29,887 research outputs found

    Pattern-based software architecture for service-oriented software systems

    Get PDF
    Service-oriented architecture is a recent conceptual framework for service-oriented software platforms. Architectures are of great importance for the evolution of software systems. We present a modelling and transformation technique for service-centric distributed software systems. Architectural configurations, expressed through hierarchical architectural patterns, form the core of a specification and transformation technique. Patterns on different levels of abstraction form transformation invariants that structure and constrain the transformation process. We explore the role that patterns can play in architecture transformations in terms of functional properties, but also non-functional quality aspects

    Advanced Cloud Privacy Threat Modeling

    Full text link
    Privacy-preservation for sensitive data has become a challenging issue in cloud computing. Threat modeling as a part of requirements engineering in secure software development provides a structured approach for identifying attacks and proposing countermeasures against the exploitation of vulnerabilities in a system . This paper describes an extension of Cloud Privacy Threat Modeling (CPTM) methodology for privacy threat modeling in relation to processing sensitive data in cloud computing environments. It describes the modeling methodology that involved applying Method Engineering to specify characteristics of a cloud privacy threat modeling methodology, different steps in the proposed methodology and corresponding products. We believe that the extended methodology facilitates the application of a privacy-preserving cloud software development approach from requirements engineering to design

    Requirements traceability in model-driven development: Applying model and transformation conformance

    Get PDF
    The variety of design artifacts (models) produced in a model-driven design process results in an intricate relationship between requirements and the various models. This paper proposes a methodological framework that simplifies management of this relationship, which helps in assessing the quality of models, realizations and transformation specifications. Our framework is a basis for understanding requirements traceability in model-driven development, as well as for the design of tools that support requirements traceability in model-driven development processes. We propose a notion of conformance between application models which reduces the effort needed for assessment activities. We discuss how this notion of conformance can be integrated with model transformations

    Software Design Guidelines for Usability

    Get PDF
    For years, the Human Computer Interaction (HCI) community has crafted usability guidelines that clearly define what
characteristics a software system should have in order to be easy to use. However, in the Software Engineering (SE)
community keep falling short of successfully incorporating these recommendations into software projects. From a SE
perspective, the process of incorporating usability features into software is not always straightforward, as a large number
of these features have heavy implications in the underlying software architecture. For example, successfully including an
“undo” feature in an application requires the design and implementation of many complex interrelated data structures and
functionalities. Our work is focused upon providing developers with a set of software design patterns to assist them in the
process of designing more usable software. This would contribute to the proper inclusion of specific usability features
with high impact on the software design. Preliminary validation data show that usage of the guidelines also has positive
effects on development time and overall software design quality

    On the Notion of Abstract Platform in MDA Development

    Get PDF
    Although platform-independence is a central property in MDA models, the study of platform-independence has been largely overlooked in MDA. As a consequence, there is a lack of guidelines to select abstraction criteria and modelling concepts for platform-independent design. In addition, there is little methodological support to distinguish between platform-independent and platform-specific concerns, which could be detrimental to the beneficial exploitation of the PIM-PSM separation-of-concerns adopted by MDA. This work is an attempt towards clarifying the notion of platform-independent modelling in MDA development. We argue that each level of platform-independence must be accompanied by the identification of an abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by balancing various design goals. We present some methodological principles for abstract platform design, which forms a basis for defining requirements for design languages intended to support platform-independent design. Since our methodological framework is based on the notion of abstract platform, we pay particular attention to the definition of abstract platforms and the language requirements to specify abstract platforms. We discuss how the concept of abstract platform relates to UML

    Thermal analysis and energy-efficient solutions to preserve listed building façades. The INA-Casa building heritage

    Get PDF
    Energy efficiency of building heritage derived from pre-regulation period is one of the most debated topics in Europe. Building facades, through opaque walls and thermal bridges, are a major source of transmission heat losses and require sustainable and consistent solutions. Aiming to achieve an energy demand reduction, thermal features of building facades were evaluated by field measurements and simulations for one INA-Casa listed apartment building built in the 1950s. Non-destructive insulating solutions have been proposed and a comparison between transmission heat loss coefficient in the current situation and the designed intervention was made. Results show that before the renovation, opaque walls and thermal bridges respectively contributed to 25% and 44% of total transmission heat loss in the case-study building facade. After the renovation, total impact was reduced up to 70% depending on whether high performance windows were replaced; in particular, the impact of opaque walls and thermal bridges were reduced by 66% and 82%, respectively. Interventions performed primarily on the internal layer of the facade with insulation elements, when appropriately designed, strengthen the negative effects of thermal bridges in junctions. Findings show that an accurate insulation design allows for both more efficient conditions and the preservation of the heritage-listed building

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201
    corecore