8 research outputs found

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    ADVANCED INTRAVASCULAR MAGNETIC RESONANCE IMAGING WITH INTERACTION

    Get PDF
    Intravascular (IV) Magnetic Resonance Imaging (MRI) is a specialized class of interventional MRI (iMRI) techniques that acquire MRI images through blood vessels to guide, identify and/or treat pathologies inside the human body which are otherwise difficult to locate and treat precisely. Here, interactions based on real-time computations and feedback are explored to improve the accuracy and efficiency of IVMRI procedures. First, an IV MRI-guided high-intensity focused ultrasound (HIFU) ablation method is developed for targeting perivascular pathology with minimal injury to the vessel wall. To take advantage of real-time feedback, a software interface is developed for monitoring thermal dose with real-time MRI thermometry, and an MRI-guided ablation protocol developed and tested on muscle and liver tissue ex vivo. It is shown that, with cumulative thermal dose monitored with MRI thermometry, lesion location and dimensions can be estimated consistently, and desirable thermal lesions can be achieved in animals in vivo. Second, to achieve fully interactive IV MRI, high-resolution real-time 10 frames-per-second (fps) MRI endoscopy is developed as an advance over prior methods of MRI endoscopy. Intravascular transmit-receive MRI endoscopes are fabricated for highly under-sampled radial-projection MRI in a clinical 3Tesla MRI scanner. Iterative nonlinear reconstruction is accelerated using graphics processor units (GPU) to achieve true real-time endoscopy visualization at the scanner. The results of high-speed MRI endoscopy at 6-10 fps are consistent with fully-sampled MRI endoscopy and histology, with feasibility demonstrated in vivo in a large animal model. Last, a general framework for automatic imaging contrast tuning over MRI protocol parameters is explored. The framework reveals typical signal patterns over different protocol parameters from calibration imaging data and applies this knowledge to design efficient acquisition strategies and predicts contrasts under unacquired protocols. An external computer in real-time communication with the MRI console is utilized for online processing and controlling MRI acquisitions. This workflow enables machine learning for optimizing acquisition strategies in general, and provides a foundation for efficiently tuning MRI protocol parameters to perform interventional MRI in the highly varying and interactive environments commonly in play. This work is loosely inspired by prior research on extremely accelerated MRI relaxometry using the minimal-acquisition linear algebraic modeling (SLAM) method

    3D reconstruction of coronary arteries from angiographic sequences for interventional assistance

    Get PDF
    Introduction -- Review of literature -- Research hypothesis and objectives -- Methodology -- Results and discussion -- Conclusion and future perspectives

    Preoperative Planning for Guidewires Employing Shape-Regularized Segmentation and Optimized Trajectories

    No full text
    Upcoming robotic interventions for endovascular procedures can significantly reduce the high radiation exposure currently endured by surgeons. Robotically driven guidewires replace manual insertion and leave the surgeon the task of planning optimal trajectories based on segmentation of associated risk structures. However, such a pipeline brings new challenges. While Deep learning based segmentation such as U-Net can achieve outstanding Dice scores, it fails to provide suitable results for trajectory planning in annotation scarce environments. We propose a preoperative pipeline featuring a shape regularized U-Net that extracts coherent anatomies from pixelwise predictions. It uses Rapidly-exploring Random Trees together with convex optimization for locally optimal planning. Our experiments on two publicly available data sets evaluate the complete pipeline. We show the benefits of our approach in a functional evaluation including both segmentation and planning metrics: While we achieve comparable Dice, Hausdorff distances and planning metrics such as success rate of motion planning algorithms are significantly better than U-Net
    corecore