
 
 
 
 

ADVANCED INTRAVASCULAR MAGNETIC 
RESONANCE IMAGING WITH INTERACTION 

 
 

 
by 

Xiaoyang Liu 
 
 
 
 
 

 
A dissertation submitted to Johns Hopkins University in conformity with the 

requirements for the degree of Doctor of Philosophy 
 
 
 
 
 

Baltimore, Maryland 
May 2022 

 
 
 
 
 
 
 
 

© 2022 Xiaoyang Liu 
All Rights Reserved 

  



 ii 

Abstract 

Intravascular (IV) Magnetic Resonance Imaging (MRI) is a specialized class of 

interventional MRI (iMRI) techniques that acquire MRI images through blood vessels to 

guide, identify and/or treat pathologies inside the human body which are otherwise 

difficult to locate and treat precisely. Here, interactions based on real-time computations 

and feedback are explored to improve the accuracy and efficiency of IVMRI procedures. 

First, an IV MRI-guided high-intensity focused ultrasound (HIFU) ablation 

method is developed for targeting perivascular pathology with minimal injury to the 

vessel wall. To take advantage of real-time feedback, a software interface is developed 

for monitoring thermal dose with real-time MRI thermometry, and an MRI-guided 

ablation protocol developed and tested on muscle and liver tissue ex vivo. It is shown 

that, with cumulative thermal dose monitored with MRI thermometry, lesion location and 

dimensions can be estimated consistently, and desirable thermal lesions can be achieved 

in animals in vivo. 

Second, to achieve fully interactive IV MRI, high-resolution real-time 10 frames-

per-second (fps) MRI endoscopy is developed as an advance over prior methods of MRI 

endoscopy. Intravascular transmit-receive MRI endoscopes are fabricated for highly 

under-sampled radial-projection MRI in a clinical 3Tesla MRI scanner. Iterative 

nonlinear reconstruction is accelerated using graphics processor units (GPU) to achieve 

true real-time endoscopy visualization at the scanner. The results of high-speed MRI 

endoscopy at 6-10 fps are consistent with fully-sampled MRI endoscopy and histology, 

with feasibility demonstrated in vivo in a large animal model. 
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Last, a general framework for automatic imaging contrast tuning over MRI 

protocol parameters is explored. The framework reveals typical signal patterns over 

different protocol parameters from calibration imaging data and applies this knowledge to 

design efficient acquisition strategies and predicts contrasts under unacquired protocols. 

An external computer in real-time communication with the MRI console is utilized for 

online processing and controlling MRI acquisitions. This workflow enables machine 

learning for optimizing acquisition strategies in general, and provides a foundation for 

efficiently tuning MRI protocol parameters to perform interventional MRI in the highly 

varying and interactive environments commonly in play. This work is loosely inspired by 

prior research on extremely accelerated MRI relaxometry using the minimal-acquisition 

linear algebraic modeling (SLAM) method. 

Advisor and first reader:  Paul A. Bottomley 

Russell H. Morgan Professor, Department of Radiology and Radiological Science, Johns 

Hopkins University 
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Engineering, Whiting School of Engineering, Johns Hopkins University 
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Chapter 1: Introduction 

1.1 Overview 

Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality 

that utilizes nuclear magnetic resonance (NMR) to generate images that can reveal 

underlying anatomy and physiological processes in the human body. MRI has been 

widely used in the clinic due to its lack of ionizing radiation and its capability for 

providing versatile contrasts based on differences in tissue NMR relaxation times which 

provide sensitivity to pathology; flow which provides sensitivity for angiography, 

perfusion, and diffusion imaging; and NMR phase and frequency information that 

enables MRI thermometry and spectroscopy. Recent advances in fast MRI techniques and 

minimally invasive surgeries have made interventional MRI (iMRI) techniques a 

possibility. Among these, intravascular MRI (IVMRI) is a specialized class of techniques 

that acquire MRI images directly from inside blood vessels to guide diagnostic or 

therapeutic procedures which can otherwise be difficult in terms of access, safety and 

precision. Recent years have seen an increased number of IVMRI studies and 

applications. Higher speed, finer resolution and more precise control, however, are still 

needed for IVMRI to advance into clinical use and provide value that can complement 

existing interventional radiology modalities. In order to explore the potential value of 

IVMRI in interventional settings, this dissertation explores aspects of IVMRI including 

system design, device fabrication, software implementation, real-time online computation 

and display, operation and protocol optimization, with an underlying rationale that iMRI 

will benefit from the optimization afforded by real-time feedback. This dissertation is 

organized as follows. 
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Chapter 1 gives an overview of the dissertation and describes basics of IVMRI. 

Chapter 2 presents the development of a therapeutic device that can ablate 

pathological tissues that are proximal to, surround and/or potentially encroach on blood 

vessels. In these cases, it is important to achieve efficient ablation of the pathology 

without injuring the vessels providing access. Prior and current work has demonstrated 

that among various ablation modalities such as microwave ablation (MWA) and 

radiofrequency (RF) ablation (RFA), high-intensity focused ultrasound (HIFU) ablation 

is advantageous in providing precise control while minimizing injury at the tissue-device 

interface. After design iterations, we develop a novel IVMRI loopless antenna detector 

that was mated with a water-cooled IVHIFU ablation catheter to provide precision MRI-

guided targeting, monitoring and thermal titration of perivascular ablation.  Feasibility 

was demonstrated in ex vivo experiments. Progress at various stages have been published 

and presented at  conferences in posters and oral presentations [1–4]. 

Chapter 3 further explores the performance of the combined IVMRI HIFU device 

with ex vivo and in vivo experiments. A protocol was developed to coordinate and 

streamline the steps of ablation, monitoring and titration of therapy. Software and 

algorithms dedicated for online processing of the signals being monitored, and the 

postprocessing of anatomy/thermometry/photography images are also described.  

Analysis of data from these experiments shows that the integrated system can 

consistently monitor the ablation status of ongoing procedures and deliver adequate 

ablation to a selected ablation targets under real-time guidance from online thermometry 

while affording protection of the vessel wall from thermal injury. Chapters 3 and  4 have 

been published in part as a journal paper [5]. 
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Chapter 4 pushes the speed of high-resolution MRI endoscopy up to 10 fps to 

enable real-time endoscopy analagous to that of routine optical and intravascular 

ultrasound (IVUS) modalities. IVMRI endoscopes suitable for a clinical MRI scanner are 

developed and incorporated with a highly accelerated real-time MRI system. The real-

time system is enabled by highly undersampled radial pulse sequences and corresponding 

temporally regularized iterative nonlinear inversion algorithm (NLINV) implemented on 

cascaded graphic processor units (GPUs) in a collaboration with researchers at the Max 

Planck Institute in Göttingen, Germany. In comparison with conventional MRI and 

regular real-time MRI systems, the incorporation of MRI endoscopy translates the 

previously fixed imaging reference frame to a mobile reference frame attached to the 

intravascular endoscope. This enables use of the interventional coil as a fully interactive 

endoscope, which makes it easily adoptable in intravascular imaging practices such as 

IVUS and optical coherence tomography (OCT). Algorithms for post-processing and 

analysis of IVMRI endoscopy images were also developed to reduce artefacts and/or 

evaluate performance in real time. This work at various stages was presented at  

conferences and  published as a journal paper [6–8]. 

Chapter 5 presents work on using the minimal-acquisition, linear algebraic 

modeling (SLAM) method to dramatically accelerate MRI relaxation time mapping of 

compartmentalized targets. The author performed  experiments and data processing as a 

secondary author to a colleague in the associated journal publication [9]. This work has 

been applied to IVMRI in other studies [10]. Moreover, the methodology of accelerated 

acquisition and reconstruction is connected to the work presented in Chapters 4 and 6, 

and opened the window for the author explore the topics in speed and contrast. 
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Chapter 6 proposes a novel and general framework for predicting MRI contrast 

over a range of acquisition parameters. The methodology is applicable for the 

(semi-)automatic tuning of image contrast to streamline not only IVMRI, but regular 

MRI as well, in demanding clinical environments. We for the first time proposed the 

objective and methods from a perspective of parameterized contrast synthesis (PCS). A 

protocol for running the scheme on an external computer was developed and 

implemented with a clinical MRI sequence using minimally invasive code. This design 

utilizes real-time interactive communication to analyze and optimize image contrast.  

Data analysis and strategy-prescriber subroutines are implemented as replaceable 

modules embedded in high-level programming language to enable fast-prototyping of 

application-specific algorithms for different applications. The sampling-and-prediction 

algorithm is framed as a feature selection problem, wherein baseline nearest-neighbor 

method, linear principal component analysis (PCA) method and deep neural network 

(DNN) method are used to learn contrast patterns from an MRI coil calibration dataset. 

The prediction performance of this learning process is evaluated with images acquired 

using standard MRI protocols. Progress on this project was been reported at a 

conference [11] and a journal paper is in preparation. 

Chapter 7 concludes the dissertation, providing insights into the outcomes, their 

potential impact and directions for further work. 

1.2 Magnetic Resonance Physics 

1.2.1 Nuclear Magnetic Resonance 

When an external constant magnetic field (B0) is applied to nuclei with nonzero 

nuclear spin, the nuclei can absorb energy from an oscillating magnetic field (B1) and 



 5 

emit electromagnetic signals at a frequency proportional to B0. This phenomenon is 

called nuclear magnetic resonance (NMR). NMR was first observed and explored by 

Nobel Laureates Isidor Rabi, Felix Bloch and Edwards Mills Purcell. Common isotopes 

that can exhibit NMR are 1H, 13C, 31P, etc., and as 1H (proton) is the most abundant in 

forms of H2O, -CH2- and CH3- in biological tissue, its signal is most widely used for 

medical imaging. The spin angular momentum S of these nuclei are associated with a 

magnetic dipole moment µ via the gyromagnetic ratio γ: 

 𝜇𝜇 = 𝛾𝛾𝛾𝛾 (1.1) 

where γ is a characteristic property of the nucleus and for 1H its value is γ
2π

=

42.58 𝑀𝑀𝑀𝑀𝑀𝑀 ⋅ 𝑇𝑇−1. 

In bulk matter subject to a constant magnetic field B0, the collection of magnetic 

dipole moments of magnitude µ in unit volume gives rise to a net nuclear magnetization 

M. Although NMR in essence is a quantum mechanical phenomenon, for the practical 

purpose of medical imaging with MRI, the bulk behavior of the magnetization in most 

NMR experiments can be described by classical physics. Similar to a gyro precessing in a 

gravitational field, the precession of magnetization M in a magnetic field B is given by 

the Bloch equation: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀 × γ𝐵𝐵 (1.2) 

The precession frequency solved from this equation is called the Larmor frequency: 

 f =
γ
2π

B (1.3) 

An oscillating magnetic field B1 tuned to the Larmor frequency applied in the 

transverse direction of B0 (traditionally chosen as the z-axis of a Cartesian coordinate 
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system) can excite the magnetization by inducing a torque that tips it into the transverse 

plane whereupon it precesses with a net traverse component Mxy. According to Faraday’s 

law of induction, it is possible to detect a voltage signal induced by this precession in a 

detector coil sensitive to the x-y plane. This is the NMR signal. Energy exchange 

between the nuclear spins and their local environment, between the spins and their 

“lattice” and between spins and other spins cause the magnetization to return to an 

equilibrium state in B0. This process is called relaxation, and its characteristic times are 

called the longitudinal or spin-lattice relaxation time T1 and the transverse or spin-spin 

relaxation time T2. The Bloch equation including this relaxation phenomenon is: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀 × γ𝐵𝐵 −
𝑀𝑀𝑥𝑥𝑥𝑥

𝑇𝑇2
−
𝑀𝑀𝑧𝑧 −𝑀𝑀0

𝑇𝑇1
 (1.4) 

In practice, 𝐵𝐵1 is applied with an oscillating frequency falling within radiofrequency 

range in a short period of time in the form of RF pulses for excitation. 

1.2.2 Magnetic Resonance Imaging 

Though NMR makes it possible to detect a signal proportional to the transverse 

magnetization in an excited sample, the signal is still not spatially differentiated and no 

imaging is afforded. Modern MRI uses spatially varying magnetic fields, denoted by a 

gradient field vector 𝐺⃗𝐺 to resolve signals from different locations. This technique was 

first used by Paul Lauterbur to generate the first NMR signal images in 1973 [12]. In 

2003, Paul Lauterbur and Peter Mansfield shared the Nobel Prize in Physiology or 

Medicine for their “discoveries concerning magnetic resonance imaging”. It should be 

noted that the purpose of the gradient field is to produce a spatial distribution of the 

Larmor frequency of the nuclear magnetization. For this purpose, the component of the 
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applied magnetic field gradient affecting the Larmor frequency is always that which 

aligns with the main magnetic field B0 along the z-axis.  

 Consider a spatial distribution of the component 𝑀𝑀𝑥𝑥𝑥𝑥(𝑟𝑟) of an excited sample, up 

to a multiplication factor. The bulk signal can be written as 

 s(t) = �Mxy(r⃗)e−j2πf(r�⃗ )t dr⃗ 

= �𝑀𝑀𝑥𝑥𝑥𝑥(𝑟𝑟)𝑒𝑒−𝑗𝑗2π
𝐵𝐵0+𝐺⃗𝐺⋅𝑟𝑟
2π γ𝑡𝑡 𝑑𝑑𝑟𝑟 

= �𝑀𝑀𝑥𝑥𝑥𝑥(𝑟𝑟)𝑒𝑒−𝑗𝑗2π
γ𝐺⃗𝐺𝑡𝑡
2π ⋅𝑟𝑟 𝑑𝑑𝑟𝑟 ⋅ 𝑒𝑒−𝑗𝑗2πf0𝑡𝑡 

= ℳ𝑥𝑥𝑥𝑥�𝑘𝑘�⃗ �𝑒𝑒−𝑗𝑗2πf0𝑡𝑡 

(1.5) 

with 

 
𝑘𝑘�⃗ =

γ𝐺⃗𝐺𝑡𝑡
2π

 (1.6) 

Here ℳ𝑥𝑥𝑥𝑥�𝑘𝑘�⃗ � is the spatial Fourier transform (FT) of 𝑀𝑀𝑥𝑥𝑥𝑥(𝑟𝑟), and 𝑘𝑘�⃗  is the spatial Fourier 

image space (k-space) coordinate. It can be appreciated from this relation that the 

introduction of gradient field 𝐺⃗𝐺 maps the image k-space magnetization distribution to the 

signal existing in time dimension. In other words, sampling the signal in time is 

equivalent to sampling the signal in k-space. With carefully designed gradient field 

schema, it is possible to sample the whole of k-space and acquire the corresponding 

image using inverse FT. As the gradient fields are typically applied within a limited 

period of time during which the NMR signal is evolving, they are also called gradient 

pulses. 
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1.2.3 Signal Acquisition and Reconstruction 

Selective excitation 

Although space information can be encoded by use of gradient fields, in most 

cases it is still needed to selectively excite portion of a sample to limit the amount of 

required encoding. This can be achieved by applying spatially-selective RF pulses which 

involves excitation in the presence of a gradient field. Frequency components of the RF 

pulse and the resonance frequency distribution encoded by the gradient field, 

collaboratively determine the excitation profile. 

An ideal monochromatic RF pulse with unit amplitude at frequency f0 is 

 B1(t) = ej2πf0t, −∞ <  𝑡𝑡 <  ∞ (1.7) 

In practice, selective excitation is applied always within a limited time window and 

nearly always with amplitude modulation of the RF pulse which can be approximately 

modeled with a decaying envelope function 𝐴𝐴(𝑡𝑡). The modulated 𝐵𝐵1(𝑡𝑡) and its FT are: 

 B1(t) = A(t)ejω0t 

ℱ{𝐵𝐵1(𝑡𝑡)} = ℱ{𝐴𝐴(𝑡𝑡)} ∗ ℱ{𝑒𝑒𝑗𝑗2πf0𝑡𝑡} 

= 𝐴𝐴(f) ∗ δ(f − f0) = 𝐴𝐴(f0) 

(1.8) 

where ℱ(⋅) denotes FT and ω0 = 2πf0 is the angular frequency. Therefore, given 

gradient field amplitude and direction, the excitation location can be controlled by the 

oscillation frequency and the excitation profile can be determined by the envelope. A 

commonly used RF pulse envelope is a truncated SINC function for a rectangular slice 

excitation applied in the presence of a gradient pulse with a constant amplitude, as its 

Fourier transform is a RECT (square wave-like) function. For accurate implementation, 

the truncation of the SINC modulation must be compensated with corrective envelope 
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designs. Depending on the thickness of the selective excitation, there can be slice (2D or 

two-dimensional imaging) and slab (three dimensional, 3D imaging) or volumetric 

selective excitations. 

Signal acquisition 

Further considering Equations (1.5) and (1.6), one is certainly not bound to a 

constant gradient field 𝐺⃗𝐺 during the gradient pulses. Equation (1.6) can be re-written as: 

 
𝑘𝑘�⃗ =

γ
2π

� 𝐺⃗𝐺(τ)𝑑𝑑𝑑𝑑
𝑡𝑡

0
 (1.9) 

In order to traverse the entire k-space, the gradient fields must be varied in direction and 

magnitude in various “k-space trajectories”. This is commonly accomplished in a series 

of excitations in which the gradients are varied in one or more spatial dimensions, known 

as a “pulse sequence”. For example, in the most commonly used method in today’s 

clinical MRI called a Cartesian or “spin warp” imaging sequence [13], the magnetization 

is excited and the gradient fields applied to acquire a single k-space trajectory, with: 

 kx =
γGxt
2π

−
γGxtRO
4π

, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑅𝑅𝑅𝑅] 

𝑘𝑘𝑦𝑦 = 𝑛𝑛𝑃𝑃𝑃𝑃
γΔ𝐺𝐺𝑦𝑦𝑡𝑡𝑦𝑦

2π
=

𝑛𝑛𝑃𝑃𝑃𝑃
𝑁𝑁𝑃𝑃𝑃𝑃/2

γ𝐺𝐺𝑦𝑦𝑡𝑡𝑦𝑦
2π

,𝑛𝑛𝑃𝑃𝑃𝑃 ∈ [−𝑁𝑁𝑃𝑃𝑃𝑃/2,𝑁𝑁𝑃𝑃𝑃𝑃/2] 
(1.10) 

Here [0, 𝑡𝑡𝑅𝑅𝑅𝑅] is the time window wherein the temporal signal is read out corresponding to 

a k-space trajectory, 𝑘𝑘𝑥𝑥, that encodes signal along the x-direction in each excitation in the 

form of a frequency distribution which forms a 1D projection. 𝑘𝑘𝑦𝑦 is then changed 

between each acquisition step (numbered 𝑛𝑛𝑃𝑃𝑃𝑃) for a total number of 𝑁𝑁𝑃𝑃𝑃𝑃 acquisitions by 

applying a gradient field pulse 𝐺𝐺𝑦𝑦 before each readout window to encode a phase 

distribution along y direction. Here, the x-direction is called the readout (or frequency 
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encoding) direction; 𝑡𝑡𝑅𝑅𝑅𝑅 is called the readout time; the y-direction is called the phase-

encoding direction; and 𝑁𝑁𝑃𝑃𝑃𝑃 is the number of phase-encoding steps. 

Another common MRI method is projection reconstruction [12] or radial 

acquisition, because the method utilizes radial trajectories in k-space such as 

 
𝑘𝑘𝑥𝑥 =

𝛾𝛾𝐺𝐺𝑥𝑥𝑡𝑡
2𝜋𝜋

−
𝛾𝛾𝐺𝐺𝑥𝑥𝑡𝑡𝑅𝑅𝑅𝑅

4𝜋𝜋
,𝑘𝑘𝑦𝑦 =

𝛾𝛾𝐺𝐺𝑦𝑦𝑡𝑡
2𝜋𝜋

−
𝛾𝛾𝐺𝐺𝑦𝑦𝑡𝑡𝑅𝑅𝑅𝑅

4𝜋𝜋
 

𝐺𝐺𝑥𝑥 = 𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐 θ ,𝐺𝐺𝑦𝑦 = 𝐺𝐺 𝑠𝑠𝑠𝑠𝑠𝑠 θ , 𝑡𝑡 ∈ [0, 𝑡𝑡𝑅𝑅𝑅𝑅] 
(1.11) 

Here each acquired radial trajectory is a slice in the 2D k-space, which after inverse FT 

again results in a 1D-projection of the signal distribution along the direction defined by 𝜃𝜃, 

according to the projection-slice theorem. Acquisitions are then repeated with different 

values of 𝜃𝜃 to acquire 𝑁𝑁𝜃𝜃 such projections. The principle of this method is closely related 

to that of computed tomography (CT), which came earlier than MRI, and in fact, the first 

MRI images were indeed generated using the projection method [12]. 

Besides the two acquisition methods above, there are many other methods that 

extend or vary the basic Cartesian or radial methods of traversing k-space such as “zig-

zag” echo-planar imaging and PROPELLER/BLADE, or even spiral trajectories [14–16]. 

Reconstruction 

Reconstruction is performed to convert the raw signal samples into images. For 

Cartesian or other rectilinear acquisitions, raw data sampled from temporal signals 

corresponds to k-space data, and images can be reconstructed through multidimensional 

fast Fourier transformation (FFT), along with preprocessing and postprocessing steps. 

For radial acquisitions, the non-uniformly sampled data points can be interpolated 

onto a uniform grid, after which FFT can be performed [17]. An alternative algorithm is 

filtered back projection (FBP), which is the de facto standard reconstruction method for 
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clinical CT. These two methods are closely related, and the density correction in radial 

acquisition gridding is similar to the ramp filter used in FBP [18]. The methods, however, 

differ in the space in which reconstruction is computed, resulting in performance 

differences when implementation [19]. The gridding method is also generalizable for use 

in all kinds of non-uniform acquisitions. 

Acceleration is among the most important topics for MRI research. To this end, 

reconstruction methods are proposed for parallel imaging employing separate multi-coil 

detectors, and with signal undersampling. The basic representative examples of these 

techniques are SENSE and GRAPPA [20,21]. In order to resolve aliased signals resulted 

from undersampling, SENSE explicitly utilizes the nonuniform sensitivity maps of 

surface detector coils to replace low-order phase-encoding gradient steps by performing 

corrections in image space; on the other hand, GRAPPA estimates missing data directly 

in k-space using patterns learned from a fully-sampled autocalibration region. The 

relation between SENSE and GRAPPA are further explored from a point-of-view of 

subspace MRI methods, and the “ESPIRiT” method proposed to incorporate the 

advantages of both SENSE and GRAPPA [22]. Recent years have also seen trends in 

reconstruction being performed as a regression task that estimates target parameters by 

enforcing compliance between undersampled data and an a priori model, or a model 

learned from previous data. Examples include model-based reconstruction for 

quantitative MRI, “compressed sensing” and deep learning [23–26]. 

1.2.4 Sequences and Contrasts 

Contrast in images come from the difference in signals from different locations. 

An attractive property of MRI is its versatility in that it can encode differences in 𝑀𝑀𝑥𝑥𝑥𝑥 
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through distinct mechanisms to reveal underlying properties of biological tissues that are 

related to pathology or function. The most common properties appearing in contrast 

formulations are proton density (PD), T1 and T2, which determine the maximum 

magnetization and the characteristic times for the signal to decay. Today’s MRI, 

however, has grown far beyond these properties, and has added capabilities of imaging 

functional, diffusional, temperature, physiological and chemical properties, etc. [27–30]. 

In order to create such contrasts and acquire such signals successfully, RF pulses 

and gradient pulses must be applied in a well-designed order, with the timing and 

amplitude of all the pulse sequence parameters under precise control. There is some 

common terminology that refers to the adjustable parameters of a pulse sequence, such as 

repetition of time (TR), which refers to the period between repeated excitations; echo 

time (TE) usually referring to the center of the readout window (which coincides with a 

“gradient echo”) relative to the initial excitation time; and the flip angle (FA) which 

refers to the rotation angle through which 𝐵𝐵1 tips the magnetization towards transverse 

plane during excitation. These terms, however, can have different meanings in more 

complex MRI sequences that are not fully described by a few parameters. 

The resulting contrast is in general determined by the relevant underlying 

properties as well as the sequence parameters in toto. For example, the signal of a short-

TR steady-state free precession (SSFP) sequence is given by [31] 

 
s = M0

1 − e−
TR
T1 sin(FA)

1 − e−
TR
T1e−

TR
T2 − �e−

TR
T1 − e−

TR
T2� cos(FA)

 (1.12) 

where the equilibrium magnetization 𝑀𝑀0 is proportional to PD. 
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1.2.5 MRI Thermometry 

MRI thermometry describes a class of MRI methods that measures or maps 

temperature change or absolute temperature based on temperature-sensitive NMR 

properties of tissue. These properties include PD, magnetic transfer, T1, T2, the diffusion 

coefficient (D) and small shifts in the water proton resonance frequency (PRF). Of these, 

the PRF shift (PRFS) has proved the most useful in that it has good linearity over a 

thermal therapy-relevant range and because it is almost independent of tissue type [32–

34]. Protons experience different local magnetic field due to the shielding effect electrons 

which is affected by temperature (T). Their resonance frequency can be written:  

 𝑓𝑓 =
γ

2π
𝐵𝐵0(1− α𝑇𝑇) (1.13) 

where 𝛼𝛼 ≈ 0.01 𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ ℃−1 is an electron screening constant. Considering the signal 

phase, 𝜙𝜙 = 2𝜋𝜋𝜋𝜋 ⋅ 𝑇𝑇𝑇𝑇, images acquired at different temperatures will have a phase 

change: 

 Δϕ = −γ𝐵𝐵0 ⋅ 𝑇𝑇𝑇𝑇 ⋅ αΔ𝑇𝑇 (1.14) 

To estimate temperature change in °C, a baseline image with known temperature is 

required, which is often obtained by measuring the body temperature simultaneously 

while acquiring a first image prior to any thermal intervention. 

1.3 Intravascular Imaging 

Coronary heart disease is a leading cause of death worldwide, caused by blood 

vessel stenosis usually due to plaque or thrombosis. The most common conventional 

imaging method to evaluate disease severity and to help with treatment is X-ray coronary 

angiography. Recent years have seen the development and increased usage of 

intravascular imaging in these tasks, because unlike X-ray angiography, IV imaging can 
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now visualize the vessel wall and critical plaques, instead of just inferring stenoses from 

areas of reduced intensity in contrast-enhanced images of the blood vasculature [35]. 

Common methods of IV imaging include IVUS and OCT. IVMRI, a subject of this 

thesis, has the potential for adding value to complement some of the limitations of IVUS 

and OCT. 

1.3.1 Intravascular Ultrasound 

The key component of ultrasound imaging is the transducer. A transducer 

transmits ultrasound waves by converting electric energy into mechanical energy, and it 

can also detect responsive ultrasound signals when serving as a receiver. In IVUS, the 

transducer is incorporated on an IV catheter, through which it can image its surroundings 

inside the blood vessel. Ultrasound imaging differentiates anatomical structures at 

different depths by measuring the delay in the reflected and refracted signal magnitude 

relative to the transmission pulse, and lateral structures are resolved as the user moves the 

transducer or the transmission beam is swept electronically. Due to the finite width of the 

sound wave pulse and diffraction effects on the beam emitted from transducer, IVUS has 

finite axial resolution (Ra) and lateral resolution (Rl) given by [36,37]: 

 Ra =
c

2BW
 

𝑅𝑅𝑙𝑙 = λ
𝑙𝑙𝑓𝑓
𝐴𝐴

, at focal length 
(1.15) 

where 𝑐𝑐 is the ultrasound wave speed, 𝐵𝐵𝐵𝐵 is the pulse bandwidth, 𝜆𝜆 is the ultrasound 

wavelength, 𝑙𝑙𝑓𝑓 is the focal length and 𝐴𝐴 is the transducer aperture size. At first glance it 

may seem that a shorter wavelength 𝜆𝜆 and pulse length can achieve a finer resolution, but 

reducing these adversely affects the BW and diffraction artefacts. Higher frequency also 



 15 

decreases the penetration depth of ultrasound. Therefore, there are a lot of tradeoffs to 

consider to achieve the best performance. For modern IVUS transducers operating at 

frequencies of 20-50 MHz, the axial resolutions are about 70-200 µm, and the lateral 

resolution which is dependent on axial distance, is about 200-250 µm [37]. Artifacts often 

seen in IVUS arise from acoustic shadows from objects that are impenetrable to 

ultrasound, such as highly calcified lesions and the metal structures commonly used in 

interventions used for treating coronary artery disease.  

1.3.2 Optical Coherence Tomography 

Optical coherence tomography has similar imaging principles as IVUS, in that it 

illuminates near-infrared light on samples and measures the backscattered light to 

reconstruct the structural information at different depths. Compared to sound waves used 

in IVUS, light in OCT travels much faster, and the measurements are based on 

interferometry, where a low time-coherence source light is split into a reference beam and 

a sample beam, and an interferogram of the two beams is measured. In traditional time-

domain OCT, a depth scan is performed in the reference arm to acquire an equivalent 

temporal signal. The interferogram has the form [38] 

 G(τ) = 2Re{Γsource(τ) ∗ h(τ)} (1.16) 

where Γsource(τ) is the auto-correlation function of the source light which closely reflects 

the wavelength width of the source, and h(τ) is the backscattering profile from the 

sample corresponding to the depth information to be estimated. The depth scan used in 

time-domain OCT is often time-consuming as the speed is limited by a mechanical 

driver. 
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From another point-of-view, according to a first-order (Born) approximation, the 

scattered wave can be expressed as [38]: 

 VS�r, k(s), t� = 

V(i)�r, k(i), t� +
1
4π

� V(i)�r′, k(i), t�
sample

⋅ FS�r′, k� ⋅ GH�r, r′� ⋅ d3r′ 
(1.17) 

Here 𝑉𝑉(𝑖𝑖)�r, k(𝑖𝑖), 𝑡𝑡� is the incident wave function, 𝐹𝐹𝑆𝑆(r,𝑘𝑘) is the sample scattering 

potential, and 𝐺𝐺𝐻𝐻�r, r′� = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝑖𝑖|𝑟𝑟 − 𝑟𝑟′|)/|𝑟𝑟 − 𝑟𝑟′� is a Green’s function. Under the 

assumption that the scattered wave is measured at a distance much greater than the 

sample dimension, this equation can be re-written in the form an inverse FT, and 

considering only the depth direction z, we have the relation 

 FS(z) ∝ ℱ{AS(K)} (1.18) 

where AS(K) is the complex amplitude of the backscattered field which depends on the 

backscattered wave vector, K, which is twice the incident wave vector. The spectrum 

AS(K) can be obtained by spectral interferometry, where the interferometer is equipped 

with a spectrometer that resolves the interferogram spectrally. Techniques for resolving 

depth information based on relation (1.18) are called “Fourier-domain OCT”. These 

improve the imaging speed, largely by eliminating the need for a depth scan. 

OCT has applications mainly in ophthalmology, dermatology and interventional 

cardiology. In all cases, other than for resolving the depth of structures, lateral scans are 

needed to form tomographic images. Intravascular OCT (IVOCT) is used to help 

diagnose and/or treat coronary heart disease, where the optical window is located on the 

side of an IV catheter tip that illuminates the surrounding vessel tissues. The lateral scan 

is performed by rotating the optics at the transducer tip to form cross sectional images of 

vessels. As can be appreciated from Equation (1.16), the depth resolution is dependent on 
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the light source bandwidth, which is typically ~10µm. Analogous to IVUS, the lateral 

resolution depends on the distance and beam characteristics, and are around 20-

40 µm [39]. One drawback of OCT arises from the near-infrared light it uses, which has 

relatively poor penetration depths depending on tissue type (0.1-2 mm), and is completely 

attenuated by blood. As a result, blood has to be cleared out of the field-of-view (FOV) 

by occlusion and/or flushing. The development of Fourier-domain OCT with fast scan 

rates makes it possible to work with short-duration non-occluding flushing for in vivo 

studies. 

1.3.3 Intravascular Magnetic Resonance Imaging 

IVMRI uses miniaturized receiver or transmitter/receiver RF coils placed on IV 

catheters to perform imaging inside blood vessels. The basic imaging principles of 

IVMRI are the same as are applicable to conventional external MRI, discussed in Section 

1.2 Magnetic Resonance Physics. The primary distinguishing feature of IVMRI is that 

due to proximity to the point of interest and the confined imaging region, a much higher 

signal-to-noise ratio (SNR) (up to 20-fold) and finer resolution (50-300 µm) than 

conventional MRI is achievable deep within the body [40–43]. 

In case of external coil, for a particular coil-sample geometry combination, the 

measured noise contributing to an SNR measurement is comprised of the coil noise and 

the sample noise, and the SNR dependence on B0 can be qualitatively expressed as [44] 

 
ψ =

𝐵𝐵02

�𝛼𝛼𝐵𝐵0
1 2⁄ + 𝛽𝛽𝐵𝐵02�

1 2⁄  (1.19) 

where α and β represents factors associated with the coil size and the volume of the 

sample contributing the noise, respectively. While measures can be taken that render the 
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relative contribution of the coil noise negligible by eliminating electric (E) field losses, 

the sample noise is an inherent part of the biological system being studied. Therefore, the 

best SNR achievable for a given coil geometry, called the “intrinsic SNR” (ISNR), is the 

evaluated assuming zero coil noise, and is linearly dependent on B0 for nearly all external 

whole volume (head, body, phased-array) MRI coil configurations [45]. The “ultimate 

intrinsic SNR” (UISNR) extends the concept of ISNR and considers the maximum 

possible SNR independent of coil geometry, and thereby provides a guidance for 

optimizing coil design [46,47]. 

Although both the ISNR and UISNR depend linearly on B0 of external coils, the 

SNR of internal detectors like IVMRI coils has a fundamentally different B0 dependence. 

There are various types of IVMRI coil designs, which can roughly be categorized into 

loop coils and loopless coils [40,41,48]. Theoretical and experimental investigations 

show, that for both types of coils, the absolute SNR ψ𝑠𝑠 is given by [49] 

 
ψ𝑠𝑠 ∝

𝐵𝐵02

�𝑅𝑅load
 (1.20) 

where 𝑅𝑅load is the RF electrical resistance of the sample. The dominant noise comes from 

direct electric (E)-field losses involving coil-sample coupling, which cannot be 

eliminated through shielding or distributing coil tuning elements, as is in the case of 

external coils. Given that the direct E-field losses in the sample and the coil, being 

primarily dependent on the tissue’s RF impedence, do not vary much with B0, the 

realizable limiting SNR dependence on B0 of internal coils is nearly quadratic. This 

results in a much greater advantage in SNR when IVMRI coils are used at higher 

magnetic fields, as evidenced by experimental studies [43,49]. 
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Figure 1.1 shows examplary designs of loop and loopless IVMRI coils [50]. The 

detector in the loop coil is essentially an LC resonant circuit, while the loopless coil is a 

dipole antenna. Both coils/antennae need to be tuned to the NMR frequency in a lossy 

medium whose impedance properties are comparable to the sample, and connected to 

matching networks via tuned coaxial cables of odd multiples of the quarter-wavelength 

(𝜆𝜆/4) of the electromagnetic field in the media. It is worth noting that the coils can be 

used in transmitter/receiver mode and/or receiver-only mode, where, in the latter case, a 

conventional external transmit coil is used for excitation. In the latter case, a decoupling 

circuit including a diode switch is engaged to decouple the transmitter from the IV 

receiver coil during excitation to avoid excessive heating at the internal coil and to 

suppress induced currents which otherwise counteract the external field, according to 

Lenz’s law. 

 

Recent years have seen developments in IVMRI to make it more amenable to 

clinical deployment. Loopless IVMRI technique has been integrated with RF ablation to 

deliver IV ablation under MRI guidance [51]. MRI endoscopy was proposed to increase 

 
Figure 1.1: Illustration of IVMRI catheter loop coil (a) and loopless coil/antenna (b). D 
is the switchable diode and B denotes the cable trap balun connected to the cable 
shield. (Copyright 2009 Wiley. Used with permission from Sathyanarayana S, 
Bottomley PA. MRI endoscopy using intrinsically localized probes. Medical Physics 
2009;36:908–19) 
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the speed of IVMRI further by transforming the imaging spatial reference system from 

the laboratory frame-of-reference to the detector frame-of-reference by eliminating slice 

selection steps, resulting in a more interactive procedure analogous to conventional 

endoscopy [42,50]. Further acceleration using compressed sensing has been 

explored [52]. Rapid and precise, quantitative IVMRI with automatic pathology 

characterization has also been studied using a combination of IVMRI with MRI 

relaxometry and with acceleration techniques such as spectroscopy with linear algebraic 

modeling also included in Chapter 5 of this thesis [9,10,53]. 

1.4 Ablation Therapy 

Ablation is a therapy that deposits destructive energy targeted on pathological 

tissues such as tumors, dysfunctional myocardium and cerebral tissue and vascular 

malformations [54–56]. Based on the mechanism of destruction, ablation methods can 

generally be categorized as thermal and non-thermal. 

Thermal ablations include methods that use heat or cold to ablate tissues. In most 

thermal methods such as RF ablation, microwave ablation, HIFU, and endovenous laser 

ablation (EVLA), energy in various forms such as electromagnetic and/or acoustic are 

deposited in tissue and converted into thermal energy via processes of absorption [56–

59]. One exception is cryoablation, where tissue injuries are induced by rapid cooling 

(extraction of energy) via conduction with a cooling probe in contact with the targeted 

tissue [60]. 

For thermal heat ablation, there are different ways to titrate the heat exposure at 

the target to ensure tissue necrosis. One method is to set a critical threshold temperature 

to maintain for a certain time period [61]. A more comprehensive method is to integrate 
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the entire temperature history and calculate the cumulative equivalent minutes at 43°C 

(CEM43) [62] 

 
𝐶𝐶𝐶𝐶𝐶𝐶43 = � 𝑅𝑅43−𝑇𝑇

𝑡𝑡=𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

0

Δ𝑡𝑡 

 
𝑅𝑅 = �0.25,𝑇𝑇 < 43℃  

0.5,𝑇𝑇 ≥ 43℃  

(1.21) 

 

where T is the temperature at each time interval Δ𝑡𝑡. Previous studies have shown that a 

threshold of 340 CEM43 is widely accepted as the thermal dosage which delineates the 

boundary of thermal coagulation [34,63,64]. It has also been shown in these studies that 

MRI thermometry is a suitable method for titrating thermal dose in different tissue 

locations, by capturing a temporal series of high resolution spatial temperature maps. 

Non-thermal ablations include: irreversible electroporation (IRE), where electrical 

fields are applied to irreversibly increase the permeability of cell membranes and induce 

apoptosis [65,66]; photodynamic therapy (PDT), where photosensitizers are administered 

to target locations and activated by light to cause fatally damage malignant 

tissues [67,68]; chemical ablation, wherein a cytotoxic agent is injected into tissues to 

induce necrosis [69]. Most of these methods carry risks of complications potentially 

severe, requiring the careful monitoring and titration of therapy delivery with 

consideration of the specific mechanisms of operation. 
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Chapter 2: IVMRI HIFU Ablation System Development 

2.1 Introduction 

The degree of involvement with adjacent blood vessels is often critical in 

determining whether a malignancy is surgically resectable. Pancreatic cancer, which has 

an incidence of 54,000 new cases and 43,000 deaths in the USA per year, is an example 

for tumor-vessel involvement [61,70–72]. Cancers with extensive tumor-vessel 

involvement and/or heterogeneous vessel contours around critical vessels like the 

superior mesenteric artery, are considered non-resectable and have very poor survival 

rates that are 3-10 times worse than those that are surgically resectable [70,73]. 

Hepatocellular cancer, with 42,000 new cases and 32,000 deaths annually is another 

example for tumor-vessel involvement. It has a high incidence of recurrence post-

resection (~20%, ~50% and ~75% within 1, 3 and 5 years post-surgery respectively). In 

both examples, the need to preserve high-value tissue while carefully removing tumor at 

the margins are critical considerations [74,75]. For these and other pathologies, new 

methods of precision-guided therapy delivery could have a critical impact on reducing 

their terrible toll and improving patient outcomes. 

Two common types of palliative or potentially curative treatments undergoing 

clinical trials are percutaneous ablation and extracorporeal HIFU [76–78]. Currently, 

percutaneous ablations include thermal ablation methods such as RFA, MWA, laser 

ablation and cryoablation; and non-thermal ablation such as IRE and PDT. These are 

nearly all performed percutaneously in the abdomen, and are prone to complications 

mentioned above, such as vascular damage, bowel perforation, fistulae, needle tract 

metastasis and organ dysfunction [73,79,80]. Extracorporeal HIFU is a non-invasive 
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alternative to percutaneous techniques which employs an array of external transducers 

that focus ultrasound energy on a target lesion, under the guidance of noninvasive 

magnetic resonance imaging. Yet significant challenges remain with HIFU due to the 

requirement of an ultrasound-transparent window between the HIFU transducers and the 

lesion, the complexity of tracking the precise motion of the treatment point under MRI, 

the obstruction or deflection of the incoming ultrasound fan-beam by air or bone, and the 

need to avoid injury to vital organs and vessels that lie in or near the beam’s 

pathway [81–83]. 

MRI is arguably an ideal modality for guiding intervention because of its lack of 

ionizing radiation and its multi-functionality [84]. It offers angiographic-, perfusion-, 

diffusion-, soft-tissue relaxometry-, pathology- and therapy-sensitive contrast, as well as 

quantitative thermometry for titrating thermal therapies such as those using HIFU, for 

example [85–87]. IVMRI employing small internal detectors configured as catheters or 

guidewires can provide higher resolution (<100 µm) and SNR than regular MRI in 

clinical scanners [49,50]. They potentially offer a precise, minimally-invasive, 

diagnostic [10,88] and interventional imaging modality, at least within a range of a few 

centimeters from the probe. RFA employing a single IVMRI probe for image guidance, 

energy delivery and thermometry for monitoring dose, has been demonstrated in tissue 

specimens and in vivo in a clinical 3 Tesla (T) MRI scanner [51]. However, the RFA 

lesions produced this way are limited primarily to the point of contact of the MRI-

sensitive portion of the catheter with the tissue, causing injury to the vessel wall in IV 

applications.  
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Like IV RFA, HIFU ablations can also be delivered via small ultrasound 

transducers [89,90]. Unlike extracorporeal HIFU methods, a local IVHIFU approach 

could avoid much of the difficulty with finding suitable acoustic windows. It could 

potentially enable the delivery of therapy from inside a nearby blood vessel to a 

perivascular target, without damaging the intervening vessel wall [91,92]. While IV 

HIFU’s sister technology, IVUS, could be used to guide IV ablations, IVUS currently 

requires X-ray guidance for deployment and does not provide reliable thermometry. 

Without precision guidance and thermometry, it would be unable to precisely ablate a 

margin of tumor around a major vessel while safely preserving the vessel wall itself. 

Here we present a novel IVMRI loopless antenna detector combined with a water-

cooled IVHIFU ablation catheter to provide precision MRI-guided targeting, monitoring 

and thermal titration of perivascular ablation. 

2.2 Methods 

2.2.1 Feasibility Test of IV Ultrasound Ablation 

To evaluate the ablation performance of an ultrasound transducer and its effect on 

imaging signals, a ~60 cm long ultrasound transducer catheter with a 1 mm diameter 

guidewire lumen was fabricated from polyimide tubing, and integrated with a tubular 

ultrasound transducer (modified PZT; 2.5 mm OD, 2.2 mm long; 4.66 MHz drive 

frequency). Ablation power was supplied by a pair of 28 AWG magnet wires, 

intermittently co-wound on the catheter tubing to form three 3-cm long chokes to 

suppress the MRI (B1) transmit RF field. The entire assembly was encapsulated in 

watertight polyester heat shrink tubing. MRI was provided via a loopless antenna 

(0.8 mm diameter) mounted on the catheter (Figure 2.1). 
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MRI studies utilized a Philips 3T scanner equipped with Sonalleve™ 

thermometry. Performance was first evaluated in a kiwi fruit in a saline phantom (TSE 

sequence, resolution: 200 μm). Real-time ablation and thermometry was then monitored 

in a chicken breast immersed in saline using an fast field-echo (FFE) and echo planar 

imaging (EPI) sequences. Ablated tissue was examined by gross histology and compared 

to intraoperative MRI thermometry maps. 

2.2.2 Iterated Designs of IVMRI HIFU Devices 

All MRI studies were performed on a Philips Achieva (Koninklijke Philips N.V., 

Amsterdam, Netherlands) 3T scanner with an in-room image monitor for interventional 

studies. The scanner was used previously [10,49–51,88]. MRI HIFU ablation catheters 

were comprised of a loopless IVMRI antenna formed from an 0.8 mm OD, 0.88 m long, 

biocompatible nitinol coaxial cable with a 42 mm whip tuned to resonate at 128 MHz in a 

lossy medium (0.35% saline). The antenna was deployed as a receiver coil which was 

turned-off during excitation via a positive-intrinsic-negative (PIN)-diode in its matching 

circuit(Figure 1.1; [49,50]). Operated alone, the antenna was tested in vitro and in vivo on 

 
Figure 2.1 (a) IVHIFU transducer and MRI loop-less antenna, (b) Axial MRI of a Kiwi 
fruit (TSE, 0.2x0.2x4mm3) (c) The transducer appears as a signal void at center of the 
hyper-intense region. 
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this system, wherein heating on the wire and cable was kept within ~1 °C during 

MRI [49,50]. Maximum heating and MRI sensitivity occurred at the cable-whip junction. 

The antenna was incorporated into intravascular HIFU ablation catheters 

fabricated with three different geometries affording single- or dual-beam ablation patterns 

with properties summarized in Table 2.1 and pictured in Figure 2.2(c, d, e). The 

antenna’s cable-whip junction was aligned in the axial plane orthogonal to the catheter’s 

long axis through the center of the HIFU transducer(s) to provide maximum MRI 

sensitivity in the ablation plane. The transducer(s) in each catheter were encapsulated in a 

non-conducting biocompatible polymer jacket. The jacket was water-cooled at a 20-

50 ml/min flow-rate via a computer-controlled Acoustic MedSystems Inc. (Savoy, Illinois, 

USA) TheraVision pump with an off-the-shelf closed-loop water chiller, located in the 

MRI console room. The coolant protected the transducers from overheating and also 

cooled the IVMRI antenna as well as the tissue immediately adjacent to the jacket. The 

IVMRI antenna was externally affixed to HIFU catheters #1 and #2 (Figure 2.2a) via 

paper tape to facilitate interchange of probes during development and testing. It should be 

emphasized that taping was a temporary measure instituted to allow testing of the HIFU 

probe and to ascertain its compatibility with MRI when in close proximity to the IVMRI 

antenna. This avoided a permanent fixation that would impair further use of the devices 

in the event of an unsuccessful outcome. The heating profile and focus size of catheter #1 

is shown in Figure 2.3. Catheters #2 and #3 have diverging radiation profiles (Table 2.1). 

HIFU catheter #3 was fabricated with a 1.45 mm OD central lumen to accommodate a 

guidewire through which the loopless antenna was inserted for IVMRI (Figure 2.2). 
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During ablation, the transducers were driven by a 4-channel 6-14 W RF amplifier 

also controlled by the TheraVision unit. A schematic of the combined HIFU/MRI 

catheters and their connections is presented in Figure 2.4. The RF coupling between the 

IVMRI antenna and each HIFU catheter #1-3 was documented with S-parameter 

measurements of the power transfer parameter (S21).  

 
 

 
Figure 2.2 Combined IVMRI and IVHIFU ablation catheters (a-e) and the software 
interface (f). In initial studies, the IVMRI antenna was taped (not shown) to the HIFU 
transducer (a). Subsequent IVHIFU catheters incorporate a lumen to take an X-ray 
guidewire or the MRI antenna (b). Catheter denoted #1, #2 and #3 from Table 2.1 are 
pictured in (c)-(e). A screen-shot of the MATLAB-based real-time thermal monitoring 
software interface installed on a personal computer (PC), is shown in (f). The monitor 
is connected to the scanner console computer via an ethernet cable. Inset (bottom right) 
shows an experiment with data transfer between the scanner console and the PC. 
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Table 2.1 Specifications of intravascular ultrasound ablation catheters developed for this 
study. 

Name OD 
(mm) 

Transducer shape Number of 
channels 

Ablation angle Operating 
frequency 
(kHz) 

Catheter 1 2.5 5.5 mm Flat 1 60° 6260 
Catheter 2 2.4 10.4 mm Hoop 1 360° 7347 
Catheter 3 4.3 10.0 mm Sector 2 †90°/90° †6473/6818 

† Values for channel 1 and channel 2, respectively. 
 

 

 
Figure 2.3 Heating profile (simulated) for the flat HIFU transducer used in catheter #1 
in muscle tissue after a 60 s ablation at an input power of 15 W/cm2 at 5 MHz in y-z 
(left) and x-z (right) Cartesian planes (x is tangential, y is axial and z is perpendicular to 
the flat plane of the transducer). The natural focus distance, defined as the distance 
between the hottest spot and the transducer, is 3.4 mm. Full-width half-maximum 
(FWHM) focus sizes are 3.0 mm, 5.0 mm, and 8.3 mm in tangential, axial and radial 
directions, respectively. Vertical scale is in °C, with 37 °C as baseline. 
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2.2.3 Thermometry 

MRI thermometry was performed using the PRFS method and FFE imaging 

sequences. In initial experiments, FFE magnitude and phase images for each scan were 

transferred in real-time to a local computer equipped with modified SonalleveTM 

(Profound Medical Corp., Mississauga, ON, Canada) software for temperature 

display [93]. The product Sonalleve software operates with a transducer array embedded 

in a patient table that was not used here. Thus the software’s focus-planning component 

was modified to enable selection of the catheter location relative to anatomical MRI 

scans [93] and the array-based adjustments eliminated. Subsequently, a dedicated 

 
Figure 2.4 Schematic diagram of catheter #3 catheter (top) and catheter’s #1 and #2 
(bottom left, inset). The MRI system (black), the HIFU RF system (blue) and the 
cooling system (green) are plotted in different colors. Component sizes are not to scale. 
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MATLAB (The MathWorks, Inc., Natick, MA, USA) IVMRI ultrasound ablation software 

interface IMRUSA (Intravascular MR Ultrasound Ablation) (Figure 2.2f) was developed 

by the author for real-time temperature mapping and measuring thermal dose. This 

software incorporates drift corrections and accommodates the non-uniform sensitivity 

profile of the IVMRI antenna. It runs on a laptop connected to the MRI system’s console 

computer via an ethernet cable (Figure 2.2f; inset), through which data is transferred via 

MATLAB MatMRI [94] software based on an ‘eXTernal Control’ (XTC) protocol [95]. 

Phase-difference images were computed from dynamically-acquired FFE phase 

images and converted to temperature maps with a PRFS coefficient 𝛼𝛼 = −0.0094 ppm/℃ 

(see Eq. [1.13]). The temperature of unablated tissue measured with a remote fiber-optic 

temperature probe (Neoptix Canada LP, Qualitrol Company LLC, Fairport, NY, USA) 

was assumed as a baseline temperature reference. The MATLAB software automatically 

detected the catheter location from the IVMRI antenna’s non-uniform sensitivity profile, 

and selected regions ≥ 5 cm from the transducer to serve as constant-temperature 

reference points on the thermal maps. These were used to provide a first-order 

temperature drift correction. During ablation, pre-ablation cooling, and post-ablation 

cool-down periods, the operating parameters (ablation time, flow rate, power level) of the 

TheraVision system were manually adjusted to achieve the desired heating and cooling 

based on the real-time MRI thermometry monitor. 

Post-ablation, thermal dose maps–measured in cumulative equivalent minutes at 

43 °C (‘CEM43’)–were derived by temporally integrating the dynamic real-time 

temperature maps [62,96] after de-noising and co-registering them with anatomical 

images. A CEM43 of 340 has previously been assumed as a threshold for producing 
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necrosis [51,63,64], so MRI-based lesion-dose-threshold CEM43=340 contours were 

calculated, smoothed to generate continuous loops, and overlaid on co-registered 

photographs of lesions. The areas of the continuous CEM43=340 loops were measured 

and tested as a potential IVMRI proxy indicator of lesion size. 

2.2.4 Ex Vivo Evaluation 

Bench-top and in-scanner ex vivo studies of tissue specimens were used to 

characterize system performance. The efficacy of the probe cooling and ablation sub-

systems were first evaluated in bench-top ablation experiments on chicken breast muscle. 

The chicken was immersed in saline at 37 °C, and an IVHIFU catheter inserted. Coolant 

flow, temperature, IVHIFU power level and duration were adjusted to determine a range 

of suitable operating parameters for subsequent in-scanner studies. After bench-top 

ablation, the tissue was sectioned axially at the ultrasound transducer location, and 

thermal lesions photographed. In-scanner studies were performed on chicken breast tissue 

as above, and with IVMRI HIFU catheters inserted in the blood vessels of fresh porcine 

liver specimens. Specimens were immersed in 35 °C saline (0.35%) for ablation. MRI 

was performed (using 3D balanced fast-field echo, bFFE; TR/TE=6.1/2.3 ms; resolution 

=300 µm; FOV=150x150x12 mm3; FA=20°), followed by ultrasound ablation 

(6 min @ 7 Wacoustic) during which the catheter was water-cooled (water 

temperature=22 °C). During ablation, MR thermometry (EPI PRFS imaging; TR/TE 

=28/16 ms, 0.9x0.9x6 mm3, 1.2 s/frame) was performed in real-time to monitor 

temperature change and thermal dose. The ablation was terminated upon achieving a 

~1 cm ablation lesion. Lesions were identified by gross anatomy post-MRI, and 
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correlated with thermal dose as identified by the CEM43 contour measured by MR 

thermometry. 

2.3 Results 

2.3.1 Feasibility Test of IV Ultrasound Ablation 

The ultrasound transducer catheter was tracked as a signal void at the center of the 

hyper-intense antenna MRI signal (Figure 2.1c), and provided high-resolution imaging in 

the region adjacent to the transducer (Figure 2.1bc). Real-time MRI thermometry 

indicated a maximum temperature of ~70 °C during ultrasound ablation, consistent with 

bench-top testing using fibre optic thermal sensors (Figure 2.5). An approximately 8-

9 mm diameter sphere of tissue surrounding the transducer was heated ≥60 °C (Figure 

2.5b) based on the MRI thermometry, which matched the 9 mm diameter lesion evident at 

gross histology (Figure 2.5a). 

 

2.3.2 Iterated Designs of IVMRI HIFU Devices 

The S21 parameters for the IVMRI antenna combined with each of the three 

catheters from 0.1 MHz to 150 MHz were -70 dB to -25 dB. Bench testing in chicken, 

 
Figure 2.5 (a) Intraoperative MRI thermometry map (GRE, 0.9x0.9x6 mm3) and gross 
histology (below, inset), (b) Temperature distribution vs. distance from catheter. 
Arrows denote tissue region heated ≥60 °C (c) Temperature monitored by MRI 
thermometry (blue curve) and by fibre-optic sensor (red curve). 
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indicated that key factors that improved the preservation of (unablated) tissue 

immediately adjacent to the IVHIFU catheter were: reducing the temperature of the 

coolant; and increasing the flow to the catheter. Other factors were: the thermal energy 

delivered by the ablation transducers, as monitored by MRI thermometry; and transducer 

geometry. A coolant temperature of 3-4 °C at the pump output and 10-13 °C where it 

entered the catheter, a flow of ~30 ml/min and a HIFU power ~7 W for ~6 min were 

found to produce thermal lesions of up to 2 cm2 while preserving a 1-2 mm margin of 

tissue abutting the catheter. Parallel to the catheter, the maximum extent of the lesion 

corresponded to the transducer length (listed in Table 2.1). 
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2.3.3 Thermometry and Ex Vivo Evaluation 

Exemplary results from chicken are shown in Figure 2.6, where an inner margin 

of pink preserved tissue at the catheter location is surrounded by a pallid ablation lesion 

(Figure 2.6a). On MRI, the IVMRI HIFU catheter is easily located via the bright 

sensitivity of the antenna and signal void at the conductors (Figure 2.6b,c). During pre-

ablation cooling, real-time temperature maps reconstructed from dynamic MRI phase 

images show local temperature decreases ≤10 °C (Figure 2.6d). During ablation, 

increases of ≤70 °C are evident 3-5 mm away from the catheter (Figure 2.6e), with no 

 
Figure 2.6 Photo of a section of chicken breast tissue in the ablation plane following 
bench-testing with catheter #2 (a). A preserved tissue margin (pink) surrounds the probe 
location, inside the ablation lesion (white). The IVHIFU catheter ablation transducer 
(yellow arrows) and IVMRI loopless atenna whip junction (white arrows) are seen in 
orthogonal high-resolution IVMRI planes (b,c). Screen shots of online thermometry 
(scale in °C at right) during pre-ablation catheter cooling (d) and ablation (e) are shown. 
The catheter position is denoted by blue circles (yellow arrows). Part (f) is a photo 
annotated with contours of the 86% lethal thermal dose of CEM43=340 as determined 
by MRI thermometry (magenta) and with a contour (white) enclosing the lesion 
(bleached). 
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evidence of heating adjacent to the IVMRI probe itself. The MRI thermometry-based 

CEM43=340 contour co-registered onto a photograph of the section (Figure 2.6f), showed 

fair consistency with the lesion contour determined by tracing the midpoint in intensity 

and hue between pixels in ablated tissue (pallid) and those in preserved tissue (crimson; 

see next chapter). 

 

Figure 2.7a shows an MRI thermal map acquired at the end of a 6-min ablation 

with four ROIs annotated, and a photograph of the corresponding anatomical section 

shows the lesion (Figure 2.8b; magenta circle). Temperature changes during the whole 

process of treatment are shown in Figure 2.7b. Temperatures in the target ROIs away 

from the vessel and probe, increase monotonically during ablation up to 67 °C. 

Meanwhile, temperatures closest to the vessel are relatively constant or initially decrease 

upon commencement of circulation of the cooling water, and remain <40 °C for the entire 

 
Figure 2.7 (a) MRI thermal map near the end of a 6-min ablation. Four ROIs are marked 
for temperature behavior analysis: ROI1, ablation focus; ROI2, distant edge; ROI3: edge 
in the middle; ROI4: transducer location. The magenta line denotes the coagulation 
thermal dose contour (equivalent to 240 min at 43°C). (b) Temperature changes of ROIs 
in (a): ROI1 and ROI2 are ablative > 240 Thermal Equivalent Minutes @43 °C. ROI3 
and ROI4 are <40 °C. Vertical lines indicate: circulation cooling start (blue solid, -30 s), 
ablation start (red dashed dot, 0 s), and ablation end (red dashed, 6 min). 
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procedure. Contours for a thermal dose equivalent to 240 min at 43 °C (an alternative 

threshold for coagulation [96]), as calculated from the thermal maps, are also plotted in 

Figure 2.7a and Figure 2.8b (magenta circle). The thermal dose vs. distance along the axis 

of peak energy delivery (perpendicular to the transducer’s long axis), is plotted in 

Figure 2.8a. The 240-min-43°C threshold exhibits a 4.6-mm-wide non-coagulation area 

outside of the transducer, wherein vessel wall is expected to be spared during ablation. 

 

 
Figure 2.8 (a) Thermal dose vs. distance to the transducer along the main ablation axis 
(perpendicular to the device cable, position indicated as vertical yellow dashed line). 
The 240-min equivalent 43 °C ablation threshold is marked (horizontal dashed line), 
and 4.6 mm no-coagulation gap identified. (b) MRI thermometry-based coagulation 
contour matched the gross histological lesion. The pale tissue between the lesion and 
the yellow circle (catheter access) is the vessel wall. 
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Incorporating the IVMRI antenna into a lumen–as in HIFU catheter #3 

(Figure 2.2b)–improved the visibility of the catheter components in porcine liver 

(Figure 2.9a). The transducer elements do not interfere with the performance of the 

IVMRI antenna, suggesting negligible coupling. The inclusion of two transducer 

elements provided simultaneous and/or sequential thermal beams that heated in opposite 

 
Figure 2.9 IVMRI of catheter #3 with thru-lumen design (from Figure 2.2b) in a 
porcine liver (a). IVMRI thermometry (scale, °C at right) shows pre-cooling (b); 
ablation in one direction (c); simultaneous ablation in two directions with both 
transducers turned-on (d) and after turning one transducer off (e; blue circle denotes 
catheter position). Part (f) is a photo of the dissected transverse section through the 
ablation showing a lesion in each direction which has detached from the non-ablated 
tissue (white arrows; blue circle denotes the vessel hosting the catheter). Part (g) shows 
the Movat-stained histology indicating a margin of preserved tissue between the vessel 
wall and lesion. 
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directions (Figure 2.9b-e). Movat-stained histology shows preservation of a non-ablated 

tissue margin between the vessel wall and lesion (Figure 2.9g). 

2.4 Discussion 

This chapter discusses the development and iteration of designs for a combined 

IVMRI and IVHIFU catheter for performing and monitoring perivascular ablation. The 

selection of IVHIFU as the ablation method over a prior multifunctional RFA 

approach [51] was purposeful. RFA, while easy to power from the same (shared) IVMRI 

probe, has a heating profile subject to its relatively long wavelength, that is difficult to 

focus other than by structure changes, as exemplified in Figure 2.10. In particular, the 

thermal energy is primarily deposited at the point of contact, which in IV applications, 

risks extensive vessel wall damage when engaging extra-vascular ablation targets. In 

contrast, high intensity ultrasound has shorter wavelength at working frequency 

(~0.25 mm at 6 MHz) and a better localized heating profile (Figure 2.3). The usage of 

multiple HIFU transducers provides the capability of re-orientating the ablation target 

(Figure 2.9) and has the potential to be programmed as an array to provide better 

focalization. 
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The ablation feasibility test catheter (Figure 2.1) enabled anatomical MRI and 

thermometry combined with local HIFU ablation, simultaneously. Although it required 

two sets of electrical connecting leads, MRI coupling was not a problem due to the large 

difference in operating frequencies and the use of multiple isolation chokes on the HIFU 

ablation leads. Note that drift in the MRI thermometry in these experiments necessitated 

correction. Even so, the local temperatures measured by MRI thermometry and fibre 

optic thermal probes recorded during steady-state, were in close agreement (Figure 2.5c). 

 
Figure 2.10 RFA heating profiles simulated by finite element analysis (COMSOL 
Multiphysics, COMSOL AB, Stockholm, Sweden) for different structures of ablation 
antenna. The loopless antenna are made from coaxial cables comprised of copper inner 
and outer conductor (blue) and polytetrafluoroethylene (PTFE) dielectric (red). The 
opposed-direction solenoid coils (thin green wire) are wired around plastic tubes (green 
cylinder). It can be seen that local changes such as making the structure asymmetrical 
and/or periodical hardly affect the field distribution whose wavelength is much larger 
than the scale of the device. 
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The thru-lumen design of the integrated IVMRI HIFU catheter not only improves 

image quality (Figure 2.9), but also facilitates interventional procedures allowing, for 

example, an X-ray guidewire to be easily interchanged with the IVMRI antenna. Catheter 

#1 and catheter #2 were affixed with loopless MRI antenna through taping (as in 

Figure 2.1) as a temporary measure during the iterated design of IVMRI HIFU catheters. 

It allows feasibility testing of ablation capability and MRI compatibility of the HIFU 

catheter without a permanent fixation that would affect fast replacement of the devices 

for upgrading or repairment. Gluing or mechanically attaching the HIFU and IVMRI 

antenna would certainly provide more robust mounting options than the taping used for 

catheter #1 and #2. 

Beyond the feasibility of IVMRI HIFU ablation demonstrated in this chapter, it is 

yet unclear what is the performance of the system through scalable experiments ex vivo 

and in vivo. In the next chapter, we will show systematic testing results that better 

characterizes the system under more practical conditions, which are enabled by carefully 

orchestrated workflow and detailed quantitative image/data analysis. 

  



 41 

Chapter 3: Performance and In Vivo Testing of High-resolution IVMRI 

HIFU System 

 
3.1 Introduction 

In the previous chapter, we have described the development process of IVMRI 

HIFU system and have shown the preliminary performance of the system in ex vivo 

ablation. To better understand performance of the system in more practical scenarios, it is 

helpful to document comprehensive results from repeatable experiments. To achieve this, 

however, there are still difficulties to overcome. First, it is a demanding task to drive the 

multi-component system consisting of imaging/thermometry/ablation modules as each 

module has its own required procedure and configuration to work while all modules have 

to coordinate with each other at the same time. The complex steps can easily keep 

operators busy to an overwhelming extent, cause miscommunication among the operating 

team and make the experiments prone to error. It is even more challenging during in vivo 

experiments than during ex vivo ones, as there are often more limitations on timing, 

resources and error-tolerant rate. Second, there is no protocol for IVMRI HIFU 

performed in vivo. It is an open question how to demonstrate orientation and titration of 

ablation with such device with unknown impact from blood flow and motion. Third, the 

results of ablation experiments are presented with multiple forms of data, such as MRI 

thermometry and histological photography. For repeated experiments, it is important to 

align and compare lesion sizes measured from different modalities with consistent 

quantitative methods. 

In this chapter, we have addressed the above issues to carry out systematic 

evaluation of performance of IVMRI HIFU ablation in ex vivo and in vivo studies. We lay 
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out the procedures that are required to drive the multiple systems, at the core of which is 

the IMRUSA software we developed in 2.2.3 Thermometry. The software helps us 

automate part of onsite analysis tasks and works as a central console of information, 

which enables us to repeat experiments reliably. Post ablation, image processing 

techniques are applied to fuse different modalities of images and measure lesion sizes for 

comparison. Two in vivo ablation studies are carried out in the inferior vena cava (IVC) 

of pigs using the surrounding psoas muscle as the target. It is demonstrated that IVMRI 

HIFU ablation can be applied with high successful rate in multiple ex vivo and in vivo 

studies. The actual thermal lesion region can be accurately predicted from monitoring 

MRI thermometry, and despite the existence of blood flow, adequate ablation can be 

achieved in vivo with the thermometry guide. 

3.2 Methods 

3.2.1 Summary of Workflow 

A summary of the treatment/monitoring protocol is given in the Figure 3.1. 

Localization procedures and reference measurement procedures start from separate start 

points “select treatment spot” and “select baseline spot”, respectively. The step “Select 

ablation power and coolant flow rate” is performed via the TheraVision unit described in 

2.2.2 Iterated Designs of IVMRI HIFU Devices. The two procedures merge together after 

thermometry imaging is initiated at “start FFE imaging”, starting from which the 

software combines data being collected and guides adjustment of the ablation parameters 

until sufficient ablation is achieved. Data is automatically recorded during the 

experiments and is ported to post-processing toolkit where image processing and 

quantitative analysis are performed integrating anatomical imaging, MRI thermometry 
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and histological photography results.

 

3.2.2 Ex Vivo Studies 

To determine the relationship between thermal dose measured by MRI 

thermometry and lesion size, and to characterize the ablation unit’s settings and MRI 

thermometry signature that avoided tissue damage immediately adjacent to the probe, ex 

vivo ablations studies were repeated with IVMRI HIFU probes in different locations and 

different cooling, power levels and specimens. 

The IVMRI HIFU catheter used in ex vivo studies was comprised of IVHIFU 

cathter #1 (Figure 2.2c, Table 2.1) taped with a loopless IVMRI antenna as shown in 

 
Figure 3.1 Work-flow chart showing protocol steps for IVMRI guided IVHIFU ablation 
studies. The protocol starts at the two preparation points indicated by hexagons, top left. 
Steps performed by software and post-processing algorithms are inside the dashed 
boxes. 
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Figure 2.2a. The catheter was inserted in the blood vessels of fresh porcine liver 

specimens. Each catheter-bearing specimen was immersed in a 10 L box of saline at 

37 °C, which in turn was enclosed in a 1 cm-thick rigid polyurethane thermal insulating 

jacket. With the TheraVision ablation controller in the scanner console room, the coolant 

circulation tubing was connected to the catheter via a wall-port on the cable penetration 

panel penetrating the scanner’s RF screen-room (see 2.2.2 Iterated Designs of IVMRI 

HIFU Devices and Figure 2.4),. High-resolution anatomical imaging was performed 

before and after ablation using balanced FFE (TR=6.2 ms; TE=2.4 ms; FA=20°; 

resolution=300 μm; slice thickness, SL=4 mm; FOV=150 mm); T1-weighted FFE 

(T1FFE; TR/TE=15/3.9 ms; FA=7°; resolution=300 μm; SL=4 mm; FOV=150 mm); and 

three-dimensional (3D) fat-suppressed, T1-weighted high-resolution isotropic volume 

examination (THRIVE; TR/TE=23/11 ms; FA=12°; resolution=300x300 μm; SL=4 mm; 

FOV=150 mm) sequences. 

After locating the transducer and ablation target by sagittal and coronal IVMRI 

(see the checkpoint “Right location?” in Figure 3.1), an imaging plane was placed 

perpendicular to the HIFU transducer. Coolant was circulated and MRI thermometry 

commenced with real-time thermal monitoring (Figure 2.2f) using FFE Cartesian 

(TR/TE=100/25 ms; FA=25°; EPI factor=11; resolution =300 μm; SL=6 mm; 

FOV=150 mm; acquisition time=6.0 s) or radial (TR/TE=25/12 ms; FA=14°; angle 

density=50%; resolution=300 μm; FOV=150 mm; acquisition time=6.2 s) sequences. 

HIFU ablation was typically initiated after 5min of pre-cooling and continued for a 

period of about 6min. 
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Post-ablation, samples were sectioned at the ablation plane and photographed. To 

differentiate lesion from normal-appearing tissue, principal component analysis (PCA) 

was performed on approximately equal numbers of pixels from normal tissue (crimson) 

and lesions (pallid) in each photograph based on the International Commission on 

Illumination uniform color space (‘1976 CIELAB’) [97]. Color space values for each 

pixel were projected to the first principal component to generate scalar maps representing 

the appearance of pixels from normal tissue (lower values) and thermal lesions (higher 

values). The maps were normalized to a ‘CIELAB1000’ scale of 0 to 1000, with a 

threshold of CIELAB1000=500 chosen to contour lesion areas using an active snake-

contour object-detection algorithm [98]. The CIELAB1000=500 contour traces the 

midpoint in intensity and hue between pixels in ablated tissue (pallid) and those in  

preserved tissue (crimson). Vessel walls were then traced manually on the photographs. 

Portions of the same lesions that extended to different dissections were co-registered 

based on their positions relative to the vessel wall to determine maximum lesion depths. 

Anatomical MRI scans were reconstructed at the thermometry plane by interpolation, co-

registered with the CEM43=340 dose contour, and annotated with the catheter and vessel 

wall locations. The images were scaled and co-registered with the contoured photos for 

comparison. 

The gap, Lg (mm), comprised of non-ablated tissue lying between each lesion and 

the vessel wall, was measured as the average distance between the endo-luminal wall and 

the closest segment of lesion contour in the marked photographs. The longest radial 

distance, Lr (mm), between the lesion’s distal-most and proximal-most points relative to 

the endo-luminal vessel wall, and the ablation area, La (mm2), were also measured from 
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the dissections. Lg, Lr, and La were compared with the gap (mm) between the vessel wall 

and the CEM43=340 contour; the longest radial length of the CEM43=340 lesion contour; 

and the CEM43≥340 contour area measured by IVMRI thermometry, respectively. 

Overlap between the CEM43≥340 lesion areas and those from photos were quantified via 

the Jaccard index, equal to the fraction of the area of the intersection divided by the total 

area of the two together.  

The post-ablation image processing and data analysis were implemented in 

MATLAB and applied identically in 8 (non-selected) consecutive liver ablation 

experiments performed with catheter #1 from Chapter 2, Table 3.1. 

3.2.3 In Vivo Studies 

To test the IVMRI guided HIFU ablation catheter in vivo where blood flow, 

perfusion, and physiological motion are potentially confounding, ablation experiments 

were performed in two live pigs under general anesthesia with approval of our 

Institutional Animal Care and Use Committee. Psoas muscle and colon near the inferior 

vena cava were selected as ablation targets. Real-time IVMRI thermometry with the 

loopless antenna was used to guide, target and titrate thermal dose. 

In each anesthetized pig, the right common femoral vein was accessed with a 

micropuncture kit and sequential fascial dilators. A 16 French (Fr; 1Fr=1/3rd mm) 30 cm 

Cook Medical (Bloomington, Indiana, USA) sheath was placed and HIFU catheter #3 

from Chapter 2, Table 2.1 was advanced into the IVC over a 0.035" (0.9 mm) guidewire 

in the central lumen of the catheter, under X-ray fluoroscopy. The position of the distal 

tip of the catheter was confirmed by fluoroscopy and cone-beam X-ray computed 

tomography. The 0.035” guidewire was replaced by the loopless IVMRI antenna. The left 
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femoral artery was accessed via a 5 Fr (1.7 mm) sheath and a fiber-optic temperature 

probe placed in the sheath to monitor body temperature far from the ablation site, for 

determining absolute temperature via the PRFS method. Pigs were heparinized prior to 

catheterization. 

After catheterization, each animal was transferred to the MRI scanner, and the 

catheters were located by three orthogonal (transverse, sagittal and coronal) T1-weighted 

FFE IVMRI projections (TR/TE=9.4/4.6 ms; FA=15°; FOV=300x300x400 mm3; 

resolution=1.5 mm; scan time=10 s). Positioning was confirmed by T2 weighted (T2w) 

turbo spin-echo imaging (TSE; TR/TE=4 s/95 ms; FA=90°; FOV=200 mm; 

resolution=0.7 mm, SL=5 mm) using a pair of Flex-M (Koninklijke Philips N.V., 

Amsterdam, Netherlands) surface detector coils placed above and below the abdomen at 

the catheter’s approximate location; and by high-resolution sagittal and coronal T1 FFE 

images acquired with the IVMRI antenna using the same protocols as in ex vivo studies. 

The high-resolution transverse images were acquired to provide precise anatomical 

registration for thermometry for locating the ablation target and avoiding vessel injury. 

Device advancement and retraction was performed by an operator in the scanner room in 

communication with the scanner operator. 

Pre-cooling was commenced followed by high-resolution real-time MRI 

thermometry (Pig #1: radial acquisition, TR/TE=25/7.7 ms, FA=14°, angle 

density=100%, resolution=0.5 mm, FOV=150x150x6 mm3, acquisition time=7.5 s; 

Pig #2: Cartesian acquisition, TR/TE=168/17 ms, FA=30°, EPI factor=11, 

resolution=0.5 mm, FOV=150x150x6 mm3, time of acquisition=6.0 s) employing the 

loopless antenna as a receiver and the MATLAB software interface for temperature 
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monitoring (Figure 2.2f). Based on evidence of heating by MRI thermometry, torque was 

applied to the ultrasound catheter to rotate the HIFU beam to the intended target. With 

HIFU power titrated based on IV-MRI thermometry, sufficient heat was deposited in the 

target to form a lesion, as guided by the results of the ex vivo studies. The transducer was 

powered off and the catheter was withdrawn 1-2 cm along the blood vessel. MRI and 

ablation procedures were then repeated to create separate or contiguous thermal lesions.  

Animals were humanely euthanized, post-ablation. The IVC through which the 

catheters were routed, the colon wall, adjoining psoas muscle and other tissue 

surrounding the ablation sites were harvested and assessed for lesion formation and 

comparison with the thermal dose measured by MRI thermometry. Dissected tissues were 

fixed and processed for histology with hematoxylin and eosin (H&E) and Masson’s 

trichrome (MT) staining which was reviewed by a pathologist (Dr. Kathleen Gabrielson 

from the Department of Molecular & Comparative Pathobiology, Johns Hopkins School 

of Medicine, Baltimore, MD, USA). Movat staining was also used to highlight vessel 

wall in some in vivo and ex vivo studies. 

3.3 Results 

3.3.1 Ex vivo Studies 

Figure 3.2 illustrates an IVMRI-guided HIFU ablation accessed from a blood 

vessel in a porcine liver using catheter #1 (Figure 2.2c). Dynamic MRI thermometry 

shows the evolution of the temperature rise 5-10 mm away from the vessel wall 

(Figure 3.2d-f). Figure 3.3a shows a dissection through the ablation plane. Figure 3.3b is 

the corresponding CIELAB1000 map of the dissection used for segmenting the lesion. 

Figure 3.3c shows an annotated anatomical MRI reconstructed at the thermometry plane, 
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delineating the CEM43=340 contour. Figure 3.3d shows the dissection annotated with the 

CEM43=340 contour, co-registered with the CIELAB1000=500 contour. The estimates 

(depth, area, and gap to vessel) of lesion area enclosed by the CEM43=340 contours and 

the lesion areas measured from all the samples sections are plotted in Figure 3.4 and are 

highly correlated (r >0.79; p <0.02). The ablations spared the intervening vessel wall by 

>0.5 mm in 6 of 8 experiments (Figure 3.4c), with one failure due to parting of the tape 

affixing the IVMRI antenna to the HIFU catheter, which was a temporary measure as 

discussed earlier (Chapter 2.4 Discussion). Jaccard indices for the 8 experiments are all 

>0.51 (Figure 3.4d). 

 

 
Figure 3.2. Images of the IVMRI antenna (white arrow) and HIFU catheter #1 (yellow 
arrow) in a blood vessel of pig liver ex vivo in transverse (a) and co-axial planes (b: 
inset denotes the expanded region in c). MRI thermometry shows temperature maps 
(scale in °C at right) from the transverse slice in (a): before ablation (d); during ablation 
at maximum temperature (e); and immediately after the HIFU transducer is turned off 
(f). 
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Figure 3.3 Co-registration of lethal thermal dose contours with lesions on tissues slices 
dissected after ablation experiments performed with catheter #1 located in pig liver 
blood vessels ex vivo. Tissue slices at the ablation location expose the pallid lesion area 
(white arrow) (a). The projected, normalized color mapping of the section differentiates 
the lesion from normal tissue (b, scale at right). The lesion area (white line) is identified 
by an active contour algorithm for object detection. The vessel wall is manually traced 
(blue line). The CEM43≥340 (magenta line) contour is calculated from MRI 
thermometry and co-registered on the anatomical MRI reference scan (c). The catheter 
(yellow circle) position and the enclosing vessel (green line) are identified manually on 
the reference scan. Landmarks identified from MRI, MRI thermometry and the photo 
color map are co-registered on the original photo for comparison and correlation (d). 
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3.3.2 In vivo Studies 

Sagittal T2wTSE images confirmed the location of the IVMRI HIFU ablation 

catheter #3 in a porcine IVC in vivo via its hyperintense signal (white arrow, Figure 3.5c). 

With three orthogonal image projections, the catheter was easily located within a minute. 

 
Figure 3.4 Comparison of lesion sizes exceeding a thermal dose CEM43≥340 as 
measured from MRI thermometry, with lesions measured from photos of the dissected 
ablation planes. The radial depth, Lr (a); area, La (b) of lesions; and the average gap 
between lesion and vessel wall, Lg (c), are correlated (correlation coefficient, r >0.79; 
Pearson probability, p <0.02; solid lines, least-squares regression line; the dashed line is 
the identity line). Numbers near the data points denote the experiment number (a-c). 
Part (d) shows the Jaccard index (area of intersection divided by the area of the united 
lesion areas) for each experiment. 
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A high resolution, axial MRI acquired from the IV antenna in the catheter lumen is 

shown in (Figure 3.5d). Thermometry for several ablations in the psoas muscle and colon 

are shown in Figure 3.6a-e. Initially, power was applied to the HIFU transducer to 

determine the ablation path. Within 7-15 s it was evident that the HIFU beam was not 

facing the psoas muscle target. This was maintained for 70 s to produce the thermal map 

in Figure 3.6c. The catheter was then rotated towards the target (Figure 3.6d). In addition, 

to the psoas muscle, power was applied to the transducer on the opposite side of the 

catheter to test whether it could access and ablate the colon (Figure 3.6d,e). The HIFU 

power levels were ~11 W for 6 min per transducer. The MRI times were 10 s for a scout 

localization image; 5 min for localization and high-resolution anatomical MRI; and 8-

12 min for thermometry scanning during and post-ablation for each treatment target. 
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Post-mortem sectioning revealed thermal lesions on the mucosa surface of the 

colon (Figure 3.6f) and the psoas muscle where ablations were performed 

(Figure 3.6g,h). We observed no evidence of a lesion at the site of the mis-directed beam. 

Histopathology confirmed skeletal muscle degeneration, edema and hemorrhage in H&E 

stained slides, consistent with thermal lesions. 

 
Figure 3.5 Placing an IVMRI HIFU catheter #3 in a porcine IVC from the right femoral 
vein in vivo (a) confirmed by fluoroscopy (b). The left femoral artery is accessed by a 
5 French sheath (a), for a fiber-optic temperature probe to monitor the body temperature 
for base line calibration of the PRFS method. Sagittal T2wTSE MRI (c; white arrow). 
High-resolution IVMRI (d; pink arrow denotes catheter; S1 is the targeted psoas 
muscle; S2 is the colon, a second target; S3, aorta; S4 is the IVC; S5 is the spine). 
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In a second pig study, ablations were performed at three locations approximately 

1cm apart during a ‘pullback’ to create a contiguous ablation lesion during simultaneous 

thermal monitoring. At each location, an anatomical reference image was acquired for 

thermometry, followed by continuous thermometry (Figure 3.7b-d). As in Figure 3.6c, 

the HIFU beam in the first location (Figure 3.7b) was mis-oriented too far clockwise 

relative to the target and the catheter was rotated slightly for the second and third 

ablations (Figure 3.7c,d). 

Post-mortem dissection revealed evidence for three thermal lesions on the psoas 

muscle at the ablation locations beneath the IVC. The first lesion was rotated relative to 

the others (Figure 3.7e, white arrow). The second and third lesions (yellow and cyan 

arrows) were contiguous. The thermal lesions were confirmed by histopathologic 

 
Figure 3.6 Anatomical reference scan for an in vivo porcine study (a); and IVMRI 
thermometry frames (scale in °C at right) acquired pre-ablation (b); Initial mis-direction 
of the thermal beam was detected by thermometry (c) and redirected to the psoas 
muscle; during ablation of the psoas muscle (white arrow) and colon (yellow arrow; d); 
and immediately after turning the transducer power off (e). Blue circles denote the 
catheter location. Part (f) shows thermal lesions in the colon mucosa from multiple 
ablations (white arrows). Part (g) shows thermal lesions in psoas muscle (g, white 
arrows). Part (h) shows MT-stained histology of the lesion (black arrow). 
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evidence of skeletal muscle degeneration, edema and hemorrhage. The IVC segments 

dissected post-ablation showed no gross lesions visually, but vessel wall hemorrhage was 

noted in some histological slides. Whether hemorrhage was caused by mechanical 

abrasion from the catheter or by thermal injury was unclear. 
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Figure 3.7 IVMRI thermometry of ablations performed at three locations (during 
pullback from head to feet direction) in the psoas muscle in a second in vivo porcine 
study using catheter #3. The anatomical MRI reference scan at the first location (a) 
shows the ablation target (red arrow). Part (b-d) shows the temperature rise (white, 
yellow and cyan arrows) during ablation (scale in °C at right) at three pullback 
locations. In (b) the thermal beam is slightly clockwise of the target so the device was 
rotated for the acquisitions in (c) and (d). Blue circles denote the catheter location. Part 
(e) shows the post-mortem photo of thermal lesions in the psoas muscle. The first 
ablation lesion (e; white arrow) is skewed relative to the second and third lesions (e; 
yellow and cyan arrows) which extend to form a continuous lesion. 
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3.3 Discussion 

Chapters 2 and 3 are the first reports on IVMRI-guided transvascular HIFU 

ablation. The technology combines IVMRI’s advantages of high-resolution, multi-

functionality and a unique thermal mapping capability [51], with access to extra-vascular 

ablation targets afforded by IVHIFU. It thus presents an ablation therapy option for 

situations where conventional extra-corporeal MRI-guided HIFU may not be possible due 

to acoustic opacity, or to the presence of critical tissue or vessels in the path of the 

external beam. The results demonstrate that IVMRI guided HIFU ablation can be reliably 

performed up to the edge or within a millimeter of, the intervening vessel wall without 

thermal injury (Figure 2.6, Figure 3.3, Figure 3.4). Surprisingly perhaps, the performance 

of the IVMRI antenna was little impaired by the presence of the HIFU transducers and 

cooling system. Although we used X-ray fluoroscopy to guide initial catheter placement, 

a fully MRI-guided interventional procedure is the ultimate goal, and we are testing 

whether high-speed ‘MRI endoscopy’ can be developed to serve as a possible MRI-based 

catheterization modality [52,99,100]. Meanwhile, the present in vivo studies demonstrate 

a viable protocol for locating the ablation catheter relative to the anatomy; manipulating 

the ablation transducers to direct them at an ablation target; and titrating the delivery of 

thermal therapy. As such, the technology seems promising for treating tumors that are 

currently surgically inaccessible, or that are non-resectable due to perivascular 

involvement. 

IVMRI probes of the same design used here have been tested in vitro and in vivo 

at 1.5T and 3T, and were shown to be safe from RF heating when used alone [49,50]. 

Here, the probes were turned-off during MRI transmission, but their use in conjunction 
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with a HIFU catheter could introduce new coupling mechanisms and risks of heating. 

However, the high isolation indicated by the S21 measurement; the lack of MRI artifacts 

other than the absence of signal from components that lack mobile protons (Figure 2.6, 

Figure 2.9a, Figure 3.2); and the preservation of tissue immediately adjacent to the 

catheter (Figure 3.4), suggest that electromagnetic coupling, if extant, is minimal. 

Moreover, the IVMRI probe benefits from the HIFU transducer’s cooling system and 

non-conducting polymer sheath, especially in catheter #3 used in vivo. Here, the whip 

junction–which is expected to heat the most [49]–is completely enclosed by it, so if it 

does heat during MRI, the water cools it. While loopless IVMRI antennas were used here 

because of their small size, loop antennas could also be deployed if the isolation from the 

HIFU transducer is similarly maintained. Incorporating them into the HIFU transducer 

space instead of the lumen would allow an OD of ~2 mm, and a discoidal-shaped FOV 

suitable for transmit/receive MRI endoscopy [50]. 

The highly-localized sensitivity of the IVMRI antenna (Figure 3.5c) enables 

localization of the transducer in a few projections that could be incorporated into an 

automated pre-scan localization routine [100] and followed by user-prescribed high-

resolution imaging and thermometry. Although not used here, the localized sensitivity 

profile of each projection may also provide a means of motion-correction [52]. Like 

conventional thermometry, high resolution IVMRI thermometry is subject to drift in the 

reference phase during procedures [33,101–103]. Acquiring a reference phase image 

prior to commencing each ablation, limits the potential drift period to the duration of each 

ablation. Moreover, for highly localized IVHIFU ablation targets, monitoring temperature 
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remote from the ablation site, which presumably remains at body temperature 

(Figure 3.6, Figure 3.7), provides a measure of drift for correcting temperature. 

Of the three HIFU transducer designs introduced in Chapter 2, the testing here 

showed that the flat (catheter #1) and cylindrical segment or ‘sector’ (catheter #3) 

transducers penetrated deeper than the transducer with the 360° radial pattern (catheter 

#2), if only because the latter had a higher driving frequency (Table 2.1) and hence a 

higher attenuation in tissue [104]. Nevertheless, the catheter #2 transducer preserved a 

ring of tissue and was more efficient at ablating a circular lesion for creating an ablation 

margin around the vessel, for example (Figure 2.6a). Including the lumen in catheter #3 

(Figure 2.2b) provided easier device exchange without risking detachment. It also 

facilitated multi-modality image guidance–X-ray fluoroscopy and MRI–with less metal 

artifacts in the images (Figure 2.9a). More precise control and tailoring of the thermal 

ablation beam could be achieved in future by adding more individually-powered 

transducer elements.  

Improving the IVMRI HIFU catheter design to reduce its diameter and increase 

its flexibility is important for facilitating interventional procedures, especially where 

access to pathologies from smaller vessels is being sought. While the evidence is 

inconclusive, we think that the overall size and flexibility of catheter #3 (4.3 mm OD), 

was the likely cause of the occasional hemorrhage seen in the second in vivo study, given 

the absence of MRI thermometry and histological evidence for vessel wall heating at 

ablation sites where exposure was greatest(Figure 2.9, Figure 3.4, Figure 3.5, Figure 3.6).  

Heating affects are potentially ameliorated by adjusting the coolant temperature and/or 

flow. Catheter biocompatibility is best evaluated with sham procedures not involving 
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MRI or HIFU. The development of an IVMRI HIFU needle may be another option for 

interstitial targets or where vessel size is limited. 

That the temperature and flow of coolant to the probe affects the preservation of 

adjacent tissues suggests a dual role for it in cooling both catheter and the tissue 

immediately surrounding it. Although we set the TheraVision system’s water-cooling 

heat exchanger in the console room at 3 °C and used closed-cell polyurethane thermal 

insulation on the 5 m long coolant hoses, the combined effect of the ~20 °C room 

temperature and heating during ablation, resulted in a coolant temperature at the catheter 

head of an intermediate 10-13 °C. The coolant temperature at the catheter could be 

reduced by establishing a reservoir inside the scan room or by increasing the flow-rate. 

However, the flow-rate is limited by catheter size, whose diameter is ultimately 

constrained by vessel size.  

The acquisition of temporal MRI thermometry data enabled calculation of the 

thermal dose in CEM43 and the estimation of the shape and size of thermal lesions 

(Figure 3.3, Figure 3.4a,b). As a threshold for producing thermal coagulation and 

lesions [63,64], we observed that the CEM43=340 contour derived from MRI 

thermometry tended to overestimate the size of lesions identified by quantitative analysis 

of the sample dissections (Figure 3.4). In some experiments (#1, #5 in Figure 3.4a,b), 

significant areas of lesion appeared on different slices which may have contributed to 

underestimation in the individual dissections, as compared to thermometry. Some tissue 

loss and deformation of lesion areas is also inevitable during the preparation of 

dissections. The finite length of the HIFU transducer (~1 cm) and limited depth of 

ablation parallel to the catheter’s long axis are other mitigating factors. 
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In addition, CEM43-based methods can overestimate thermal injury in a manner 

that depends in a complex way on the temporal temperature profile [64]. Lesions 

manifesting significant color changes at gross examination are likely to correspond only 

to fully-coagulated cores and may not extend to the entire lesion area. Indeed, various 

studies have shown that the coagulation core continues to expand up to 2 weeks post-

ablation, gradually establishing a rim that is evident on MRI and comprised of non-viable 

liquefying cells at histology [105–108]. Both of these considerations would tend which 

would reduce CEM43-based over-estimation of lesion size in vivo. 

In conclusion, IVMRI guided and IVMRI titrated IVHIFU has the potential for 

precision ablation of perivascular tumor and other pathological tissues, while preserving 

vessel wall. The technology potentially offers a new approach to treating localized 

disease including inaccessible tumors or pathologies involving critical blood vessels. It is 

possible that such a procedure could render a non-resectable tumor, resectable. As the 

current study demonstrates feasibility of IVMRI-guided IVHIFU, given the size of the 

current devices, further in vivo testing would require evaluation on a large animal tumor 

or disease model. 
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Chapter 4: Real-time high-resolution MRI Endoscopy 

4.1 Introduction 

Atherosclerosis is a prevalent factor in cardiovascular disease and a leading cause 

of mortality and morbidity [109–111]. While over a million X-ray guided catheterizations 

are performed in the USA annually to diagnose and treat the disease, X-ray angiography 

can only detect lumen contours which limits its ability to assess early and advanced 

lesions and their progression [112–114]. Coronary X-ray CT angiography can assess 

plaque burden via the presence of calcification, but is unable to characterize many of the 

soft tissue pathologies that distinguish the American Heart Association’s (AHA) 

classifications for vessel disease [115,116]. Other minimally-invasive imaging options 

include IVUS and OCT, which are clinically available but not widely used. These can 

offer improved spatial resolution and contrast for evaluating stenoses, identifying 

potentially vulnerable lesions, and facilitating intervention [35,117,118]. Confounding 

factors are the presence of calcifications in the case of IVUS [119,120]; and optical 

penetration and a requirement for blood-free access to the vessel wall, in the case of 

OCT [39,121]. Moreover, all of these modalities employ X-ray guidance and hence 

expose patients and operators to ionizing radiation. Our goal is high-resolution MRI 

endoscopy with real-time imaging speeds comparable to existing endoscopy modalities. 

IVMRI is a newer approach that employs miniature MRI detector coils mounted 

on guidewires or catheters for use in higher-field MRI scanners. It can provide high-

resolution and soft tissue contrast for characterizing different stages of vessel disease 

without using X-rays [10,50,100]. An ‘MRI endoscopy’ mode is also possible with 

IVMRI, wherein a continuous stream of images is acquired from the point-of-view of the 
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detector coil, to which the image frame is intrinsically locked. This is achieved by 

dispensing with the traditional MRI slice-selective excitation which is fixed to the 

scanner’s frame-of-reference. Instead, the highly-localized receiver sensitivity profile of 

the tiny MRI coil combined with an endoscopic MRI sequence that employs adiabatic 

MRI (RF) excitation, limits MRI sensitivity to a 3-5 mm (full-width-half-maximum) 

thick uniformly-excited ‘sensitive disk’ which is intrinsically locked to the coil and 

moves with it. Like an optical endoscope used for colonoscopy, the MRI endoscope 

provides a ‘probe’s eye’ view from inside the vessel. Unlike optical endoscopy, MRI 

endoscopy can see through the vessel contents and the vessel wall to potentially locate 

and characterize trans-luminal and extra-vascular disease as the probe is 

advanced [88,100]. Unfortunately to date, MRI endoscopy has been limited to about 2 fps 

at 300 µm resolution for real-time visualization in blood vessels [100]. The speed is 

limited because state-of-the-art SENSE MRI methods are not possible with a single-

channel endoscope, and because the reconstruction (and acceleration) rates of existing 

iterative compressed MRI methods have not been fast enough and have required off-line 

iterative processing that is unsuitable for practical endoscopy applications [52]. Thus, 

true real-time MRI endoscopy at frame-rates suitable for interventional, catheterization or 

endoscopy procedures has not yet been realized. 

A highly-accelerated real-time MRI system was recently developed for 

conventional multi-channel MRI with transmitters and receivers that are fixed to the 

scanner frame-of-reference and its localizing gradient system [122–124]. The system uses 

highly under-sampled radial pulse sequences and a temporally-regularized, iterative, 

NLINV reconstruction algorithm, implemented with cascaded GPUs to provide 
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essentially instantaneous image reconstruction and visualization. Here we report the 

novel incorporation of this technology to create a real-time (single-channel) MRI 

endoscope that can move relative to the scanner’s frame-of-reference with continuous 

microscopic visualization at up to 10fps, in-plane resolution of 200-300 µm and an 

imaging FOV of 2-3 cm without inducing significant local heating. After calibration and 

safety testing, a uniform MRI excitation FA is excited by the tiny coil at the end of the 

endoscope using adiabatic “B1-independent rotation” (BIR-4) RF pulses [125], and the 

size of the FOV or ‘sensitive disk’ is adjusted independent of the scanner’s frame-of-

reference. The software operates on a regular clinical MRI scanner with the GPU 

hardware connected via a high-speed ethernet cable (Figure 4.1). Results from animal and 

human vessels ex vivo and from animal vessels in vivo are demonstrated and the 

structural and temporal information in the highly-accelerated image streams are 

compared with fully-sampled MRI endoscopy scans using image similarity metrics, and 

with tissue dissections and histology. 
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Figure 4.1 (a-c) Block diagram of the MRI endoscope. (a) 8-cascaded GPUs controlled 
locally by a GPU computer programmed to perform undersampled radial image 
reconstruction in real time are connected to (b), a 3T clinical MRI scanner via a CAT5 
computer cable (red arrow). The MRI scanner is programmed for high-speed (fast low-
angle shot, FLASH) MRI to drive (c), a 3mm transmit/receive endoscope (red arrow), 
via a tuned interface and preamplifier. (d) The endoscope accesses the vasculature of a 
(porcine) subject lying in the magnet of the MRI scanner (grey arrow) via the femoral 
artery, during (e) video monitoring as (f) the endoscopic images are displayed in real-
time on the at the scanner’s display window (yellow box) and on an in-room monitor.  
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4.2 Methods 

4.2.1 MRI Endoscopy 

Four 3 mm diameter prototype MRI endoscopes were fabricated for use in studies 

performed on a clinical 3T MRI scanner (Prisma, Siemens Healthineers AG, Munich, 

Germany). The endoscopes had 3-5 turn transmit/receive coils that were tuned to the 

123.2 MHz MRI frequency with micro-chip capacitors and mounted on ¼-wavelength 

(λ/4 ≈ 42 cm), 50 Ω, flexible, 1.25 mm diameter, silver-plated micro-cable and enclosed 

in a 2.4 mm polymer sheath (Nylon 12, 64 Shore D hardness; Figure 4.1c. and 

Figure 4.2). The endoscopes were matched to 50 Ω when immersed in saline with tissue-

comparable RF electrical properties (Figure 4.2) and interfaced to the MRI scanner via 

two ganged (gain, 26 dB+20 dB) low-noise (noise figure, 0.4-0.5 dB) preamplifiers at the 

receiver’s front-end [50]. A switchable 20 dB attenuator was connected to the scanner’s 

RF transmitter amplifier output. 
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The MRI acceleration unit was comprised of 8 Nvidia GeForce GTX Titan X 

(Nvidia, Santa Clara CA) GPUs and a ‘bypass’ computer (sysGen/TITAN Octuple-GPU, 

Sysgen, Bremen). This unit was developed by Dr Jens Frahm and associates and 

assembled at the Max Planck Institute in Goettingen, Germany as described 

 
Figure 4.2 MRI endoscope. Photos of: (a) a 5-turn, 3 mm diameter, endoscopic MRI 
coil tuned to the 123.2 MHz MRI frequency with a tuning capacitor inside (yellow 
arrow). (b) The coil is mounted on a flexible 41-cm 50 Ω flexible coaxial cable (silver-
plated copper conductor; perfluoroalkoxy-dielectric and jacket; 1.25 mm outer 
diameter) in a polymer sheath (Nylon 12, 64 Shore D hardness, 2.4 mm outer diameter). 
(c) Circuit diagram showing the coil, coaxial cable and matching circuit (dashed box) 
which is connected to the scanner preamplifiers. (d)  A ‘pullback’ protocol in the left 
common iliac artery from an internal iliac branch. 
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previously [122–124] with Drs Jens Frahm and Dirk Voit from the institute collaborating 

on this project. The unit was connected to the Siemens scanner via a single ethernet cable 

and configured to provide continuous real-time image display at the scanner console 

(Figure 4.1). MRI was accelerated using highly under-sampled radial acquisitions (9-17 

projections per image frame), and reconstructed in the bypass computer with a highly-

parallelized version of the NLINV algorithm [126] which jointly estimates image and coil 

sensitivity (minimum latency period, 1 frame). Although the NLINV reconstruction also 

accommodates corrections for the slow-varying sensitivity profiles of regular MRI coils, 

a spatial pre-filter was developed at Johns Hopkins and applied to the raw projection data 

to compensate for the extreme inverse-radial (~1/r) dependence of the coil’s detection 

sensitivity and enhance conspicuity in the periphery of the FOV, analogous to that used 

previously [50]. The filter and its effect are detailed in 4.2.5 Preprocessing Filter. During 

high-speed endoscopy, radial projections were acquired from a continuous application of 

a fast low-angle shot (FLASH) MRI sequence [127] programmed with the adiabatic BIR-

4 pulses (pulse duration: 4 ms; frequency sweep: ±10 kHz) in lieu of spatially-selective 

excitation. Applying these pulses with the endoscopic coil as a transmitter restricted the 

MRI sensitivity to an approximately discoidal volume (Figure 4.3a) that moved with the 

probe, no longer locked to the frame-of-reference of the scanner’s localizing gradient 

system [100]. 

The sequence operating parameters were adjusted to match the probe’s excitation 

and detection sensitivity, which declines rapidly with distance from the coil. The 

amplitude of the excitation field (B1) sets the adiabatic threshold of the BIR-4 pulses and 

effectively sets the radius of the sensitive disk. This was calibrated by varying the 
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scanner’s nominal transmit voltage (Tx at the RF power amplifier, excluding intervening 

losses) from 1.6–25 V with the endoscope placed in the saline phantom using a long 

repetition period (TR=5 s) short-echo-time (TE=4.4 ms) gradient-recalled echo (GRE) 

BIR-4 sequence. The average radial sensitivity profile was plotted as a function of 

distance from the coil (Figure 4.3a,b). Nominal transmit RF voltages of 6.3 V and 18.8 V 

were chosen for ex and in vivo studies, to provide effective FOVs of ≥20 mm and 

≥30 mm, respectively (Figure 4.3b). RF heating of the endoscope during continuous 

high-speed endoscopy with the probe at the same location for 2 minutes (600 images) at 

TR=20 ms was measured in the saline phantom in the scanner with fiber-optic 

temperature probes placed at the tip where peak heating occurs and at more remote 

locations [50,51,100]. 



 70 

 

The MRI FA of the BIR-4 pulse was adjusted to maximize the SNR with the 

probe stationary. FA is set by phase jumps within the pulse [50,125] which are typically 

miss-set in MRI scanner hardware [128]. This is normally remedied by cycling the BIR-4 

pulse’s phase which was not possible here because the extreme acceleration precluded 

repetition of phase-cycled projections. Instead, the FA of the BIR-4 pulses was calibrated 

 
Figure 4.3 Adjusting the adiabatic BIR-4 excitation pulse during endoscopic MRI to 
independently control FOV and sensitivity. (a) Image of the endoscope’s ‘sensitive 
disk’ in a homogeneous phantom (GRE image; repetition period, TR=5 s; echo time, 
TE=4.36 ms; nominal BIR-4 flip angle, FA=90°; FOV=38 mm; transmit voltage 
Tx=25.1 V). (b) Adjusting FOV. Reducing pulse power (Tx) at a constant FA=90° 
decreases the BIR-4 pulse’s threshold for adiabaticity and hence the FOV. (c) 
Sensitivity optimization. The average radial MRI signal plotted with different BIR-4 
FAs at Tx=25.1 V. The FOV is independent of FA. (d) Calibration of FA. The image 
intensity as a function of the nominal FA of the BIR-4 pulse fitted to a sine function 
reveals a fixed 5° offset error in FA. 
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in the saline phantom, with nominal ‘scanner’ FAs varied between 0° and 90° at 10° 

increments at long TR and a fixed Tx=25.1 V (Figure 4.3c). The maximum image 

intensity for a given Tx was fitted to the sine of the nominal FA (Figure 4.3d) to 

determine the true FA [128], and the resultant offset error (5°) subtracted from the 

scanner FA when applying our BIR-4 sequences and reporting the FAs. 

4.2.2 Ex Vivo Experiments 

High-speed real-time MRI endoscopy was first tested in healthy porcine blood 

vessels (4 samples) and in diseased human blood vessels (7 samples) ex vivo. Fresh 

porcine vessels (≤24 hrs post mortem) were obtained from commercial research suppliers 

(Animal Biotech Industries, Doylestown, PA; Spear Products Inc, Coopersburg, PA). De-

identified human vessels harvested post-mortem from elderly voluntary donors were 

obtained from the John Hopkins’ autopsy service. These commonly show evidence of 

atherosclerosis lesions and calcifications detectable by MRI endoscopy. Vessels were 

mounted on a rubber platform at the center of a (0.35%) saline solution placed in the MRI 

scanner. The MRI endoscope was placed at the distal end of the vessel, the endoscopy 

sequence commenced, and the coil retracted by an operator from the end of the scanner 

(Figure 4.2d). 

Real-time BIR-4 FLASH MRI endoscopy of porcine carotid arteries was 

performed at 6 and 10fps (FOV=45 mm; resolution=200 µm; FA=10°; 

TR/TE=11.5/6.68 ms; projections/image frame =15 for 6 fps (172.5 ms/frame), 9 for 

10 fps (103.5 ms/frame); pullback rate = 2 mm/sec). A fully-sampled BIR-4 GRE 

Cartesian MRI sequence used previously [50,100] (denoted ‘conventional’ MRI 

endoscopy), was applied at 0.3 fps to provide an unaccelerated reference for comparison 
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(FOV=45 mm; resolution=200 µm; FA=10°; TR/TE=15/6.61 ms; 3.34 s/frame). The 

duration of each endoscopy stream was ~30 s. 3D high-resolution ‘static’ images were 

also acquired at locations of interest (BIR-4 GRE; FOV=45 mm; resolution=200 µm; 

phase encoding steps, PE=225; FA=10°; TR/TE=100/6.61 ms; SL=2 mm; 16 slices; scan 

time=6.1 min). 

Human iliac artery segments were studied with real-time MRI endoscopy at 6fps 

and 10fps (FOV=40 mm; resolution=220 µm; FA=10°; TR/TE=11/6 ms; 

projections/frame=15 for 6 fps (165 ms/frame), or 9 for 10 fps (99 ms/frame); pullback 

rate = 4 mm/sec) and with fully-sampled conventional MRI endoscopy (FOV=40 mm; 

resolution=220 µm; PE=182; FA=10°; TR/TE=13/5.55 ms; 2.37 s/frame) for comparison. 

The locations of suspected vessel lesions were identified and static 3D high-resolution 

MRI was then performed at these locations (BIR-4 GRE; FOV=50 mm; 

resolution=100 µm; FA=10°; TR=20 ms; TE=10.1 ms; SL=2 mm; 16 slices; 

scan time=1.9 min). The vessels were then removed and dissected at image locations, 

fixed, and Movat-stained for histology. 

4.2.3 In Vivo Experiments 

In vivo studies were performed with the MRI endoscope in the IVC of 

anaesthetized 50 kg female Yorkshire pigs (Figure 4.1d, e). The IVC was accessed 

percutaneously via the femoral vein under X-ray fluoroscopy guidance in studies 

approved by our Institutional Animal Care and Use Committee. During MRI endoscopy, 

an operator at the MRI scanner bore-opening, retracted the endoscope continuously as the 

image stream was displayed in real-time on the console monitor (Figure 4.1f). A portable 

in-room console was available for monitoring or adjusting sequences. IVC endoscopy 
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was performed at 300 µm resolution using the 6 and 10 fps accelerated sequences 

(FOV=40 mm; resolution=220 µm; FA=10°; TR/TE=11/6 ms; projections/frame= 15 for 

6 fps (165 ms/frame), or 9 for 10 fps (99 ms/frame); pullback rate = 4 mm/sec), and with 

the 0.3 fps fully-sampled ‘conventional’ sequence (FOV=40 mm; resolution=220 µm; 

PE=182; FA=10°; TR/TE=13/5.55 ms; 2.37 s/frame). 

4.2.4 Image Evaluation 

To correlate dynamic endoscopy series acquired at 0.3 fps, 6 fps and 10 fps with 

static 3D reference scans acquired from the same samples, the structural and temporal 

information in the highly accelerated image streams is compared with fully sampled MRI 

endoscopy scans using image similarity metrics and with tissue dissections and histology. 

For this purpose we used the Mutual Information (MI) and the Structural Similarity Index 

(SSIM) [129,130], along with processing procedures that register image series 

spatially/temporally and gauge inter-frame smoothness. 

Mutual Information and the Structural Similarity Index 

Mutual information is a widely used criterion for aligning multi-modal medical 

images (CT, MRI, PET, etc.) describing the amount of information shared by two images 

of different contrast characteristics [129] or as here, 3D ‘static’ reference scans acquired 

with different scan protocols. In this study, MI of two images A and B were calculated as 

 MI(𝐴𝐴,𝐵𝐵)   = H(𝐴𝐴) + H(𝐵𝐵)− H(𝐴𝐴,𝐵𝐵) 

= ��𝑝𝑝𝐴𝐴𝐴𝐴(𝑎𝑎, 𝑏𝑏) log
𝑝𝑝𝐴𝐴𝐴𝐴(𝑎𝑎, 𝑏𝑏)
𝑝𝑝𝐴𝐴(𝑎𝑎)𝑝𝑝𝐵𝐵(𝑏𝑏)

𝑏𝑏𝑎𝑎

 

= ��
hAB(a, b)

N
log

hAB(a, b)
hA(a)hB(b)

ba

+ log N 

(4.1) 
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where H(X) is the entropy of image X; pAB(a, b) is the joint probability distribution of 

pixel values; pA(a) and pB(b) are marginal probability distributions; hAB(a, b) is the 

joint histogram; hA(a) and hB(b) are histograms of each image; N is the number of 

pixels in each image. The metric normalized for the number of pixels is 

 2𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵)
𝐻𝐻(𝐴𝐴) + 𝐻𝐻(𝐵𝐵) ∈

[0,1] (4.2) 

The structural similarity index measure (SSIM) is a perception-based measure of 

similarity of two images for quantifying quality degradation [130]. The three-component 

weighted SSIM (3-SSIM) better correlates with perception by emphasizing edge regions 

of features vs. smooth regions [131]. This is better-suited to endoscopy where most 

information is concentrated within the focus vs. the large uniform area around the 

periphery. In the present study 3-SSIM was calculated using the procedure described 

in [131]. 

Image Streams Spatial and Temporal Registration 

In this study, the reference 3D endoscopy images had different contrast from the 

2D endoscopy scans. The MI was used to register the reference scan and endoscopy 

streams acquired at different frame rates, both spatially and temporally. 

As illustrated in Figure 4.4, the foregrounds of two images acquired from different 

streams of the same sample were determined by brightness thresholding. Then the 

foregrounds were translated within a search range to discover corresponding landmarks 

from which the MI is maximized. After registering spatially each pair of images from the 

two streams, a mutual information matrix MI ∈ Rn1×n2 was formed, wherein n1 and n2 

were the number of image frames in each stream, respectively. The curve formed by the 
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maxima of the MI in the matrix determined the temporal correspondence between the 

streams (Figure 4.5). 

 
 
Inter-frame Transitions in Real-time Endoscopy  

To quantify the continuity of real-time image streams, the change of the location 

of the coil was treated as a vector over time. Considering scans from the same sample 

wherein the coil starts at location L0����⃗  and ends up at LT����⃗ , we have: 

 
𝐿𝐿𝑇𝑇����⃗ = � Δ𝐿𝐿𝑡𝑡������⃗ 𝑑𝑑𝑑𝑑

𝑇𝑇

0
+ 𝐿𝐿0����⃗  (4.3) 

Assuming that real-time scans of the same sample follow similar paths, the average 

magnitude of |ΔLt������⃗ | is inversely proportional to the smoothness of inter-frame transitions. 

The average inter-frame translation distance (∆L) of the center was calculated for 6fps 

and 10fps streams. The center of the foreground was determined by taking the weighted 

center of pixel values. The average translation distance was thus calculated as 

 
Figure 4.4 Left: image from a 3D static reference scan. Right: image from a 0.3 fps 
fully-sampled dynamic endoscopy scan. Red boxes show foreground patches. Green 
boxes are search region (5 mm square) for translation. Red circles are corresponding 
landmarks found for registration. 
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ΔL =

1
𝑇𝑇 − 1

��(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1)2 + (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)2
𝑇𝑇

𝑡𝑡=2

 (4.4) 

where xt and yt are coordinates of foreground center of the frame at dynamic t; and T is 

the number of frames in the image stream.  

 

 
Figure 4.5 Examples of three dynamic scans from 6 fps (left column) and 10 fps 
(middle column) real-time endoscopy data streams from an iliac artery when the coil 
transitions from a side branch (Figure 4.2d) into the main lumen (top row: start 
transition; middle row: between the two lumens; bottom row: main lumen). Color maps 
(right column) show corresponding locations in the MI matrix of the temporally 
registered dynamics (vertical axis: dynamic indices of the 6 fps stream; horizontal axis: 
dynamic indices of the 10 fps stream). The blue (roughly diagonal) curves trace the MI 
maxima; the red cursor crosses show the specific image pairs exemplified on the left 
(top row: #52 vs. #89; middle row: #62 vs. #104; bottom row: #72 vs. #118). 
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Image Streams Comparison with the Metrics 

The MI of each dynamic frame was determined for each static (3D) reference 

image slice, and the dynamic frame with the largest MI assigned to that reference 

location. The average MI for each dynamic endoscopy series at each frame rate as 

compared to the reference scans, was then computed for each series. The structural 

similarity of real-time endoscopic images acquired at 6 fps and 10 fps was compared with 

the 0.3 fps conventional endoscopy images by first registering them based on the 

maximum MI as above. The average 3-SSIM (range, [0,1]) [130,131] was then 

computed. The 3-SSIM of the 10 fps vs. the 6 fps scans was calculated similarly. 

Potential sensitivity to motion was compared by computing the average ∆L between 

adjacent frames of the 6 and 10 fps data streams Equation (4.4). 

MI, 3-SSIM, and ∆L were determined for 11 samples (4 porcine vessels and 7 

diseased human vessels) from which 3 dynamic scans (0.3 fps, 6 fps and 10 fps) and one 

static (3D) reference scan were acquired. MI was compared using two-way analysis of 

variance (two-way ANOVA) with frame rates and samples as independent variables. 

Multiple comparisons of different frame rates were performed using Tukey’s honest 

significance test. Differences between 3-SSIM at 0.3 fps, and ∆L at 6 and 10 fps were 

assessed by paired t-testing. The apparent SNR was calculated in the accelerated scans 

from the quotient of the average signal in a 1 cm square centered on the endoscope, and 

the SD of background noise measured in a 0.5 cm square 1.5 cm from the center. 

4.2.5 Preprocessing Filter 

A simple inverse radial spatial filter was used in prior work to compensate for the 

approximately inverse-radial (1/r) coil sensitivity profile of endoscopic MRI 
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detectors [50]. Here, the NLINV reconstruction removes most of the undersampling 

artifacts [122] without such correction. However, the highly nonuniform sensitivity 

profile can suppress some of the useful information in the peripheral FOV during 

downstream reconstruction. We found that preprocessing the projection data to provide a 

slower-varying coil sensitivity profile improves image homogeneity, contrast and 

conspicuity. As the raw (inverse FT) data is an integral of the signal along the projection 

path, a heuristic preprocessing filter was designed to support the underlying solenoidal 

detection sensitivity of the endoscope, with the correction profile: 

 
𝑓𝑓(𝑟𝑟) = � 𝑑𝑑𝑑𝑑

𝑑𝑑/2

−𝑑𝑑/2
/�

1
𝑥𝑥2 + 𝑟𝑟2

𝑑𝑑𝑑𝑑
𝑑𝑑/2

−𝑑𝑑/2
=

√𝑅𝑅2 − 𝑟𝑟2

log |𝑅𝑅 + √𝑅𝑅2 − 𝑟𝑟2
𝑟𝑟 |

   (4.5) 

where r is the distance to the coil center, R is the coil’s sensing range, and 𝑑𝑑 =

2√𝑅𝑅2 − 𝑟𝑟2. 
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The filtered projection data are fed to the GPU bypass computer and acceleration 

unit for reconstruction with the NLINV program. Examples of images in Figure 4.6 with 

and without the Equation (4.5) pre-filter correction show a reduction in both the angular 

intensity fluctuations and the radial decline in signal sensitivity (Fig. 4c,f). Endoscopy 

videos (Appendix A: MRI Endoscopy Videos) with and without filtering are included for 

side-by-side comparisons. 

4.3 Results 

Figure 4.7 shows endoscopic image frames from a pig carotid artery specimen in 

an 0.35% saline phantom at 200 µm nominal (in-plane) resolution. Frames in rows a1-a4 

 
Figure 4.6 Example of image frames from 6fps porcine carotid (a, b) and human iliac 
(d,e) specimens without pre-filtering (a, d) and after applying Equation (4.5) (b, e). Part 
(c) plots image intensity vs. polar angle around the arcs indicated in red in the images. 
These plots shows a reduction in peripheral angular fluctuations associated with radial 
spokes in the pre-filtered image (red) vs. no filter (blue). Part (f) shows the 
improvement in uniformity in the radial dimension afforded by pre-filtering (red curve 
vs. blue curve). 
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were recorded using highly under-sampled radial acquisitions at five different positions at 

6 fps and visualized in real-time. Frames b1-4 were recorded in real-time from 

approximately the same locations but at 10 fps. These are respectively 20 and 33 times 

faster than 0.3 fps 200µm resolution images acquired using a ‘conventional’ fully-

sampled endoscopy sequence depicted in frames c1-4, with a minimum latency period 

being one frame. Access information for videos of the image streams can be found in 

Appendix A: MRI Endoscopy Videos. Figure 4.7 (d, e) shows a ‘static’ fully-sampled 3D 

endoscopic image acquired in 368 s at the same nominal resolution as a reference. 

Figure 4.7 (f) shows a vessel dissection. 

 

 
Figure 4.7 MRI endoscopy of a porcine carotid artery ex vivo. Imaging frames at 6 fps 
(a1-4) and 10 fps (b1-4), and from a fully-sampled 0.3 fps MRI endoscopy (c1-4) 
acquired at approximately the same locations. Access for videos are provided in 
Appendix A: MRI Endoscopy Videos. (d and e) High-resolution ‘static’ 3D endoscopic 
images at the location of the 4th column. (f) Dissection at location of the 3rd column. 
(white arrows, adipose; yellow arrows, attached tissues). 
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Figure 4.8 presents images from a diseased human iliac artery specimen obtained 

from our institution’s autopsy service, immersed in saline. Each column derives from 

approximately the same locations. Frames in row a and row b were sequentially acquired 

in real-time using highly under-sampled 220 µm endoscopy sequences at 6 fps and 

10 fps, respectively. As the endoscope is withdrawn through the artery, the branching of 

 
Figure 4.8 MRI endoscopy of a diseased ex vivo human iliac artery. Image frames from 
6 fps (row a) and 10 fps (row b) real-time scans, 0.3 fps fully-sampled endoscopy 
stream (row c) and high-resolution static 3D endoscopic reference scans (row d) at 
approximately the same locations transitioning from a branch to the main lumen (see 
Figure 4.2d). The vessel wall opens at the transition (yellow arrows in a2, a3, b2, b3, c3 
and d3). Access for videos are provided in Appendix A: MRI Endoscopy Videos. Each 
column of images corresponds to approximately the same locations except the vessel 
wall dissection in e1 corresponds to d1 and e5 corresponds to d5. Fibro-calcific plaque 
(white, blue, red and green arrows) and intimal thickening (green arrow) were identified 
by Movat-staining on histology of the sections. 
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the internal iliac (see Figure 4.2d) is seen as a lateral opening in the vessel wall (Figure 

4.8-a2, a3, b2, b3; yellow arrows). Videos of these image streams plus a 0.3 fps, 220 µm 

‘conventional’ fully-sampled endoscopy stream 20-33 times slower can be found in : 

MRI Endoscopy Videos. Images in row c are reference scans from fully-sampled 0.3 fps 

endoscopy stream, and those in row d derive from high-resolution (nominally 100 µm) 

static 3D endoscopic images acquired in 112 s. Post-study dissections of the vessel wall 

in e1 and e5 show atherosclerosis with fibrocalcific plaques and intimal thickening 

corresponding to images d1 and d5, respectively. 

 

 
Figure 4.9 MRI endoscopy frames from a porcine IVC in vivo. Row 1, 2, and 3 were 
acquired at 6 fps, 10 fps and fully-sampled at 0.3 fps. Images in each column are in 
approximately the same location (white arrows, the aorta abutting the IVC; yellow 
arrows, structures near the spine; red circles: coil positions; blue arrows, motion artifact 
in the slower scans) 
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In vivo MRI endoscopy frames from a pig inferior vena cava are shown in 

Figure 4.9: the endoscopy streams can be found in : MRI Endoscopy Videos as well. The 

top two rows of images were acquired using under-sampled 6 fps and 10 fps endoscopy, 

20 and 33 times the speed of the fully-sampled 0.3 fps images shown in the third row. 

The nominal spatial resolution was 220 µm and each column of images is from 

approximately the same location for comparison. 

The MI and 3-SSIM metrics used to compare the similarity between the high-

speed 6-10 fps (200-300 µm nominal resolution) highly-undersampled images and the 

slow ‘conventional’ fully-sampled scans are summarized in Table 4.1. The results are 

from 11 samples (4 porcine vessels and 7 human diseased vessels) acquired with 3D MRI 

(100-200 µm nominal resolution; 50-370 s scan-time) and fully-sampled endoscopy at 

0.3 fps (200-300µm nominal resolution). Two-way ANOVA analysis show significant 

differences in MI between the high-resolution static 3D reference scans acquired in 50-

370 s which used Cartesian spatial encoding, and the 0.3-10 fps dynamic scans acquired 

with radial encoding (p<0.001). However, while the fully-sampled 0.3 fps method 

outperformed the 6-10 fps highly undersampled scans (p<0.001), the 20 to 33-fold 

acceleration incurred only an ~7% cost to MI. The 3-SSIM metric, which reflects 

degradation in image contrast and emphasizes structural errors of perceptual 

significance [130,131], was only slightly better at 6 fps than at 10 fps (57 vs. 55; 

Table 4.1) using the 0.3 fps scans for reference. These results suggest little loss of fidelity 

at the higher scan rate. 
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Table 4.1 Comparison of image similarity indices 

Metric 0.3 fps 6 fps 10 fps 
MI (vs. 3D 50-370 s reference) 25.8±4.1 23.8±2.9* 24.2±3.1*† 
3-SSIM vs. 0.3 fps — 57.3±10.4 55.1±9.7§ 
3-SSIM vs. 6 fps — — 68.0±10.8 
∆L(mm) — 0.34±0.20 0.28±0.14# 

Values are means±standard deviations (SD). MI and 3-SSIM are in %.  * p<0.001 vs. 
0.3 fps scans (two-way ANOVA, degrees of freedom of frame rates=2). †Not 
significantly reduced vs. 6 fps scans. §p<10-5 vs. 6 fps scans (paired t-test). # p=0.03 vs. 
6 fps (paired t-test). 
 

As a gauge of motion sensitivity, a comparison of the average frame-to-frame 

displacement of the endoscope, ∆L showed an 18% reduction at 10 fps vs. 6 fps (p=0.03). 

The apparent image SNR in a 1-cm square centered on the endoscopy coil was 15±3 

averaged from the 11 real-time endoscopy samples recorded at 6 fps and at 10 fps.  

4.4 Discussion 

This work demonstrates for the first time that the speed of MRI endoscopy can be 

increased twenty- to thirty-fold to 10 fps and visualized in real-time on a clinical 3T MRI 

scanner using high-speed highly-undersampled MRI radial acquisition, highly-

parallelized GPU-based reconstruction, and a transmit/receive device moving 

independent of the scanner’s frame-of-reference. Undersampling was previously 

proposed as a means of accelerating MRI endoscopy [52]. However, it could only be 

done on retroactively-acquired, fully-sampled data, and the iterative reconstructions took 

minutes to complete, resulting in a process that was incompatible with any practical 

endoscopy application. The present results are five times faster than prior best efforts at 

real-time endoscopy [100]. The advance here was achieved using stand-alone hardware 

developed for real-time MRI that connected to the scanner via a simple ethernet 

cable [122], and a modified MRI pulse sequence that replaced slice selection with 
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adiabatic excitation to provide imaging from the viewpoint of the coil at the endoscope’s 

tip. The MRI frame-rates of 6-10 fps are comparable to X-ray fluoroscopy rates of 7.5-

15 fps, and are faster than a 4 fps fluoroscopy rate recently advised for mitigating 

radiation dose [132] which is not an issue for MRI. Our MRI endoscopy frame-rates are 

also comparable to the 2-10 fps rates used in optical gastro-intestinal endoscopy 

procedures [133,134]. MRI endoscopy enabled continuous real-time feedback to guide 

catheter passage through blood vessels ex and in vivo. It could thus serve as a value-

added complement or alternative to diagnostic or interventional X-ray catheterization, 

optical endoscopy and IVUS procedures, benefitting from MRI’s advantages of soft-

tissue sensitivity, lack of ionizing radiation, and the ability to see through vessel contents 

and vessel wall uncompromised by calcifications, as compared to optical and IVUS 

methods. 

Highly-accelerated, under-sampled, real-time MRI endoscopy is not artefact- or 

cost-free, however. Our analysis showed that highly-undersampled real-time MRI 

endoscopy can achieve ≥20 times the frame-rate of conventional fully-sampled 

endoscopy at a cost of a ~7% reduction in mutual information.  Compared to the fully-

sampled experiments, there was no significant difference in MI between 6 and 10 fps. 

However, comparing the 3-SSIM with 0.3 fps scans in 10 fps vs. 6 fps revealed a small 

difference likely attributable to an increase in undersampling ‘spoke’ artifacts at the 

higher speed (compare Figure 4.7b and Figure 4.8b with Figure 4.7a and Figure 4.8a). 

Nevertheless, 10 fps, provided smoother frame transitions and less sensitivity to motion 

than 6 fps, with a reduction of about 18% in the frame-to-frame displacement (∆L) to a 

value (0.28 mm) commensurate with the spatial resolution, and comparable to the 
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increase in speed. Note that spoke artefacts were attenuated and conspicuity was 

improved in the peripheral FOV using a simple analytical preprocessing filter applied to 

the raw projection data, which better compensated for the extreme inverse-radial (1/r) 

inhomogeneity of the endoscopic coil and downstream NLINV reconstruction (see 4.2.5 

Preprocessing Filter). Note also that while the comparative metrics were averaged from 

11 sets of cine streams, a caveat is that they all derive from images acquired at different 

rates and times from vessel transits that are unlikely to follow exactly the same track or 

sample the exact same locations due to the very nature of endoscopy. Thus, a perfect MI 

or SSIM cannot be expected. 

Surprisingly perhaps, the difference in artefacts at 6 fps versus 10 fps is less 

obvious in vivo (Figure 4.9) than ex vivo (Figure 4.8). This may reflect a trade-off 

between the improved ability to freeze physiological motion in the living animal at higher 

speeds, offsetting the increase in spoke artefacts at the higher frame rate. Still, moving 

the probe too fast or nonuniformly within the frame acquisition period (jerking or 

changes in catheter-sheath friction, etc.), is liable to cause ‘glitches’ of intense spoke 

artifacts from the afflicted projections (annotated in the appendix videos). The effect is 

not uncommon to other intravascular imaging modalities wherein glitches are ignored or 

the frames automatically dropped from the imaging stream. Nevertheless, there is 

certainly room to improve artifact suppression. Indeed, the hyper-intense radial artifacts 

resemble metallic artifacts in X-ray CT images which have been addressed using data-

adaptive artifact-reduction algorithms [135,136] that might be adaptable here. 

Meanwhile, given the real-time feedback at our frame rates, the MRI operator can just 

pause in advancing the endoscope, whereupon replacement images will appear in very 
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short order. By comparison, the much slower speed of fully-sampled MRI endoscopy 

renders it prone to artifacts from motion occurring during the acquisition of each image 

frame, even when the probe is not being advanced (Figure 4.9). When motion is paused at 

locations of interest, more projections can always be acquired at high speed to improve 

spatial—at the expense of temporal—-resolution. A regular high-speed mode can be 

resumed as soon as the probe is advanced further or retracted. 

A characteristic of MRI endoscopy is the highly nonuniform excitation field (B1) 

around the endoscopic coil when it is used for transmission and–by the Principle of 

Reciprocity–its highly non-uniform sensitivity when deployed as a receiver (Figure 4.3). 

Both of these properties are used to localize the endoscopy coil first by enabling the 

elimination of MRI slice selection–which is normally fixed to the scanner frame of 

reference; and second by reducing the effective FOV and hence the number of spatial 

encoding steps or projections needed for imaging. The adiabatic (BIR-4) pulse maintains 

a uniform MRI flip angle inside this effective FOV, which may be defined as the volume 

of tissue (‘sensitive disk’; Figure 4.3a) enclosed by the B1-contour that corresponds to the 

pulse’s threshold for adiabaticity. Outside of this B1-threshold, the FA fades rapidly to 

zero. MRI endoscopy requires two independent adjustments of the pulse. First, the B1 

amplitude sets the spatial extent of the sensitive disk (Figure 4.3b); and second, the 

pulse’s internal phase is adjusted to set FA within the FOV to optimize the SNR and the 

desired image contrast (Figure 4.3c). Regarding the latter, the use of the endoscopy coil 

for excitation; the use of adiabatic pulses to combat the non-uniform B1; and the focus on 

speed to facilitate MRI endoscopy applications analogous to those of other modalities; 

are all confounding factors for adjusting MRI contrast by conventional means while the 
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endoscope is moving. The efficacy of adding a FA=180° pulse to generate MRI 

relaxation-time (T1) contrast, for example, depends on the speed that the probe advances 

to locations outside the range of the 180° pulse. With the probe stationary, however, MRI 

relaxation times can certainly be quantified using conventional or accelerated 

approaches [10]. 

The primary safety concern for internal devices is the localized heating induced 

by MRI’s radio frequency (RF) pulses, which is not well-gauged by the volume-averaged 

RF specific absorption rates used for general MRI [137,138]. With an FOV of ~20 mm 

(Figure 4.3b; Tx≤7.8 V) local tissue heating during endoscopy at the stated scan-rates 

was ≤0.5 °C, in accordance with prior studies showing no significant heating or thermal 

injury [50,100]. When the FOV was increased to ~30 mm by increasing B1 amplitude 

(Tx=18.8 V), a local temperature rise of 3.5 °C was recorded after continuously 

streaming 600 images from a single location. However, heating at the higher power level 

is reduced with the endoscope unfixed and moving through a local perfused volume such 

as a blood vessel. The maximum temperature rise is localized in the immediate vicinity of 

the coil [50,100] and can also be monitored by high-resolution MRI thermometry 

performed using the endoscope [5,51]. 

In conclusion, high speed MRI endoscopy, unlocked from the scanner frame-of-

reference, can be combined with undersampling and real-time image reconstruction 

technologies to match the speed of existing clinical catheterization and endoscopy 

procedures and could provide a useful complement to established minimally-invasive 

imaging modalities including X-ray fluoroscopy, IVUS, OCT and optical 

endoscopy [139]. It has the potential advantages of multifunctional imaging afforded by 
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MRI, including thermal imaging for monitoring trans-vascular [51] and perivascular 

ablation therapies [5], and parametric imaging for classifying vessel disease as 

demonstrated previously [10]. The main hurdles to the technology are primarily those 

associated with interventional MRI in general: its expense, the limited availability of 

scanners in interventional settings, and accessibility to patients, interventionalists, 

recovery facilities and expertise in interventional MRI. 
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Chapter 5: Ultrafast compartmentalized relaxation time mapping with 

linear algebraic modeling 

5.1 Introduction 

The image contrast afforded by tissue longitudinal (T1) and transverse (T2) 

relaxation times [140,141] is central to MRI’s success in the clinic. The standard way of 

measuring MRI relaxation parameters is to acquire sets of images as a function of time as 

the NMR signal in each pixel returns towards equilibrium. However, the limited scan-

time available for clinical studies often precludes the acquisition of such image data. 

Consequently, T1- and T2-weighted images are routinely used in clinical protocols 

whereas quantitative T1 and T2 maps are not. 

Although more efficient methods than the standard inversion recovery (IR) and 

multi-echo spin echo (MESE) sequences for mapping T1 and T2 values abound [31,142–

151], arguably, the IR and MESE sequences remain the gold standards for accurate T1 

and T2 measurements and for validating newer faster methods. Nevertheless, in numerous 

applications, local average ROI measurements can suffice–as in T2-based monitoring of 

treatment response in brain tumors [152], or the use of blood T1 to quantify cerebral 

blood flow [153]. Indeed ROI-based analyses are ubiquitous in MRI [154–156]. 

However, averaging voxel values for ROI measurements post-acquisition comes at a cost 

to the SNR about equal to the square-root of the number of voxels being averaged, as 

compared to encoding the whole ROI directly [157]. In addition, much time is wasted in 

encoding fine resolution that ROI averaging abandons. The time spent encoding and the 

lost SNR could better be spent on reducing scan time by directly encoding ROIs that 

provide compartment-average relaxation measurements from the outset. 
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The SLAM method was recently proposed to directly encode ROI-average spectra 

from arbitrarily-shaped, user-defined compartments [53,157–159]. The method provided 

dramatic acceleration factors of 4 to 120-fold plus SNR efficiency gains as compared to 

fully-sampled scans acquired with conventional one-, two-, and three-dimensional (1D, 

2D, 3D) encoded spectroscopy (MRS). However, SLAM need not be limited to MRS. It 

can directly map any ROI-average MRI signal or relaxation parameter derived therefrom 

in the set of compartments that include all of the ROIs and signal sources in an image. 

The minimum number of phase- and/or sensitivity-encoding steps required for the task is 

equal to the number of compartments. 

Here, the SLAM method is applied to perform ultrafast T1 and T2 mapping in the 

phantom, abdominal and brain tumor studies using similar reconstruction formulae to 

those used for SLAM CEST [159]. SLAM is validated by omitting up to 15/16ths (94%) 

of data acquired retroactively from IR and MESE sequences. We proactively apply it to 

accelerate abdominal and brain tumor T1 and T2 measurements by up to 16-fold in 

humans. Other than setting-up the MRI sequence parameters, implementing SLAM 

requires only the specification of the number of compartments and a scout image. 

Compartment segmentation is performed post-acquisition, so re-segmentation and ‘trial’ 

compartments can be implemented with the same accelerated data set. The localization 

properties of the two SLAM reconstruction algorithms [53,157] are evaluated using the 

discrete spatial response function (dSRF). 

This research was led by Dr. Yi Zhang at Johns Hopkins and my role as second 

author primarily involved assistance with the phantom and in vivo studies and 

maintaining the SLAM processing pipeline and code. 
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5.2 Theory 

5.2.1 The SLAM method 

The central idea of SLAM [53,157–159] is to group voxels defined by scout MRI 

into compartments, and reduce the number of phase- or sensitivity-encoding gradient 

steps to a small subset of the original PE set. These are chosen from central image k-

space to maximize SNR. A huge reduction in PE steps is possible because the number of 

unknowns is reduced from the number of image-space voxels (M; e.g., 2562), to the 

number of compartments (C; e.g., 6-16). The compartmental segmentation information is 

built into an auxiliary matrix, 𝒃𝒃 [157], which is incorporated into the standard FT 

reconstruction model [157], or the SENSE [20] reconstruction model [53,159]. After 

dimensional reduction, two algorithms have been used to reconstruct the compartmental 

signals, 𝛒𝛒𝐶𝐶𝑟𝑟 , involving the solution of: 

 𝛒𝛒𝐶𝐶𝑟𝑟 = �𝑬𝑬𝑀𝑀′∗𝑀𝑀 × 𝒃𝒃𝑀𝑀∗𝐶𝐶𝑟𝑟 �
+

× 𝒔𝒔𝑀𝑀′ (5.1) 

 or 𝛒𝛒𝐶𝐶𝑟𝑟 = (𝒃𝒃𝑀𝑀∗𝐶𝐶𝑟𝑟 )+ × �𝑬𝑬𝑀𝑀′∗𝑀𝑀�
+

× 𝒔𝒔𝑀𝑀′ (5.2) 

where ‘ * ’ adjoins matrix dimensions and ‘ × ’ denotes matrix multiplication. We shall 

denote the two reconstructions as SLAM1 and SLAM2, respectively [53,157]. Here 𝑬𝑬 is 

the combined phase, frequency, and sensitivity encoding matrix, 𝒔𝒔 is the vectorized k-

space raw data, + denotes Moore-Penrose pseudo-inverse, and 𝑀𝑀′ is the number of 

known data points, equal to the product of the number of phase-encoding steps, number 

of frequency-encoding steps and number of receiver coil elements (Nc). Note that in the 

limit of 𝑀𝑀′ = MNc, Equation (5.2) yields equivalent results to averaging the 

compartmental signals acquired from a fully-sampled FT (or SENSE) image. Further 
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details on SLAM reconstruction and the creation of the 𝒃𝒃 matrix can be found 

in [53,157–159]. 

5.2.2 SLAM localization properties 

The localization properties of SLAM could be analyzed using a continuous spatial 

response function, SRF [157,160,161]. However, when SENSE is involved, a continuous 

sensitivity map is required to calculate a continuous SRF [162]. Although one can be 

generated, for example by interpolating a discrete sensitivity map, this is not trivial and 

the results are prone to error [163]. Moreover, a continuous SRF typically requires a 

continuous underlying ground-truth signal that cannot be measured in vivo. Thus a 

discrete sensitivity map and dSRF has been used [53], which treats the spatially discrete 

signals reconstructed from the standard discrete FT and/or SENSE model, as ground 

truth. For the SLAM1 and SLAM2 algorithms, the corresponding dSRFs are respectively:  

 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐶𝐶∗𝑀𝑀 = �𝑬𝑬𝑀𝑀′∗M × 𝐛𝐛M∗Cr �
+

× 𝑬𝑬𝑀𝑀′∗𝑀𝑀 (5.3) 

 or 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐶𝐶∗𝑀𝑀 = (𝐛𝐛𝑀𝑀∗𝐶𝐶𝑟𝑟 )+ × �𝑬𝑬𝑀𝑀′∗M�
+

× 𝑬𝑬𝑀𝑀′∗𝑀𝑀 (5.4) 

The reconstructed SLAM compartment-average signal equals the product of the 

dSRF with the underlying pixel-by-pixel image signals from the standard FT and/or 

SENSE model. Thus, the dSRF characterizes the source of the signal contributions in 

image space. 

5.3 Methods 

The SLAM method requires anatomical scout images (with or without relaxation 

weighting) for segmenting compartments. The anatomical information is incorporated 

into the 𝒃𝒃 matrix along with the raw k-space data and the coil sensitivity maps for 
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reconstruction, as above [53,157–159]. SLAM was validated retroactively by comparing 

the results from subsets of MRI data extracted from full k-space PE sets, with those 

obtained by averaging the signal from the same compartments segmented from full k-

space images. SLAM was validated proactively by applying the accelerated, reduced-PE 

sequences, and comparing the results with compartment averages obtained from full k-

space acquisitions that were acquired separately. 

All MRI experiments were performed on a 3T dual-transmit Philips Achieva MRI 

scanner (R5.1.7 software; Best, Netherlands). All human studies were approved by the 

Johns Hopkins Institutional Review Board and written consent was obtained from each 

participant. Phantom and brain studies used a 32-channel receive head coil array. 

Abdominal studies used a 32-channel receive torso coil array with 16 channels in each of 

the anterior and posterior sets. All full k-space scans, SLAM and the anatomical images 

used for segmentation shared identical angulation parameters to facilitate image co-

registration. All T1 mapping studies employed a non-slice-selective adiabatic hyperbolic 

secant pulse [164] for initial IR inversion followed by a 30 ms crusher gradient. The 1800 

pulses used for readout in TSE [165] sequences were slice-selective ‘sinc-center’ pulses. 

The raw k-space data for the SENSE reference scan [20] and the relaxation time 

mapping scans were saved for offline SLAM reconstruction with an in-house program 

written in MATLAB (R2016a, MathWorks, Natick, MA) on a personal (2.7 GHz) laptop 

computer. SLAM reconstruction took less than 2 min for all phantom, abdominal and 

brain studies described herein, after segmenting compartments and loading the k-space 

raw data into MATLAB. 
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5.3.1 Phantom Studies 

Agarose and copper sulfate were mixed in deionized distilled water to 

concentrations ranging from 0 to 110 g/L, and from 0 to 1.9 g/L, respectively. The 

solutions were heated in a microwave oven, and poured into fifteen 3 cm-diameter, 

11 cm-long tubes, to cool and gel. MRI scanning commenced with a vendor-preset 

SENSE reference scan [163] using the body and SENSE coils consecutively and a 3D 

GRE sequence [166] (FOV=450×300×300 mm; resolution=4.7×4.7×3 mm; TR=4 ms; 

TE=0.8 ms; FA=1°; number of averages [NSA]=3; scan duration=39 s). A single-slice 

scout MRI sequence was then run prior to relaxation time mapping, to localize a central 

transaxial plane through all tubes and to provide images for segmenting compartments for 

SLAM reconstruction (TSE readout; FOV=256×256 mm; resolution=1×1 mm; 

SL=2 mm; TR=3 s; TE=7 ms; turbo factor=16; SENSE factor=1; and 

scan duration=54 s).  

T1 mapping was performed using an IR sequence with eight inversion delay times 

(TI=50, 150, 300, 500, 800, 1300, 2000, and 4000 ms) and a 2D TSE readout 

(FOV=256×256 mm; resolution=1×1 mm; ST=2 mm; TR=5 s; TE=7 ms; 

turbo factor=16, wherein each excitation acquires 16 PE lines; SENSE factor=1; 

total duration=10.8 min).  Two sets of proactive SLAM T1 mapping scans were 

implemented using the same imaging parameters except that only 32 and 16 PE lines 

from the central k-space were acquired. This reduced the scan times to 80 s and 40 s, 

respectively, excluding two startup TRs for equilibration. 

T2 mapping used an MESE sequence with 32 TEs (7-224 ms; step size=7 ms), a 

2D TSE readout (FOV=256×256 mm; resolution=1×1 mm; ST=2 mm; TR=800 ms; 
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turbo factor=32 wherein each excitation repeatedly acquired one PE line with 32 different 

TEs; SENSE factor=1; total duration=3.5 min). Two sets of proactive SLAM T2 mapping 

scans were applied with the same parameters except that only 32 and 16 PE lines from 

central k-space were acquired. This reduced the scan times to 25.6 s and 12.8 s, 

respectively, excluding three startup repetitions for equilibration. 

5.3.2 Abdominal Studies 

Six healthy volunteers (ages, 25-36; all male) were recruited for abdominal 

relaxation time mapping. A RF transmit field (B1) calibration sequence based on the 

actual flip-angle (AFI) method [167] with dual TRs (20 and 100 ms) was used to shim the 

two transmit channels for optimum B1 homogeneity in the abdomen, followed by a 3D 

GRE SENSE reference scan (FOV=600×600×400 mm; resolution=5.4×7.3×4 mm; 

TR=4 ms; TE=0.8 ms; FA=1°; NSA=2; duration=33 s). A T1-weighted single-shot IR-

prepared GRE sequence [145] was applied to acquire sequential multiple 2D (multi-2D) 

images (FOV=375×298×198 mm; resolution=1.5×2×5 mm; ST=5 mm, slice gap 

[SG]=0.5 mm; TR=10 ms; TE=2.3 ms; FA=15°; TI=1.5 s; SENSE factor=2; 

duration=1.1 min). A T2-weighted single-shot multi-2D TSE sequence was then applied 

(FOV=375×302×198 mm; resolution=1.3×1.6×5 mm; ST=5 mm; SG=0.5 mm; 

TR=805 ms; TE=80 ms; SENSE factor=2; duration=0.5 min). 

T1 mapping used an IR sequence with seven TIs (50, 150, 300, 500, 800, 1300, 

and 2000 ms), and a 2D TSE readout (FOV=256×384 mm; resolution=1×1.5 mm; 

ST=5 mm; TR=3 s; TE=7 ms; turbo factor=16; SENSE factor=1; and total 

duration=5.7 min) in the anterior-posterior direction to minimize artifacts from 

respiratory motion. T2 mapping used an MESE sequence with 16 TEs (15-240 ms; 
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step size=15 ms), and a 2D TSE readout (FOV=256×384 mm; resolution=1×1.5 mm; 

SL=5 mm; TR=0.6 s; turbo factor=16; SENSE factor=1; total duration=2.6 min) also in 

the anterior-posterior direction. 

Two trans-axial T1-weighted and T2-weighted scout images were acquired to 

target cross-sections of the liver and the kidney, and used to segment compartments for 

SLAM reconstruction. Two sets of proactive SLAM T1 and T2 mapping scans were then 

acquired from each of the targeted cross-sections, using only 32 and 16 PE lines collected 

from the central k-space of the same MRI sequences. For each of the two proactive 

SLAM T1 acquisitions, the scan duration was 42 s and 21 s (excluding two startup TRs 

for equilibration); the SLAM T2 acquisitions took 19.2 s and 9.6 s (excluding four startup 

TRs).  

5.3.3 Brain Tumor Studies 

Six patients with grade III astrocytomas or grade IV glioblastomas (range of ages, 

34-76; three males) underwent a SENSE reference scan using identical parameters to 

those used for the phantom studies. Anatomical imaging sequences including 

FLAIR [168] with an interleaved multi-slice TSE readout (FOV=212×189×132 mm; 

resolution=0.83×1.04×2.2 mm; ST=2.2 mm; SG=0 mm; TR=11 s; TE=120 ms; TI=2.8 s; 

turbo factor=19; SENSE factor=1.5; duration=3.9 min), and MP-RAGE [169] 

(FOV=212×172×165 mm; resolution=1×1×1.1 mm; TR=8 ms; TE=3.7 ms; TI=805 ms; 

SENSE factor=2; duration=3.4 min) were performed. Because of the long time required 

for full k-space relaxation-time imaging, reference T1 and T2 mapping scans could not 

both be acquired from all patients due to tolerance and clinical management issues. Both 

T1 and T2 mapping scans were obtained from only 3 of the patients; T1 data was acquired 
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from 4 patients, and T2 data was acquired from 5. One patient had both reference T1 and 

T2 scans, as well as proactive SLAM scans. 

T1 mapping used an IR sequence with seven TI values (50, 150, 300, 500, 800, 

1300, and 2000 ms), and a 2D TSE readout (FOV=224×224 mm; resolution=1×1 mm; 

ST=2 mm; TR=3 s; TE=7 ms; turbo factor=16; SENSE factor=1; total duration=5 min). 

T2 mapping used an MESE sequence with 16 TE values (15-240 ms; step size=15 ms), 

and a 2D TSE readout (FOV, resolution, ST, turbo factor and SENSE factor same as for 

T1 mapping; TR=0.5 s; total duration=1.9 min). Full k-space T1 and/or T2 mapping was 

implemented on trans-axial sections intersecting areas of the brain tumor. Proactive 

SLAM T1 and T2 mapping utilized only the 32 PE lines from central k-space, resulting in 

a 42 s T1 scan (excluding two startup TRs) and a 16 s T2 scan (excluding four startup 

TRs). 

5.3.4 SLAM Reconstruction and Data Analysis 

The SLAM reconstruction was implemented in the following steps: 

First, to account for any size and FOV differences in the reference scout images 

used for segmentation, relaxation time images were co-registered to the nearest 

anatomical reference image based on the slice off-center locations from the image header 

files. The co-registered reference image was resampled and resized to match the 

acquisition FOV and resolution of the full k-space (unaccelerated) relaxation time 

images. Because MRIs typically undergo post-processing to correct for geometric 

warping due to gradient field nonlinearity [170] whereas the SLAM algorithms presently 

do not account for gradient nonlinearity, reference anatomical images were post-

processed to obtain uncorrected images for segmentation. 



 99 

Second, every voxel of the co-registered anatomical image was assigned to a 

compartment. For the phantom experiments, 16 compartments were defined: 15 tubes 

plus the background (Figure 5.1a). For the abdominal studies, 6 compartments were 

typically defined on T1-weighted images with the T2-weighted images also viewed, and 

included liver (avoiding major blood vessels) or kidney, spleen, muscle, fat, ‘rest of the 

body’, and background. For the brain tumor studies, typically 6 compartments were 

defined on FLAIR images with the T1-weighted images also taken into consideration. 

These included tumor, contralateral normal-appearing white matter (CNAWM) [171], 

‘rest of the brain’, ventricle, scalp, and background. 

Third, subsets of PE lines corresponding to acceleration factors of 1≤R≤16 were 

selected from the central k-space of the full k-space sequences for retroactive and 

proactive SLAM reconstruction. For example, the phantom experiment had 256 PE steps 

(from -128 to +127) for the full k-space T1 and T2 maps. Retroactive SLAM 

implementation with R=8 used the central PE steps from -16 to +15 taken from the full k-

space data set. Proactive SLAM implementation with R=8 used the same PE steps from a 

separately acquired proactive 32-step SLAM acquisition. An exception was the proactive 

brain tumor study, where the central 28 PE steps from the 32-step SLAM data set were 

selected in order to match the R=8 used in the other studies. 

Fourth, compartment-average image-space signals were reconstructed using the 

SLAM1 or SLAM2 algorithms, Equations (5.1) and (5.2), the selected or acquired PE 

lines, and the compartmental segmentation information. Compartment-average T1 values 

were solved by fitting TI and absolute SLAM1 and SLAM2 𝛒𝛒𝑟𝑟 values to a 3-parameter 

exponential function, 𝛒𝛒𝑟𝑟 = 𝑎𝑎 − 𝑏𝑏 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑇𝑇𝑇𝑇/𝑇𝑇1), with a, b and T1 as unknowns to be 
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determined. Because the MRI signal magnitude was used, the inverted portion of the IR 

recovery curve was identified by negating either all of the 𝛒𝛒𝑟𝑟 values that occurred before 

or which included, the minimal absolute value of 𝛒𝛒𝑟𝑟 for the 3-parameter exponential 

fitting. The result that generated the smaller fitting residue was chosen for the final T1 

value. Compartment-average T2 was determined by fitting TE and 𝛒𝛒𝑟𝑟 values to a 2-

parameter exponential function, 𝛒𝛒𝑟𝑟 = 𝑐𝑐 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑇𝑇𝑇𝑇/𝑇𝑇2), with c and T2 as the unknowns.  

The fully-sampled compartment-average T1 and T2 values were taken as reference 

standards for comparing retro- and pro-actively accelerated measurements. Pearson’s 

correlation coefficient (r), and paired t-test or Wilcoxon signed rank test were used to test 

for differences between reference and accelerated values. Pooled relaxation values that 

passed the Shapiro-Wilk normality test underwent paired t-testing or otherwise Wilcoxon 

signed rank testing, with probability p<0.05 considered statistically significant. The 

percentage differences between reference and accelerated values were also calculated. 

 The dSRF was computed using Equations (5.3), (5.4) to compare the localization 

properties of SLAM with that of full k-space sampling. For display, compartmental 

average relaxation times were assigned to all pixels in each compartment and overlaid on 

the co-registered anatomical image. 

5.4 Results 

Figure 5.1 shows SLAM1 and SLAM2 T1 reconstructions from the 15-tube 

phantom segmented into 16 compartments (Figure 5.1a). The full k-space sampling 

generated a perfect dSRF (Figure 5.1b) with values uniformly distributed within the target 

compartment that sum to 1.0 and are zero outside the compartment: the fully-sampled 

SLAM2 dSRF yields the same result. The SLAM2 dSRF at R=8 (Figure 5.1d) is very 
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similar, while the SLAM1 dSRF at R=8 (Figure 5.1c) shows some non-uniformity within 

the target. However, the final signal from SLAM1 and SLAM2 is not the dSRF, but the 

summation of the dSRF multiplied by the underlying complex image signal. The 

summation of the complex dSRF for SLAM1 is 1.0 over the compartment in Figure 5.1c. 

On the other hand, the complex dSRF of SLAM2 sums to 0.94 within the compartment in 

Figure 5.1d, resulting in a slightly broader profile than the perfect dSRF, despite its 

improved uniformity within the compartment [53]. Nevertheless, there is no difference 

between the full k-space (Figure 5.1e), SLAM2 (R=8, Figure 5.1f) and SLAM1 (data not 

shown) compartmental-average T1 maps. 
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The measured T1 values of all tubes from the full k-space data sets ranged from 

195–2980 ms, as shown in Figure 5.2a-d. T1 values from both 8-fold and 16-fold 

accelerated SLAM1 and SLAM2 reconstructions did not differ significantly (p≥0.08) 

from the standard full k-space measurements in Figure 5.2(a-b, d), but the difference in 

Figure 5.2(c) is borderline significant (p=0.04). Figure 5.2(e-h) show that T2 values 

reconstructed from both 8-fold and 16-fold accelerated SLAM1 and SLAM2 algorithms 

agree with the full k-space reference over the range T2=12–1930 ms. In addition, there 

were no significant differences between SLAM1, SLAM2 and full k-space reconstruction 

(p≥0.2): mean percentage differences between the SLAM1, SLAM2, and full k-space 

reconstructions were ≤0.8%, with correlation coefficients r≥0.998 throughout. Standard 

deviations (SD) in mean differences were ≤3.5% for proactive and ≤0.7% for retroactive 

SLAM T1 (Figure 5.3). For SLAM T2 they were ≤4.0% for proactive and ≤4.5% for 

retroactive implementations (Figure 5.4).  



 104 

 

 
Fi

gu
re

 5
.2

 R
et

ro
ac

tiv
e 

SL
A

M
1 

an
d 

SL
A

M
2 

co
m

pa
rtm

en
ta

l a
ve

ra
ge

 T
1 (

a-
d)

 a
nd

 T
2 (

e-
h)

 v
al

ue
s a

s c
om

pa
re

d 
to

 th
e 

fu
ll 

k-
sp

ac
e 

re
su

lts
 fo

r t
he

 1
5 

tu
be

 c
om

pa
rtm

en
ts

 in
 F

ig
ur

e 
5.

1.
 S

LA
M

 a
cc

el
er

at
io

n 
fa

ct
or

s w
er

e 
R

=8
 (a

, b
; e

, f
) a

nd
 R

=1
6 

(c
, d

; g
, h

). 
Po

in
ts

 
fro

m
 th

e 
T 2

=1
93

0m
s t

ub
e 

fe
ll 

on
 th

e 
id

en
tit

y 
lin

es
 a

nd
 w

er
e 

in
cl

ud
ed

 in
 a

ll 
qu

an
tit

at
iv

e 
an

al
ys

es
 b

ut
 o

m
itt

ed
 fr

om
 th

e 
gr

ap
hs

 to
 

fa
ci

lit
at

e 
di

sp
la

y.
 



 105 

 Figure 5.3 and Figure 5.5 present additional data on the performance of the SLAM1 

and SLAM2 algorithms for measuring T1 in phantoms (Figure 5.3); T2 in phantoms 

(Figure 5.4); and SLAM T1 and T2 measurements in fine gray matter structures in the 

human brain using SLAM2 applied retro-and pro-actively, with acceleration factors of 8- 

and 16-fold.  

 

 
Figure 5.3 Retroactive (a-d) and proactive (e-h) SLAM1 and SLAM2 compartmental 
average T1 values as compared to the full k-space results for the 15 tube compartments 
in Figure 5.1. SLAM acceleration factors were R=8 (a, b; e, f) and R=16 (c, d; g, h). 
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Figure 5.4 Retroactive (a-d) and proactive (e-h) SLAM1 and SLAM2 T2 values as 
compared to the full k-space results. SLAM acceleration factors were R=8 (a, b; e, f) 
and R=16 (c, d; g, h). Points from the T2=1930ms tube fell on the identity lines and 
were included in all quantitative analyses but omitted from the graphs to facilitate 
display. 
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Figure 5.6 shows the reduction in motion artifact achieved by applying the readout 

gradient in the anterior/posterior direction, which is the primary direction of physiological 

motion (breathing, in this case). 

 
Figure 5.5 A brain tumor patient with deep gray matter regions segmented for 
compartmental T1 and T2 values. (a) Ten compartments (1: tumor or edema; 2: 
contralateral normal-appearing white matter; 3: caudate; 4: putamen; 5: globus pallidus; 
6: thalamus; 7: rest of the brain; 8: ventricle; 9: scalp; and 10: background) segmented 
for SLAM reconstruction on a co-registered FLAIR image. Retroactive (b, d) and 
proactive (c, e) SLAM2 T1 (b, c) and T2 (d, e) values, as compared to full k-space 
measurements from the first seven compartments. SLAM acceleration factors were R=8 
(b-e). Full k-space T1 values were 1275, 1249, 993 and 1073 ms in caudate, putamen, 
globus pallidus, and thalamus, respectively. Accordingly, the T2 values were 75, 63, 47 
and 68 ms, respectively. These values were in good agreement with previous values 
reported in Lu et al. J Magn Reson Imaging 2005;22(1):13-22. 
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Figure 5.7 shows the application of SLAM to the measurement of relaxation times 

in the abdomen. The dSRF of the spleen compartment obtained from full k-space 

(Figure 5.7b), and 8-fold accelerated SLAM2 reconstruction (Figure 5.7d) are nearly 

identical, with the complex dSRF summing to 0.94. As in Figure 5.1, the SLAM1 result is 

less uniform (Figure 5.7c) even though the dSRF sums to 1. Moreover, there is little 

difference between the color-coded compartmental T1 maps obtained with the full k-

space data (Figure 5.7e), SLAM1 or SLAM2 (R=8, Figure 5.7f). 

 
Figure 5.6 Full k-space T2 maps acquired with the readout gradient in the left-right (a) 
and in the anterior-posterior (b) directions, respectively. Significant respiratory motion 
artifacts arose (red arrow) with the readout gradient in the left-right direction. 
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Figure 5.8 compares the T1 values from full k-space, SLAM1, and SLAM2 

reconstructions pooled from abdominal compartments in all normal volunteers. The 

measured T1 values (mean ± SD, ms) from the full k-space data sets were 836±59, 

1372±91, 1547±217, 1321±33, and 377±23 for liver, spleen, kidney, muscle and fat, 

respectively. These agree with literature values at 3T of 809 [172] in liver; 1328 [172] in 

spleen; 1142-1545 [172] in kidney; 898 [172] and 1420 [173] in muscle; and 382 [172] 

and 371 ms [173] in fat, respectively. There were no significant differences between 

SLAM1, SLAM2 and the full k-space T1 values (p≥0.2; r≥0.90). The percentage 

differences (mean ± SD) between SLAM1, SLAM2 and full k-space values were 

≤1.4%±10.1% for retroactive (Figure 5.8a-d) and ≤1.7%±24.8% for proactive 

implementations (Figure 5.8e-h). 
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Figure 5.9 compares abdominal T2 values from SLAM1, SLAM2 and full k-space 

acquisitions in the same compartments and subjects. The measured T2 values from the 

full k-space data sets were 43±6, 68±9, 97±4, 36±6, and 103±6 ms for liver, spleen, 

kidney, muscle and fat, respectively. Corresponding literature values are 34 [172] and 

52 [174] for liver; 61 [172] and 91 [174] for spleen; 76-81 [172] and 127 [174] for 

kidney; 29 [172] and 32 [173] for muscle; and 68 [172], 133 [173], and 103-143 ms in 

fat [175]. There were no significant differences between SLAM and the full k-space 

results in Figure 5.9(a-d, f or h; p≥0.07), although differences were observed in 

Figure 5.9(e, g; p=0.006 and p=0.004, respectively). However, the percentage differences 

between SLAM1, SLAM2 and the full k-space measurements were ≤3.2%±13% and 

≤4.4%±14% for retroactive (Figure 5.9a-d) and proactive (Figure 5.9e-h) 

implementations, respectively (r>0.98). 
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Figure 5.10 plots the absolute dSRF of the tumor compartment from full k-space 

(Figure 5.10b), SLAM1 (R=8; Figure 5.10c) and SLAM2 (R=8; Figure 5.10d) 

reconstructions. As in Figure 5.1 and Figure 5.7, the SLAM2 algorithm generates a more 

uniform dSRF than the SLAM1 algorithm, but the sums of the complex dSRFs within the 

tumor compartment are 0.84 and 1, respectively. Importantly, there is no difference 

between the full k-space (Figure 5.10e) and SLAM2 (R=8, Figure 5.10f) or SLAM1 

compartmental T1 values. 
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 Figure 5.11 shows that the compartmental T1 and T2 relaxation data acquired in 

these SLAM studies are adequately fitted by mono-exponential relaxation curves. 

 

Figure 5.12 compares T1 values from full k-space, SLAM1 and SLAM2 

reconstructions in brain compartments from all tumor patients. Measured T1 values from 

the full k-space data sets were 1518±223, 862±18, and 1201±86 ms in tumor, white 

matter, and ‘rest of the brain’ compartments, respectively. The white matter values agree 

with literature 3T values of 832 [176], 758 [177], and 859-865ms [147]. There were no 

significant differences between SLAM and full k-space measures in Figure 5.12a-d 

(p>0.3; r≥0.97). The percentage differences between SLAM1, SLAM2 and the full k-

space results were ≤2.7%±6.9% and ≤1.4%±6.0% for retroactive (Figure 5.12a-d) and 

proactive (Figure 5.12e-f) implementations, respectively.  

 
Figure 5.11 Experimental and mono-exponentially fitted T1 (a-c) and T2 (d-f) relaxation 
curves for the tumor (a, d), contralateral normal-appearing white matter (b, e), and rest 
of the brain (c, f) compartments from the brain tumor patient shown in Figure 5.10 
(signal intensity in arbitrary units). 
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Figure 5.12 Retroactive (a-d) and proactive (e, f) SLAM1 and SLAM2 T1 values, as 
compared to full k-space measurements from brain tumor patients. SLAM acceleration 
factors were R=8 (a, b; e, f) and R=16 (c, d). 
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Figure 5.13 compares T2 values from full k-space with SLAM1 and SLAM2 in all 

tumor patients. The measured T2 values from the full k-space data sets were 156±104, 

77±9 and 85±4 for tumor, white matter, and ‘rest of the brain’, respectively. Values of T2 

for white matter were 80 [176], 81 [177] and 65 [147] ms in previous reports. There were 

no significant differences between SLAM and the full k-space results in Figure 5.13a-d 

(p≥0.49; r≥0.996). The percentage differences between SLAM1, SLAM2 and the full k-

space results were ≤0.4%±6.2% and ≤1.6%±4.2% for retroactive (Figure 5.13a-d) and 

proactive (Figure 5.13e-f) implementations, respectively. 
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Figure 5.13 Retroactive (a-d) and proactive (e, f) SLAM1 and SLAM2 T2 values as 
compared to the full k-space measurements from brain tumor patients. SLAM 
acceleration factors were R=8 (a, b; e, f) and R=16 (c, d). 
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Figure 5.14 summarizes the performance of retroactive SLAM1 and SLAM2 

compared to full k-space reconstruction in the three sets of studies. SLAM2 (black dots 

and lines) generally outperformed SLAM1 (blue dots and lines). SLAM performed best 

in phantoms, and least well in the abdomen. SLAM2 with R=16 generated a percentage 

difference of 0.0%±0.7%, 1.4%±3.4%, and 0.5%±2.9%, for phantom, abdominal, and 

brain T1 measurements, respectively. The corresponding differences for T2 were 

0.2%±1.9%, 0.9%±7.9%, and 0.4%±5.8%. T1 differences for the SLAM1 algorithm in 

phantom, abdominal and brain studies were 0.1%±0.5%, 0.9%±10.1% and 2.7%±6.9%. 

The SLAM1 T2 differences were 0.8%±4.5%, 3.2%±12.8% and 0.4%±6.2%, 

respectively. 
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5.5 Discussion 

Although developed for MRS [53,157–159], SLAM is a general localization 

method that can be applied to derive any compartment-average MR parameter, as 

illustrated here for the first time with T1 and T2. By directly encoding whole 

compartments, the spatial encoding set can potentially be reduced to as few as the 

number of compartments [53,157–159]. Typically this is ≤10, as compared to the number 

of PE steps required for regular MRI, say ~256. The upshot is huge acceleration factors 

 

Figure 5.14 Percentage difference between SLAM1 (blue) and SLAM2 (black) 
relaxation times and the standard full k-space values in phantom (a, b), abdominal (c, 
d), and brain tumor (e, f) studies as a function of acceleration factors (R≤16).  Values 
were means ± standard deviation. 
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that could enable acquisition of new study data that would otherwise be precluded by 

scan-time limitations in the clinic. Furthermore, by always choosing the phase-encodes 

from central k-space, the SNR of SLAM approximates the maximum SNR achievable 

from the compartment. This can provide an SNR gain by a factor of up to 

(�compartment size/pixel size)-fold[157] to offset the (√scan-time)-fold loss in SNR 

due to the reduced scan-time, as compared to the reference MRI. Because the phase-

encoding steps and number of compartments are typically fixed for a given protocol, and 

because the segmentation and reconstruction are performed post-acquisition, the same 

truncated SLAM sequence can be applied as an add-on to regular protocols, and the 

results reconstructed from any desired set of segmented compartments post-exam. 

Numerous methods have been proposed to measure in vivo T1 and T2 more 

efficiently than IR and MESE, but the latter remain reference standards for validation, as 

used here. Compared to the full k-space compartment-average results from phantoms 

(Figure 5.1 and Figure 5.2), the abdomen (Figure 5.7-Figure 5.9) and brain tumor patients 

(Figure 5.10-Figure 5.13), SLAM values deviated less than 13% from compartment-

average values obtained from full k-space data sets, 8 or 16 times faster (Figure 5.14), in 

both proactive and retroactive implementations (Figure 5.2, Figure 5.8, Figure 5.9, 

Figure 5.12, Figure 5.13). SLAM relaxation times also agreed with previous published 

reports at 3T. Note that as a localization vehicle, SLAM is not bound to standard IR and 

SE sequences, and could just as well provide such acceleration on top of the efficiencies 

afforded by newer relaxometry approaches, when compartmental-average measures can 

suffice. The achievable acceleration generally depends on the size of the compartment 

and number of receive coil elements, but not the number of TE or TI time points. 
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Although the present study was limited to 2D relaxometry, SLAM is readily extended to 

3D to provide even higher acceleration factors, as was demonstrated with 3D MRS [53].  

That SLAM performed better in brain tumor studies than in abdominal studies 

(Figure 5.14) is likely due to the higher physiological motion in the torso. This, along 

with stochastic variations from the underlying SNR, also explains a slightly worse 

agreement for the proactive studies, which are affected by scan-to-scan variations as 

compared to retroactive implementations that use the same source data (Figure 5.8, 

arrows). The smaller errors for proactive abdominal T2 mapping, may be due to the 

averaging effect of an echo-train compared to the single shot T1 mapping sequence. In 

general, since the compartment typically comprises tens of voxels, SLAM reconstruction 

can mitigate motion artifacts between the scout image and relaxation time scans via the 

implicit signal averaging effect. 

SLAM reconstruction follows a top-down approach, that starts with the standard 

reconstruction model (discrete FT with/without SENSE) upon which a priori 

compartmental information and the assumption of uniform compartments are imposed to 

reduce the dimension of the encoding matrices to create an accelerated PE set. The image 

compartment signals are then reconstructed by matrix inversion. Prior methods for 

compartmentalized MRS [178–181] not contemplated for MRI, have used a bottom-up 

continuous approach that while theoretically avoiding the truncation artifacts from 

discrete FT [180], cannot be practically validated from non-continuous in vivo data [53]. 

Here, the localization properties of each compartment in SLAM are completely 

determined by the multiplication of the dSRF with the image signal acquired from the 

standard discrete reconstruction model. Each compartment signal is the summation of this 



 124 

product over the sample volume. Because Equation (5.1) is exact [53,157–159], the 

complex dSRF for the SLAM1 algorithm must sum to 1.0 within each compartment. 

Thus, the summed dSRF•signal product for SLAM1 will agree with that from full k-space 

to the extent that the underlying signals are uniform, or at least that their fluctuations 

cancel when summed. In practice, the SLAM2 algorithm tends to outperform the SLAM1 

algorithm (Figure 5.14) due to its more uniform dSRF (Figure 5.1, Figure 5.7, Figure 5.10) 

and robustness to intra-compartmental signal inhomogeneity [53], even though its 

summed dSRF is <1.0.  For a given study protocol, computation of the SLAM dSRFs 

from a few full k-space data sets can guide the choice of a suitable acceleration factor that 

can provide adequate localization of the range of compartments likely to be encountered 

in the larger study population. 

The phase-encoding gradient set used in SLAM are determined by the standard 

reconstruction model, which in turn is determined by the prescribed FOV. The standard 

reconstruction model does not have to be a full k-space model, and can include SENSE-

acceleration as noted above [53,159]. However, choosing a SENSE-accelerated model 

increases the PE gradient step-size for SLAM in proportion to the SENSE acceleration 

factor, which in turn can produce expansive side-lobes in the dSRF of the SLAM1 

algorithm as exemplified in Fig. 13d of Ref [53]. This was not seen here with the full k-

space reconstruction model (Figure 5.1, Figure 5.7, Figure 5.10). In any case, as a further 

refinement, the PE gradient set can be chosen to optimize the dSRF for a given 

compartment using the fractional SLAM (fSLAM) method [157].  

Recently, multiple methods of accelerating relaxation time mapping with 

compressed sensing and/or model-based approaches have been proposed [182–188]. The 
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advantage of these methods compared to SLAM is that they can generate pixel-by-pixel 

relaxation time maps. Disadvantages include the complexity and uncertainty associated 

with nonlinear reconstruction, and/or the assumption of a relaxation model for 

reconstruction, which is usually mono-exponential [184]. SLAM can potentially be 

combined with model-based approaches [183,188], albeit at the expense of an explicit 

characterization of signal localization with the dSRF. View-sharing methods have also 

been used to accelerate relaxation time mapping [189–192], which can sacrifice high-

frequency information and introduce errors at object edges [184,190]. In contrast, SLAM 

does not re-use k-space data from the scout image per se, only binary compartment masks 

that are created from a scout image. The scout image can be acquired from a completely 

different sequence than a T1 or T2 sequence, such as one acquired earlier as part of the 

clinical protocol. SLAM sacrifices intra-compartment resolution but preserves boundary 

information by incorporating compartmental definition into the reconstruction process. 

In conclusion when compartment-average relaxation time parameters can suffice, 

SLAM can provide accurate, highly-accelerated and SNR-efficient measurements of 

relaxation times that quantitatively agree with standard values that may not otherwise be 

possible due to study-time constraints. The method might also be adopted to generate 

highly efficient compartment-average measures of diffusion, perfusion, and fMRI 

indices, etc. 
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Chapter 6: Towards automated image contrast optimization in MRI  

A critical step in developing and applying MRI sequences in research and clinical 

practice is to tune the operating parameters to achieve a desirable contrast of the 

property-of-interest. Presently, scan parameters are chosen a priori to achieve contrast 

based on prior experience that may not be optimum for the scan being done. Here, 

dynamic contrast prediction systems are proposed that learn the signal pattern without the 

explicit physics modeling which requires tissue parameters that are often unknown or 

change rapidly as in dynamic MRI for screening, perfusion, intervention, or MRI 

endoscopy. The software architecture of the system provides interactive data collection 

and analyses with a calibration-prediction-acquisition workflow wherein the prediction 

sampling strategy is framed as a feature-selection problem. Three methods for automatic 

feature selection and contrast signal reconstruction are evaluated: (i) a baseline nearest-

neighbor in parameter space method employing no a priori knowledge; (ii) a linear 

pattern synthesis method; and (iii) a light-weight feature-selective synthesizer neural 

network (FSSNet). The methods were implemented in phantom and human studies in 

which predicted contrast synthesis results are compared to real acquired images using 

image similarity metrics. Compared with the baseline method, both the FSSNet and the 

linear methods predicted image contrast behavior significantly better (p<10-6), with the 

results of FSSNet proving most accurate (similarity ≥99%) overall. This work shows the 

feasibility of efficient parameterized contrast synthesis based on calibration data for on-

the-fly MRI sequence development and optimization. 
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6.1 Introduction 

The final stage of development of many a new system often involves tuning 

multiple parameters to achieve a desired performance. This also applies to developing 

new MRI pulse sequences or applying an established MRI sequence to new patient 

populations or diseases. In practice for a given application, the pulse sequence operating 

parameters are initially tuned by trial-and-error to achieve a desired contrast from a 

“weighted” combination of physical MRI properties or the physical property itself. This, 

subject to the imperative of maximizing the signal-to-noise ratio (SNR). The best 

combinations of operating parameters are then standardized in protocols to serve a 

specific application or diagnostic objective. Clinical MRI operations can ill-afford the 

time and effort required for iterative, case-by-case contrast optimization. 

Speed is also a focus of recent developments in MRI. While sub-second “cine” 

MRI has existed for decades [193], continuous whole-body scanning wherein the body 

moves through the scan plane during acquisition [194,195] is available on many 

commercial MRI systems; and now there is multi-channel MRI at up to 

100 frames(fr)/s [196] and MRI endoscopy at 10 fr/s [8]. The added value of high-speed 

MRI in each of these applications is the ability to rapidly monitor changes in scenery: 

whether it be moving organs in cardiac MRI [197]; therapy delivery in interventional 

MRI [198]; whole-body scanning; or MRI endoscopy [8] to identify pathology “on the 

fly”. In such studies, a single “one-size-fits-all” acquisition parameter-set is invariably 

deployed. This acquisition set cannot be said to be optimum for all frames or all locations 

at all times: the legs, liver and brain in the whole body scan, or the vessel in transit during 

endoscopy, for example. High-speed MRI could enable MRI pulse sequence optimization 
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in real-time, but the technology for MRI contrast optimization has not kept up with the 

speed of MRI.  

Indeed, it is desirable to have a method that can automatically tune the set of MRI 

sequence parameters–fast–to facilitate the introduction of a new MRI sequence or a new 

application and/or to optimize MRI “on the fly”. Acquiring images using every 

combination of parameters and selecting one with the desired contrast, inefficient and 

impractical when the parameter space is large. A more efficient two-step process is to 

first predict image contrast under different parameter settings based on a small data 

sample. We call this process parameterized contrast synthesis (PCS). Second, the optimal 

parameter set is chosen from the PCS results in an image quality assessment (IQA) step. 

IQA can include reference-based, no-reference, subjective, objective, or mixed evaluation 

criteria [130,199–201]. The present paper focuses on PCS. 

A classic model-driven method for PCS would use Bloch equation simulations of 

the MR signal evolution. While Bloch simulations can include all of the known physical 

dependencies [202–205], accurate scanner-side image contrast synthesis would require a 

priori physics modeling and the acquisition and mapping of both the sample properties 

by quantitative MRI (qMRI), as well as instrumental “spoiler” factors such as RF and 

main (B0) field inhomogeneity. In simple cases, analytical equations like that prescribed 

by the Ernst angle can be used, but in general there is no simple analytical solution, and 

initiating time-consuming simulations for local tissue areas or pixels at the scanner to 

predict a contrast is all but impractical. 

Alternative non-Bloch, data-driven methods could simply repeat the process of 

acquiring an image, recording the contrast, and changing the sequence parameter set, 
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until a desirable result is achieved. This process, too, is impractical without intelligent 

design to ensure rapid convergence, but machine learning approaches are well-suited to 

such tasks. As with its application to regular MRI [206,207], applying machine learning 

to PCS requires training on prior experimental contrast data to characterize the MRI 

protocol and/or its application. While the most commonly used unsupervised machine 

learning method–principal component analysis (PCA) [208–211]–is limited to finding 

linearly related components, advances in the use of nonlinear manifolds for analyzing 

high-dimensional MRI signals [212–214] could address the inherently nonlinear 

dependence of MRI contrast on the sequence parameter set. 

Here we present a general (sequence-independent) PCS methodology for the 

purpose of automating MRI parameter selection for image contrast optimization. PCS is 

treated as a feature selection problem to most-efficiently sample the parameter space, and 

methods of learning the parametric dependence of steady-state image contrast are 

investigated using calibration data. We tested a PCS approach that creates a pattern 

library from training data by synthesizing coefficients using PCA and linear error 

regression in the parametric space, and a new method inspired by recent advances in 

feature selection using deep learning [215]. A naïve nearest-neighbor PCS approach that 

assumes no a priori knowledge of training data is also tested as a baseline for 

comparison. We designed and implemented software and a user-interface to 

communicate with a commercial 3T clinical MRI scanner in real-time, for fast-

prototyping and testing of sequence contrast optimization algorithms, and implemented 

and tested the methods on phantoms and healthy human subjects. 
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6.2 Methods 

6.2.1 Workflow 

The overall workflow for automatically tuning the operating parameters of a 

general MRI sequence is divided into three stages: calibration, prediction, and 

acquisition. The calibration stage happens beforehand and offline, wherein parameters are 

varied in the target sequence and wherein image projection or whole image data are 

sampled over the potential range of parameter space. The data are used in the learning 

phase to characterize the contrast response to the sequence. They form a library which is 

used to develop a contrast model for the subsequent online stages of prediction and 

acquisition. At the prediction stage, with the study object of interest in the scanner, a 

small set of data is collected and fed into the model to predict the image contrast over the 

whole parameter space. At the acquisition stage, the predicted contrasts are used in 

combination with user-supplied evaluation criteria, to guide the optimal parameter 

choice, whereupon confirmational or working acquisitions are performed.  

6.2.2 Software design 

A block diagram of the software architecture called “SchemeServer” its 

interactivity with a clinical 3T whole-body MRI scanner (Prisma, Siemens Healthineers 

AG, Munich, Germany) is shown in Figure 6.1. SchemeServer is deployed from a 

personal computer connected to the scanner console via socket programming, wherein a 

“SchemeOperator” object is introduced as a sheer intermediate control layer. When a 

scan starts, instead of executing a precompiled parameter list with limited flexibility from 

the user interface at the scanner console, the SchemeOperator sends requests to the 

SchemeServer for executing commands that bear sequence parameter and looping 
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information assembled by the SchemeServer. The resulting data which are sent to the 

scanner’s regular reconstruction pipeline, are intercepted to feed the data socket of the 

SchemeServer where they are processed in its data-handling thread. At the core of the 

SchemeServer is the “SchemeNarrator” module, which contains the most complex logic 

and is responsible for analyzing data received in real-time, and managing the parameter 

scheme including the prescription of new scanning commands. The SchemeNarrator has 

a uniform interface and is implemented as an embedded Python module inside an overall 

C++ software infrastructure, which makes it possible for researchers to fast-prototype 

custom analysis algorithms and pulse sequences.  

 
 

 
Figure 6.1 Software architecture of SchemeServer (left) deployed on an external 
computer communicating with an MRI scanner console (right). SchemeOperator is 
introduced into the original sequence program to execute parameter schemes prescribed 
by the core module SchemeNarrator. Acquired data are intercepted by SchemeServer 
for analysis. Communication between SchemeServer and the scanner is via system 
sockets. A user socket is used to accept imperative inputs from a human operator. 

 



 132 

6.2.3 Sequence and Parameter Space Example 

A conventional turbo spin-echo sequence is chosen to exemplify the methodology 

because it offers a broad parameter space to accommodate a large range of contrasts. We 

limit exploration to five dimensions: excitation flip angle, FAexc; refocusing flip angle, 

FArefoc; repetition time, TR; echo spacing ESP; and the effective echo-time TE. Two sets 

of parameter combinations are used in this study, ParamSpace1 and ParamSpace2, as 

listed in Table 6.1. 

 
Table 6.1 Example parameter setting spaces used in studies 

Name FAexc(°) FArefoc(°) TR(ms) ESP(ms) TE(ms) Number of 
total settings 

ParamSpace1 90, 45 180, 120 3000, 500 10, 20 ESP, 
4×ESP 

25 = 32 

ParamSpace2 90 180, 120 3000, 2000, 
1000, 500 

10, 20 ESP, 
4×ESP 

2×4×2×2 = 32 

 

6.2.4 Feature Selection and Contrast Synthesis 

In the calibration stage we acquire an image of the calibration sample at each 

grid-point of the parameter space to form a signal library to learn the contrast pattern. At 

the prediction stage, images of a subset of the grid-points are acquired, from which 

contrasts are predicted for the whole parameter space. The selection of the prediction 

subset can be random or viewed as a feature-selection problem wherein the most 

effective features are sampled to obtain the maximum information.  

More formally, we denote the whole data matrix of all images over the parameter 

setting grid by 𝑿𝑿 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚, where 𝑛𝑛 is the number of pixels per image and 𝑚𝑚 is the 

number of parameter settings. If 𝒙𝒙𝑝𝑝 ∈ 𝑅𝑅𝑛𝑛×1 is the 𝑝𝑝th column of 𝑿𝑿, the selected set of 
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parameter settings for the subset of prediction images can be represented as 𝑆𝑆 =

{𝑝𝑝 | 𝒙𝒙𝑝𝑝 is acquired}, and the acquired image set is:  

 𝑿𝑿𝑠𝑠 = ℱ(𝑿𝑿;𝑆𝑆) ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚𝑠𝑠  (6.1) 

where ℱ is the selection function and 𝑚𝑚𝑠𝑠 = |𝑆𝑆| is the cardinality of the selected set. The 

prediction or contrast synthesizing process is represented as 𝑿𝑿� = 𝒢𝒢(𝑿𝑿𝑠𝑠; θ), where 𝒢𝒢 is the 

synthesizer function and θ are trainable parameters of the model. Prediction results are 

evaluated with a similarity metric ℛ�𝑿𝑿� ,𝑿𝑿� which compares the synthesized dataset 𝑿𝑿� 

with the whole ground truth dataset, 𝑿𝑿. Based on this description, the process of 

optimizing contrast prediction involves searching for the most effective set of selected 

acquisition parameters 𝑆𝑆∗, and the most effective synthesizing model as represented by 

parameters θ∗. That is: 

 𝑆𝑆∗, θ∗ = argmax
𝑆𝑆,θ

ℛ�𝑿𝑿� ,𝑿𝑿� = argmax
𝑆𝑆,θ

ℛ(𝒢𝒢(𝑿𝑿𝑠𝑠; θ),𝑿𝑿) (6.2) 

We start with a nearest-neighbor method that provides a baseline for predicting 

performance in the absence of a priori knowledge. As a first advance on this method, we 

use a linear pattern synthesis approach employing PCA and minimum mean square error 

(MMSE) linear regression. As a further advance, we introduce a feature-selective 

synthesizer employing a neural network for the dual purpose of parameter selection and 

contrast synthesis. 

Baseline Nearest-neighbor Method 

When no prior information is utilized, the most basic PCS method is to assign 

data to non-acquired parameter grid-points, using image content acquired from their 

nearest neighbors in the parameter space. Because there is no information regarding the 
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relationship among parameter grid-points, the acquired grids are selected randomly. More 

formally, if S is a randomly selected set from parameter grid-points, 

 𝒙𝒙�𝑖𝑖 = 𝒙𝒙𝑝𝑝    subject to   𝑝𝑝 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝑆𝑆

|ϕ𝑖𝑖 − ϕ𝑗𝑗| (6.3) 

where ϕ𝑖𝑖 is the pulse sequence parameter corresponding to image 𝒙𝒙𝑝𝑝. In practice, the 

parameter space is normalized so that values in each dimension vary between [0,1]. 

Linear (PCA) Pattern Synthesis 

The idea of the linear pattern synthesis method is to create a pattern library from 

training data, and infer the synthesizing coefficients from least-squares solutions in the 

selected dimensions, 𝑆𝑆, of the patterns. Then the synthesizing coefficients are applied to 

patterns for all dimensions to predict all contrasts. More specifically, singular value 

decomposition (SVD) is performed on a dataset 𝑿𝑿 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚, 

 𝐗𝐗 = 𝐔𝐔𝐔𝐔𝐕𝐕H (6.4) 

where 𝐃𝐃 ∈ Rn×m is the diagonal matrix of singular values in descending order, and 𝐔𝐔 ∈

Rn×n and 𝐕𝐕 ∈ Rm×m are unitary matrices whose columns are orthonormal bases. The 

pattern library is formed by selecting the most significant 𝐾𝐾 ≤ 𝑚𝑚 principal components 

weighted by corresponding singular values to accommodate the variability they represent 

in the whole dataset, that is: 

 𝐘𝐘 = 𝐃𝐃r𝐕𝐕rH (6.5) 

where 𝐃𝐃r ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 is the diagonal matrix of the largest 𝐾𝐾 singular values, and 𝐕𝐕r ∈ 𝑅𝑅𝐾𝐾×𝑚𝑚 

is formed by selecting the first 𝐾𝐾 columns of 𝑽𝑽. 𝐘𝐘 ∈ RK×m is called the generative matrix. 

Like Equation (6.1), 𝐘𝐘s is the pattern library in the selected dimensions, 

 𝐘𝐘𝑠𝑠 = ℱ(𝐘𝐘;𝑆𝑆) ∈ 𝑅𝑅𝐾𝐾×𝑚𝑚𝑠𝑠  (6.6) 
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To achieve 𝑿𝑿� for a set of measured images 𝑿𝑿𝑠𝑠, the generative coefficients 𝛂𝛂 ∈ 𝑅𝑅𝑛𝑛×𝐾𝐾 are 

acquired as the least-squares solution to 

 𝑿𝑿𝑠𝑠 = α𝒀𝒀𝑠𝑠  (6.7) 

and multiplied by the generative matrix 𝐘𝐘, that is, 

 𝑿𝑿� = 𝛂𝛂𝛂𝛂  (6.8) 

At the feature selection stage, the above process is performed on the training 

dataset with 𝑆𝑆 being all combinations of the 𝑚𝑚𝑠𝑠 features from the 𝑚𝑚 parameter settings 

(or a subset thereof, depending on feasibility). 𝑆𝑆∗ is selected as the one resulting in 

optimal reconstruction similarity or minimal residual from ℛ�𝑿𝑿� ,𝑿𝑿�. 𝐘𝐘 and 𝑆𝑆∗ are then 

saved and can be used to acquire sampling data and predict contrast for incoming 

unknown samples. 

Neural Network based Feature-selective Synthesis  

The architecture of the feature-selective synthesizer neural network (FSSNet) 

shown in Figure 6.2, performs as an atypical autoencoder whose input and output are 

signal patterns from each pixel over the whole parameter space. The encoding feature-

selection layer is based on a method that assigns the largest weights to selected features 

after training with proper constraints [215]. The decoding synthesizer part is inspired by 

Ref. [216], with the difference that we do not explicitly encode for the relaxometry 

parameters but rather, synthesize the contrasts directly from the input signals. After 

training with known calibration data, the feature selection part is discarded and the 

synthesizer is used to infer response based on the sub-set of data acquired during the 

prediction stage. 



 136 

 
 

To train the feature selection layer in accordance with Ref. [215], each column of 

the training dataset 𝑿𝑿 is standardized with zero mean and a variance equal to one. The 

loss function used for training the neural network is 

 𝐿𝐿(θ) = 𝑙𝑙(θ) + λ1Ω1(𝑾𝑾) + λ2Ω2(𝑾𝑾) (6.9) 

where 𝜃𝜃 represents parameters of the model; 𝑾𝑾 ∈ 𝑅𝑅𝑚𝑚×𝑚𝑚𝑠𝑠 are the weights of the feature 

selection layer; 𝑙𝑙(⋅) is the reconstruction loss of the autoencoder; and the 𝜆𝜆1,2 are 

regulation coefficients. The two regulation functions Ω1,2(⋅) have the form 

 Ω1(𝑾𝑾) = �𝑚𝑚𝑚𝑚𝑚𝑚�0,��𝑤𝑤𝑗𝑗𝑗𝑗�
𝑚𝑚

𝑗𝑗=1

− 1�
𝑚𝑚𝑠𝑠

𝑘𝑘=1

 (6.10) 

and 

 

 
Figure 6.2 The architecture of the feature-selective synthesizer neural network, FSSNet, 
comprises a feature selection layer which assigns the largest weights to auto-selected 
features and a synthesizer to synthesize contrast over the whole range of parameter 
settings. It is trained as an autoencoder using contrast signals from each pixel as input 
or output. Only the synthesizer part is used at the prediction stage. 
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 Ω2(𝑾𝑾) = �𝑚𝑚𝑚𝑚𝑚𝑚�0,1 − Var(𝐀𝐀k)�
𝑚𝑚𝑠𝑠

𝑘𝑘=1

 (6.11) 

 

where the 𝑤𝑤𝑗𝑗𝑗𝑗 are the elements of 𝑾𝑾, and 𝑨𝑨𝑘𝑘 is the 𝑘𝑘th activation of the selection layer, 

i.e., 

 𝑨𝑨𝑘𝑘 = �𝑤𝑤𝑗𝑗𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑿𝑿𝑗𝑗 , for 𝑘𝑘 = 1, … ,𝑚𝑚𝑠𝑠 (6.12) 

Var(𝐀𝐀k) is the variance of each activation value over the input dataset, which tends to 

decrease below one when the selection layer selects more than one low-correlated 

feature. It was demonstrated in Ref. [215] that Ω1 and Ω2 work antagonistically to 

achieve sparse weights of selection layers that correspond to relevant features. 

Here, the input datasets are MR images acquired with different parameters that 

can be highly correlated with each other. At each of the 𝑚𝑚𝑠𝑠 activations of the selection 

layer, one or more highly correlated feature(s) may be selected instead of a single 

relevant feature, because their effect on the training constraints (Equations (6.10) and 

(6.11)) are nearly equivalent. We introduce a margin value of Δ ≈ 0.05 for training 

constraints to enhance sparsity and to compensate for marginal errors introduced during 

separation of the dataset for training and validation/testing purposes. Equations (6.10) 

and (6.11) then become: 

 Ω1(𝑾𝑾) = �𝑚𝑚𝑚𝑚𝑚𝑚�0,��𝑤𝑤𝑗𝑗𝑗𝑗�
𝑚𝑚

𝑗𝑗=1

− (1 − Δ)�
𝑚𝑚𝑠𝑠

𝑘𝑘=1

 (6.13) 
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 Ω2(𝑾𝑾) = �𝑚𝑚𝑚𝑚𝑚𝑚�0, (1 + Δ) − Var(𝐀𝐀k)�
𝑚𝑚𝑠𝑠

𝑘𝑘=1

 (6.14) 

During training, the weights of the selection layer are updated at every epoch, via 

 𝑤𝑤𝑗𝑗𝑗𝑗 ←
�𝑤𝑤𝑗𝑗𝑗𝑗�𝑤𝑤𝑗𝑗𝑗𝑗
∑ �𝑤𝑤𝑗𝑗𝑗𝑗�

2𝑚𝑚
𝑗𝑗=1

 (6.15) 

to select the most salient features while keeping the reconstruction error low. After the 

feature selection training stage, the relevant parameters are selected as: 

 𝑆𝑆∗� = {argmax
𝑗𝑗

�𝑤𝑤𝑗𝑗𝑗𝑗� for 𝑘𝑘 = 1, … ,𝑚𝑚𝑠𝑠} (6.16) 

whereupon the selection layer is discarded. The rest of the neural network is fine-tuned 

by further training with the selected contrasts as input to reconstruct whole contrast 

datasets as output. 

6.2.5 MRI Experiments 

MRI experiments are performed according to the workflow described above on 

the clinical 3T MRI scanner (Figure 6.1). SchemeServer is installed on a personal laptop 

(MacBook Pro 2019, macOS Catalina, 2.3 GHz 8-core Intel Core i9, 16 GB memory, 

Apple Inc., CA, USA). During scanning, images and central k-space line projections at 

each grid of ParamSpace1 or ParamSpace2 are collected under the control of 

SchemeServer, and are standardized (with mean=0, variance=1). Datasets serve two 

purposes: (i) as reference training data to create the signal pattern library; and (ii) as 

testing data to predict a target contrast response. To evaluate the capability of contrast 

synthesis for an unknown study object learned from an arbitrary reference dataset, we 

employ an approach of cross prediction. This selects a subset of parameter settings 𝑆𝑆∗ and 

a synthesis model θ∗ trained with one object (phantom or human), to apply to other 
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objects whose datasets are acquired within the same whole set of parameter settings 

(ParamSpace1 or 2) as ground truth. For a new object being studied, a subset 𝑿𝑿𝑆𝑆∗  of its 

whole dataset 𝑿𝑿 is selected as prediction sampling data according to selection choice 𝑆𝑆∗, 

as determined from the reference dataset. Then, based on the prediction sampling data 

𝑿𝑿𝑆𝑆∗ and the synthesis model trained with reference dataset θ∗, the whole dataset of the 

new test object is predicted as 𝑿𝑿� = 𝒢𝒢(𝑿𝑿𝑆𝑆∗ ; θ∗). We use the Pearson correlation coefficient 

as the similarity metric ℛ�𝑿𝑿� ,𝑿𝑿� between the predicted contrast 𝑿𝑿� and the actual acquired 

contrast 𝑿𝑿, to evaluate the accuracy of synthesis. The prediction sampling data, 𝑿𝑿𝑆𝑆∗, are 

omitted from the evaluation because they are considered known information. All the 

computations for training and prediction were performed on the MacBook laptop. 

Phantom Studies 

Phantom studies are performed on 3cm-diameter by 11cm-long sample tubes of 

agarose gel doped with CuSO4 to exhibit different spin-lattice (T1) and spin-spin (T2) 

relaxation parameters. Although not an intended nor needed output of the present work, 

the T1 and T2 values which are the source of image contrast, ranged from 195 to 2980 ms 

and 12 to 1930 ms, respectively [9]. The tubes are rotated and shuffled to form different 

structures to simulate different samples as shown in (Figure 6.3). Images of upright and 

oblique structures (Figure 6.3) are acquired at each five-parameter dimensional 

coordinate of ParamSpace1 and ParamSpace2, as listed in Table 6.1. To implement the 

cross-prediction approach described above for each of the parameter settings 

(ParamSpace1 or 2), a dataset of one phantom structure (upright or oblique) is used for 

training each of the nearest-neighbor PCS, the linear PCA and the FSSNet PCS methods. 
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These methods are then applied to the other phantom structures. The performance for 

each training-prediction pair is evaluated using the similarity metric ℛ�𝑿𝑿� ,𝑿𝑿�. 

 
 
Human Subject Studies 

We recruited 7 healthy subjects who gave informed consent for this study 

approved by our Institutional Review Board. Brain scans were acquired from 3 of the 

subjects using the ParamSpace1 parameter settings, and from the other 4 subjects using 

the ParamSpace2 settings from Table 6.1. For the cross-prediction approach, the dataset 

for each subject is used to train the nearest-neighbor, the linear PCA and the FSSNet PCS 

methods. The training provides a subset of predicted parameter sets to sample in 

accordance with the synthesis model. These are applied to images from other subjects 

within the group to create predicted images (excluding those in the prediction subset) that 

are evaluated against the true acquired images. The cross-prediction approach generates a 

total of 3 × 2 + 4 × 3 = 18 training-prediction pairs. Prediction performance is 

compared among the three PCS methods using ANOVA and pairwise t-tests. 

 
Figure 6.3 Tubes with different relaxometry parameters are switched and rotated to 
simulate different samples to test for cross reference prediction. 
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Neural Network Training 

The FSSNet is implemented with PyTorch [217]. For each training dataset from a 

phantom or human, the network is trained for 2880 epochs during the feature selection 

stage. λ1 and λ2 are varied between [10−4, 0.002] and [0.001, 0.02], respectively. 𝐿𝐿1 

and 𝐿𝐿2 regularizations are applied on weights of the decoder with coefficients 10−4. The 

“Adam” optimization algorithm is used with a learning rate of 0.01 [218]. The selection 

merging in Equation (6.15) is applied for every 100 epochs after epoch 2160. After the 

feature selection stage, the most dominant features are selected and the decoder is trained 

for 2000 more epochs without 𝐿𝐿1 and 𝐿𝐿2 regularization. 

6.3 Results 

6.3.1 Feature Selection 

An example of the training process of the FSSNet feature selection layer is shown 

in Figure 6.4 . In Figure 6.4(a1-a3), the weights of the feature layer become more and 

more sparse to select the most relevant parameters for each feature. As noted above, 

because images acquired with different parameters are highly correlated, each feature 

selects a highly-correlated cluster rather than a single parameter. Figure 6.4(b1-b3) shows 

the corresponding correlation matrix with clusters annotated with red dashed boxes. 

Figure 6.4(a4) shows the effect of interval-feature merging (Equation (6.15)) at the last 

stage of training to select a single most relevant parameter for each contrast feature while 

maintaining reconstruction accuracy. 
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6.3.2 Phantom Studies 

Acquisition of the training dataset from the phantoms took 22.4 min and 20.8 min 

for ParamSpace1 and ParamSpace2, respectively. Offline training took 2.8 min for the 

linear method and 7 min for the FSSNet on the laptop computer. The nearest-neighbor 

method did not need training. Synthesis for all the predicted contrasts took 2 ms, 19 ms, 

and 12 ms for the nearest-neighbor, the linear and the FSSNet methods, respectively. 

The average similarity measure ℛ from each setting is shown in Table 6.2. Some 

cross-prediction synthesis results are exemplified in Figure 6.5. The nearest neighbor 

method did not predict contrasts successfully in general, and its average similarity 

metrics were much lower than those from the linear pattern method and the FSSNet 

method (Table 6.2). For each 5-dimensional datapoint in parameter space, FSSNet 

synthesis outperformed the linear pattern synthesis. 

 
Figure 6.4 An example training process for feature selection. a1-a4: weights of feature 
selection layer at training epoch 50, 300, 2150, 2880. b1-b3: correlation among training 
images at different parameters, with parameters grouped according to clustering from 
the feature selection layer at training epoch 50, 300, 2150. Clusters are marked as the 
red dashed boxes. 
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Table 6.2 Average Similarity Measure ℛ of Contrast Synthesis  

Study Parameter Settings Average Synthesis ℛ (%) 
Nearest neighbor Linear FSSNet 

Phantom ParamSpace1 95.10 99.73 99.83 
ParamSpace2 94.49 99.80 99.87 

Subject ParamSpace1 92.80±1.81* 98.76±0.57* 98.81±0.63* 
ParamSpace2 93.21±0.92† 98.90±0.38† 99.10±0.33† 

* ℛ𝑁𝑁𝑁𝑁 < ℛ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (p<0.001), ℛ𝑁𝑁𝑁𝑁 < ℛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (p<0.001). 
† ℛ𝑁𝑁𝑁𝑁 < ℛ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (p<0.001), ℛ𝑁𝑁𝑁𝑁 < ℛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (p<0.001), ℛ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 < ℛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (p<0.001). 
 

 

 
Figure 6.5 Contrast synthesis results of the phantom. Column 1-5: images at different 
sampling parameters, indicated at the top in format (FAexc/FArefoc/TR/ESP/TE). Units 
are the same as in Table 6.1. Row 1: acquired reference images; Row 2: corresponding 
synthesized images using nearest-neighbor method; Row 2: synthesized images using 
linear method; Row 4: synthesized images using FSSNet. 
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6.3.3 Human Subject Studies 

Acquisition of the training dataset for the human studies took 29.9 min and 

27.7 min for ParamSpace1 and ParamSpace2, respectively. Offline training took 8min 

for linear method and 13min for FSSNet on the laptop. The nearest-neighbor method did 

not need training. Synthesis for all the predicted contrasts took 4 ms, 40 ms, and 22 ms 

for the nearest-neighbor, the linear and the FSSNet methods respectively. 

The average correlation coefficients from each settings and methods are also 

listed in Table 6.2. Some of the cross prediction synthesis results are exemplified in 

Figure 6.6. As in the phantom study, the nearest neighbor method was not a good 

predictor of contrasts in general. ANOVA confirmed significant differences between the 

image similarity metrics associated with the three methods (p<10-6 for both ParamSpace1 

and ParamSpace2). Pairwise t-testing showed that the similarities of the nearest neighbor 

method were significantly lower than the those of the other two methods (p<0.001 for 

both ParamSpace1 and ParamSpace2). The average similarities of FSSNet method were 

higher than those of the linear pattern method, although the difference was only 

significant for ParamSpace2 (p<0.001). 
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6.4 Discussion 

In this work we proposed for the first time a methodology that learns an MR 

image contrast pattern solely from calibration data spanning an acquisition parameter 

space, without explicit physics modeling. We introduced a practical software structure 

employing new algorithms for contrast prediction based on a small subset of image 

samples and a paradigm for evaluating prediction performance. Compared to the baseline 

nearest-neighbor method which is arguably the best guess without knowledge of the 

sequence a priori, the linear PCA-based pattern characterization and the neural network 

 
Figure 6.6 Contrast synthesis results of the subjects. Column 1-5: images at different 
sampling parameters, indicated at the top in format (FAexc/FArefoc/TR/ESP/TE). Units 
are the same as in Table 6.1. Row 1: acquired reference images; Row 2: synthesized 
images using nearest-neighbor method; Row 3: synthesized images using linear 
method; Row 4: synthesized images using FSSNet. 
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FSSNet methods selected effective image contrast features and more accurately predicted 

image contrast. The FSSNet method performed best overall. The methodology offers not 

only the potential for contrast-based optimization of MRI pulse sequences in real-time 

with high-speed MRI, but also provides an efficient approach to parametric optimization 

of new MRI pulse sequences in general.  

The functionality of the SchemeServer module (Figure 6.1) can potentially 

prescribe arbitrary sampling patterns for sequence optimization. In the current highly-

regulated scanner software environment, this tool leverages much of the existing program 

logic, injecting only a wrapper-layer that controls execution of the sequence. Data 

acquired in real-time are sent to the external computer to be processed by the 

SchemeServer module which sends parameter adjustment commands back to the scanner 

according to pre-defined sampling plans or based on real-time analysis of the image 

stream. Core processing tasks are handled by the Python-based SchemeNarrator module 

for quick prototyping of custom processing algorithms and access to the latest signal 

processing and machine learning software packages. The real-time feedback on image 

sampling and parameter adjustment, is well-suited to applications in interventional 

MRI [5,8], as well as those high-speed imaging settings in which contrast characteristics 

changes from one view to the next. 

It is worth noting that although the time spent on acquisition of the training data 

and the training process takes longer than a few minutes, this is only a one-time offline 

task. The synthesis times of linear method and FSSNet are all of the order of tens of 

milliseconds on a standard personal computer, which is already close to the frame rate of 
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real-time MRI (10ms per frame). This computation time can be further decreased up to 2-

4 times on a GPU-based system [126]. 

The regulation functions in Equations (6.10) and (6.11) used for training the 

feature selection layer are based on the assumption that mixtures of different features 

reduce the total variance [215]. Here, the separation of datasets into training and 

evaluation sets, introduces a small error that causes the variance of each variable in the 

training set to differ (slightly) from one. We addressed this by adding an error term (Δ) to 

keep the two regulation functions working antagonistically for selecting features that 

most effectively predict contrast. The selection layer only optimizes the selection of 

separate sets of correlated features or clusters (Figure 6.4) that contain arguably-similar 

information. Enforcing updated weights in the selection layer (Equation (6.15)) at a 

relatively large interval of epochs allows a singular variable for each feature selection to 

emerge without significantly degrading the prediction accuracy. 

For all of the phantom and subject studies, the observation that the prediction 

accuracy of the linear pattern and the FFSNet methods were higher than the nearest 

neighbor method is, perhaps, unsurprising given the added value of the prior knowledge 

derived from the reference training data. In theory, MRI contrast is not linearly related to 

the parametric field and the neural network can accommodate such nonlinearities. 

Although the FSSNet method was significantly better than the linear method only in 

ParamSpace2, it did not underperform in ParamSpace1 either (Table 6.2). Moreover, it 

may prove advantageous in higher-dimensional parameter spaces, where an exhaustive 

search of predicted contrast space presents a greater computational burden using linear 

approaches. Note also that we did explore other synthesis parameters and methods, 
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including the use of different 𝐾𝐾 values in Equation (6.6), dictionary searching, and 

standardized vs. raw datasets. However, these approaches did not come close to the two 

methods presented in terms of prediction accuracy. In addition, the calibration datasets 

used for training were sampled from whole image slices, which might be overkill vs. 

sampling smaller “regions-of-interest” for some applications. The undersampling of 

acquisition and reconstruction methods such as is afforded by compressed sensing 

methods commonly used in real-time MRI, does enable the acceleration of calibration 

studies and facilitates the exploration of larger parameter ranges and/or dimensions 

including, for example, bandwidth and spatial resolution. 

In summary, we demonstrated the feasibility of predicting parameterized contrast 

behavior for MRI with patterns learned from calibration datasets and minimal data 

sampling. To this end, we presented a practical design, data sampling and processing 

algorithms. The methodology could support deployment of novel research MRI 

sequences, patient-specific in situ tuning of high-speed as well as conventional MRI 

sequences, and facilitate the development of new, interactive and interventional MRI 

applications. 
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Chapter 7: Conclusions 

7.1 Summary 

The goal of bringing interventional intravascular MRI into clinical practice, is 

interaction, which requires that decisions and operations can be performed based on real-

time feedback. These will naturally emerge when a diagnosis/treatment session proceeds, 

given the known unknowns and variables of interventional procedures. Around this 

general concept, this dissertation explores multiple aspects that could advance IVMRI 

further towards realistic, including diagnostic imaging, therapeutic monitoring, 

adaptively optimized sequence deployment, and accelerated parametric measurements. 

This effort has resulted in multiple conference presentations and journal papers. 

First, devices and software for IVMRI guided IVHIFU have been developed for 

perivascular tissue ablation. The suitability, feasibility and MRI-compatibility are 

demonstrated with prototype catheters. Catheter design and workflow optimization, 

especially the introduction of circulation cooling system and the revelation of the key 

effects of combined ablation time and coolant temperature, results in successful vessel-

preservation during perivascular ablation. The systematic in-scanner experiments further 

verify the performance of the proposed procedure, and demonstrate the coordination of 

systems and team operations in a close-to-clinical environment with in vivo studies. 

These works have generated multiple conference presentations and a journal 

publication [1–5]. 

Second, real-time interventional diagnostic imaging with MRI has been brought 

to reality for the first time, by accelerating the speed of MRI endoscopy by 5-fold up to 

10 frames per second and integrating with a real-time communication and display system, 
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comparable to that employed in clinical X-ray fluoroscopy. Dedicated MRI endoscope 

catheters and internal software components are designed to ease the optimization of the 

system. Image analysis has been performed on such internal MRI streams where no 

precedence exists, and trade-off between image quality and speed are discussed with 

practical application needs in mind. This work fills the missing role of MRI in the field of 

intravascular imaging, and has also generated several conference presentations and a 

journal publication [6–8]. 

An early work of using minimal-acquisition linear algebraic modeling for ultrafast 

compartmentalized relaxation times mapping is included. The SLAM method originally 

proposed for MR spectroscopy has been extended for relaxation mapping. As only an 

extremely reduced dataset is required for sampling, it enables acquisition of information 

that would otherwise be inapplicable for clinical imaging in terms of time. This work also 

in concept connects loosely with the acceleration method of real-time MRI endoscopy, 

and the data sampling strategy parameter-based contrast synthesis. 

The above works have specifically explored the therapeutic and diagnostic 

potential of IVMRI, and opened the topic of speed and contrast for not only IVMRI, but 

regular MRI. During these developments, the need for more powerful software and 

analysis tools to support interactive MRI intervention became evident. To address this 

need, a framework is proposed to allow parameter-based interactive MRI image contrast 

synthesis that can be used with many MRI sequences that requires minimal training data 

and modeling knowledge. The interaction-enabling software is based on real-time 

communication to facilitate arbitrary data sampling patterns and flexibility in online 

analysis component. The contrast synthesis process is framed as a feature selection 
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problem that can be efficiently solved by machine learning methods such as the PCA 

method and the DNN based method. This work opens the potentiality to automatically 

tune and enhance contrast for existing clinical and new research sequences, and has 

resulted in a conference presentation and a journal publication in preparation [11]. 

Interventional MRI is a comprehensive research topic that transcends many 

disciplines, including MR physics, the medical physics of intervention and dosage, 

catheter materials science and engineering, signal processing and software, RF hardware, 

etc. In my opinion, the critical point for successful studies often involves the rapid 

acquisition of precision, actionable visual feedback from the working end of the 

interventional probe. At present, dedicated software components developed and presented 

herein, handle this feedback for each application. For future work, a flexible, unified, and 

interaction-driven software framework will be at the crux of new interventional MRI 

applications. 

7.2 Future Directions 

The current design of IVMRI HIFU catheter (Table 2.1, catheter #3) has 4 

channels of ablation transducers targeting at different directions. It still relies on 

mechanical rotation for beam control of finer granularity. For future work, it is desirable 

to integrate more channels to enable beam targeting completely through electrical 

interface. To make the workflow more seamlessly, it would be critical to integrate the 

ablation control unit with thermal monitoring interface. Studies with animal disease 

models and patients are needed to further understand the efficacy of thermal therapy. 

Though the size and flexibility of the current integrated catheter is suitable for major 
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vessels which we were targeting at the proposal of this project, further miniaturization is 

desirable to broaden its applications at various body regions. 

MRI endoscopy shares some of the remaining exploration directions as IVMRI 

HIFU such as catheter miniaturization and disease model studies. Besides these, 

computer-aided steady retraction might help improve its usability and imaging quality to 

the next level, which also requires integration of the MRI feedback interface with a 

mechanical control unit. Temperature mapping using real-time MRI endoscopy has never 

been explored, and is an interesting topic as it could incorporate the IVMRI HIFU system 

to bring a fully endoscopic multifunctional device that can perform diagnosis and therapy 

in a single, unified workflow. Preliminary studies have shown that the artifacts of real-

time MRI endoscopy image frames have a common pattern resulted from the extreme 

undersampling. Plenty of training data is available for this kind of problem as real-time 

MRI endoscopy studies generate a large number of image frames. This indicate that the 

image quality could potentially be further improved through denoising deep neural 

networks. 

The linear and nonlinear PCS methods are able to predict sequence contrast 

behavior at different operation parameters, laying the basis towards automatic operation 

parameter optimization. It is, yet an open question as which objective function to choose 

for such optimization. Formally, the objective function is represented by 𝑄𝑄�𝒙𝒙𝑝𝑝��, where 𝑝𝑝 

is the selection of operation parameter and 𝑄𝑄(⋅) is a quality function of the input image 

(or ROI patch) under evaluation. The implementation of function 𝑄𝑄(⋅) has many 

possibilities, including quantitative approaches such as histogram assessment and feature-

based quality evaluation methods, as well as subjective approaches, where a user 
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interface displays the parameterized synthesis results for human users to select the 

optimal operation parameter. These approaches can be combined or used 

interchangeably, as they can be inserted into the SchemeNarrator framework as 

customizable modules. The optimization framework proposed in this work should be 

further studied with diseased models and multiple pulse sequences. Preliminary work has 

shown its applicability in IVMRI, and it is interesting to study its added value in real-time 

MRI endoscopy. Furthermore, IVMRI HIFU, MRI endoscopy and PCS all relies on real-

time communication loop with MRI console, the SchemeNarrator framework can be 

potentially generalized to unify the underlying infrastructure that is utilized by 

intravascular or interventional MRI applications. This will to the largest extent save 

duplicate work, expedite development process and facilitate studies of IVMRI.  
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Appendix A: MRI Endoscopy Videos 

The corresponding videos of the MRI endoscopy images shown in Figure 4.7, 

Figure 4.8 and Figure 4.9 are provided online (download Supplementary Materials at 

https://doi.org/10.34133/2021/6185616). Real-time endoscopy at 6fps, 10fps and 

conventional MRI endoscopy at 0.3fps are displayed at the true display speed as 

visualized on the scanner console.  

Video S1 6 fps real-time endoscopy of porcine vessel ex vivo in Figure 4.7 (row a). 

Video S2 10 fps real-time endoscopy of porcine vessel ex vivo in Figure 4.7 (row b). 

Video S3 0.3 fps fully-sampled “conventional” endoscopy of porcine vessel ex vivo in 

Figure 4.7 (row c). 

Video S4 6 fps real-time endoscopy of diseased human vessel ex vivo in Figure 4.8 

(row a). 

Video S5 10 fps real-time endoscopy of diseased human vessel ex vivo in Figure 4.8 

(row b). 

Video S6 0.3 fps fully-sampled “conventional” endoscopy of diseased human vessel ex 

vivo in Figure 4.8 (row c). 

Video S7 6 fps real-time endoscopy of porcine vessel in vivo in Figure 4.9 (row 1). 

Video S8 10 fps real-time endoscopy of porcine vessel in vivo in Figure 4.9 (row 2). 

Video S9 0.3 fps fully-sampled “conventional” endoscopy of porcine vessel in vivo in 

Figure 4.9 (row 3). 

Video S10 Comparison of 6 fps real-time endoscopy of diseased human vessel ex vivo in 

Figure 4.8 (row a) before and after preprocessing filter correction. 

https://doi.org/10.34133/2021/6185616
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Video S11 Comparison of 10 fps real-time endoscopy of porcine vessel in vivo in 

Figure 4.9 (row 2) before and after preprocessing filter correction. 
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