711 research outputs found

    Preserving Privacy in secured ZigBee Wireless Sensor Networks

    Get PDF
    International audienceWe expose concretely the information leakage occurring in an IEEE 802.15.4-based ZigBee meshed network. We deploy an IoT platform and used a killerbee sniffer to eavesdrop the communication between the motes. Metadata and control traffic are exploited in depth to recover protocol instances, routes, identity, capability and activity of the devices. We experiment different levels of security for the communications from none to the best available. Even when security is enforced, information leakages are not avoided. We propose simple countermeasures to prevent an outsider from monitoring a ZigBee network

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio

    Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications

    Get PDF
    Abstract Wireless Body Area Network (WBAN) is a new trend in the technology that provides remote mechanism to monitor and collect patient's health record data using wearable sensors. It is widely recognized that a high level of system security and privacy play a key role in protecting these data when being used by the healthcare professionals and during storage to ensure that patient's records are kept safe from intruder's danger. It is therefore of great interest to discuss security and privacy issues in WBANs. In this paper, we reviewed WBAN communication architecture, security and privacy requirements and security threats and the primary challenges in WBANs to these systems based on the latest standards and publications. This paper also covers the state-of-art security measures and research in WBAN. Finally, open areas for future research and enhancements are explored

    Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network

    Full text link
    [EN] Nowadays, the Internet of Things (IoT) performs robust services for real-time applications in monitoring communication systems and generating meaningful information. The ZigBee devices offer low latency and manageable costs for wireless communication and support the process of physical data collection. Some biosensing systems comprise IoT-based ZigBee devices to monitor patient healthcare attributes and alert healthcare professionals for needed action. However, most of them still face unstable and frequent data interruption issues due to transmission service intrusions. Moreover, the medical data is publicly available using cloud services, and communicated through the smart devices to specialists for evaluation and disease diagnosis. Therefore, the applicable security analysis is another key factor for any medical system. This work proposed an approach for reliable network supervision with the internet of secured medical things using ZigBee networks for a smart healthcare system (RNM-SC). It aims to improve data systems with manageable congestion through load-balanced devices. Moreover, it also increases security performance in the presence of anomalies and offers data routing using the bidirectional heuristics technique. In addition, it deals with more realistic algorithm to associate only authorized devices and avoid the chances of compromising data. In the end, the communication between cloud and network applications is also protected from hostile actions, and only certified end-users can access the data. The proposed approach was tested and analyzed in Network Simulator (NS-3), and, compared to existing solutions, demonstrated significant and reliable performance improvements in terms of network throughput by 12%, energy consumption by 17%, packet drop ratio by 37%, end-to-end delay by 18%, routing complexity by 37%, and tampered packets by 37%.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia. Authors are thankful for the support.Rehman, A.; Haseeb, K.; Fati, SM.; Lloret, J.; Peñalver Herrero, ML. (2021). Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network. Applied Sciences. 11(21):1-16. https://doi.org/10.3390/app11219947S116112

    Exploring Data Security and Privacy Issues in Internet of Things Based on Five-Layer Architecture

    Get PDF
    Data Security and privacy is one of the serious issues in internet-based computing like cloud computing, mobile computing and Internet of Things (IoT). This security and privacy become manifolded in IoT because of diversified technologies and the interaction of Cyber Physical Systems (CPS) used in IoT. IoTs are being adapted in academics and in many organizations without fully protecting their assets and also without realizing that the traditional security solutions cannot be applied to IoT environment. This paper explores a comprehensive survey of IoT architectures, communication technologies and the security and privacy issues of them for a new researcher in IoT. This paper also suggests methods to thwart the security and privacy issues in the different layers of IoT architecture
    • …
    corecore