77 research outputs found

    Therapy effect on hand function after home use of a wearable assistive soft-robotic glove supporting grip strength

    Get PDF
    Background Soft-robotic gloves with an assist-as-needed control have the ability to assist daily activities where needed, while stimulating active and highly functional movements within the user’s possibilities. Employment of hand activities with glove support might act as training for unsupported hand function. Objective To evaluate the therapeutic effect of a grip-supporting soft-robotic glove as an assistive device at home during daily activities. Methods This multicentre intervention trial consisted of 3 pre-assessments (averaged if steady state = PRE), one post-assessment (POST), and one follow-up assessment (FU). Participants with chronic hand function limitations were included. Participants used the Carbonhand glove during six weeks in their home environment on their most affected hand. They were free to choose which activities to use the glove with and for how long. The primary outcome measure was grip strength, secondary outcome measures were pinch strength, hand function and glove use time. Results 63 patients with limitations in hand function resulting from various disorders were included. Significant improvements (difference PRE-POST) were found for grip strength (+1.9 kg, CI 0.8 to 3.1; p = 0.002) and hand function, as measured by Jebson-Taylor Hand Function Test (-7.7 s, CI -13.4 to -1.9; p = 0.002) and Action Research Arm Test (+1.0 point, IQR 2.0; p≤0.001). Improvements persisted at FU. Pinch strength improved slightly in all fingers over six-week glove use, however these differences didn’t achieve significance. Participants used the soft-robotic glove for a total average of 33.0 hours (SD 35.3), equivalent to 330 min/week (SD 354) or 47 min/day (SD 51). No serious adverse events occurred. Conclusion The present findings showed that six weeks use of a grip-supporting soft-robotic glove as an assistive device at home resulted in a therapeutic effect on unsupported grip strength and hand function. The glove use time also showed that this wearable, lightweight glove was able to assist participants with the performance of daily tasks for prolonged periods

    MOSAR: A Soft-Assistive Mobilizer for Upper Limb Active Use and Rehabilitation

    Get PDF
    In this study, a soft assisted mobilizer called MOSAR from (Mobilizador Suave de Asistencia y Rehabilitación) for upper limb rehabilitation was developed for a 11 years old child with right paretic side. The mobilizer provides a new therapeutic approach to augment his upper limb active use and rehabilitation, by means of exerting elbow (flexion-extension), forearm (pronation-supination) and (flexion-extension along with ulnar-radial deviations) at the wrist. Preliminarily, the design concept of the soft mobilizer was developed through Reverse Engineering of his upper limb: first casting model, silicone model, and later computational model were obtained by 3D scan, which was the parameterized reference for MOSAR development. Then, the manufacture of fabric inflatable soft actuators for driving the MOSAR system were carried out. Lastly, a law close loop control for the inflation-deflation process was implemented to validate FISAs performance. The results demonstrated the feasibility and effectiveness of the FISAs for being a functional tool for upper limb rehabilitation protocols by achieving those previous target motions similar to the range of motion (ROM) of a healthy person or being used in other applications

    Robotic Home-Based Rehabilitation Systems Design: From a Literature Review to a Conceptual Framework for Community-Based Remote Therapy During COVID-19 Pandemic

    Get PDF
    During the COVID-19 pandemic, the higher susceptibility of post-stroke patients to infection calls for extra safety precautions. Despite the imposed restrictions, early neurorehabilitation cannot be postponed due to its paramount importance for improving motor and functional recovery chances. Utilizing accessible state-of-the-art technologies, home-based rehabilitation devices are proposed as a sustainable solution in the current crisis. In this paper, a comprehensive review on developed home-based rehabilitation technologies of the last 10 years (2011–2020), categorizing them into upper and lower limb devices and considering both commercialized and state-of-the-art realms. Mechatronic, control, and software aspects of the system are discussed to provide a classified roadmap for home-based systems development. Subsequently, a conceptual framework on the development of smart and intelligent community-based home rehabilitation systems based on novel mechatronic technologies is proposed. In this framework, each rehabilitation device acts as an agent in the network, using the internet of things (IoT) technologies, which facilitates learning from the recorded data of the other agents, as well as the tele-supervision of the treatment by an expert. The presented design paradigm based on the above-mentioned leading technologies could lead to the development of promising home rehabilitation systems, which encourage stroke survivors to engage in under-supervised or unsupervised therapeutic activities

    Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke

    Get PDF
    Background The Hand Extension Robot Orthosis (HERO) Grip Glove was iteratively designed to meet requests from therapists and persons after a stroke who have severe hand impairment to create a device that extends all five fingers, enhances grip strength and is portable, lightweight, easy to put on, comfortable and affordable. Methods Eleven persons who have minimal or no active finger extension (Chedoke McMaster Stage of Hand 1–4) post-stroke were recruited to evaluate how well they could perform activities of daily living and finger function assessments with and without wearing the HERO Grip Glove. Results The 11 participants showed statistically significant improvements (p < 0.01), while wearing the HERO Grip Glove, in the water bottle grasp and manipulation task (increase of 2.3 points, SD 1.2, scored using the Chedoke Hand and Arm Inventory scale from 1 to 7) and in index finger extension (increase of 147o, SD 44) and range of motion (increase of 145o, SD 36). The HERO Grip Glove provided 12.7 N (SD 8.9 N) of grip force and 11.0 N (SD 4.8) of pinch force to their affected hands, which enabled those without grip strength to grasp and manipulate blocks, a fork and a water bottle, as well as write with a pen. The participants were ‘more or less satisfied’ with the HERO Grip Glove as an assistive device (average of 3.3 out of 5 on the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 Scale). The highest satisfaction scores were given for safety and security (4.6) and ease of use (3.8) and the lowest satisfaction scores were given for ease of donning (2.3), which required under 5 min with assistance. The most common requests were for greater grip strength and a smaller glove size for small hands. Conclusions The HERO Grip Glove is a safe and effective tool for enabling persons with a stroke that have severe hand impairment to incorporate their affected hand into activities of daily living, which may motivate greater use of the affected upper extremity in daily life to stimulate neuromuscular recovery

    Designing smart garments for rehabilitation

    Get PDF

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Semi-Autonomous Control of an Exoskeleton using Computer Vision

    Get PDF
    • …
    corecore