2,043 research outputs found

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S

    Robot-Assisted Image-Guided Interventions

    Get PDF
    Image guidance is a common methodology of minimally invasive procedures. Depending on the type of intervention, various imaging modalities are available. Common imaging modalities are computed tomography, magnetic resonance tomography, and ultrasound. Robotic systems have been developed to enable and improve the procedures using these imaging techniques. Spatial and technological constraints limit the development of versatile robotic systems. This paper offers a brief overview of the developments of robotic systems for image-guided interventions since 2015 and includes samples of our current research in this field

    Robot-Assisted Image-Guided Interventions

    Get PDF
    Image guidance is a common methodology of minimally invasive procedures. Depending on the type of intervention, various imaging modalities are available. Common imaging modalities are computed tomography, magnetic resonance tomography, and ultrasound. Robotic systems have been developed to enable and improve the procedures using these imaging techniques. Spatial and technological constraints limit the development of versatile robotic systems. This paper offers a brief overview of the developments of robotic systems for image-guided interventions since 2015 and includes samples of our current research in this field

    Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images

    Get PDF
    Purpose Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. Methods In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (ϕ0.55mm ϕ0.55mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Results Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86±1.14 2.86±1.14, 1.11±0.14 1.11±0.14 and 1.94 0.63mm 1.94±0.63mm for case 1, case 2 and case 3, respectively. Conclusions The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Survey on Current State-of-the-Art in Needle Insertion Robots: Open Challenges for Application in Real Surgery

    Get PDF
    AbstractMinimally invasive percutaneous treatment robots have become a popular area in medical robotics. Minimally invasive treatments are an important part of modern surgery; however percutaneous treatments are a difficult procedure for surgeons. They must carry out a procedure that has limited visibility, tool maneuverability and where the target and tissue surrounding it move because of the tool. Robot technology can overcome those limitations and increase the success of minimally invasive percutaneous treatment. In this paper we will present a review of the current state-of-the-art in robotic insertion needle for minimally invasive treatments, focusing on the limitations and challenges still open for their use in clinical application

    Needle and Biopsy Robots: a Review

    Get PDF
    Purpose of the review Robotics is a rapidly advancing field, and its introduction in healthcare can have a multitude of benefits for clinical practice. Especially, applications depending on the radiologist\u2019s accuracy and precision, such as percutaneous interventions, may profit. This paper provides an overview of recent robot-assisted percutaneous solutions. Recent findings Percutaneous interventions are relatively simple and the quality of the procedure increases a lot by introducing robotics due to the improved accuracy and precision. The success of the procedure is heavily dependent on the ability to merge pre- and intraoperative images, as an accurate estimation of the current target location allows to exploit the robot\u2019s capabilities. Summary Despite much research, the application of robotics in some branches of healthcare is not commonplace yet. Recent advances in percutaneous robotic solutions and imaging are highlighted, as they will pave the way to more widespread implementation of robotics in clinical practic
    corecore