represent 

keywords in the multi-modal feature space. The expression of the binomial logistic 

regression is 

 $ %$ %
$ %$ %

1
1 | F ,

1 exp Ft t

t

p y d
d

!
!

# #
( 0

 (29) 

The logistic regression model is also a linear model, which makes it a scalable and 

efficient solution for modelling keywords. The theory of Generalized Linear Models 

shows how to derive the logistic regression expression from the point of view of pure 

linear models, [McCullagh and Nelder, 1989]. 

5.1.1 Regularization 

As discussed by Nigan, Lafferty and McCallum [1999] and Chen and Rosenfeld [1999], 

logistic regression may suffer from over-fitting. This usually occurs because features are 

high-dimensional and sparse, meaning that the regression coefficients can easily push the 

model density towards some particular training data points. Zhang and Oles [2001] have 

also presented a study on the effect of different types of regularization on logistic 

regression. Their results indicate that with the adequate cost function (regularization), 
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precision results are comparable to SVMs with the advantage of rendering a probabilistic 

density model. An efficient and well known method of tackling over-fitting is to set a 

prior on the regression coefficients. As suggested by Nigan, Lafferty and McCallum 

[1999] and Chen and Rosenfeld [1999] we use a Gaussian prior &N  for the regression 

coefficients, with mean 0&% #  
and 2

&"  variance. The Gaussian prior imposes a cost on 

models *!  with large norms, thus preventing optimization procedures from creating 

models that depend too much on a single feature space dimension. 

5.1.2 Maximum Likelihood Estimation 

The log-likelihood function computes the sum of the log of the errors of each document 

in the collection D . For each keyword model the likelihood function tells us how well 

the model and those parameters represent the data. The model is estimated by finding the 

minimum of the likelihood function by taking the regression coefficients as variables: 

 $ % $ %$ % $ %$ %2min | min log | F , |j j
t t t t

j

l p y d p &
! !

! ! ! ! "
'

# # 1
D

D  (30) 

For models where the solution can be found analytically, the computation of the 

regression coefficients is straightforward. In cases, where the analytical solution is not 

available typical numerical optimization algorithms are adequate. 

The regression coefficients need to be found by a numerical optimization algorithm that 

iteratively approaches a solution corresponding to a local minimum of the log-likelihood 

function. To find the minimum of the log-likelihood function $ %l !  with respect to ! , 

we use the Newton-Raphson algorithm: 
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T
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 (31) 

The first-order derivative matrix is a vector with M  elements corresponding to the 

dimension of the space resulting from the application of $ %F d  to the original data. The 

second-order derivative, the Hessian matrix, is a square-matrix with M M:  

components. The Hessian matrix imposes a high computational complexity (both in time 

and space) on the parameter estimation algorithm. In multimedia information retrieval we 

use feature spaces with thousands of dimensions, meaning that the processing of the 

Hessian matrix is computationally too costly. For these reasons, we must use algorithms 

that are more suitable for such a large-scale problem. 

5.1.3 Large-Scale Model Computation 

When applying the Newton-Raphson algorithm to high-dimensional data the Hessian 

matrix often cannot be computed at a reasonable cost because it is too large and dense. 

Large scale Quasi-Newton methods are an adequate solution for our problem: instead of 

storing and computing the full Hessian matrix, these methods store a few vectors that 

represent approximations implicitly made in previous iterations of the algorithm. The L-

BFGS algorithm (limited-memory Broyden-Fletcher-Goldfarb-Shanno) is one of such 
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algorithms, see [Liu and Nocedal, 1989a] for details: “The main idea of this method is to 

use curvature information from only the most recent iterations to construct the Hessian 

approximation. Curvature information from earlier iterations, which is less likely to be 

relevant to the actual behaviour of the Hessian at the current iteration, is discarded in 

the interest of saving storage.” The L-BFGS algorithm iteratively evaluates the log-

likelihood function and its gradient, and updates the regression coefficients and the 

Hessian approximation. For the binomial logistic regression the log-likelihood function is 
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 (32) 

where for each example jd  the variable 
j
ty  is 1 if the example contains the keyword 

t
w and 0 otherwise. $ %F jd  is the nonlinear space transformation of the document 

features. To minimize the log-likelihood we need to use the gradient information to find 

the t!  where the log-likelihood gradient is zero, i.e., 
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These two last equations are the binomial logistic regression functions that the L-BFGS 

algorithm evaluates on each iteration to compute the t! regression coefficients. 

We use the implementation provided by Liu and Nocedal [1989b] to estimate the 

parameters of both linear logistic models and log-linear models. It has been shown that L-

BFGS is the best optimization procedure for both maximum entropy [Malouf, 2002] and 

conditional random fields models [Sha and Pereira, 2003]. For more details on the 

limited-memory BFGS algorithm see [Nocedal and Wright, 1999]. 

5.2 Keyword Baseline Models 

The linear models that we present in this section are simple but effective models that can 

be applied in the multi-modal feature space. The advantage of both Rocchio classifier and 

naïve Bayes classifier is that they can be computed analytically. 

5.2.1 Rocchio Classifier 

The Rocchio classifier was initially proposed as a relevance feedback algorithm to 

compute a query vector from a small set of positive and negative examples [Rocchio, 

1971]. It can also be used for categorization tasks, e.g., [Joachims, 1997]: a keyword t
w  

is represented as a vector t!  in the multi-modal space, and the closer a document is to 

this vector the higher the similarity between the document and the keyword. A keyword 

vector t
!  is computed as the average of the vectors of both relevant documents 

! "
tw

D and non-relevant documents ! "
tw

D \ D , see [Magalhães, 2008] for details. The 

Rocchio classifier is a simple classifier that has been widely used in the area of text 

information retrieval and, as we have shown, can also be applied to semantic-multimedia 

information retrieval. Moreover, this classifier is particularly useful for online learning 
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scenarios and other interactive applications where the models need to be updated on-the-

fly or the number of training examples are limited. 

5.2.2 Naïve Bayes Model 

The naïve Bayes classifier assumes independence between feature dimensions and is the 

result of the direct application of Bayes’s law to classification tasks, 

 $ %
$ % $ %

$ %
11 ,..., | 1

1 | t M t

t

p y p d f f y
p y d

p d

# # #
# # . (34) 

The assumption that features if  are independent of each other in a document can be 

modelled by several different independent probability distributions. A distribution is 

chosen according to some constraints that we put on the independence assumptions. For 

example, if we assume that features if  can be modelled as the simple presence or 

absence in a document then we consider a binomial distribution. If we assume that 

features if  can be modelled as a discrete value to indicate the presence confidence in a 

document then we consider a multinomial distribution, see [McCallum and Nigam, 

1998]. The binomial distribution over features if  would be too limiting; the multinomial 

distribution over features if  offers greater granularity to represent a feature value. One 

can compute the log-odds and classify a document with the keywords that have a value 

greater than zero: 
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Formulating naïve Bayes in log-odds space has two advantages: it shows that naïve 

Bayes is a linear model and avoids decision thresholds in multi-categorization problems. 

In this case the keyword models become 
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6. EVALUATION 

The presented algorithms were evaluated with a retrieval setting on the Reuters-21578 

collection, on a subset of the Corel Stock Photo CDs [Duygulu et al., 2002] and on a 

subset of the TRECVID2006 development data. 

6.1 Collections 

Reuters-21578. This is a widely used text dataset which allows comparison of our results 

with others in the literature. Each document is composed of a text corpus, a title (which 

we ignore) and labelled categories. This dataset has several possible splits and we have 

used the ModApte split which contains 9,603 training documents and 3,299 test 

documents. This is the same evaluation setup used in several other experiments 
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[Joachims, 1998; Nigam, Lafferty and McCallum, 1999; McCallum and Nigam, 1998; 

Zhang and Oles, 2001]. Terms appearing less than 3 times were removed. Only labels 

with at least 1 document on the training set and the test set were considered, leaving us 

with 90 labels. After these steps we ended with 7,770 labelled documents for training. 

Corel Images. This dataset was compiled by Duygulu et al. [2002] from a set of COREL 

Stock Photo CDs. The dataset has some visually similar keywords (jet, plane, Boeing), 

and some keywords have a limited number examples (10 or less). In their seminal paper, 

the authors acknowledge that fact and ignored the classes with these problems. In this 

paper we use the same setup as in [Yavlinsky, Schofield and Rüger, 2005], [Carneiro and 

Vasconcelos, 2005], [Jeon, Lavrenko and Manmatha, 2003], [Lavrenko, Manmatha and 

Jeon, 2003] and [Feng, Lavrenko and Manmatha, 2004], which differs slightly from the 

one used in the dataset original paper, [Duygulu et al., 2002]. The retrieval evaluation 

scenario consists of a training set of 4,500 images and a test set of 500 images. Each 

image is annotated with 1-5 keywords from a vocabulary of 371 keywords. Only 

keywords with at least 2 images in the test set and training set each were evaluated, 

which reduced the number of vocabulary to 179 keywords. Retrieval lists have the same 

length as the test set, i.e. 500 items. 

TRECVID2006. To test the similarity ranking on a multi-modal data we used the 

TRECVID2006 data. Since only the training set is completely labelled, we randomly split 

the training English videos into 23,709 training documents and 12,054 test documents. 

We considered each document to be a key-frame plus the ASR text within a window of 6 

seconds around that key-frame. Key-frames are annotated with the standard vocabulary 

of 39 keywords provided by NIST. 

6.2 Experiment Design 

To evaluate the proposed framework we designed a retrieval experiment for all 

collections listed in the previous section. The experiment methodology was as follows: 

1) For a given algorithm and a given a multi-modal feature space 

2) For each keyword in the considered collection 

a) Estimate the keyword model on the training set by applying a cross-validation 

with 5 folds and 10 value iterations, as suggested in [Kohavi, 1995], to 

determine the ideal Gaussian prior variance 2
&"  

b) Compute the relevance of each test document 

c) Rank all test documents by their relevance for the considered keyword 

3) Use the collection relevance judgements to measure the retrieval effectiveness of 

the considered rank 

a) Repeat step a) for all keywords 

b) Compute the mean average precision 

4) Repeat for a different algorithm or a for different multi-modal feature space 
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The above methodology was repeated for all linear models that we presented in this 

section and for different multi-modal feature spaces. We considered the Reuters-21578 

collection, the Corel5000 collection, the ASR part of the TRECVID2006, the key-frames 

of the TRECVID2006 and both key-frames and text of the TRECVID2006 development 

data, which makes five collections. 

6.3 Text-Only Models 

Retrieval Effectiveness. Experiments in the Reuters dataset were evaluated with mean 

average precision, Table 1, and precision-recall curves, Figure 6. All results were 

obtained with a 972 dimensional multi-modal feature space selected by the minimum 

description length criterion. 
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Figure 6. Precision-recall curve evaluation on the Reuters-21578. 

When comparing the naïve Bayes model to the logistic regression model, results show 

that naïve Bayes performs much worse than logistic regression (24.5% MAP versus 

49.0% MAP). However, it is a surprise to see that the Rocchio classifier is actually 

comparable to logistic regression – it obtained 49.7%. This supports the hypothesis that 

the Reuters data is structured in a single cluster shape. Another reason why the Rocchio 

classifier performs so well on this dataset is that from all three classifiers it is the one that 

uses the simplest assumptions about data (organized as a high-dimensional sphere). The 

implications are that it is less prone to over-fit on classes with few training examples, 

unlike logistic regression. The precision-recall curves in Figure 6, offer a more detailed 

comparison of the models and confirm that logistic regression and Rocchio are very 

similar. 

 

 Rocchio NBayes LogReg 

Reuter 0.497 0.245 0.490 

Corel 0.219 0.243 0.279 

Table 1. MAP results for Reuters and Corel collections. 



25 

Model Complexity Analysis. We also studied the effect of the optimal space 

dimensionality by measuring the MAP on different spaces. The different multi-modal 

feature spaces were obtained by progressively adding new terms according to the average 

mutual information criterion. Figure 7 shows that after some number of terms (space 

dimension) precision does not increase because information carried by new terms is 

already present in the previous ones. The graph confirms that Rocchio is consistently 

better than logistic regression. Note that the MDL point (972 terms) achieves a good 

trade-off between the model complexity and the model retrieval effectiveness. 
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Figure 7. Retrieval precision for different space dimensions (text-only 
models). 

6.4 Image-Only Models 

Retrieval Effectiveness. We first used the MDL criterion to select a multi-modal feature 

space and then ran the retrieval experiments for all linear models. The space selected by 

the MDL criterion has 2,989 dimensions. The MAP measures shown in Table 1 shows 

that the best performance is achieved by the logistic regression models with 27.9%, 

followed by naïve Bayes with 24.3% and Rocchio with 21.9%. Contrary to the Reuters 

collection, the more complex structure of Corel Images dataset has affected the 

performance of the Rocchio classifier. Thus, both naïve Bayes and, more specifically, 

logistic regression can better capture the structure of this data.  The precision-recall 

curves in Figure 8 show that logistic regression is better than Rocchio and naïve Bayes 

across most of the recall area. Results on this collection are more in agreement with what 

one would expect from the complexity of each model. Naïve Bayes applies a Gaussian on 

each dimension of the feature space, which demonstrates a more accurate assumption 

than the single cluster assumption made by the Rocchio classifier. Finally, logistic 

regression can better capture the non-Gaussian patterns of the data and achieve a better 

performance. 

Table 2 compares some of the published algorithms’ MAPs on the Corel collection. Note 

that some algorithms consider keywords with only training 1 example and 1 test example, 

thus resulting in 260 keywords instead of the 179 keywords. Methods that used the 260 

keywords are some type of non-parametric density distributions that can easily model 
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classes with a small number of examples. This table also shows how the proposed 

algorithm achieves a retrieval effectiveness that is in the same range as other state-of-the-

art algorithms. 
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Figure 8. Precision-recall curves for different keyword models. 

Algorithm MAP L 

Cross-Media Relevance Model [Jeon, Lavrenko and Manmatha, 2003] 16.9% 179 

Continuous-space Relevance Model [Lavrenko, Manmatha and Jeon, 2003] 23.5% 179 

Naïve Bayes 24.3% 179 

LogisticRegL2 27.9% 179 

Non-parametric Density Distribution [Yavlinsky, Schofield and Rüger, 2005]  28.9% 179 

Multiple-Bernoulli Relevance Model [Feng, Lavrenko and Manmatha, 2004] 30.0% 260 

Mixture of Hierarchies [Carneiro and Vasconcelos, 2005] 31.0% 260 

Table 2. MAP comparison with other algorithms (Corel). 

Time Complexity. The time complexity of the proposed framework is a crucial 

characteristic for multimedia indexing tasks. For this reason we carefully chose 

algorithms that can handle multimedia semantics with little computational complexity. 

Table 3 illustrates the times required to extract the visual-features and to run the 

semantic-multimedia analysis algorithm. Measures were done on an AMD Athlon 64 

running at 3.7GHz. Note that these values are for the inference phase and not for the 

learning phase. 

 

Task Time (ms) 

margHSV (9 tiles) 30 

Tamura (9 tiles) 54 

Gabor (9 tiles) 378 

Annotation of 179 keywords 9 

Table 3. Annotation performance for an image with 192×128 pixels. 
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Model Complexity Analysis. Figure 9 depicts the evolution of the mean average 

precision with respect to the dimensionality of the multi-modal feature space. Each point 

on the curve reflects the different levels of model complexity of the output of the 

hierarchical EM. Remember that the multi-modal feature space is the concatenation of 

the hierarchical EM Gaussian mixture models of the different feature subspaces. We 

concatenate sub-spaces with a similar number of level of complexity, e.g., GMMs with 

the same number of components per feature subspace. For low dimensional multi-modal 

spaces the MAP values for all models are quite low. Only when the dimensionality 

increases does the MAP achieve more stable values. The MAP stabilizes because the 

more complex GMMs models do not allow better discrimination between the relevant 

and non-relevant examples. The same phenomenon was observed for the Reuters 

collection. 
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Figure 9. Retrieval precision for different space dimensions. 

6.5 Multi-Modal Models 

Retrieval Effectiveness. We first applied the MDL criterion to select a multi-modal 

feature space and then ran the retrieval experiments for all linear models. The space 

selected by the MDL criterion has 5,670 dimensions for the visual modality, 10,576 for 

the text modality, and the multi-modal space has a total of 16,247 dimensions. For the 

text modality the MDL selects the maximum number of terms because some of the key-

frames have no ASR. 

 

Model Text Images Multimodal 

Rocchio 0.148 0.234 0.240 

NBayes 0.174 0.257 0.273 

LogReg 0.203 0.273 0.295 

Table 4. MAP results for TRECVID collection. 

Table 4 present a summary of the retrieval effectiveness evaluation in terms of MAP. All 

types of keyword models show the same variation with respect to each modality: text 

based models are always much lower than the image based models, and the difference 
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between image based models and multi-modal models is always small. Moreover, logistic 

regression models are always better than naïve Bayes and Rocchio. This confirms 

previous knowledge that the TRECVID collection is more difficult and its data exhibit a 

more complex structure, which is why logistic regression can exploit the non-Gaussian 

patterns of data: it achieves 20.2% MAP on the text-only experiment, 27.3% on the 

image-only experiment and 29.5% on the multi-modal experiment. Multi-modal models, 

Figure 10, show that naïve Bayes models better exploit the higher number of information 

sources than the Rocchio classifier. This is not a surprise as naïve Bayes considers 

individual dimensions, and the data structure is more complex than the spherical structure 

assumed by Rocchio. Also related to this phenomenon is the retrieval effectiveness 

obtained by the logistic regression model. 
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Figure 10. Precision-recall curve for multi-modal models. 

Table 5 compares the proposed algorithm to two TRECVID submissions that attained an 

MAP above the median and all keywords are modeled with the same algorithm (some 

TRECVID systems employ a different algorithm for each keyword). Note that our results 

were obtained for more keywords (39 instead of 10) and less training data (just English), 

so, results are a rough indication of how our method compares to others. We limited the 

amount of training data due to computational reasons. However, as we can see from the 

table, the proposed approach is competitive with approaches that were trained in more 

advantageous conditions (fewer keywords). 

 

Algorithm MAP L Modalities Videos 

LogisticRegL2 27.3% 39  V English 

Non-parametric Density Distribution 
[Yavlinsky, Schofield and Rüger, 2005]  

21.8% 10  V All 

LogisticRegL2 29.5% 39  V+T English 

SVM [Chang et al., 2005] 26.6 10 V+T All 

Table 5. MAP comparison with other algorithms (TRECVID). 
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Model Complexity Analysis. For the second experiment, we studied the effect of the 

complexity of the feature space transformations – the number of dimensions of the 

optimal feature space. Multi-modal based models, Figure 11, exhibit a more irregular 

trend than the single-media models. The higher dimensionality and feature heterogeneity 

might be the cause for this phenomenon. The differences between the three models are 

related to the respective modelling capabilities: Rocchio assumes a spherical structure 

which has been shown to be too simplistic for this data; naïve Bayes assumed 

independent dimensions, which is also not the best model for this data; finally, logistic 

regression further exploits feature dimensions interactions and linear combinations of 

them. Logistic regression, with an adequate cross-validation procedure, appears to 

achieve the best retrieval effectiveness. 
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Figure 11. MAP vs space dimension for multi-modal models. 

7. CONCLUSIONS 

The creation of the multi-modal feature space is a generalization procedure which results 

in a trade-off between accuracy and computational complexity. Thus, the described 

algorithm offers an appealing solution for applications that require an information 

extraction algorithm with good precision, scalability, flexibility and robustness. The 

novelty of the proposed framework resides in the simplicity of the linear combination of 

the heterogeneous sources of information that were selected by the minimum description 

length criterion. 

Retrieval Effectiveness. The performed experiments show that our framework offers 

performance in the same range as other state-of-the-art algorithms. Text and image 

results are quite good while multimodal experiments were affected by the noise present 

on the speech text and by the higher number of parameters to estimate. It was not 

surprising to see that logistic regression attains better results than naïve Bayes at the 

expense of a higher learning cost. 

Model Selection. The algorithm’s immunity to over-fitting is illustrated by the MAP 

curve stability as the model complexity increases. Logistic regression can be interpreted 

as ensemble methods (additive models) if we consider each dimension as a weak learner 
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and the final model as a linear combination of those weak learners. This means that our 

model has some of the characteristics of additive models, namely the observed immunity 

to overfitting. It is interesting to note that the simple naïve Bayes model appears to be 

more immune to overfitting than the logistic regression model. This occurs because the 

optimization procedure fits the model tightly to the training data favouring large 

regression coefficients, while the naïve Bayes avoids overfitting by computing the 

weighted average of all codewords (dimensions). Note that when fitting the model we are 

minimizing a measure of the model log-likelihood (the average classification residual 

error) and not a measure of how documents are ranked in a list (average precision). The 

mean average precision is the mean of the accumulated precision over a ranked list. Thus, 

we believe that if we trained our models with average precision as our goal metric, the 

retrieval results on the test set would improve. 

Computational Scalability. Since the optimal feature space is common to all keywords 

the transformation must be computed only once for all keywords. Thus, the resources 

required to evaluate the relevancy of a multimedia document for each keyword are 

relatively small. During classification, both time and space complexity of the data 

representation algorithms is given by the number of Gaussians (clusters) selected by the 

model selection criteria. The computational complexity of linear models during the 

classification phase is negligible, resulting in a very low computational complexity for 

annotating multimedia content and making it quickly searchable. The computational 

complexity during the learning phase is dominated by the hierarchical EM algorithm of 

mixture of Gaussians and the cross-validation method. The worst-case space complexity 

during learning is proportional to the maximum number of clusters, the number of 

samples, the dimension of each feature, and the total number of cross-validation iterations 

and folds. we consider this cost to be less important because the learning can be done 

offline. Apart from the mixture of hierarchies [Carneiro and Vasconcelos, 2005] all other 

methods are kinds of kernel density distributions. It is well known [Hastie, Tibshirani and 

Friedman, 2001] that the nature of these methods makes the task of running these models 

on new data computationally demanding: the model corresponds to the entire training set 

meaning that the demand on CPU time and memory increases with the training data.  

Results show that such a low complexity approach compares competitively with much 

more complex approaches. It has a bearing on the design of image search engines, where 

scalability and response time is as much of a factor as the actual mean average precision 

of the returned results. 

Semantic Scalability. Assuming that the used set of keywords is a faithful sample of a 

larger keyword vocabulary it is expected that one can use the same optimal feature space 

to learn the linear model of new keywords and preserve the same models. Note that the 

optimal feature space is a representation of the data feature space: it is selected based on 

the entire data and independently of the number keywords. The consequence of this 

design is that systems can be semantically scalable in the sense that new keywords can be 

added to the system without affecting previous annotations. 
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