16,256 research outputs found

    Cavitation Number as a Function of Disk Cavitator Radius: a Numerical Analysis of Natural Supercavitation

    Get PDF
    Due to the greater viscosity and density of water compared to air, the maximum speed of underwater travel is severely limited compared to other methods of transportation. However, a technology called supercavitation – which uses a disk-shaped cavitator to envelop a vehicle in a bubble of steam – promises to greatly decrease skin friction drag. While a large cavitator enables the occurrence of supercavitation at low velocities, it adds substantial unnecessary drag at higher speeds. Based on CFD results, a relationship between cavitator diameter and cavitation number is developed, and it is substituted into an existing equation relating drag coefficient to cavitation number. The final relationship predicts drag from cavitator radius fairly well, with an absolute error less than 5.4% at a cavitator radius above 14.14mm and as low as 1.3% at the maximum tested radius of 22.5mm

    Towards cost-efficient prospection and 3D visualization of underwater structures using compact ROVs

    Get PDF
    The deployment of Remotely Operated Vehicles (ROV) for underwater prospection and 3D visualization has grown significantly in civil applications for a few decades. The demand for a wide range of optical and physical parameters of underwater environments is explained by an increasing complexity of the monitoring requirements of these environments. The prospection of engineering constructions (e.g. quay walls or enclosure doors) and underwater heritage (e.g. wrecks or sunken structures) heavily relies on ROV systems. Furthermore, ROVs offer a very flexible platform to measure the chemical content of the water. The biggest bottleneck of currently available ROVs is the cost of the systems. This constrains the availability of ROVs to a limited number of companies and institutes. Fortunately, as with the recent introduction of cost-efficient Unmanned Aerial Vehicles on the consumer market, a parallel development is expected for ROVs. The ability to participate in this new field of expertise by building Do It Yourself (DIY) kits and by adapting and adding on-demand features to the platform will increase the range of this new technology. In this paper, the construction of a DIY OpenROV kit and its implementation in bathymetric research projects are elaborated. The original platform contains a modified webcam for visual underwater prospection and a Micro ElectroMechanical System (MEMS) based depth sensor, allowing relative positioning. However, the performance of the standard camera is limited and an absolute positioning system is absent. It is expected that 3D visualizations with conventional photogrammetric qualities are limited with the current system. Therefore, modifications to improve the standard platform are foreseen, allowing the development of a cost-efficient underwater platform. Preliminary results and expectations on these challenges are reported in this paper

    Fast aquatic escape with a jet thruster

    Get PDF
    The ability to collect water samples rapidly with aerial–aquatic robots would increase the safety and efficiency of water health monitoring and allow water sample collection from dangerous or inaccessible areas. An aquatic micro air vehicle (AquaMAV) able to dive into the water offers a low cost and robust means of collecting samples. However, small-scale flying vehicles generally do not have sufficient power for transition to flight from water. In this paper, we present a novel jet propelled AquaMAV able to perform jumpgliding leaps from water and a planar trajectory model that is able to accurately predict aquatic escape trajectories. Using this model, we are able to offer insights into the stability of aquatic takeoff to perturbations from surface waves and demonstrate that an impulsive leap is a robust method of flight transition. The AquaMAV uses a CO 2 powered water jet to escape the water, actuated by a custom shape memory alloy gas release. The 100 g robot leaps from beneath the surface, where it can deploy wings and glide over the water, achieving speeds above 11 m/s

    Some NASA contributions to human factors engineering: A survey

    Get PDF
    This survey presents the NASA contributions to the state of the art of human factors engineering, and indicates that these contributions have a variety of applications to nonaerospace activities. Emphasis is placed on contributions relative to man's sensory, motor, decisionmaking, and cognitive behavior and on applications that advance human factors technology

    Now Hear This! Orientation and Behavioral Responses of Hatchling Loggerhead Sea Turtles, Caretta caretta, to Environmental Acoustic Cues

    Full text link
    Although the visual and geologic orientation cues utilized by sea turtle hatchlings during seafinding, when they move from the nest to the sea after hatching, have been well studied, the potential for auditory stimuli to act as an orientation cue has not been well explored. Over the past several decades our knowledge of the auditory capacity of sea turtles has increased greatly, yet little is known about the biological significance of this sensory ability. To investigate whether hatchlings can use ocean sounds during seafinding, we measured the behavioral responses of hatchling loggerhead sea turtles (Caretta caretta) collected from nesting beaches in North Carolina to the presence of beach wave sound recorded on a nesting beach during the summer of 2015. The highest sound energy of beach waves occursHz, which overlaps with the most sensitive hearing range of loggerhead hatchlings (range of frequency detection: 50-1600 Hz, maximum sensitivity: 50-400 Hz). In our experiment, we placed turtles in a V-maze that isolated them from visual, vibratory, and chemical cues. One end of the V held a speaker producing beach wave sounds recorded from nesting beaches, while the other end held sound-reducing foam. We examined the phonotaxic behaviors of the hatchlings at two sound pressure levels (68 dB re: 20μPa and 64 dB re: 20μPa measured directly in front of the speaker). In the presence of the higher sound pressure level (68 dB re: 20μPa), hatchlings exhibited no phonotaxic response (p=1.0); yet, at the reduced sound pressure level (64 dB re: 20μPa), hatchlings exhibited a negative phonotaxic response (p=0.005). In control trials, hatchlings oriented to the two sides of the V-maze equally (p=0.701), suggesting the hatchlings in the lower volume treatment group were responding negatively to the sound. These results indicate the need for further auditory orientation experiments to better understand hatchling behavioral responses to environmental acoustic cues and to address possible impacts of anthropogenic beach sounds that have the potential to disorient hatchlings during seafinding

    Optimal control of the heave motion of marine cable subsea-unit systems

    Get PDF
    One of the key problems associated with subsea operations involving tethered subsea units is the motions of support vessels on the ocean surface which can be transmitted to the subsea unit through the cable and increase the tension. In this paper, a theoretical approach for heave compensation is developed. After proper modelling of each element of the system, which includes the cable/subsea-unit, the onboard winch, control theory is applied to design an optimal control law. Numerical simulations are carried out, and it is found that the proposed active control scheme appears to be a promising solution to the problem of heave compensation

    Development of a snorkel for unmanned underwater vehicles

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 33).The development of unmanned underwater vehicles (UUV) has provided a bevy of opportunities for the exploration of the ocean. However, one limitation has kept UUVs from truly becoming mass produced, its limited range. The problem with traditional snorkel designs built for submarines is that they are far too large to be effective on a small underwater vehicle. This paper thus explores the design and development of an air snorkel for a hybrid power system for UUVs. The process beginning with concept generation and ending with manufacture will be discussed. Features discussed include the outer shell, float mechanism, and filtration system. The goal is to provide further advancement on snorkel design because through the development of a hybrid power system, UUVs will be able to perform a larger variety of tasks that are limited due to the low energy density of battery powered systems.by Peter Tia.S.B
    • …
    corecore