8,596 research outputs found

    Coherent electrical readout of defect spins in 4H-SiC by photo-ionization at ambient conditions

    Full text link
    Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for such defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects the approach presented here holds promises for scalability of future SiC quantum devices

    Polycrystalline silicon material availability and market pricing outlook study for 1980 to 88: January 1983 update

    Get PDF
    Photovoltaic solar cell arrays which convert solar energy into electrical energy can become a cost effective, alternative energy source provided that an adequate supply of low priced materials and automated fabrication techniques are available. Presently, silicon is the most promising cell material for achieving the near term cost goals of the Photovoltaics Program. Electronic grade silicon is produced primarily for the semiconductor industry with the photovoltaic industry using, in most cases, the production rejects of slightly lower grade material. Therefore, the future availability of adequate supplies of low cost silicon is one of the major concerns of the Photovoltaic Program. The supply outlook for silicon with emphasis on pricing is updated and is based primarily on an industry survey conducted by a JPL consultant. This survey included interviews with polycrystalline silicon manufacturers, a large cross section of silicon users and silicon solar cell manufacturers

    High-temperature electronics

    Get PDF
    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices

    A Silicon Carbide Based Solid-State Fault Current Limiter for Modern Power Distribution Systems

    Get PDF
    The fault current limiter represents a developing technology which will greatly improve the reliability and stability of the power grid. By reducing the magnitude of fault currents in distribution systems, fault current limiters can alleviate much of the damage imposed by these events. Solid-state fault current limiters in particular offer many improved capabilities in comparison to the power system protection equipment which is currently being used for fault current mitigation. The use of silicon carbide power semiconductor devices in solid-state fault current limiters produces a system that would help to advance the infrastructure of the electric grid. A solid-state fault current limiter utilizing silicon carbide super gate-turn off thyristors (SGTOs) and silicon carbide PiN diodes was designed, built, and tested as a technology demonstrator. The impact of using silicon carbide (SiC) devices in this application was assessed, as well as the associated design challenges. The feasibility of implementing SiC based solid-state fault current limiters for 15 kV class distribution systems was investigated in order to determine the practicality of wide-scale deployment

    Characterization of High Temperature Optocoupler for Power Electronic Systems

    Get PDF
    High-temperature devices have been rapidly increas due to the implementation of new technologies like silicon carbide, high-temperature ceramic, and others. Functionality under elevated temperatures can reduce signal integrity reducing the reliability of power electronic systems. This study presents an ongoing research effort to develop a high-temperature package for optocouplers to operate at higher temperature compared with commercial devices. Low temperature co-fired ceramic (LTCC) was used as the substrate. Bare die commercial LED and photodetectors were attached to the substrate and tested for functionality. Preliminary results show enhanced performance at elevated temperatures compared to a commercial optocoupler device

    Introduction to Graphene Electronics -- A New Era of Digital Transistors and Devices

    Full text link
    The speed of silicon-based transistors has reached an impasse in the recent decade, primarily due to scaling techniques and the short-channel effect. Conversely, graphene (a revolutionary new material possessing an atomic thickness) has been shown to exhibit a promising value for electrical conductivity. Graphene would thus appear to alleviate some of the drawbacks associated with silicon-based transistors. It is for this reason why such a material is considered one of the most prominent candidates to replace silicon within nano-scale transistors. The major crux here, is that graphene is intrinsically gapless, and yet, transistors require a band-gap pertaining to a well-defined ON/OFF logical state. Therefore, exactly as to how one would create this band-gap in graphene allotropes is an intensive area of growing research. Existing methods include nano-ribbons, bilayer and multi-layer structures, carbon nanotubes, as well as the usage of the graphene substrates. Graphene transistors can generally be classified according to two working principles. The first is that a single graphene layer, nanoribbon or carbon nanotube can act as a transistor channel, with current being transported along the horizontal axis. The second mechanism is regarded as tunneling, whether this be band-to-band on a single graphene layer, or vertically between adjacent graphene layers. The high-frequency graphene amplifier is another talking point in recent research, since it does not require a clear ON/OFF state, as with logical electronics. This paper reviews both the physical properties and manufacturing methodologies of graphene, as well as graphene-based electronic devices, transistors, and high-frequency amplifiers from past to present studies. Finally, we provide possible perspectives with regards to future developments.Comment: This is an updated version of our review article, due to be published in Contemporary Physics (Sept 2013). Included are updated references, along with a few minor corrections. (45 pages, 19 figures

    Diamond semiconductor technology for RF device applications

    Get PDF
    This paper presents a comprehensive review of diamond electronics from the RF perspective. Our aim was to find and present the potential, limitations and current status of diamond semiconductor devices as well as to investigate its suitability for RF device applications. While doing this, we briefly analysed the physics and chemistry of CVD diamond process for a better understanding of the reasons for the technological challenges of diamond material. This leads to Figure of Merit definitions which forms the basis for a technology choice in an RF device/system (such as transceiver or receiver) structure. Based on our literature survey, we concluded that, despite the technological challenges and few mentioned examples, diamond can seriously be considered as a base material for RF electronics, especially RF power circuits, where the important parameters are high speed, high power density, efficient thermal management and low signal loss in high power/frequencies. Simulation and experimental results are highly regarded for the surface acoustic wave (SAW) and field emission (FE) devices which already occupies space in the RF market and are likely to replace their conventional counterparts. Field effect transistors (FETs) are the most promising active devices and extremely high power densities are extracted (up to 30 W/mm). By the surface channel FET approach 81 GHz operation is developed. Bipolar devices are also promising if the deep doping problem can be solved for operation at room temperature. Pressure, thermal, chemical and acceleration sensors have already been demonstrated using micromachining/MEMS approach, but need more experimental results to better exploit thermal, physical/chemical and electronic properties of diamond

    The Conference on High Temperature Electronics

    Get PDF
    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment
    corecore