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Abstract Sentiment analysis of written customer reviews is a powerful way
to generate knowledge about customer attitudes for future marketing activities.
Meanwhile, Deep Learning as the most powerful machine learning method
is of particular importance for sentiment analysis tasks. Due to this current
relevance, an LSTM network based on a literature review to solve the challenging
classification task of the IMDBLargeMovie Dataset is created. Hyperparameters
are varied separately from each other to better understand their single influences
on the overall model accuracy. Furthermore, we transformed variants with
positive impacts into a final model in order to investigate whether the impacts
can be cumulated. While preparing the amount of training data and the number
of iteration steps resulted in a higher accuracy, pre-trained word vectors and
higher network capacity did not work well separately. Even though implementing
the variants with positive influences together raised the model´s performance,
the improvement was lower than some single variants.
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1 Introduction

Sentiment analysis (SA) has been one of the largest fields of research in natural
language processing (NLP), data mining, text mining and information retrieval
since the beginning of the 21st century. Due to the ever-increasing use of
internet and online activities (e-commerce, forums, blogs and social networks)
for presenting personal opinions about products and services, the analysis of
the resulting huge amounts of data (Big Data) is of particular importance for
marketing managers (Zhang et al, 2018b). Meanwhile, Deep Learning (DL)
algorithms deliver stronger results in processing sequential text data for SA tasks
than other Machine Learning (ML) methods do (LeCun et al, 2015). For this,
the current literature focuses on the development of models that classify popular
benchmark datasets (IMDB Large Movie Dataset by Maas et al (2011); Yelp
Dataset by Zhang et al (2015)) with a new accuracy highscore. We argue that in
this context only the overall performance of an architecture is observed while
the various influences of individual hyperparameters on the model performance
are insufficiently analysed. For this reason, the separate effects of various
hyperparameters within an LSTM network for the IMDB Large Movie Dataset
sentiment analysis task are observed through separate variation. Simultaneously,
after a short introduction (Section 1), the discussion of theoretical backgrounds
including SA (Section 2.1) and DL models for SA (Section 2.2) as well as
the description of the IMDB dataset (Section 3.1) and related work (Section
3.2), an LSTM which is able to solve the IMDB SA task with high accuracy is
constructed (Section 3.3). Within this model, 8 hyperparameters are separately
varied to investigate their impact on classification performance. Subsequently,
the variations with a positive impact on validation accuracy are transformed
into a final model in order to cumulate the effects. This final model is then
compared with the single hyperparameter variants by test accuracy. In addition,
the machine times required are also measured (Section 3.4). Finally, the results
are discussed in Section 4.
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2 Theoretical Background

2.1 Sentiment Analysis

SA, also called mood analysis, is the field of computational studies of emotions
as well as opinions, feelings, evaluations and attitudes towards objects such
as products, services, organizations, individuals, events, topics and issues as
well as their characteristics (Ain et al, 2017; Medhat et al, 2014). They are
analysed in forums, blogs, social networks, e-commerce websites, reports and
other internet sources (Ravi and Ravi, 2015). SA is a subset of both NLP and
affective computing (AC) (Yadollahi et al, 2017; Zhang et al, 2018a) and can
therefore be seen as an intersection of both areas of research. It is carried out by
methods of information retrieval and data mining (Ravi and Ravi, 2015). While
the different SA tasks can be correctly subdivided into the subareas of opinion
mining (analysis of contained opinions in texts) and emotion mining (analysis
of contained emotions in texts) (Yadollahi et al, 2017), a more comprehensive
approach summarizing opinions and emotions (Ravi and Ravi, 2015) seems to
be more effective. Since the concept of a sentiment encompasses both opinions
and emotions, a precise SA can only be achieved by analysing both areas
simultaneously (Ain et al, 2017; Medhat et al, 2014).

While SA is often used as a synonym for sentiment or polarity classification,
it is considered to be the central SA task (Cambria et al, 2013). However, in this
article this trend of literature is taken into account (see inter alias Araque et al
(2017) and Medhat et al (2014)) so the term SA is used interchangeably after
the various fields of SA tasks were shown. A sentiment, respectively polarity
classification, is the recognition of the sentiment orientation within a text and
the classification into one of at least two classes. As the most common task in
SA, the polarity classification classifies texts according to their opinion into a
predefined sentiment polarity, whereby both binary, tertiary and finer n-grade
classifications are possible (Ravi and Ravi, 2015). Polarity classification can
take place on three granularity levels, regardless of the classification object
(opinion, emotion or both). For this, the document, sentence and aspect level are
differentiated (Medhat et al, 2014; Yadollahi et al, 2017; Zhang et al, 2018a)
where the polarity classification at the document level is considered to be the
most common. At the document level, a complete text document is considered
as the smallest unit. This document expresses an overall positive or negative
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opinion or emotion and it is usually assigned either to the positive or the negative
class (Aggarwal and Aggarwal, 2017; Medhat et al, 2014; Yadollahi et al, 2017;
Zhang et al, 2018a). Yet, the length of the document is irrelevant (Yadollahi
et al, 2017). At this level it is assumed that not every single sentence contains
an opinion relating to the subject so the document contains irrelevant sentences
(Aggarwal and Aggarwal, 2017). Since the IMDB sentiment classification
task is to classify film ratings of different lengths and without focusing on
specific aspects with respect to their polarity, the IMDB task is performed at the
document level.

Approach Reference Accuracy
Support Vector Machines (SVM) Wang and Manning (2012) 89.16%

Maximum Entropy (ME) Brychcín and Habernal (2013) 92.24%
Naive Bayes (NB) Narayanan et al (2013) 88.80%

NB-SVM Mesnil et al (2014) 91.87%
Decision Trees (DT) Zhou and Feng (2017) 89.16%
Deep Learning (DL) Howard and Ruder (2018) 95.40%

Table 1:ML methods for the IMDB sentiment classification task.

The polarity classification approaches can be divided into ML-based, lexicon-
based, while hybrid approaches are ultimately a combination of ML with a
previously created lexicon (Maynard and Funk, 2011; Ravi and Ravi, 2015).
ML techniques treat sentiment classifications as text classification tasks and use
syntactic and linguistic properties to solve problems (Medhat et al, 2014). They
clearly outperform the semantic approaches in dealing with specific tasks (Ravi
and Ravi, 2015). They are divided into methods of supervised, unsupervised
and semi-supervised learning, whereby unsupervised ML methods only play
a minor role in SA research and are only marginally or not explained in the
relevant overview literature (Medhat et al, 2014; Ravi and Ravi, 2015; Yadollahi
et al, 2017).
For polarity classification with supervised learning, probabilistic classifiers

such as Bayesian Networks, Naive Bayes classifiers and Maximum Entropy
classifiers, linear classifiers such as Support Vector Machines and Artificial
Neural Networks (Deep Learning), Decision Trees and Rule-based classifiers are
frequently used (Medhat et al, 2014; Ravi and Ravi, 2015). In terms of the IMDB
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Large Movie Dataset, the classification performance of the different methods is
shown in table 1. Thereby, DL models have achieved a large number of correct
classification rates higher than 92% in recent years, massively outperforming
other ML approaches (compare our literature review in Section 4). The current
IMDB benchmark performed with DL achieves 95.40% accuracy (Howard and
Ruder, 2018). To summarize, while ML approaches have task-specific higher
accuracy than lexicon production, DL outperforms conventional ML.

2.2 Deep Learning

DL approaches are part of the research field of artificial intelligence (AI)
(Arel et al, 2010) as well as a methodologically emerging area of ML called
Representation Learning. Within DL methods, several stages of representation
transformation take place in succession (LeCun et al, 2015). Meanwhile, DL is
defined as a class of ML techniques based on Artificial Neural Networks (ANN)
that use numerous (hidden) process layers in hierarchical architectures to learn
characteristics and recognize patterns from data (Deng, 2011, 2014). However,
the depth required for the concept of DL is not uniformly defined in research
(Schmidhuber, 2015).

In the context of ANNs, the concept of learning describes a process for
updating the network architecture and the weights of neuron connections to
efficiently handle a specific task (Jain et al, 1996). In DL, the most commonly
used supervised learning algorithm is the backpropagation method for error
minimization which allowed to map direct connections of neurons over several
layers so that the weights within the ANNs were efficiently learned (Deng, 2014;
Schmidhuber, 2015). In general, backpropagation is a special case of the general
gradient descent process (Schmidhuber, 2015). This approach by Rumelhart
et al (1986) repeatedly adjusts the weights within an ANN to minimize the
difference between the actual output vector and the known output vector setpoint
for finding an optimal set of weights. The quality of the weights is described by
the difference between the actual and target output vectors in a quadratic error
function.
Basically, Deep Neural Networks are classified in Feed Forward (FNN) and

Recurrent (RNN) Neural Networks (Jain et al, 1996; Schmidhuber, 2015).
Furthermore, the forward models are divided into Deep Autoencoders (DAE),
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Deep Belief Networks (DBN) and Convolutional Neural Networks (CNN)
(Deng, 2014; Zhang et al, 2018b). The recurrent networks were later devel-
oped into so-called Long Short Term Memories (LSTM) (Gers et al, 1999;
Hochreiter and Schmidhuber, 1997). While DAEs and DBNs are only used
for (unsupervised) pre-training in polarity classification tasks, one-dimensional
CNNs, but especially RNNs and their powerful relatives LSTMs are able to
classify text data very well (LeCun et al, 2015).

RNNs are more powerful than any forward DL model because of their ability
to create memories (Schmidhuber, 2015). Due to the backward links, they can
account for time sequences and are therefore perfect in processing sequential
data, e.g. natural language. RNNs have a cyclic architecture and are able to learn
the data properties through a memory from previous inputs (Jain et al, 1996;
Zhang et al, 2018a). The memory of an RNN is its ability to process all the
elements of a sequence where the input of a unit thus consists of two parts, the
current input and the output of previous calculations (Zhang et al, 2018a). This
is possible because the information from previous calculations is stored as an
internal state within the RNN (LeCun et al, 2015; Zhang et al, 2018a).
However, especially at deep RNNs, the vanishing or exploding gradients

during backpropagation training has proved to be very problematic due to long-
term dependencies (Bengio et al, 1994; Hochreiter, 1991; Schmidhuber, 2015;
Zhang et al, 2018a). To address this phenomenon called fundamental DL
problem, LSTMs were developed (Gers et al, 1999; Hochreiter and Schmid-
huber, 1997). Today, the most successful RNNs are based on this architecture
(Deng, 2014; Schmidhuber, 2015). By using so-called constant error carousels,
also known as memory cells, LSTMs are able to remember processes that
already took place many time steps ago. These units are connected to themselves
with a weight of 1 and thus copy their own state. This connection is linked to
another unit, called gate unit, which decides when to erase the learned memory,
which information is erased, and which new information is stored in the memory
(Gers et al, 1999; Hochreiter and Schmidhuber, 1997; LeCun et al, 2015;
Zhang et al, 2018a). Accordingly, a distinction is made between input, forget
and output gate units (Hochreiter and Schmidhuber, 1997; Zhang et al, 2018a).
The additional possibility of forgetting information and the associated influence
on the internal memory enables the effective use of long-term dependencies
without vanishing or exploding gradients.



How LSTM Hyperparameter Selection Influences Sentiment Analysis Results 7

Conventional RNNs and LSTMs can only use the information of previous
time steps and therefore do not use all available information of sequential data
(Zhang et al, 2018a). For this reason, Bidirectional LSTMs (BiLSTM) have
been developed. They consist of two opposing LSTMs stacked on top of each
other and are thereby able to process text sequences forward and backward at the
same time. Finally, the internal states of both networks are taken into account for
calculating the output of the bidirectional network (Schuster and Paliwal, 1997).
The bidirectional architecture often provides better sentiment classification
results than its unidirectional counterparts since the context between a given
word within a text and its subsequent words might be as important as the context
to previous words for classifying the sentiment of this word (see, e.g., Howard
and Ruder (2018), Johnson and Zhang (2016)).
The danger in supervised learning processes, so-called overfitting, is often

caused by a limited amount of training data, too many parameters to be learned
(the network capacity) or a large number of training epochs. In such a case, the
network learns to identify specific characteristics of the training data which
are irrelevant or even obstructive for classifying unknown data (Srivastava
et al, 2014). Thus, the task-specific generalization decreases with additional
training epochs so the model loses massive usefulness in the analysis of unknown
data. RNNs -particularly their bidirectional variants- are quite susceptible to
overfitting due to their huge capacity (memory architecture and additional
backward neuron connections) so that such models are usually trained with
fewer epochs than other architectures in order to learn cumbersome specific
features (Hong and Fang, 2015).
In addition, to avoid overfitting, another hyperparameter can be integrated

into the model. This method, known as dropout regularization, randomly sets
a share of its output per layer to zero, thus extracting a thinned net from the
original complex model. The size of this eliminated share is determined by the
dropout rate. As a result, the network does not learn any irrelevant patterns
contained in the training data which improves unknown data performance a lot
(Srivastava et al, 2014). The additional implementation of a recurrent dropout
rate makes this method implementable for RNNs (Gal and Ghahramani, 2015).

Since DL algorithms (like other ML methods as well) can not use text data as
input, datasets in text form have to be converted into numerical vectors (Zhang
et al, 2018a). This results in very high-dimensional property vectors (called
One Hot Encoding (OH)) since each word contained must be assigned its own



8 Nicholas Daniel Derra and Daniel Baier

value. ML applications, therefore, require a feature selection step that removes
unimportant properties or words for the task to be performed and thus reduces
the dimensionality without reducing the quality of the subsequent classification
(Rui et al, 2016; Yang and Pedersen, 1997).

An advantage of sentiment classification via DL is that, in contrast to other
ML methods, no feature selection is necessary to avoid these high-dimensional
feature vectors since DL models are able to handle high-dimensional data very
well and process a feature selection by using the embedding layer for training
so-called word embeddings. Using a specific algorithm, it generates smaller
numerical vectors and at the same time more information contained by removing
the words which are irrelevant for the classification task. Examples of such
word embedding algorithms are Word2Vec (Mikolov et al, 2013) and GloVe
(Pennington et al, 2014). The word embeddings and the weights are learned
simultaneously based on the present training data. If there is insufficient training
data for a classification task, pre-trained word embeddings calculated using one
of the two algorithms can be used. Such pre-trained vectors are freely available
via internet (for Word2Vec: see Google (2013), for GloVe: see Stanford (2014)).

3 Experiments

3.1 Dataset

The IMDB Large Movie Dataset was developed by Maas et al (2011). It was
designed to meaningfully test and compare binary sentiment classification
methods. This dataset contains 100,000 film ratings from the Internet Movie
Database (50,000 labeled and 50,000 unlabeled samples), with each movie
represented by a maximum of 30 ratings (Maas et al, 2011). The goal of the
IMDB SA task is to correctly classify whether a movie rating is positive or
negative. The average length of a review document is 231 words (Wang and
Manning, 2012). Within the labeled data, there are 25,000 positive and 25,000
negative reviews each, with only clearly polarized contributions taken into
account. Therefore, neutral reviews are not included. The labeled dataset is also
divided into 25,000 reviews for training and testing each (Maas et al, 2011).
The unlabeled training dataset with 50,000 reviews is intended to, e.g., train
a semi-supervised architecture with unsupervised pre-training. This dataset
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contains positive, neutral and negative sentiments (Maas et al, 2011). In general,
is has to be mentioned that the particular difficulty of classifying film ratings
presents a major challenge for all ML methods (Turney, 2002). The basic
difficulties and challanges in text analysis, including irony, sarcasm, various
word diffractions, synonyms, stop words, etc. are just as demanding as the
different lengths of the evaluation documents.

3.2 Related work

Reference Architecture Specific Architecture Test Accuracy
Le and Mikolov (2014) FNN PV-FNN 92.58%
Dai and Le (2015) LSTM SA-LSTM 92.80%

Johnson and Zhang (2015) CNN RE-CNN 93.49%
Dieng et al (2016) RNN Topic-RNN 93.72%

Johnson and Zhang (2016) LSTM OH-BiLSTM 94.06%
Miyato et al (2016) LSTM VA-LSTM 94.09%
Gray et al (2017) LSTM Block-Sparse LSTM 94.99%

Radford et al (2017) LSTM Byte-Level LSTM 92.88%
Xu et al (2017) RNN SSVAE-RNN 92.77%

Howard and Ruder (2018) LSTM ULMFiT 95.40%

Table 2: DL models for the IMDB sentiment classification task.

The IMDB Large Movie Dataset classification task has already been solved
by a variety of high-performance models, especially during the last 4 years the
accuracy of the task has been improved regularly. The currently best architecture
was set up by Howard and Ruder (2018) with their ULMFiT model and achieves
an accuracy of 95.40% in classifying the IMDB test data. The 10 most powerful
DL architectures are listed in Table 2. Within these models, it is noticeable
that LSTMs were used disproportionately (6 out of 10). Also, Merity et al
(2017) describe these architectures as particularly advantageous for language
modelling tasks, as LSTMs are more resistant to the fundamental deep learning
problem of the vanishing gradient than other architectures. In addition, Johnson
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and Zhang (2015) also demonstrated the efficient use of CNNs for sentiment
classification. Although they do not match the accuracy of the best LSTM
models, they are convincing due to their competitive classification rates and
comparatively low computational effort. However, LSTMs seem to be more
promising in setting a new accuracy highscore. The literature review also shows
that the implementation of unsupervised elements, especially for pre-training,
has positive effects on the performance of deep learning models (8 out of 10
models contained unsupervised learning structures). Nevertheless, due to the
question regarding the influences of individual hyperparameters on the overall
classification performance, the implementation of unsupervised pre-training is
superfluous.

3.3 Model

BiLSTM Layer 1

BiLSTM Layer 2

Layer (Dense) X

5,000 Validation 

Samples (20%)

20,000 Training Samples (80%)

Pre-processed IMDB Raw Training Data (25,000 Samples)

1

1

1

1

2

2

2

2

20

20

20

20

5 Epochs

Embedding Layer

Output (25,000 Sentiments)

Figure 1: The LSTM model.

As Figure 1 shows, our LSTM model has a bidirectional architecture, similar to
Howard and Ruder (2018) model, but it initially contains only 2 BiLSTM layers
and 20 units per layer and direction. After the initial embedding layer which
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is used for training the word embeddings, both BiLSTM layers are utilized for
learning representations. The final, fully-connected dense layer executes the
binary classification of the 25,000 training (respectively test) samples with a
sigmoid function. As an optimizer the "RMSprop" algorithm (Hinton et al, 2012)
is used, as a loss function a binary cross entropy. The number of words used as
features is 10,000, and the maximum review length is 500 words. The model is
trained for 5 epochs (which is a good number of epochs compared to the results
of Hong and Fang (2015) for highly regularized LSTMs) with a batch size of
100, the validation split is 20% (5,000 samples, respectively).

In this model, the following hyperparameters are now to be varied to examine
their single impact on the correct classification rate: The number of words
considered as features, the sequence length of the comments, the proportion
of validation data, the use of pre-trained GloVe word embeddings, the number
of hidden BiLSTM layers, the number of units per hidden layer, the dropout
and recurrent dropout rates (for preventing overfitting), and the size of the data
batches (during training, the training data is divided into batches of a fixed size
which are given successively through the network; the weights of the network
are updated after every batch). For each hyperparameter, a specific value is set
and a variant is selected that suggests a greater learning performance. Within
the experiment, only one hyperparameter is chosen into its variant value at the
same time. The other hyperparameters stay at their default value. The selected
values are summarized in table 3.

The hyperparameters "validation data" and "batch size" were chosen lower
in the variant since a larger amount of training data as well as smaller batches
suggest a better classification performance. Since an adaptation of the network
parameters takes place after each batch, smaller batches mean a higher number
of such adjustments and thus deeper learning processes. For all other values,
however, a stronger performance is assumed if the values are higher. The values
are changed separately while the other hyperparameters maintain their default
configuration. The determined values are then compared with the global default
variant using the validation data performance in order to show their single
impacts on the network performance. In this way, 8 comparison pairs are created
(1 for each hyperparameter). If a hyperparameter variation has a positive effect
on the validation performance, it will be transformed into a final model which
will be compared to the default configuration for investigating whether the effects
on accuracy can be cumulated to a high-performing model. The hyperparameter



12 Nicholas Daniel Derra and Daniel Baier

"dropout" is tested for preventing overfitting during training. At the same time,
the machine times are observed. The computations are accomplished with
Amazon Web Services (m4.2xlarge, 32GB).

3.4 Results

Model Default Variant Train_Acc Train_Loss Val_Acc Val_Loss Machine Time
Standard —– —– 94.60% 0.1541 87.84% 0.2905 18 min 20 sec

Max_features 10,000 20,000 95.89% 0.1258 88.68% 0.3106 18 min 7 sec
Max_len 500 1,000 95.49% 0.1326 88.66% 0.2947 18 min 1 sec
Val_split 0.2 0.1 95.18% 0.1395 88.48% 0.2931 19 min 26 sec
GloVe no yes 50.23% 0.6932 50.14% 0.6930 16 min

Units / Layer 20 100 94.52% 0.1574 86.12% 0.2992 44 min 17 sec
Layer 2 3 94.98% 0.1421 87.74% 0.3195 26 min 31 sec

Dropout no yes 91.65% 0.2275 86.74% 0.3513 21 min 28 sec
Batch_size 100 50 95.10% 0.1431 88.90% 0.2916 28 min 16 sec

Table 3: Training and validation results of the default configuration and the variants.

Without any hyperparameter variation, the default model reaches 94.60%
training and 87.74% validation accuracy. The values of the loss function
were 0.1541 for training and 0.2905 for validation. Due to overfitting in
unregularized BiLSTMs, this value is already reached during the 2nd training
epoch. Nevertheless, our model performs on a quite respectful level since there
is no pre-training integrated. The training session required 18 minutes and 20
seconds.
The increase of word features (10,000 to 20,000 words) provided 95.89%

training and 88.68% validation accuracy (loss function: 0.1258 resp. 0.3106)
which means an increase of 0.84% in validation performance compared to the
default model. This result was reached in the 2nd epoch as well, another rapid
overfitting was observed. The training required 18 minutes and 7 seconds which
was surprisingly less than the default model. Since the accuracy rate was higher,
this hyperparameter variant was implemented in the final model.
The increase of the maximum sample length (500 to 1,000) also improved

the performance (95.49% for training and 88.66% for validation accuracy,
0.1326 resp. 0.2947 for the loss function values), this time an increase of
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0.82% in validation accuracy compared to the default model was observed. Not
surprisingly, the 2nd training epoch performed best, this variation needed 18
minutes and 1 second training time. This variant was also implemented into the
final model.

Changing the ratio of training and validation data from 80:20 to 90:10 resulted
in a further increase in validation accuracy to 88.48% (+ 0.64%) which was
already achieved during the 2nd epoch (training accuracy: 95.18%; loss function
values were 0.1395 for training resp. 0.2931 for validation). Subsequently,
overfitting could be observed again. This was accompanied by an increase in
computing time to 19 minutes and 26 seconds. Since the accuracy increased
due to the greater amount of training data, the final model will also be trained
with the higher number of samples.

The use of pre-trained word embeddings from the GloVe database caused
a massive loss of accuracy. While computing time was clearly the shortest at
precisely 16 minutes, a training accuracy of 50.23% and a validation accuracy
of only 50.14% could be achieved (loss function values: 0.6932 for training
resp. 0.6930 for validation), which corresponds to a validation accuracy loss
of 37.70% compared to the default model. This very poor performance is due
to the lack of task-specific training of the word embeddings, which means that
the values remained almost constant over the 5 epochs. The strong benefits of
pre-training in literature, as found in Howard and Ruder’s (2018) model, are
achieved through huge datasets used to learn the word embeddings and weights.
At the same time, the word embeddings are not frozen, but constantly adapted
during the learning process. While the GloVe word embeddings used here is
also based on just 400,000 words, for example, WIKITEXT-103 incorporates
embedding vectors for about 103,000,000 words. Thus, the word embeddings
used are far from having enough information to precisely solve the specific
classification task of the IMDB dataset. The pre-trained embedding vectors are
therefore not integrated into the final model. However, unsupervised pre-training
is indispensable for creating a particularly powerful architecture if it is carried
out with very large amounts of useful information and the parameters found are
then further adapted to the task.

Increasing the units per hidden layer from 20 to 100 led to a massive increase
in computational time to 44 minutes and 17 seconds. This is the consequence of
the higher computational effort since the additional units also process a large
amount of information during the training. However, the validation accuracy
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fell by 1.72% to 86.12% (training: 94.52%) and the values of the loss function
were worse as well (0.1574 for training and 0.2992 for validation). This result is
particularly surprising given the fact that the most powerful LSTM models from
the literature have clearly greater capacities. However, the performance can not
be explained by overfitting, since the training data were not classified very well
and the best validation performance was not achieved until the 5th epoch. This
result indicates additional influences between different hyperparameters, which
go beyond separate variations of individual parameters. Due to the inadequate
outcome of this study, the final model does not require an increase in the number
of units as the higher storage capacity should lead to an increase in classification
performance, which was clearly missed.
The integration of a third BiLSTM layer, similar to Howard and Ruder

(2018) network, also resulted in a lower validation accuracy of 87.74% (training
accuracy: 94.98%) and worse values of the loss function (0.1421 for training
and 0.3195 for validation), however, this difference is lower compared to the
higher number of units (-0.1% vs default configuration). This ratio was reached
during the 3rd epoch so overfitting can be observed another time (presumably
by additional network capacity). The machine time increased to 26 minutes and
31 seconds. Although this result does not necessarily preclude the inclusion of
a third hidden layer to the final model, due to the increased machine time and
the simultaneous (minor) deterioration of the accuracy, the third BiLSTM layer
will not be included.

Using a dropout / recurrent dropout regularization with the values 0.2 / 0.2
reduced the validation accuracy of the model by 1.1% to 86.74% (training
accuracy: 91.65%) with simultaneous increase of the calculation time to 21
minutes and 28 seconds. The values of the loss function were 0.2275 for
training and 0.3513 for validation. However, the dropout was introduced to avoid
overfitting and thus increase the stability of the model. Since the top value was
reached in the fifth epoch, the dropout was successful so that the regularization
is to be evaluated advantageously and integrated into the final model.

The use of a smaller batch size (50 versus 100 samples) brought the highest
validation accuracy gain of a single changed hyperparameter (1.06% to 88.90%).
The training performance was 95.10% and the values of the loss function
were 0.1431 for training and 0.2916 for validation. It is also positive that the
validation quota could be reached twice (epoch 2 and 3) before overfitting begins.
In this case, the model benefits from a higher number of parameter adjustments
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regarding the smaller batch size. However, machine time was quite high at 28
minutes and 16 seconds, due to the smaller denomination of the training data.
By increasing the performance, the final model will be trained with smaller
batches as well.

Model Train_Acc Train_Loss Val_Acc Val_Loss Test_Acc Test_Loss Machine Time
Standard model 94.60% 0.1541 87.84% 0.2905 87.01% 0.3652 18 min 20 sec
Max_features 95.89% 0.1258 88.68% 0.3106 86.54% 0.3603 18 min 7 sec
Max_len 95.49% 0.1326 88.66% 0.2947 86.87% 0,3301 18 min 1 sec
Val_split 95.18% 0.1395 88.48% 0.2931 87.60% 0,3361 19 min 26 sec
GloVe 50.23% 0.6932 50.14% 0.6930 52.81% 1.2817 16 min

Units / Layer 94.52% 0.1574 86.12% 0.2992 86.04% 0.3741 44 min 17 sec
Layer 94.98% 0.1421 87.74% 0.3195 85.90% 0.3415 26 min 31 sec

Dropout 91.65% 0.2275 86.74% 0.3513 85.53% 0.3599 21 min 28 sec
Batch_size 95.10% 0.1431 88.90% 0.2916 87.51% 0.3534 28 min 16 sec
Final model 93.01% 0.1948 88.36% 0.3042 87.46% 0.3779 83 min 28 sec

Table 4: Results of the hyperparameter variants incl. the final model and test data performances.

On the basis of the discussed validation results of the hyperparameter
variations, the default configuration should now be modified seeking for a more
powerful final model. A total of 5 single hyperparameter variants could be
identified as well-working, including the higher number of words considered as
features, the larger comment length, the use of smaller batch size, the greater
amount of training data, and the integration of dropout regularization to avoid
overfitting (as the validation results showed, overfitting in LSTMs is a big issue
to deal with). The tested pre-trained GloVe word embeddings, on the other hand,
could not be taken into account due to the massive loss of accuracy. Also, the
implementation of additional layers and units could not improve the network.
The training of the final model was highly more computationally intensive

than the variants of individual hyperparameters (83 minutes and 28 seconds).
This observation is not surprising due to the observed calculation times of the
individual variations, the computational effort of the individual hyperparameters
just adds up in the final model. The accuracy, however, reached 93.10% for
training and 88.36% for validation which corresponds to an increase of 0.52%
in validation performance compared to the default configuration (reached in the
5th epoch so the dropout implementation was successful in avoiding overfitting).
But, at the same time, it is highly noteworthy that the performance in the
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validation data is worse than in the variants of the individual positive-acting
hyperparameters which were set to improve the network accuracy (dropout
regularization was implemented to avoid overfitting). This means that LSTM
hyperparameters do not just work on their own but seem to interact with the
other hyperparameter settings. In fact, this experimental design is well-suited
for understanding the effects of the various hyperparameters on the network in
general, but it is not optimal for finding the strongest setting within an LSTM.
Nonetheless, the final model has achieved a higher validation performance than
the already well-performing default configuration.

For further evaluating the variants and the final model compared to the default
configuration, the test dataset of the IMDB dataset was classified. For this, the
raw test data was preprocessed aswell as the training data (vectorization andword
embeddings learned by embedding layer). The default configuration achieved
87.01% test accuracy while the created final model achieved a comparatively
stronger accuracy of 87.46%. Compared with the single variants, the separate
variation of the validation split and the batch size were even outperforming
the final model while the variant of the validation split reached the highest
test accuracy (87.60%) with a machine time of 19 minutes and 26 seconds. To
summarize, the test classification performance could be increased by 0.45% (resp.
approximately 113 additionally correctly classified comments) through varying
the 5 hyperparameters classified as positive and by 0.59% (resp. approximately
148 additionally correctly classified comments) through the separate variation
of the validation split compared to the default model. The 0.45% increase in
classification performance represents an improvement associated with highly
increased computational time requirements while the higher increase of 0.59%
could be reached with only a small gain of machine time.

4 Discussion / Conclusion

The aim of this work was to investigate the impacts of single hyperparameter
variants within an LSTM network to perform the IMDB LargeMovie Dataset SA
task. For this purpose, an LSTM network based on the task-specific DL models
from the literature of recent years was created. A total of 8 hyperparameters
contained in this network were separately varied and compared with the default
configuration by their validation performance. In this way, 5 hyperparameters
(maximum number of words taken into account as characteristics, maximum
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comment length, dropout regularization, use of a larger training dataset, and the
use of a smaller batch size) could be demonstrated as positive influences while
implementing additional hidden layers, additional units per layer and pre-trained
GloVe word embeddings could not achieve any positive effects. The variants
which improve the validation accuracy were then transformed into a final model
to see whether the impacts of the separate hyperparameters could be added.
While the validation data performance of the final model was higher than the
default model, some single variants outperformed the final model so the effects
of single variants were not able to be cumulated. In addition, comparing the
default configuration, the separate variants and the final model based on test
data accuracy, the default model achieved 87.01% with a machine time of 18
minutes and 20 seconds, while the final model achieved 87.46% at a clearly
higher computation time of 83 minutes and 28 seconds. At the same time, the
separate variants of the validation split and the batch size even outperformed the
final model due to test accuracy and machine time (with the separate variation of
the validation split as the overall best configuration performing a test accuracy
of 87.60%). In this way, the already precisely classifying default configuration
could be increased by a further 0.45% (approximately 113 additional comments)
through creating the final model and even 0.59% with a separate variant. In fact,
the separate influences of the hyperparameter variants on accuracy could not be
cumulated but, at the same time, the machine time did.

Looking at the separate variants, it is striking that the better performance was
not achieved by increasing the network capacity (additional layers or units per
layer) but the consideration of a larger number of features, longer comments and
a larger number of training samples were able to raise accuracy, even the use
of smaller batch sizes contributed to a stronger performance. In particular, the
network was able to benefit from larger amounts of data and a greater number
of iteration steps. At the same time, the results for the variants that result in
an increase in capacity (number of units / layers) are surprisingly negative and
should not be implemented as a single variant in BiLSTMs which already have
a large network capacity. Overall, the results indicate interactions between the
various hyperparameters that can not be observed in this experimental setup
with separate variants. This is supported by the current literature who use a
much higher capacity than the model configured here. Accordingly, higher
capacities should definitely not be excluded from the construction of DL models
for performing SA, rather such changes should be examined together with other
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hyperparameter variants in order to possibly further increase the classification
performance.

In spite of the lower classification performance compared to the currently best
models, it was possible to clearly demonstrate how the single hyperparameters
of an LSTM model influence the performance of the overall architecture. In
comparison to the architecture by Howard and Ruder (2018), the performances
of the model used here are significantly lower. This is due to the fact that Howard
and Ruder (2018) use a huge unlabeled dataset for efficiently pre-training their
network. In addition, they combined different hyperparameters for increasing
the network capacity (additional BiLSTM layers and more units per layer)
while preventing overfitting with dropout regularization. The results of their
ULMFiT model indicate interactions between the different hyperparameters as
our experiment with separate variants did.
While the separate influences of the hyperparameter variants on overall

accuracy could be shown precisely, the experiment has to be limited due to the
fact that the validation split during the training epochs has been set randomly so
small variances due to different validation samples can not be excluded. Though,
since every configuration is trained for 5 epochs with 5 different validation
splits, the risk of a variance at the validation results is negligible. Furthermore,
no effects between the individual parameter variants were analyzed. These
effects could be observed by the surprisingly poor classification results for
those variants which increase network capacity and the accuracy of the final
model compared to different single hyperparameter variants. In this respect, the
investigation is limited, and we would like to encourage further research in the
field of hyperparameter variants in LSTM networks. In particular, studies that
use this paper as a first step to understand the single hyperparameter effects
on the network and go on investigating combinations of variants (i.e. using
a fractional factorial design (see, e. g., Gunst and Mason (2009)) can further
advance the currently still fragile state of research. We believe that a deeper
understanding of hyperparameter influences in LSTMs will definitely help to
outperform the current IMDB Large Movie Dataset highscore with new and
innovative LSTM models.
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