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Abstract

This PhD thesis was carried out as part of the EXOTIC project, funded by
Aalborg University from 2018 to 2021. The shared goal of this interdisci-
plinary project was to research the idea of an intelligently tongue-controlled
upper limb exoskeleton for persons with tetraplegia. The main focus of the
work presented in this thesis is the application of computer vision for intel-
ligent control in a semi-autonomous manner to make it easier to control the
exoskeleton.

A review of existing work on using computer vision for semi-autonomous
control of assistive robotics manipulators revealed a tendency of having a
clear-cut division of control between the human and the system. This clear
division is easy to understand, easy to implement and often improves the ob-
jective performance of the system, such as completing predefined tasks faster.
However, other studies indicate that such clear-cut schemes may be less sat-
isfying to use, especially for persons with mobile impairments, as it can be
experienced as a loss of control when the machine takes over completely.

A semi-autonomous control scheme with an adaptive level of autonomy
was hence proposed such that the user will always have a sense of con-
trol. This scheme was evaluated against a manual control scheme and a
semi-autonomous control scheme based on a more clear-cut division of con-
trol. These different control schemes were evaluated across two studies, with
the latter one including solely persons with movement impairments in their
arms. Both studies indicated a statistically significant improvement across
multiple scenarios when using the adaptive scheme instead of the other two
schemes. Especially in more complex tasks, where the hand of the exoskele-
ton needed to be both oriented and positioned in a certain way.

The computer vision applied in the two studies of the semi-autonomous
control schemes relied on classical methods, such as detecting objects by color
thresholding. This was a deliberate choice to ensure reliable detections of the
objects in the studies as the main purpose was to test the semi-autonomous
control and not the computer vision. The applied computer vision algorithms
would hence fail to work outside the restricted environment of these two
studies.
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Abstract

Research on computer vision in less restrictive environments was con-
ducted as well as part of this thesis, namely pose estimation of objects from
RGB images where the pose information would be useful for automating
grasping of these objects for e.g. an exoskeleton. An existing state of the art
approach for doing pose estimation was expanded to alleviate many of its
shortcomings, resulting in an increased pose estimation performance, and a
significant reduction in memory usage, while at the same time maintaining
an inference speed suitable for real-time usage. A custom loss function was
proposed as part of the solution which is able to inherently handle symmetric
objects which can be an issue when dealing with pose estimation.

Finally, the above approach was expanded even further by using a single
shared model for all objects instead of multiple object-specific models. This
reduced memory consumption even further while also boosting the pose es-
timation performance by fine-tuning parts of this shared model.
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Resumé

Denne Ph.d.-afhandling er en del af EXOTIC-projektet, der blev finansieret
af Aalborg Universitet fra 2018 til 2021. Det fælles mål med dette tværfaglige
projekt var at udforske ideen om et intelligent tunge-kontrolleret exoskelet
til overkroppen for personer med tetraplegi. Hovedfokus i det arbejde, der
præsenteres i denne afhandling, er anvendelsen af computer vision til intel-
ligent semi-automatisk styring af et exoskelet for dermed at gøre det lettere
at styre det.

Der blev foretaget en systematisk gennemgang af eksisterende arbejde
om anvendelse af computer vision til semi-automatisk styring af robotter,
der kan assistere personer med bevægelseshandicap i overkroppen. Denne
gennemgang afslørede, at der er en tendens til at vælge at have en klar opdel-
ing af kontrollen, hvor mennesket er ansvarligt for en del af opgaven, imens
systemet er ansvarlig for en anden del. Dette valg er let at forstå, let at im-
plementere og denne tilgang vil ofte forbedre systemets objektive ydeevne,
f.eks. ved at nogle prædefinerede opgaver kan udføres hurtigere. Andre
undersøgelser viser imidlertid, at sådanne klare opdelinger af kontrollen kan
være mindre tilfredsstillende for brugerne. Især for personer med bevægelse-
shandicap, da det kan opleves som endnu et tab af kontrol, når maskinen
overtager kontrollen fuldstændigt i nogle situationer.

Der foreslås derfor en semi-automatisk kontrolmetode med et adaptivt
niveau af assistance, således at brugeren altid har en følelse af at være i
kontrol af exoskelet- tet. Denne adaptive kontrolmetode blev evalueret op
mod en manuel kontrolmetode og en semi-automatisk kontrolmetode uden
et adaptivt niveau af assistance. Disse forskellige kontrolmetoder blev eval-
ueret igennem to forsøg, hvor sidstnævnte forsøg udelukkende omfattede
personer med bevægelseshandicap i armene. Begge undersøgelser viste en
statistisk signifikant forbedring på tværs af flere scenarier, når kontrolme-
toden med et adaptivt niveau af assistance blev anvendt i stedet for de to
andre kontrolmetoder. Det blev især tydeligt i de mere komplekse opgaver,
hvor hånden på exoskelettet både skulle både orienteres og placeres på en
bestemt måde for at fuldføre opgaven.

De computer vision algoritmer, der blev anvendt i de to forsøg med de
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Resumé

forskellige kontrolmetoder, var baseret på klassiske teknikker, f.eks. detek-
tering af objekter ved hjælp af farve. Dette var et bevidst valg for at sikre en
pålidelig detektion af objekterne i forsøgene, da hovedformålet var at teste
den semi-automatiske styring og ikke selve computer vision aspektet. De
anvendte computer vision algoritmer vil derfor ikke kunne fungere uden for
det kontrollerede miljø, der blev anvendt i forsøgene.

Som en del af ph.d.-studiet blev der også forsket i computer vision al-
goritmer, som vil kunne fungere i mindre kontrollerede miljøer. Nærmere
bestemt algoritmer til estimering af objekters placering ud fra farvebilleder,
hvilket er nyttige informationer ved automatisering af opgaver, f.eks. når et
exoskelet skal gribe fat i et objekt. En af de førende algoritmer inden for
området blev brugt som udgangspunkt for yderligere forbedringer, hvilket
resulterede i en mere nøjagtig estimering af forskellige objektets placering
samt en betydelig reduktion i forbruget af hukommelse. Desuden bibeholdt
den forbedrede version af algoritmen et lavt tidsforbrug ved estimeringen, og
den er derfor egnet til brug i realtid. Desuden blev der foreslået en specielt
tilpasset løsning, som er i stand til at håndtere symmetriske objekter, hvilket
normalt ellers kan være et problem.

Endeligt blev ovenstående fremgangsmåde udvidet yderligere, således at
en enkelt model kunne trænes til at håndtere flere forskellige objekter i stedet
for at man skulle træne en specifik model til hver enkel type af objekt. Dette
reducerede hukommelses- forbruget yderligere og forbedrede samtidig mod-
ellens evne til at estimere placeringen af objekterne endnu mere nøjagtigt.
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Chapter 1

Introduction

Throughout history, humans have constantly been developing technology to
make life easier and to accomplish things that were otherwise impossible.
Another inherent trait in humans is our social nature, we gather, we bond
and we generally care for each other. One obvious use for our technological
advances is hence for assistive purposes in order to aid our fellow humans in
need of help, such as persons with disabilities.

The intersection of this is assistive technologies (AT), where a product or
technology is specifically designed for the purpose of assisting a person with
a disability. AT can be used in many different aspects and can take many
forms depending on the disability it is designed to alleviate: glasses and
hearing aids for persons with sensory impairments, such as reduced vision
or hearing. Wheelchairs, crutches and recently exoskeletons, see Figure 1.1,
for persons with physical impairments while persons with intellectual im-
pairments can be aided by technologies such as special learning aids.

The diversity of assistive technologies is hence quite wide and some of
them are so common in our society to the point where one might not even
consider it an assistive technology any longer, e.g., glasses or contact lenses.
However, a lot of people would be seriously impaired in their everyday life
without their glasses. The need for assistive technologies is already prevalent
today as it is estimated that approximately one billion people worldwide
could benefit from assistive technologies today, but only a tenth of those
have access to it [10]. The need for AT is likely to increase even further due
to an ageing world population where the risk of a disability increases when
age increases [10].

Many people who require assistance in their everyday life depend on care-
givers to help them but this is an unlikely long term solution as caregivers are
a limited resource [7] [1]. During the Corona pandemic it became apparent
what the lack of caregivers could result in, as multiple Danish associations
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Fig. 1.1: The author drinking from a straw with the aid of an upper limb exoskeleton and glasses.
Both are examples of an assistive technology but at different stages of maturity. Glasses have
existed for centuries whereas exoskeletons have just recently become a possibility for assistive
purposes.

for disabled persons reported a major lack of caregivers [3]. In one case, a
person with amyotrophic lateral sclerosis (ALS) who had been able to live at
home with ALS for the last 15 years with help from family and caregivers
had to be administered to the intensive care unit at a hospital due to lack of
caregivers [3]. However, the impact of too few caregivers spans wide as it
may also affect the partner and the close relatives of the person in need of
assistance as they may resort to stepping in as primary caregivers. This may
be an acceptable temporary solution but should be avoided in the long term
as the relatives will most likely become overloaded [9].

The use of assistive technology can alleviate many of the issues outlined
above by making persons with disabilities more independent and thereby
reducing the need for caregivers or other assistance. Robotics is a promis-
ing technology in this aspect, and especially for persons with physical im-
pairments, as advances in recent decades have removed multiple barriers to
assistive robotics, such as price, size and power consumption. Wheelchair
mounted robotic manipulators are a reality and are already commercially
available, and are estimated to reduce the need for assistance by between
30% [8] and 40% [6] for persons in wheelchairs with upper-limb impairments.
The usage of exoskeletons for both rehabilitation and assistive purposes has
also gained a lot of attention recently [4]. In particular lower limb exoskele-
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tons, where the legs are actuated, have advanced to a point where they are
commercially available and starting to see use for rehabilitation purposes
at hospitals and clinics. However, exoskeletons for assistive purposes in the
home of the user are more uncommon, likely due to the cost and size of some
of them. Especially upper limb exoskeletons, where the arms are actuated,
are still an active area of research with only a few commercially available
options [4].

This PhD project is part of the EXOTIC project, which is an acronym for
EXOskeleton using the Tongue for Intelligent Control. The purpose of the
project was to create an upper limb exoskeleton which can be used by in-
dividuals with complete paralysis of both arms and legs (tetraplegia). Con-
trolling the exoskeleton despite paralysis of all extremities is made possible
using a tongue-based interface. The system is further enhanced by an intelli-
gent control scheme, based on computer vision, to help the user in controlling
the exoskeleton. The focus of this PhD thesis is on the latter; the vision-based
intelligent control of the exoskeleton.

The main concept is the following: by equipping the exoskeleton with a
camera it is able to perceive its immediate environment. Computer vision
is then used to interpret the camera data to assist the user in controlling
the exoskeleton. It is hence similar to modern vehicles that feature multiple
sensors in order to assist the driver of the vehicle.

How such a vision-based semi-autonomous control should work is still
an on-going topic of research [2]. Furthermore, the context of a tongue-
controlled upper limb exoskeleton is still a relatively unexplored area in
human-robot interaction (HRI) research. Especially when the intended user
of the system is paralyzed in both arms and legs, as this group can be more
reluctant to accept a semi-autonomous control scheme because they might
re-experience a loss of control [5].

Another aspect is the computer vision algorithms which the semi-autonomous
control relies on to be able to automate parts of the control. In the recent
decade, deep learning has drastically accelerated as to what is possible in
terms of computer vision. However, deep learning has also introduced some
new problems, such as training the models, which can be an issue as huge
amounts of labelled data are often required. Furthermore, deep learning
may in many cases eliminate the need for classic approaches, such as hand-
crafted feature descriptors, but it requires careful consideration of both the
model design and training parameters such as the loss function.
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1 Thesis Structure

This PhD thesis is divided into three main areas of work: the EXOTIC project,
human-robot interaction and computer vision for object manipulation. The
publications related to this PhD thesis and their relation to the different areas
are shown in Figure 1.2, with some of the publications overlapping multiple
areas of work. The papers related to the EXOTIC project consists of multi-
ple papers co-authored with the other members of the EXOTIC project. The
papers focusing on human-robot interaction overlap both the computer vi-
sion and EXOTIC project, as the context for these papers is based on the
EXOTIC project while employing computer vision as part of the HRI. The
computer vision area contains publications focusing on pose estimations of
objects which is useful for automating object manipulation tasks required by
EXOTIC project. Finally, a review paper on computer vision for assistive
robotics bridges the gap between all three main areas of work.

[C] *A Review of Computer Vision for Semi-Autonomous 
Control of Assistive Robotic Manipulators (ARMs)

[D] *Computer Vision-Based Adaptive Semi-Autonomous Control of 
an Upper Limb Exoskeleton for Individuals with Tetraplegia

[E] *Pose Estimation from 
RGB Images of Highly 

Symmetric Objects using a 
Novel Multi-Pose Loss and 

Differential Rendering

[F] *A Shared Pose Regression 
Network for Pose Estimation of

Objects from RGB Images

[A] EXOTIC - A Discreet User-Based 
5 DoF Upper-Limb Exoskeleton for 

Individuals with Tetraplegia

Semi-Autonomous Tongue-Control of an Assistive 
Robotic ARM for Individuals with Quadriplegia

Tongue Control of Exoskeletons 
and Assistive Robotic Arms for 

Individuals with Tetraplegia

A 4-DOF Upper Limb Exoskeleton 
for Physical Assistance: Design, Modeling, 

Control and Performance Evaluation

Computer VisionThe EXOTIC Project Human-Robot Interaction

*first author

Eyes-Free Tongue Gesture and Tongue Joystick Control of a Five 
DOF Upper-Limb Exoskeleton for Severely Disabled Individuals

[B] User Based Development and Test of the EXOTIC Exoskeleton: Empowering 
Individuals with Tetraplegia using a Compact, Versatile, 5-DoF Upper Limb 

Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control

Fig. 1.2: An overview of the publications related to this PhD thesis. The publications are placed
based on their association with the three main pillars of this PhD thesis: computer vision for ob-
ject manipulation, human-robot interaction and the EXOTIC project. The publications included
in this thesis are highlighted in white boxes with a solid outline.

The structure of this PhD thesis follows the same structure with the three
main areas of work as outlined in Figure 1.2. First the EXOTIC project is
described in more detail, as it provides the entire context for this PhD project,
based on papers A and B. This includes the anticipated users of the system,

6



References

the upper limb exoskeleton and the tongue-based interface. This is followed
by a description of the work carried out on human-robot interaction in the
context of the EXOTIC project, based on papers C and D. Finally, the work
on using computer vision for pose estimation of objects are described on the
basis of papers E and F.

References

[1] S. Bedaf, P. Marti, F. Amirabdollahian, and L. de Witte, “A multi-perspective
evaluation of a service robot for seniors: the voice of different stakeholders,”
Disability and Rehabilitation: Assistive Technology, vol. 13, no. 6, pp. 592–599, 2018.

[2] S. H. Bengtson, T. Bak, L. N. S. A. Struijk, and T. B. Moeslund, “A review
of computer vision for semi-autonomous control of assistive robotic manipu-
lators (arms),” Disability and Rehabilitation: Assistive Technology, vol. 15, no. 7, pp.
731–745, 2020.

[3] E. Færch, “Handicappet kvinde må lade sig indlægge på intensiv hjælpere vil
hellere være podere,” TV2 - Nyheder.

[4] M. A. Gull, S. Bai, and T. Bak, “A review on design of upper limb exoskeletons,”
Robotics, vol. 9, no. 1, p. 16, Mar. 2020.

[5] D.-J. Kim, R. Hazlett-Knudsen, H. Culver-Godfrey, G. Rucks, T. Cunningham,
D. Portee, J. Bricout, Z. Wang, and A. Behal, “How autonomy impacts perfor-
mance and satisfaction: Results from a study with spinal cord injured subjects
using an assistive robot,” IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 42, no. 1, pp. 2–14, Jan. 2012.

[6] V. Maheu, P. S. Archambault, J. Frappier, and F. Routhier, “Evaluation of the
jaco robotic arm: Clinico-economic study for powered wheelchair users with
upper-extremity disabilities,” in 2011 IEEE International Conference on Rehabilita-
tion Robotics, June 2011, pp. 1–5.

[7] K. M. Marasinghe, “Assistive technologies in reducing caregiver burden among
informal caregivers of older adults: a systematic review,” Disability and Rehabili-
tation: Assistive Technology, vol. 11, no. 5, pp. 353–360, Sep. 2015.

[8] G. Romer, H. Stuyt, and A. Peters, “Cost-savings and economic benefits due to
the assistive robotic manipulator (arm),” in 9th International Conference on Reha-
bilitation Robotics, 2005. ICORR 2005. IEEE, 2005, pp. 201–204.

[9] E. W. M. Scholten, A. Kieftenbelt, C. F. Hillebregt, S. de Groot, M. Ketelaar,
J. M. A. Visser-Meily, and M. W. M. Post, “Provided support, caregiver burden
and well-being in partners of persons with spinal cord injury 5 years after dis-
charge from first inpatient rehabilitation,” Spinal Cord, vol. 56, no. 5, pp. 436–446,
Jan. 2018.

[10] W. H. O. (WHO) and T. W. Bank, World report on disability 2011. World Health
Organization, 2011.

7



References

8



Chapter 2

The EXOTIC Project

The entire context for this PhD thesis was given by the EXOTIC project,
which also provided the funding. A more in-depth description of the EX-
OTIC project along with the research carried out in relation to this is there-
fore described in the following. Note that the semi-autonomous control along
with the computer vision aspects of the EXOTIC project are only described
briefly in this chapter as they will be covered more in-depth later in chapter
3 and 4. Furthermore, a brief summary and a short video about the EXOTIC
project is available at the official homepage1.

1 Background - Tetraplegia

The main motivation of the EXOTIC project was to increase the quality of life
and independence of persons with tetraplegia, who have limited to no motor
function in their lower and/or upper body. A common cause of tetraplegia
is injuries to the cervical spinal cord, i.e. the upper part of the spinal cord
around the neck area. The degree of paralysis and which body parts are af-
fected depend on the location and the severity of the damage, as illustrated in
Figure 2.1. Damage to the higher vertebrates (C1-C6) usually causes tetraple-
gia, i.e. paralysis of both arms and legs. Injuries to the lower part of the spinal
cord usually result in paraplegia as it mainly affects the legs. However, real-
life examples of spinal cord injuries (SCI) are usually more complicated in
terms of the body parts affected as the nerves within the spinal cord may
only be partially destroyed in some cases. Such cases with partial paralysis
of all four limbs are commonly referred to as incomplete tetraplegia.

On a worldwide basis it is estimated that between 250,000 and 500,000
persons injure their spinal cord, each year [5]. This is roughly equal to 40

1https://rerob.aau.dk/#proj_Exotic
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Neck injury
(tetraplegia)

Back injury
(paraplegia)

Fig. 2.1: The different levels of paralysis usually occur when damaging different parts of the
spinal cord. The illustration assumes a complete injury where the nerves are completely severed
at the point of injury. Real-life cases of SCI are usually more complex due to partial injuries
where not all nerves are damaged.

to 80 new cases of SCI every year per million per capita on average. Fur-
thermore, it is estimated that approximately one-third of these persons will
have to live with some degree of tetraplegia due to their SCI [36]. The av-
erage age of persons sustaining an SCI is reported to be 33 years [36], but
especially younger adults (females between 15-19 years and males between
20-29 years) and older persons (females older than 60 years and males older
than 70 years) are the main contributors to this statistic. These numbers are
primarily dominated by males as close to four males sustain an SCI for each
female on average.

Studies show that the average life expectancy of a person sustaining a se-
vere SCI at 25 years old is reduced by roughly 30% compared to the general
population [5] [24]. The life expectancy after a severe SCI leading to tetraple-
gia is hence relatively high. In the case of a 25 year old person, it equates
to roughly another 30 years when considering the average life expectancy for
most developed countries.

The relatively high life expectancy is hence one of the main motivating
factors for focusing on persons with tetraplegia. Another main motivation
factor is the degree of assistance needed, especially for persons with severe
tetraplegia with complete paralysis of all four extremities. These persons are
dependent on constant assistance from caregivers around the clock, each and
every day. The potential for assistive technology is hence extremely high
for persons with tetraplegia due to these two factors. Both from a societal-
level, in terms of the monetary cost of providing a high level of assistance
for multiple decades. But also, on a personal-level, a person with tetraplegia
can live a long and full-filling life if given enough support and assistance, for
instance through the usage of assistive technologies.
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2 Related Work - Assistive Technologies

Looking at assistive technologies for persons with tetraplegia, one of the most
common and important technologies is their powered wheelchair [5]. Often
operated with a joystick, either using the hands in case of incomplete tetraple-
gia or using the chin in case of complete tetraplegia, a powered wheelchair
makes it possible to regain a lot of the mobility otherwise lost due to a lim-
ited function of the lower limbs, i.e. the legs. Powered wheelchairs are also
an example of an assistive technology which has reached a point of maturity
where it is widely used, at least in developed countries. Unfortunately, as-
sistive devices focusing on the upper limbs, i.e. the arms, have yet to reach
the same level of maturity. Persons with limited or no function in their arms
and/or hands are hence still dependent on a caregiver to assist them with
tasks such as eating.

However, in recent years several stand-alone assistive robotic manipula-
tors (ARMs) have reached the commercial market, like iARM from Exact Dy-
namics [9] or JACO from Kinova [19], as shown in Figure 2.2a. Such ARMs
could replace at least parts of the lost functionality in the arms of a person
with tetraplegia and reduce the need for a caregiver. Previous studies on
persons with upper limb impairments estimate a reduction in the need for
assistance of 30-40% when using a wheelchair-mounted ARM [30] [23]

(a) JACO from Kinova [19]
mounted on a wheelchair.

(b) The NESM exoskeleton [8].
Figure adapted from [8].

Fig. 2.2: Example of different assistive robotic manipulators.

Another promising aspect is recent advances in the development of as-
sistive upper limb exoskeletons [13] [8] [11], as shown in Figure 2.2b. A
discerning characteristic of exoskeletons is that it is the actual body of the
user that is moved which can be beneficial in several ways. One benefit is
that the user may feel a greater degree of ownership of the actions being car-
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ried out by e.g., an upper limb exoskeleton as they can see their own arm
moving as opposed to a stand-alone ARM. Another benefit of an upper limb
exoskeleton, and exoskeletons in general, is the potential for rehabilitation
purposes [1] [10]. Additionally, an upper limb exoskeleton has the potential
to provide a more integrated and less conspicuous solution than e.g., a stand-
alone ARM mounted on a wheelchair. The exoskeleton could even reach a
point where it could be worn under clothes, making it less eye-catching, es-
pecially as it is the person’s own arm that is moving.

However, there is often a clear trade-off between the bulkiness of an up-
per limb exoskeleton and the support they can provide. The more minimalist
upper limb exoskeletons are able to achieve their small size by only actuating
one or a few joints, such as the elbow [13]. The rest of the joints in these
exoskeletons are often passive and rely on the user having some residual
movement, making them unsuitable for persons with tetraplegia where the
arm and shoulder are paralyzed. Upper limb exoskeletons capable of fully
supporting a paralyzed arm and shoulder are hence often much bulkier, as
shown in Figure 2.2b, as several joints need to be actively actuated. A sig-
nificant aspect of researching the design of upper limb exoskeleton in the
EXOTIC project was hence how to keep the size of it minimal while still pro-
viding sufficient support for a person with tetraplegia to be able to use it.

A common challenge for both upper limb exoskeletons and ARMs in gen-
eral is how to enable a person with tetraplegia to interface with the system.
In case of incomplete tetraplegia, it may be possible to rely on amplifying
the muscle signals by measuring EMG (electromyography) [13]. Other op-
tions include a joystick [11] or relying on hand gestures [16], in the case of a
stand-alone wheelchair-mounted ARM. However, all of these options are not
viable in cases of complete tetraplegia, where the persons cannot move their
limbs. This scenario calls for alternative ways of interfacing, such as voice
commands [11] [16] [17] or eye movements [10] [37] using e.g. eye tracking
glasses as shown in Figure 2.3a. A drawback of these options is that they
may be highly susceptible to noise, such as noise from the surroundings or
unintentional eye movements, i.e., the Midas touch problem [14]. Some stud-
ies reported that speech recognition was the least preferred option by the
majority of the participants [11].

Another option is a brain computer interface (BCI) which relies on mea-
suring brain signals through electrodes, either surface-mounted on the head
[38] [37] [1] [10] as shown in Figure 2.3b or implanted in the brain [2]. BCI
using surface-mounted electrodes can be difficult to work with due to their
sensitivity to noise, even in a controlled laboratory setting. However, BCI
relying on implanted electrodes does not suffer from these drawbacks and
has successfully been used to control a full body exoskeleton [2] but with the
obvious drawback being its invasive nature.
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(a) Eye tracking glasses. (b) A BCI cap.

Fig. 2.3: Examples of the author wearing different viable interfaces for persons with tetraplegia.

Other alternatives include low-tech devices such as chin-operated joy-
sticks and sip-and-puff systems, which have been available for several decades.
A drawback of these low-tech devices is that they are somewhat limited in
the amount of unique commands they can capture from the user. Especially
the sip-and-puff systems where the user is limited to either exhaling or in-
haling into the device. This is less of an issue with the chin-operated joystick
as continuous control is provided in multiple directions. However, a major
drawback of these devices is the aesthetics, as they have to be placed near the
mouth or the chin of the user.

Another option is the use of a tongue-based interface, where a touch pad-
like device is placed in the roof of the user’s mouth and operated by the
tongue [33]. This option has multiple benefits, such as providing continuous
control, allowing a high throughput of commands and being able to hide it
inside the mouth of the person using it. The latter avoids issues with aes-
thetics and also problems with the device being in the way or obstructing
the view, as is the case with e.g. a chin-joystick. Tongue-based control has
previously been used successfully for controlling assistive robotic manipula-
tors after a bit of training [32]. An important part of the EXOTIC project was
hence to explore this idea of using a tongue-based control interface to enable
persons with tetraplegia to control an exoskeleton.

From the above overview it is clear that it is a challenging task to provide
an efficient way for persons with tetraplegia to control an exoskeleton or
other assistive robotics. A common occurrence for assistive robotics is hence
the inclusion of computer vision, in some capability, in an attempt to make
the control easier [3].

The idea of using computer vision for part of the control has success-
fully been demonstrated on multiple occasions for both stand-alone arms,
like JACO [15, 17, 38] but also several exoskeletons [8, 22, 28, 29]. The degree
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of assistance provided from the computer vision varies from some systems
taking full control [8, 22] whereas other approaches assist with sub-parts of
the tasks, such as the coarse motion towards the target where the user man-
ually controls the grasping [15]. The majority of all these approaches report
an increase in performance when using computer vision as part of the con-
trol, such as requiring less time or less effort from the user to complete a
certain task. However, despite these performance benefits some users actu-
ally appeared to prefer the manual option in order to retain some control,
as observed in a study on vision-based control of a robotic arm for persons
with SCI [18]. This could indicate that feeling in control is just as important
as the objective performance, in terms of e.g. task completion speed, when
using computer vision as part of a control scheme. Providing this feeling of
control while still assisting the user is hence one of the focal points for the
research carried out on computer vision-based semi-autonomous control in
the EXOTIC project.

3 The EXOTIC Project

The EXOTIC project expands upon many of these current trends in assistive
technology by proposing the novel combination of an upper limb exoskeleton
controlled through a tongue-based interface combined with computer vision
for more intelligent control. The overall focus of the EXOTIC project was
hence to research, develop, and test such a system for use by persons with
tetraplegia.

The EXOTIC Project

Humanities 
 

User Centered Design

Engineering
 

Upper Limb
Exoskeleton

Health Science 
 

Tongue Control  

Computer Science
 

Intelligent Control

Fig. 2.4: The structure of the EXOTIC project was interdisciplinary and spanned multiple disci-
plines with a PhD student associated with each.

The complexity of the EXOTIC project also meant that resources from
multiple disciplines had to be combined to achieve the goal. Due to the
interdisciplinary nature of the project, it involved four PhD students and a
postdoc each with their individual areas of expertise, as shown in Figure
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2.4, all sharing a common laboratory. The focus of this PhD project was to
research how computer vision could be used for intelligent control of the
EXOTIC exoskeleton.

However, the other areas of the EXOTIC project are described briefly as
well because they provide the context for the work described in this PhD the-
sis. This dependency between the different areas of the EXOTIC project also
meant that the design and implementation of the system, along with plan-
ning the different studies and carrying them out were a joint effort. This is
also reflected in the list of publications where several of the EXOTIC mem-
bers co-authored multiple papers together.

4 User Centered Design

During the EXOTIC project it was a high priority to include the actual in-
tended users, i.e., persons with tetraplegia, as much as possible when re-
searching different designs and solutions for the system. User involvement
was important to ensure that the research carried out in the EXOTIC project
was applicable to real-world scenarios and had actual value for persons with
tetraplegia.

An important aspect was hence to identify for which tasks a person with
tetraplegia might imagine using an upper limb exoskeleton. These tasks were
mapped out during interviews centered around playing a specially designed
board game, see Figure 2.5, where the participant had to create a prioritized
list of common everyday activities [20].

An arm

My Helpers

My Actions
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Me My Actions

Stra
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Fig. 2.5: Simplified re-creation showing part of the design game [20]. The game was used during
the interviews for mapping out activities where an upper limb exoskeleton could be helpful.
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The game also served as a way of making it easier to imagine what an
upper limb exoskeleton is and how it could be of use to them. A total of
nine persons with tetraplegia took part in these game-based interviews which
were conducted one-on-one at the home of the participants [21].

From these interviews, over fifty different activities were identified where
the participants imagined that an upper limb exoskeleton would be benefi-
cial. Two activities which were consistently prioritized highly included being
able to use the exoskeleton for eating and drinking. However, not necessarily
in the traditional sense of sitting down and having a meal but rather pro-
longed sessions associated with other activities, like watching television or
reading a book. One of the interviewed persons elaborated by saying that:
"A meal is on the plate as it is and is eaten in a specific tempo, but when you have
a bowl of candy, then you will have to keep saying; one more, one more, one more,
one more" [21]. During the interviews, the participants were also asked to
associate what they imagined would be both negative and positive attributes
of an exoskeleton. Several of these attributes where associated with the size
of the exoskeleton, with the positive attributes mentioning: "small, light, and
smaller at wrist and forearm" [21] whereas the negative attributes included:
"chunky looking and sharp edges" [21].

Some of the participants from the interviews also took part in the user-
board meetings, where they would provide feedback on the current state
of the EXOTIC project along with suggestions for further directions for re-
search. Unfortunately some of these meetings had to be conducted online
due to COVID-19 which was not ideal, especially as technical difficulties pre-
vented participants from joining on multiple occasions. The occurrence of
the COVID-19 pandemic did in general complicate the process of involving
persons with tetraplegia as many of them were considered to have a higher
risk of serious illness if contracting COVID-19.

5 Upper Limb Exoskeleton

In paper A we describe the upper limb exoskeleton developed during the EX-
OTIC project which features four degrees of freedom (DoFs), as illustrated in
Figure 2.6a. A fully functional human arm features 7 DoFs and the exoskele-
ton can hence not reach every configuration that a human arm normally can.
The decision to reduce the number of DoFs was mainly to reduce the bulki-
ness and size of the exoskeleton as a fully articulated upper limb exoskeleton
would increase the size of the exoskeleton significantly, especially around the
shoulder [12]. The decision to do so was based on the prior interviews of
persons with tetraplegia where multiple persons expressed concerns regard-
ing the size of the exoskeleton. However, the DoFs present in the exoskeleton
have been selected in order to optimize its workspace for tasks including
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eating and picking objects up from a table [7, 34] as they were identified
to be some of the main activities desired in the interviews of persons with
tetraplegia [20, 21].

The end-effector, i.e. the hand, of the EXOTIC exoskeleton constitutes an
additional DoF in the form of a Carbonhand glove from Bioservo Technolo-
gies AB [6]. Figure 2.6b depicts a person wearing both the four DoFs EX-
OTIC upper limb exoskeleton and the Carbonhand glove. The glove enables
active actuation of closing the hand of the person wearing it by contracting
the thumb, index, and middle finger. Opening of the hand is achieved in a
passive manner using elastic bands mounted on the glove. In paper A we
demonstrate that this combination of the Carbonhand glove and the EXOTIC
upper limb exoskeleton enables its user to carry out tasks such as picking up
objects from a table and drinking from a bottle using a straw.

(a) The four DoFs of the exoskeleton.
Figure adapted from [4], paper D.

(b) A person wearing the exoskeleton and the
Carbonhand. Figure adapted from [4], paper D.

Fig. 2.6: The upper limb exoskeleton developed during the EXOTIC project.

The EXOTIC exoskeleton consists of a rigid frame made using a combi-
nation of steel and aluminum, to increase the strength and reduce its weight.
Encoders are mounted at each of the four joints, making it possible to derive
the position of the exoskeleton using its forward kinematics as also described
in paper A. Each joint is powered by its own motor with a separate Propor-
tional Derivative (PD) controller and the exoskeleton can hence be controlled
join-by-joint at the lowest level.

However, the input from the user provided through the tongue-based in-
terface (described next in Section 6) consists of velocity commands, instruct-
ing the end-effector to move in a certain direction in world-space and with a
certain speed. This jogging of the robot was achieved using both the inverse

17



Chapter 2. The EXOTIC Project

and forward kinematics of the exoskeleton in order to infer how each joint
should move.

A kinematics solver based on a genetic algorithm [31] was used for the
inverse kinematics. Furthermore, only the position of the end-effector was
considered when solving for the inverse kinematics as the four DoFs of the
exoskeleton are not sufficient to reach any arbitrary position and orientation
in a 3D space. The inverse kinematics hence only considered the DoFs at the
shoulder, upper arm, and elbow in order to reach a position in 3D. The last
DoF around the wrist is controlled independently and directly by the user.

6 Tongue Control

The tongue-based interface used in the EXOTIC project relies on the iTongue
system from TKS Technology [35] with our own customized software. The
iTongue system consists of an inductive intra-oral tongue interface (ITCI)
positioned in the palate of the user’s mouth, as depicted in Figure 2.7a, which
is held in place using either dental braces or a dental mold. A metal tongue
piercing is used to activate the regions of ITCI, where the surface is covered
with multiple inductive coils, as depicted in Figure 2.7b. This activation unit,
i.e. metal piercing, can also be glued to the tongue for temporary usage, such
as testing the system.

The ITCI is connected wirelessly through Bluetooth to an external receiver,
shown in Figure 2.7c, which is connected to the EXOTIC exoskeleton. The
tongue-based interface can hence be used while the mouth is closed and
without any wires protruding from the mouth, making it barely noticeable.

(a) The ITCI in the roof of the mouth and
the activation unit on the tongue. Figure

adapted from [34], paper B.

(b) "The inductive tongue
interface (ITCI)." [4]

Figure from [4], paper D.

(c) The wireless receiver. Figure
adapted from [27]

Fig. 2.7: Overview of the tongue-based interface.
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6. Tongue Control

A wide variety of different control layouts were developed and tested
[25, 27] with some of them shown in Figure 2.8. Besides the positioning of
the different elements in the layout, the main difference consisted of how the
different commands were triggered.

One approach was a button-based control, as shown in Figure 2.8a, where
the user would trigger the different commands by moving the activation unit
to some pre-defined areas for a certain amount of time. This is supposed to
mimic how one would normally interact with a button. Another approach
tried to mimic a joystick-based control, as shown in Figure 2.8b. The user
would hence position the activation unit at an element in the control lay-
out and afterwards drag it around. For instance, dragging the "Down - Up"
slider in Figure 2.8b either to the right or left for the hand of the exoskeleton
to go either up or down. The third approach is illustrated in Figure 2.8c and
tried to mimic a gesture-based control. The user would here have to drag
the activation unit across the surface of the ITCI in certain patterns to trigger
different commands. For instance, moving the activation unit from left to
right for the exoskeleton to move right. This control is hence somewhat sim-
ilar to the joystick-based control with the exception of not requiring a certain
element to be dragged around.

(a) Button-based control [25]. (b) Joystick-based control [4]. (c) Gesture-based control [27].

Fig. 2.8: Different layouts for the tongue-based interface. The joystick-based layout features an
"Auto Grasp"-button as this layout was used later for testing the computer vision-based semi-
autonomous control of the exoskeleton.

Evaluation of the different control modes indicated several benefits in
favor of using either the joystick- or gesture-based control in favor of the
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button-based control [25, 26]. Specifically in terms of reducing the task com-
pletion time during the trial but also due to other characteristics such as being
able to fit more commands into the limited space of the user’s palate. How-
ever, no significant difference was found between the joystick- and gesture-
based control [27].

Furthermore, no significant difference in performance was found between
presenting the user with visual feedback and not showing the user any vi-
sual feedback once the user had reached a certain level of proficiency in us-
ing the tongue control [27]. This visual feedback being a screen displaying
the control layout along with the current position of the activation unit su-
perimposed onto it. This indicates that the tongue-based interface could be
used without visual feedback without any negative impact which is ideal as
it would reduce the need for an additional screen. Subsequent studies on
semi-autonomous control of the exoskeleton, as described later in Chapter
3, hence relied on the joystick-based layout without visual feedback. This is
also evident by the "Auto Grasp"-button included in the joystick-based layout
(see Figure 2.8b) which was needed by some of the semi-autonomous control
schemes described later in Chapter 3.

Finally, all necessary software was developed for use with ROS (Robot
Operating System). Both for the exoskeleton but also for the tongue-based
interface and the semi-autonomous control described later on. The decision
to use ROS for integrating the work of the different EXOTIC team members
was paramount in ensuring a fully integrated system which could be used
in real-time. This was especially important in order to make it possible to
carry out an evaluation of the full system, where a person would actually use
the tongue-based interface for controlling the upper limb exoskeleton with
assistance from a computer vision-based semi-autonomous control.

7 Evaluation

Previously, in paper A the capabilities of solely the EXOTIC upper limb ex-
oskeleton were demonstrated during a brief pilot test. The main purpose
of this pilot was to demonstrate the functionality of the exoskeleton and it
was hence carried out without any semi-autonomous control and using a
gamepad controller instead of the iTongue system.

In paper B we hence describe and evaluate the fully integrated system,
including both the upper limb exoskeleton, the tongue-based interface and
using computer vision in a semi-autonomous control scheme. This evaluation
was carried out based on ten persons without tetraplegia and three persons
with tetraplegia. Several of the participants with tetraplegia had also taken
part in both the prior interviews and userboard meetings, mentioned earlier.
The tests including persons with tetraplegia took place at the Spinal Cord
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Injury Centre of Western Denmark which also assisted with recruiting many
of the participants. It should be noted that testing on persons both with
and without tetraplegia was approved by the Science Ethics Committee for
the Northern Region of Denmark. Furthermore, getting both this ethical
approval and the process of recruiting participants for the evaluation was
severely complicated by COVID-19 which caused several delays.

The evaluation consisted of the participants carrying out various tasks
related to activities of daily living (ADL) which had to be completed using the
upper limb exoskeleton while using the tongue-based interface. An overview
of the experimental setup is shown in Figure 2.9. Two of these tasks consisted
of picking up either a bottle with a straw or a plastic strawberry from a table
and bringing it to the mouth. Another task was to pick up a scratching stick
and bring it to the side of their face. Finally, the last task consisted of using
the exoskeleton to operate a wall mounted light switch. The computer vision-
based control would provide assistance in picking up the objects but not
when moving towards the face of the user due to safety reasons. It should be
noted that the vision-based semi-autonomous control is identical to the "fixed
semi-autonomous control" as described in paper D and also later in Chapter
3, which both include a more extensive evaluation of different schemes for
doing semi-autonomous control.

Fig. 2.9: "Experimental setup overview. The participant was positioned in front of a table with a bottle po-
sitioned 10 cm away from the table front. The iTongue system was mounted at the palate of the participant
and the activation unit was glued to the tongue. A screen on the table showed dynamic visual feedback of
the control layout and the position of the activation unit on the control layout. The objects used for ADL
tasks are pictured on the right. From the top left: the bottle, the scratch stick, and the strawberry." [34]
Figure from [34], paper B.

The evaluation showed that all of the participants were able to complete
the tasks successfully repeatedly, including the participants with tetraplegia.
The average timings for the different tasks and for both participants with and
without tetraplegia can be seen in Table 2.1.
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Table 2.1: The average time used by the participant when completing the four different tasks.
The results are divided into participants with and without tetraplegia. Table adapted from [34],
paper B.

Tetraplegia Bottle Strawberry Scratch Switch
No 38.7 ± 6.1s 62.7 ± 8.54s 70.3 ± 12.0s 34.30 ± 10.78s
Yes 55.4 ± 8.0s 92.3 ± 11.6s 106.7 ± 16.9s 41.39 ± 9.47s

The participants with tetraplegia did in general appear to use more time
to complete the various tasks. However, this could be attributed to differences
in the amount of training in using the system which differed between the
study including persons with tetraplegia and the study including persons
without tetraplegia. The same observation was made for paper D and is
discussed in more detail later in Chapter 3.

All three of the participants with tetraplegia took part in a semi-structured
interview after having participated in the evaluation. In general they ap-
peared positive about the entire idea of the presented system and the EXOTIC
project. One of the potential users expressed the following: "I think there is so
much potential in this project. The freedom it would be to be able to pick up a bot-
tle, drink from it yourself, and decide yourself. It would mean a massive difference.
Function-wise, I think it is good, about where it should be." [34]. Another of the
participants with tetraplegia added the following: "It has been great, great to
be able to move the arm again it was delightful." [34]. However, a few points of
criticism were also expressed especially about its current appearance: "With
respect to functioning and sound, I wouldnt have second thoughts about using it,
(...) but I think it is unattractive" [34].

The presented system does hence appear to be capable of empowering
persons with tetraplegia to a point where they are capable of completing
some tasks on their own and potentially raise their quality of life. Further-
more, this was also confirmed in the semi-structured interviews of the par-
ticipants with tetraplegia where they highlighted the great potential of the
presented system and expressed that they could imagine using it in their
daily life.

8 Summary

In this chapter it is described how a fully functional tongue-controlled ex-
oskeleton was developed, along with several studies demonstrating that this
exoskeleton would allow persons to perform basic tasks such as drinking
and eating, using solely their tongue to control it. The final system was eval-
uated on several persons with tetraplegia despite COVID-19 which severely
complicated the entire process. Namely recruiting persons with tetraplegia
and getting the protocol for the study approved by the necessary authorities.
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8. Summary

The main contributions and outcomes of the EXOTIC project were hence as
follows:

• We describe the design and implementation of a 5 DoF upper limb ex-
oskeleton for individuals with tetraplegia in paper A and B. The design
is grounded in feedback gathered from potential users [20, 21] along
with an analysis of what DoFs are necessary for which tasks [7].

• In paper A we demonstrate that the developed exoskeleton can be used
for tasks such as eating snacks and drinking along with a more in-depth
analysis of the exoskeletons characteristics [12].

• We designed and tested different control layouts for the tongue-based
interface [27]. Furthermore, we demonstrated that these can be used
without relying on any visual feedback [27] without any significant
decrease in performance.

• In paper B we describe the fully integrated system with the novel com-
bination of an upper limb exoskeleton using a tongue-based interface
with an intelligent control scheme based on computer vision.

• Finally, in paper B we also evaluate this system on persons both with
and without tetraplegia. These tests and subsequent interviews in-
dicated that the novel combination of an upper limb exoskeleton, a
tongue-based control, and computer vision for a semi-automatic con-
trol do allow persons with tetraplegia to regain some functionality and
could improve their quality of life.

The design of the upper limb exoskeletons has hence been demonstrated
to be functional on multiple occasions, also for individuals with tetraplegia.
However, the design could still be optimized further and in particular its size
and weight. One avenue for further research could hence focus on creating
a hybrid exoskeleton, where some parts of the exoskeleton were replaced by
soft robotics. For instance, the use of tendons to actuate parts of the exoskele-
ton. Other ideas for future work could be how to improve the tongue-based
interface, and namely how to create a less invasive interface which does not
require the use of a tongue piercing. Combining tongue-based control with
other methods for controlling the exoskeleton could also prove beneficial,
such as integrating the use of BCI as part of the control. This would also al-
low persons with reduced tongue movement to make use of the exoskeleton
as well.

Finally, the benefit of equipping the system with a level of intelligence was
briefly demonstrated in paper B. This idea of intelligent control is explored
even further in the next chapter.
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Chapter 3

Human-Robot Interaction

In the previous chapter, it was described how the EXOTIC upper limb ex-
oskeleton could be controlled using a tongue-based interface. However, using
the tongue for control can be challenging at times and it does require some
practice [5]. An important part of the EXOTIC project, and the focus of this
thesis, was hence to enhance this control through the use of computer vision
to allow the system to assist the user in controlling the exoskeleton. The user
would hence control the exoskeleton in a semi-autonomous manner, where
parts of the control are carried out autonomously, i.e. semi-autonomous con-
trol.

The benefits of using computer vision in such a semi-autonomous scheme
for controlling assistive robotics were briefly demonstrated in paper B. Com-
puter vision is especially useful in these scenarios as it allows the system to
gather information about the current state of the world, such as nearby ob-
jects. This information can be used both to infer what the user is intending to
do but also how to accomplish a certain task, like how to interact with a cer-
tain type of object. However, an important aspect of any semi-autonomous
control is how the control is shared between the human and the machine,
which will be discussed in more detail in the following sections.

1 Man Versus Machine?

In paper C, an extensive review was carried out on existing works on com-
puter vision-based semi-autonomous control of assistive robotic manipula-
tors (ARMs) and the different approaches were categorized based on the
characteristics of the employed semi-autonomous control. One of the main
characteristics is the level of autonomy of the machine when aiding the hu-
man, which can be viewed on a scale [7], as shown in Table 3.1. The extremes
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Chapter 3. Human-Robot Interaction

on this scale range from the human being in complete control to the machine
being in complete control.

However, characterizing the semi-autonomous behavior of an entire sys-
tem using a single level of autonomy is not feasible. In paper C we hence also
proposed to use a four-stage model [7] when analyzing the different systems
in the review. These four different stages are illustrated in Figure 3.1 along
with common examples of what each stage encompasses.

It was hence possible for a system to exhibit a high level of autonomy in
one stage and a lower level in another stage. For example, the user drawing
a bounding box around the object to interact with would be considered a low
level of autonomy for the decision selection stage. However, the same system
could then take over full control of grasping the selected object resulting in a
high level of autonomy for the action implementations stage.

This four-stage model with the associated level of autonomy is of course
by no means a perfect model which can encompass every small detail of the
analyzed systems. However, it was a way to provide an overview of general
trends in the existing systems using computer vision for semi-autonomous
control of ARMs. One of such trends identified in paper C was a tendency
for the hand-over between human and machine to be very clear-cut, such that
either the human was in control or the machine was in control, not both at
the same time.

The exception being a single system [6] in the review which relied on
an established framework [3] where control inputs from both the user and
from the machine are continuously blended together. The idea being the
following; if the machine has a high confidence that it can assist the user it
would provide a high level of assistance and vice versa. A benefit of this
approach for semi-autonomous control is that it allows the system to adapt
its behavior based on the situation. For instance, a situation with only one

Table 3.1: "The different levels of autonomy. Table adapted from [7]." [1]
Table from [1], paper C.

Levels of autonomy

1) The system offers no assistance.
2) - offers a complete set of decisions/actions.
3) - narrows down the selection to a few.
4) - suggests one alternative.
5) - executes the suggestion if the human approves.
6) - allows the human a restricted time to veto before executing.
7) - executes automatically, then necessarily informs the human.
8) - informs the human only if asked.
9) - informs the human only if it, the system, decides to.

10) - decides everything, ignoring the human.
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1. Man Versus Machine?

Information Acquisition

● Data acquisition
● Sensor position

Action Implementation

● Actuation of links
● Actuation of gripper

Information Analysis

● Data segmentation
● Object recognition

Mug

Bottle

Ball

Decision Selection

● Make decision
● Grasp detection

Target

Fig. 3.1: "The four-stage model originally proposed by [7], with examples of the tasks associated with each
individual stage. The figure is adapted from [8]." [1] Figure from [1], paper C.

object in front of the user makes it likely that the user will want to interact
with that object versus a scenario with multiple objects, where it is more
difficult to predict the intention of the user.

Another important aspect of this adaptive level of autonomy is how the
human will never give up control completely as opposed to the other ap-
proaches, where there was a clear handover in control between human and
machine. While these clear-cut approaches may perform better, in terms
of e.g. task completion speed, it may not always be the best option. In a
study on autonomous control of a wheelchair-mounted robotic arm for per-
sons with spinal cord injuries the majority of the participants reported higher
satisfaction when allowed to control the robotic arm manually [4]. It is not
difficult to imagine that having to relinquish control of the robotic arm may
have some resemblance to the loss of control, one may feel when sustaining
a spinal cord injury in the first place, at least to some extent.

This issue is likely even more crucial for an upper limb exoskeleton than
a standalone robotic arm, as it is the user’s own arm and hand being moved
around. For an exoskeleton, it will also be much harder to disassociate one-
self from what the exoskeleton is doing in order to concentrate on doing other
things, which is less of an issue with a standalone robotic arm mounted on
e.g. a wheelchair. This also underlines another important aspect when de-
signing semi-autonomous control for an exoskeleton; the user will always be
physically present and involved in the task. Disregarding any input from the
user, at least in some parts of the control, can hence be seen as a waste of
resources. The human wearing the exoskeleton might as well be involved in
the control at all times, such that e.g. small corrections can be made. After
all, the ultimate goal of a semi-autonomous control for an exoskeleton is to
be able to mimic all the small things we humans do unconsciously when e.g.
picking an object up from a table.
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2 Semi-Autonomous Control of an Upper-body Ex-
oskeleton

In paper D we expand upon the findings from paper C by designing and
evaluating an adaptive semi-autonomous control for the EXOTIC upper limb
exoskeleton. The main idea of this adaptive control scheme was to assist the
user without completely taking away control from the user. This approach
was evaluated against a fixed semi-autonomous control scheme and against
a manual control of the exoskeleton. The evaluation was carried out across
two studies, where one group of participants had tetraplegia and the second
group did not.

The semi-autonomous control for the exoskeleton was designed based on
the same general framework [3] as also used by the only approach with an
adaptive level of autonomy [6] identified during the review in paper C. An
outline of this framework is illustrated in Figure 3.2, where input from the
user U is blended with the predicted goal P from the system to actuate an
assistive robotic manipulator. It is hence a general framework which can be
used in different contexts. For instance, teleoperation of a robotic manipula-
tor, using either a BCI [6] or the pose of the user as input for the system [3].

User Input U

Predicted goal P

Blending
(1-α)U + αP

ARM
actuation

Fig. 3.2: "Arbitration between the user U and the goal P predicted by the system using linear blending.
The figure is adapted from [3]." [1] Figure from [1], paper C.

In paper D, the context was hence slightly different as the ARM being
actuated was the EXOTIC upper limb exoskeleton. Furthermore, a tongue-
based interface was used for user input and computer vision was used to
predict the most likely goal of the user.

An important aspect of the framework in Figure 3.2 is the arbitration fac-
tor α, controlling the blending between the user input and the predicted goal.
While the blending itself happens in a linear fashion it is possible to change
the behavior of the semi-autonomous control radically depending on how the
arbitration factor changes depending on the confidence of the system. This
dependency can be illustrated as an arbitration curve, depicting how the ar-
bitration factor changes as a function of the confidence of the system. The
arbitration curve can be any arbitrary function and this framework can hence
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encompass radically different semi-autonomous control schemes. Examples
are shown in Figure 3.3, which depicts the three different arbitration curves
used for the control schemes evaluated in paper D.

Fig. 3.3: "The behavior of the different control schemes is illustrated using an arbitration curve. The non-
autonomous control (non) is fixed at α = 0 as the human is always in control. The curve for the adaptive
semi-autonomous control (adp) is given by the function α = max(0, 2ρ − 1). The fixed semi-autonomous
control (fix) is characterized by a sudden jump from the human being in control to the system being in
control, which is triggered when the user presses the “auto grasp” button." [2]
Figure from [2], paper D.

The three depicted arbitration curves in Figure 3.3 are indicative of the
following three control schemes:

• Non-Autonomous Control (non), where the arbitration curve is fixed at
α = 0 for all levels of confidence. The human will hence always be in
control, and it is hence essentially just manual control.

• Adaptive Semi-Autonomous Control (adp), where the arbitration curve
is fixed at α = 0 as well but only until a certain level of confidence is
reached. Once this confidence threshold is reached the arbitration factor
increases linearly with the confidence. This arbitration curve is hence
an example of a semi-autonomous control with an adaptive level of
autonomy.

• Fixed Semi-Autonomous Control (fix), where the arbitration curve is
fixed at α = 0 until a certain confidence level is reached as well. How-
ever, once this threshold is reached the transition from the human being
in control to the machine being in complete control happens instantly,
as signified by the sudden spike. This behavior is identical to a lot of
existing systems employing a clear-cut strategy for semi-autonomous
control, where either the human or the machine is in complete control.
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U

C

Fig. 3.4: The idea of the confidence measure depicted in 2D for illustration purposes. The user is
instructing the exoskeleton to move forward, resulting in the vector U. An object has been found
by the computer vision module, resulting in the vector C, spanning from the end-effector of the
exoskeleton, i.e. the hand, to the position of the object. The confidence of the system depends
on the angle, i.e. similarity, of these two vectors.

A common trait for all three arbitration curves is how they are a func-
tion of the confidence of the system. Being able to estimate this confidence
is hence an important prerequisite for using this blending based approach
for the semi-autonomous control. A direction-based approach was used to
estimate the confidence of the system, as illustrated in Figure 3.4. This con-
fidence measure was essentially based on the angle between the direction
vectors for user input and for the object detected by the computer vision
module. If the user steered directly towards the object, the angle between
these two vectors would be small and it would result in a high confidence
value, and vice versa.

A computer vision module enabled the system to detect the various ob-
jects in the scene which was necessary for both calculating the above confi-
dence measure but also for inferring how to grasp the different objects. The
general pipeline of the computer vision employed for paper D is shown in
Figure 3.5. A classical approach relying on color segmentation was used
as the basis for detecting the different objects. This approach was used to
ensure stable and consistent detections while conducting experiments with
semi-autonomous control of the exoskeleton. More sophisticated methods
based on deep learning were considered but ultimately discarded to avoid
introducing more uncertainty into the results than necessary. This decision
was justified by the fact that the purpose of paper D was to test the semi-
autonomous control schemes and not computer vision algorithms.

Finally, the last stage of the computer vision module was to calculate how
to grasp each of the detected objects. This grasp detection was accomplished
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Fig. 3.5: "Overview of the pipeline for the computer vision module. An RGB-D camera (Intel RealSense
D415) is mounted at the shoulder joint of the exoskeleton and captures both RGB and depth information
from the area in front of the user. The object detection relies on the RGB data where objects are detected
using color thresholding. The depth information is masked based on the detected objects and then converted
to a point cloud. Cylinder-like shapes are then detected in the resulting masked point cloud using an
RANSAC-based algorithm. Finally, the detected cylinders are converted to grasp poses for the exoskeleton
using a rule-based approach." [2] Figure from [2], paper D.

using a rule-based approach relying on the assumption that each object could
be approximated by a cylinder. This assumption was true for some objects
but a bit of a stretch for others. Nevertheless, preliminary tests confirmed
that the above approach worked for grasping all the objects included in the
experiments.

3 Evaluation

The system described above was designed based on the findings of paper C
which indicated that an adaptive approach for the semi-autonomous control
of the EXOTIC exoskeleton could prove beneficial. It was therefore necessary
to evaluate whether or not this assumption was true, which resulted in the
following three hypotheses:

• "Hypothesis 1: The adaptive semi-autonomous control is better than the non-
autonomous control." [2]

• "Hypothesis 2: The fixed semi-autonomous control is better than the non-
autonomous control." [2]

• "Hypothesis 3: The adaptive semi-autonomous control is better than the fixed
semi-autonomous control." [2]

These three hypotheses were evaluated across two studies; study A con-
taining 10 participants without tetraplegia and study B containing 7 partic-
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ipants with tetraplegia. In both studies, the participants had to use the ex-
oskeleton to grasp a predefined object and then lift it. This was tested using
the tongue-based control with the three different control schemes outlined
above. An example of the test setup is shown in Figure 3.6 along with the
two different objects that the participants were asked to grasp; a strawberry
and a bottle. In some cases, both objects were present in the scene at the
same time and in other cases only the object to grasp was present in the
scene. This choice was intentional to test the impact of the system having to
decide between multiple objects.

However, the cases with multiple objects were not tested for study B as it
was found necessary to cut each session of experiments shorter due to fatigue
of the participants. This fatigue was not due to the use of the presented
system or the EXOTIC exoskeleton but instead it was a matter of fatigue from
traveling. Many of the participants with tetraplegia in study B unfortunately
had to travel for several hours prior to the experiment.

(a) "The test setup." [2]
Figure adapted from [2], paper D.

(b) "The objects for grasping." [2]
Figure adapted from [2], paper D.

Fig. 3.6: "An overview of the test setup. (a) The participant is placed in a wheelchair with the exoskeleton
attached to the right arm in the starting position. In front of the participant is a table with different objects
to grasp. (b) The two objects used in the studies for the task of grasping: a plastic strawberry and a plastic
bottle. The objects can be placed on the two predefined positions marked on the table below the objects." [2]

During the two studies, the performance of the three control schemes was
measured based on the time it took to complete the tasks, the number of
commands to do so and the length of travel for the end-effector in the Carte-
sian 3D workspace. Furthermore, two questionnaires were used to assess the
users’ perception of the different control schemes in terms of their intuitive-
ness and how they affected the perceived difficulty of the tasks.

The three control schemes were compared in a pair-wise manner to iden-
tify any statistically significant difference between using them. A description
of this statistical analysis can be found in paper D.
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3.1 Study A - Results

The results from study A are shown in Table 3.2, which depicts the pair-wise
differences between the tested control schemes, along with their associated
hypotheses. The adaptive semi-autonomous control does in general appear
to be performing the best whereas the non-autonomous control generally
performs the worst.

Table 3.2: "Study A - Pair-wise comparison between the three tested control schemes. The mean
percentage-wise increase in performance for each comparison is reported, where positive numbers denote
an improvement (i.e. reduction) in favor of the hypothesis. (...) Significant results supporting the hypoth-
esis are marked with green while results supporting the hypothesis but lacking significance is marked with
yellow. Results marked with red does not support the hypothesis." [2].
Tables adapted from [2], paper D.

(a) "Hypothesis H1, adaptive semi-autonomous control (adp)
is better than non-autonomous control (non)." [2]

time (seconds) commands (integer) cartesian (meters)
Bottle Single 37% 37% 33%

Strawberry Single 58% 60% 38%
Bottle Multi 31% 17% 30%

Strawberry Multi 43% 44% 16%

(b) "Hypothesis H2, fixed semi-autonomous control (fix)
is better than non-autonomous control (non)." [2]

time (seconds) commands (integer) cartesian (meters)
Bottle Single 18% −4.1% 23%

Strawberry Single 46% 37% 25%
Bottle Multi 14% −26% 19%

Strawberry Multi 49% 35% 28%

(c) "Hypothesis H3, adaptive semi-autonomous control (adp)
is better than fixed semi-autonomous control (fix)." [2]

time (seconds) commands (integer) cartesian (meters)
Bottle Single 23% 40% 13%

Strawberry Single 22% 36% 17%
Bottle Multi 20% 39% 13%

Strawberry Multi −10% 13% −15%

The adaptive semi-autonomous control outperforms the non-autonomous
control scheme across all metrics and all scenarios, as seen in Table 3.2a.
All of these improvements are statistically significant with the exception of
three cases for the scenarios with multiple objects present. This strongly
supports the hypothesis of the proposed adaptive semi-autonomous control
being superior to manual control, at least when considering the objective
metrics measured.

The difference is less pronounced in the pair-wise comparison between
the fixed semi-autonomous control and the non-autonomous one, as shown
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in Table 3.2b. There are even a few cases where using the fixed semi-autonomous
control instead of the manual one will negatively impact the performance of
the user. Specifically in terms of the required commands needed to complete
the scenarios consisting of grasping a bottle. However, neither of these two
cases carries any statistical significance, unlike the seven statistically signif-
icant cases where the fixed semi-autonomous control does indeed increase
the performance. These results imply the plausibility of the hypothesis that
fixed semi-autonomous control is superior to manual control.

Finally, the pair-wise differences between the two semi-autonomous con-
trol schemes are reported in Table 3.2c. The adaptive scheme is in a few
cases performing worse than the fixed one. Specifically in the cases when a
strawberry has to be grasped while multiple objects are present in the scene.
However, the adaptive scheme outperforms the adaptive one in all the other
cases and with half of these cases being statistically significant. The majority
of significant improvements of using the adaptive scheme are found when
measuring the number of commands needed to complete the different tasks
or when the task involves a strawberry. This difference in the number of
commands used could be explained by the fact that the user has to press the
"Auto Grasp"-button, as illustrated earlier in Figure 2.8b, in order to activate
the fixed semi-autonomous control scheme. Furthermore, it was observed
that the seamless nature of the adaptive semi-autonomous control scheme
worked really well for scenarios with a strawberry as these would require
both rotating and positioning the hand of the exoskeleton in order to suc-
cessfully grasp the strawberry. The user would in these cases mainly focus
on the positioning while the adaptive semi-autonomous control ensured the
correct rotation of the hand in the mean time. The hypothesis of the adaptive
scheme being preferable to the fixed one is clearly true in some cases. Fur-
thermore, there are no statistically significant results to support the opposite.

The gathered objective metrics were supplemented by two questionnaires
to assess both the intuitiveness (INTUI) of the control schemes and the per-
ceived difficulty of the tasks with the different control schemes (NASA-TLX).
Both of the semi-autonomous control schemes were rated significantly bet-
ter on both questionnaires as compared to their non-autonomous counter-
part. There was no statistically significant difference between the adaptive
and fixed scheme for either of the two questionnaires. These results do
support earlier observations from the object metrics in Table 3.2 quite well
as the difference between the adaptive semi-autonomous control versus the
manual control was more pronounced than the difference between the two
semi-autonomous control modes.
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3.2 Study B - Results

The results for study B are summarized in Table 3.3 and only contain results
for the cases with a single object present in the scene, as mentioned earlier.

The results from study B exhibit many of the same trends as observed
earlier in study A but with less statistical significance in general. For in-
stance, both of the semi-autonomous control modes outperform the non-
autonomous one in many cases with approximately half of them being sta-
tistically significant as well. However, the fixed semi-autonomous control
schemes appear to perform slightly better as it improves performance in all
cases in Table 3.3b as compared to study A, where using the fixed scheme
decreased performance in a few cases. The difference between the two dif-
ferent semi-autonomous control modes also appear less pronounced in Table
3.3c as compared to study A.

Table 3.3: "Study B - Pair-wise comparison between the three tested control schemes. The mean
percentage-wise increase in performance for each comparison is reported, where positive numbers denote
an improvement (i.e. reduction) in favor of the hypothesis. (...) Significant results supporting the hypoth-
esis are marked with green while results supporting the hypothesis but lacking significance is marked with
yellow. Results marked with red does not support the hypothesis." [2].
Tables adapted from [2], paper D.

(a) Hypothesis H1, adaptive semi-autonomous control (adp)
is better than non-autonomous control (non). [2]

time (seconds) commands (integer) cartesian (meters)
Bottle Single 41% 43% 41%

Strawberry Single 54% 56% 33%

(b) Hypothesis H2, fixed semi-autonomous control (fix)
is better than non-autonomous control (non). [2]

time (seconds) commands (integer) cartesian (meters)
Bottle Single 53% 42% 53%

Strawberry Single 54% 50% 31%

(c) Hypothesis H3, adaptive semi-autonomous control (adp)
is better than fixed semi-autonomous control (fix). [2]

time (seconds) commands (integer) cartesian (meters)
Bottle Single −21% 0.37% −21%

Strawberry Single −0.29% 12% 2.6%

The same lack of significance was also observed in the results from the
questionnaires as well, where no statistical significance can be found between
any of the control modes for either of the two questionnaires. Part of this
difference in statistical significance between the two studies could likely be
attributed to fewer participants in study B (7 persons) compared to study A
(10 persons). Another difference between the two studies is also the training-
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phase for learning to use the system. In study A the participants had more
time to train tongue-based control on the real exoskeleton whereas the train-
ing phase was shorter for study B and the training was done on a simulated
version of the exoskeleton. Both of these discrepancies between the two stud-
ies were a matter of prioritizing available resources and namely time, but
should be addressed in future experiments.

4 Summary

This chapter has described how the use of computer vision often is beneficial
in various semi-autonomous control schemes for assistive robotic manipula-
tors, as outlined in paper C. Furthermore, it has been identified that there is
a general trend of using very clear-cut strategies for arbitrating between the
human and the system, where the level of autonomy is pre-defined. How-
ever, it was also found that such solutions may not be the best choice for
persons with movement impairments as it can result in a feeling of not be-
ing in control. A semi-autonomous control relying on an adaptive level of
autonomy was hence developed for the tongue-controlled EXOTIC exoskele-
ton and evaluated across two studies, as described in paper D. The main
contributions and outcomes of these two pieces of work can be summarized
as:

• In paper C we systematically reviewed existing approaches for using
computer vision for semi-autonomous control of assistive robotic ma-
nipulators.

• Furthermore, in paper C we also identified current trends and high-
lighted short-comings in the current state of the work. Namely the
static nature of many semi-autonomous control schemes where it was
theorized that a more adaptive scheme would be better. Especially for
persons with tetraplegia or other movement impairments.

• We elaborated on this finding in paper D where we proposed a com-
puter vision-based semi-autonomous control scheme for the EXOTIC
upper limb exoskeleton. This control scheme was characterized by be-
ing adaptive such that the level of assistance provided by the system
would vary depending on the scenario.

• Furthermore, this adaptive semi-autonomous control scheme was also
evaluated in paper D against a semi-autonomous control scheme with
a fixed level of autonomy and a fully manual control scheme, i.e. with-
out any autonomy. This evaluation consisted of a study including ten
persons without tetraplegia and another study including seven persons
with tetraplegia.
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• The findings in paper D strongly suggest that the idea of using com-
puter vision for an intelligent control of an upper limb exoskeleton is
indeed beneficial. Both objective metrics (e.g. task completion time and
commands used) improved significantly in many cases and the users’
experience of using the system improved as well.

• Finally, the results in paper D also support the hypothesis from paper C
of an adaptive semi-autonomous control scheme being superior to one
with a fixed level of autonomy. Comparing these two schemes did in
several cases result in a significant difference in favor of the adaptive
approach. Most of the cases lacking significance were also in favor
of the adaptive scheme with fewer cases favoring the fixed approach.
However, all cases in favor of the fixed scheme lacked significance.

Looking at the results from the two studies, many of the same trends were
identified for both of them. However, the results from study B were generally
found to be lacking statistical significance which is likely due to having fewer
participants when compared to study A. A suggestion for future work would
hence be to re-conduct study B with more participants and preferably also
with the scenarios containing multiple objects which had to be cut. It could
also be considered if the experiments could be conducted either in the home
of the participants or at a nearby location if study B was to be repeated. This
would hopefully reduce the fatigue from traveling in some of the participants
with tetraplegia and also allow for more time for training to use the real
exoskeleton.

Looking at the results from study A, which included scenarios with both
single and multiple objects in the scene, it is clear that both semi-autonomous
control schemes perform worse in scenarios with multiple objects. A part
of this difference could be linked to the intent prediction which relies on a
rather basic direction-based approach, where the system assumes that the
user would point the exoskeleton arm towards the object of interest. This
assumption may not be true in all cases and it may therefore be beneficial to
look into improving the approach for the intent prediction.

Finally, another option for future improvements would be to focus on the
computer vision part which was tailored to the exact tasks present in the
studies. The computer vision pipeline in its current state would hence strug-
gle if presented with objects where there is little to no resemblance to the
objects used in the experiments. For instance, the assumption of being able
to fit a cylinder to the detected object in order to infer a grasp pose using the
rule-based approach employed in paper D. An alternative could be to train
a neural network to estimate the pose of the different objects, with the pose
of the objects being useful in determining how to interact with them, e.g.
grasp them. This does however introduce new problems, such as training
the network in terms of obtaining the required training data and formulating
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a meaningful loss function. Furthermore, such a pose estimation approach
needs a low inference time to be useful in the context of controlling the EX-
OTIC exoskeleton. Having to wait several seconds for the computer vision
module would likely impact the performance of the semi-autonomous con-
trol severely. These issues and many others are addressed in the following
chapter where a neural network is trained for the task of doing pose estima-
tion of objects.
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Chapter 4

Computer Vision for Object
Manipulation

In the previous chapter it was outlined how computer vision can be used for
different aspects of the control of assistive robotics. Namely, the four-stage
model consisting of information acquisition, information analysis, decision
selection and action implementation to analyze existing systems. The work
presented so far has mainly focused on the last stage (i.e. action implemen-
tation) in terms of a blending-based adaptive semi-autonomous approach
for controlling an upper limb exoskeleton, as outlined in paper D. This work
mainly relied on classical computer vision methods, where color thresholding
was used to detect objects in the information analysis stage and a rule-based
approach was used to infer a grasping pose in the decision selection stage.

In this chapter, other ways of approaching the decision selection stage
will be discussed. Namely, the work carried out as part of this PhD project
on how to estimate the pose of an object, which can form the basis for how
to manipulate an object. For instance, how to grasp said object. This is
especially important in the context of EXOTIC as one of the main purposes
of the upper limb exoskeleton is to be able to manipulate objects.

1 Pose Estimation of Objects

Pose estimation is the process of estimating both the orientation and position
of an object, as shown in Figure 4.1. Sometimes also referred to as 6D pose es-
timation, where the orientation (α, β, γ) contributes with 3D and the position
(x, y, z) contributes with another 3D as well. The problem of pose estimation
of objects is a problem which has been studied for several decades [12]. How-
ever, despite a lot of progress in recent years, especially due to deep learning,
it still remains a challenging problem [9].
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x y

α
β

γ
z

Fig. 4.1: The pose of an object given by its orientation (α, β, γ) and position (x, y, z).

Pose estimation is especially useful in the context of object manipulation
as how to e.g. grasp an object depends on both its position and orientation. If
the pose of an object is known it can be used to infer how to grasp the object,
for instance from some pre-defined grasp poses associated with each object.

Until recent years, the state-of-the-art for pose estimation was dominated
by key-point based approaches [15] [6]. These approaches relied on hand-
crafted features [3] calculated from depth information which were then used
to match against CAD models of different objects in order to infer both the
object type and pose.

A few years ago, deep learning-based approaches started to surpass these
key-point based approaches in terms of performance, as also highlighted by
the benchmark for 6D object pose estimation (BOP) challenge [9]. Some of the
deep learning-based approaches trained their model in an end-to-end fashion
to directly regress the pose [11] [10]. Others trained a feature extractor [14]
which was subsequently used to match against a codebook of known objects
with known poses. All of these approaches are primarily based on RGB
information as input, where depth information is only an optional input used
for post-refinement of the estimated poses. For instance, using an iterative
closest point (ICP) algorithm [16] to minimize the error between the observed
depth and a CAD model of the object.

There has hence been a clear change in the input modality, from relying
solely on depth information to using RGB information with depth as an op-
tional additional input. This distinct change in the input modality could be
a matter of deep learning not being straightforward to use for depth infor-
mation with many of the operations being optimized for RGB data. It could
also be a matter of the RGB information being less noisy, and e.g. having
sharp edges, than the depth information which can be more susceptible to
noise, for instance, sunlight interfering with depth sensors relying on the IR
spectrum.
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1. Pose Estimation of Objects

A drawback commonly stressed in terms of deep learning-based approaches
is the vast amounts of labeled data needed for training. This issue is also
prevalent for the mentioned deep learning-based approaches but was cir-
cumvented by either training solely [14] or primarily [10] [11] on synthetic
data generated from CAD models.

Recently, there has been a trend of merging the idea of key-point based
approaches with deep learning. These approaches rely on deep learning for
learning descriptors for fragments on the surface of the object [4] [7]. All of
these approaches primarily rely on RGB information as input, like the previ-
ous deep learning-based approaches, with depth information only being used
in a post-refinement step. Similarly to the key-point based approaches rely-
ing on depth information [15] [6], these fragment-based approaches require
matching the extracted descriptor with a reference model in order to infer
the pose. This process can be rather costly in terms of time, ranging from
an average of 0.75 seconds per image containing multiple objects (using a
Tesla P100 [7]) to an average of 2.2 seconds per object (using an RTX2080 [4]).
For comparison, the deep learning-based approach relying on codebooks for
inference [14] is 3-4 times faster than these approaches [7]. However, the
codebook-based approach is also less accurate and it is hence a trade-off be-
tween speed versus accuracy. Which of the two should be preferred is of
course dependent on the use-case.

Considering the context of this PhD project, where the pose estimation
is intended to assist in controlling an exoskeleton, it was deemed that speed
should be preferred over accuracy. This is based on the consideration that the
system should be responsive for the user controlling it. Another considera-
tion was that the human is still present in the control loop of the upper limb
exoskeleton, as outlined previously in Section 2. The human can hence help
with minor corrections, as long as the estimated pose is not totally off and
not having the highest possible pose accuracy is therefore less of an issue.

An obvious drawback of the codebook-based approach [14] despite its
low inference time is the codebooks. The codebooks are generated object-
wise by sampling ≈ 65.000 poses where a feature vector is computed for
each and stored for use during inference. This requires the space of poses
to be discretized and also introduces a memory consumption which scales
linearly with the number of objects that the system has to handle.

In paper E we show that each codebook can be replaced entirely by a
small neural network for pose regression, consuming ≈ 40 times less mem-
ory, while improving the accuracy of the pose estimates. Furthermore, a
novel loss function based on differentiable rendering is introduced in order
to train the pose regression network. This loss function is designed such
that it inherently can handle ambiguities caused by symmetries which are an
inherent problem in pose estimation.

This work is further expanded in paper F where a single pose regression
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network is shown to be sufficient for multiple different objects. This ap-
proach improved the pose estimation accuracy even further while reducing
the memory footprint once again.

2 Pose Ambiguities due to Object Symmetries

Symmetries are an inherent problem in pose estimation, as they can cause
ambiguities in gauging how correct an estimated pose is. An example of
such could be a cylinder-shaped object, as shown in Figure 4.2a, where the
appearance and physical properties of the object do not change when rotating
the object around its major axis. However, rotational symmetries like the one
in Figure 4.2a are due to the object being truly symmetric. It is hence possible
to predefine these symmetries such that a pose error function can account for
them.

An example of such is the two pose error metrics, Maximum Symmetry-
Aware Surface Distance and Maximum Symmetry-Aware Projection Distance, found
in the BOP benchmark for 6D object pose estimation [9]. Both functions rely
on a set of predefined global symmetric transformations (such as rotating a
cylinder around its major axis) which the error function should apply such
that the final error is minimized.

(a) (b) (c) (d)

Fig. 4.2: "(a) Rotationally symmetric objects should be treated equally independent of angle around its
major axis. Examples of how symmetries can occur for a mug with a handle. (b) Handle visible, no pose
ambiguity. (c) Self-occluded due to a slight rotation and (d) occluded by another object, both of these have
ambiguities in pose." [1] Figures from [1], paper E, © 2021 IEEE.

However, relying on predefined symmetries will fail to encompass situ-
ations where an object can appear symmetric without being it. This is de-
picted in Figure 4.2b-d, where a coffee mug has no apparent symmetries
when the handle is showing (b) but once the handle is hidden, either due
to self-occlusion (c) or occlusion by another object (d), it appears symmetric.
The likelihood of such situations occurring is especially high for objects with
little to no texture to help solve these ambiguities.

Scenarios with apparent symmetries, like the ones depicted in Figure 4.2c-
d, are hence problematic when evaluating pose estimation approaches. But
it is also problematic when training learning-based approaches for pose esti-
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mation as such approaches require an error function in order to improve and
learn. If this error function behaves inconsistently, due to symmetries, the
model being trained will have to learn to account for this as well. In the best
case, the model will use a lot of resources in order to learn to account for it.
In the worst case, the model will fail to encompass the concept of symmetries
and achieve sub-par performance as a result of this.

3 Pose Error based on Visual Similarity

Another way to approach the issue of handling symmetries when doing pose
estimation is to compare poses based on their visual similarity. This exact
same idea is also the underlying basis for the Visible Surface Discrepancy (VSD)
metric used in the BOP challenge [9].

In paper E we formulate a novel loss function based on the same idea of
comparing poses through their visual similarity, as shown in Figure 4.3. This
loss function is then used to train a neural network for doing pose regression
on top of the encoder from the codebook-based approach [14], such that
the codebook is entirely replaced by a small pose regression network. All
the training data is still synthetic and generated from CAD models of the
different objects, similarly to the codebook-based approach.

Pose
Regression 

Network

 Ground truth poses
(depth maps)

Pixel-wise 
differences |d|

Depth-based Loss

Estimated poses
(depth maps)CAD model

Encoder

− =

RGB
Renderer

Fig. 4.3: Overview of the components in our proposed pipeline for training a pose regression
network. The network is trained from synthetic data in the form of augmented renders of
the objects from their respective CAD models. A pre-trained encoder [14] is used as a feature
extractor and its output is used as input for our pose regression network. During training, a
depth-based loss function is used for comparing the visual similarity between the ground truth
and the estimated poses. Figure adapted from [1, 5], paper E, and [5], paper F, © 2021/2022
IEEE.
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An important part of training the pose regression network is hence our
custom loss function which relies on comparing depth maps. These depth
maps are produced using a differentiable depth renderer [13], such that
the loss function is still differentiable which is required for doing back-
propagation when training the network. This is necessary as rendering im-
ages of e.g. a CAD model is not differentiable per default in a common
rendering pipeline. The main issue occurs when relying on rasterization to
convert a 3D scene, containing e.g. a CAD model, into a 2D raster of pixels,
i.e. an image. During this process it is necessary to check every object in the
scene to determine how they are associated with the pixels in the image, as
illustrated in Figure 4.4a.

Image plane

Object in pose p
0

(a) Rasterization of a scene
with an object consisting of a
few faces, i.e. triangles.

Image plane

Object in pose p
0 
+ Δp  

(b) Rasterization of the scene
after applying a small change
to the pose of the object.

P
ix

e
l v

a
lu

e

Object pose

p
0 
+ Δp  p

0 
  

(c) The value of a single pixel
plotted as a function of the
pose of the object in the scene.

Fig. 4.4: Illustration of the rasterization step in a traditional rendering pipeline and why it can
be problematic for training a neural network. (a) The rasterization step serves to identify the
intersection between faces in a scene and pixels in an image. (b) Applying a small change to
the scene, e.g. changing the orientation of an object slightly, may cause intersection between
faces and pixels to change drastically. (c) Pixel values may as a result of the small change in
pose suddenly and drastically change as well. This sudden jump in the pixel values is not easily
differentiable which is problematic for training a neural network. Note that the small change in
pose has been exaggerated for illustrative purposes. Figure adapted from [13].

However, even small changes to the scene may cause a drastic change of
the individual values of each pixel in the image as they may suddenly overlap
with a different face, i.e. triangle, in the scene. For instance, a small change in
the orientation of an object in the scene, as shown in Figure 4.4b, will change
the intersection between the faces in the scene and the pixels in the image.
Such a small change in the scene may hence result in a sudden and drastic
change in the value of one or more pixels, as also illustrated in Figure 4.4c.
This sudden jump from one value to another is not easily differentiable and
hence not suitable for training a neural network. The differentiable renderer
used in both paper E and F avoids this issue by aggregating the k closest faces
for each pixel instead of just considering a single face as done in traditional
rasterization.
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4 Multiple Views to Escape Local Minima

The depth map-based loss function did however tend to get stuck in local
minima. This issue is sought illustrated in Figure 4.5, where an object is
rotated in terms of its elevation and azimuth and the resulting depth-based
loss is plotted. The visual appearance of the correct pose (a) is nearly identical
when rotating the object 180o around an axis as seen in (c). This is reflected
in the loss landscape, with (a) and (c) being distinct minima. If the pose
regression network should predict a pose corresponding to (c) instead of (a)
it is deemed acceptable due to their high visual similarity. However, there
are also two distinct minima at (b) and (d), when the object is rotated roughly
90o around one axis. These minima are more problematic as they can be near
impossible to escape, judging by the loss landscape, and the resulting pose
would likely be off to the point where grasping the object would fail. If the
weights of the pose regression network just happen to get trapped at one of
these local minima it will likely not reach any of the other and more desirable
solutions.
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Fig. 4.5: Plot of the loss landscape for a semi-symmetric object. "(...) Rotations in the image plane
are omitted to get a 2D visualisation. The global minimum (ground truth) pose is (a), and its 180 degree
semi-symmetry is (c). The two most isolated non-symmetry local minima are given by (b) and (d). The
loss landscape is visualized in (e), ignoring in-plane rotations." [1].
Figure adapted from [1], paper E, © 2021 IEEE.
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In paper E, we hence expanded our depth-based loss to produce not one
but multiple pose estimates in order to counteract these problematic minima.
The solution is illustrated in Figure 4.6, where the pose regression network
now outputs n pose estimates, where the difference in depth, |d|, is calcu-
lated for each in relation to the ground truth. Furthermore, the network also
outputs a confidence wn associated with each of the n poses, which is also
used as a weight term when summing up the depth differences across all n
poses. However, all poses will contribute with a minimum fixed value of γ
to ensure that back-propagation occurs for even zero confidence pose esti-
mates. During inference, this estimated confidence wn is also important as
the final output of the pose regression network will hence be selected as the
pose estimate with the largest confidence associated.

Finally, an additional term, Lpose(P̂), is added to the loss function to en-
sure that all the n predicted poses are not too similar. If all the predicted
poses were allowed to be identical or near identical it would defeat the pur-
pose of introducing multiple pose estimates in the first place. This term in
the loss can also be viewed as a way for the pose estimates to repel each
other, such that multiple pose estimates do not get stuck in the same local
minimum.
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Fig. 4.6: Overview of the depth-based loss function expanded to output n pose estimates to avoid
getting stuck in local minima. A confidence, wn, is estimated by the pose regression network for
each of the n pose estimates. The final loss is calculated by summing the depth-based loss for
each pose estimate while weighted by its associated confidence, wn. All poses will as a minimum
contribute with γ to the final loss to ensure back-propagation even for zero confidence poses.
The term, Lpose, ensures that the estimated poses are not too similar. Figure adapted from [1],
paper E, © 2021 IEEE, and [5], paper F, © 2022 IEEE.
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During evaluation, it was found that having the model output n = 10 pose
estimates instead of n = 1 increased performance noticeably (from 53.10% to
62.34% pose recall), surpassing the codebook-based approach [14] (60.77%
pose recall). Introducing these additional pose estimates do impose some
computational burden but it is mainly related to the rendering of the depth
maps for the loss function. However, this is only required during training and
the computational burden during inference is hence negligible. The inference
time is ≈ 6.2ms per object and it is hence slightly faster than the ≈ 7.0 ms
per object measured for the codebook-based approach [14] (both running on
an GTX1060). Our approach does hence preserve a fast inference time, which
is the main benefit of the codebook-based approach, while at the same time
increasing the pose estimation accuracy and reducing the memory footprint
by magnitudes (≈ 40 times less memory needed).

5 Shared Pose Regression Network

The work and results presented in paper E relied on training a pose regres-
sion network separately for each object, similarly to how a codebook was
generated for each object in the codebook-based approach [14]. In paper F
we hence expand our approach further by showing that only a single pose
regression network is needed instead of training multiple object-specific ones.

This new shared pose regression network relies on the exact same network
architecture as paper E with the only exception of expanding the output layer
of the network to always produce pose estimates for all the different objects,
as illustrated in Figure 4.7. Another important addition to the pipeline for
the shared network is a masking scheme which is applied to the output of
the network to ensure that only the pose estimates for the correct object ID
are left as output.

The size of the network is hence slightly larger due to these multiple
outputs when compared to a single network from paper E. However, this
slight increase is heavily outweighed by only needing one shared network
instead of multiple object-specific ones. In the case of the T-LESS dataset
[8], containing 30 different objects, using the shared pose regression network
from paper F instead of the multiple networks from paper E would reduce
memory usage by ≈ 51% and by ≈ 98% when comparing to the codebook-
based approach [14]. The computational burden of applying the masking
scheme is also negligible, as reflected by an inference time of ≈ 6.4ms per
image crop. This is only slightly slower than the ≈ 6.2ms achieved by using
multiple object-specific networks, making it usable for real-time purposes.

Furthermore, during evaluation of the shared pose regression network it
was found that fewer data samples are needed for training the shared pose re-
gression network than for training multiple object-specific ones. In the case of
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Fig. 4.7: "The architecture of the shared posed regression network, including the pre-trained encoder
used as feature extractor [14]. The network is nearly identical to the original pipeline [1] and includes
several skip connections as these were found to increase performance. The exception is the final layer of
the network which has been modified to output multi-pose estimates for all the k different object categories,
regardless of the class ID of the input. Additionally, a masking scheme is introduced to ensure that only
the estimated poses for the correct object ID is propagated further in the pipeline. It is assumed that the
object ID is available from a prior detection step." [5] Figure from [5], paper F, © 2022 IEEE.

the T-LESS dataset, with 30 objects, each object-specific network was trained
using 2 million samples per object for a total of 60 million samples. However,
the shared pose regression network only required 20 million samples during
training to surpass the performance of the multiple object-specific networks
(a pose recall of 63.13% versus 62.34%). Finally, the superior performance
of the shared pose regression network was found to be largely attributed to
fine-tuning parts of the encoder used for feature extraction in the pipeline.
Doing a similar fine-tuning step for the multiple object-specific networks is
in theory possible. However, such a fine-tuning process would be more com-
plicated due to having multiple networks. It would either require fine-tuning
a separate encoder for each network or fine-tuning the same encoder jointly
on all the object-specific networks at once. Our proposed pipeline in paper
F offers a less complicated pipeline, allowing for easy fine-tuning of the en-
coder, along with fast inference, a better pose recall and reduced memory
consumption.

6 Summary

This chapter presented our work on pose estimation of objects from RGB im-
ages. Our initial pipeline proposed in paper E utilizes a novel loss function
for dealing with symmetric objects and was used to train multiple pose esti-
mation networks in order to replace object-specific codebooks in a state of the
art pose estimation approach. This work was subsequently improved further
in paper F by training one single pose estimation network for all objects in-
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stead of multiple object-specific ones. The main outcomes and contributions
for this part can be summarized as:

• In paper E we improved a state of the art approach by having it rely
on multiple small neural networks for doing pose estimation instead of
having to rely on multiple codebooks. This improved performance both
in terms of pose recall but also other important characteristics, such as
reducing the inference time and memory usage.

• A novel loss function for training the neural networks for doing pose
estimation was also proposed in paper E. This loss function relies on a
differentiable renderer to compare the visual similarity of an object in
different poses which allows it to inherently account for any symmetries
present in an object. Such symmetries have otherwise proven to be
troublesome for learning-based approaches, such as neural networks,
as it introduces ambiguities in the ground truth pose.

• The work from paper E was improved further in paper F, where the
multiple object-specific networks were replaced with one single neu-
ral network. This reduced the memory usage even further while still
maintaining the low inference time. Furthermore, using a single net-
work instead of multiple ones allowed parts of the pipeline to be fine-
tuned even further which increased the pose recall slightly above using
multiple object-specific networks.

The pipelines presented in both papers E and F solely estimate the orien-
tation of objects, and not the full pose including translation. The next logical
step for future work would hence be to incorporate the ability to predict the
translation of objects as well into the pipeline. The original codebook-based
pipeline [14] estimates this translation by comparing the size of the bounding
boxes for the detected objects against renderings produced from their respec-
tive CAD models. This approach does work but it is also quite sensitive
to noise in the detected bounding boxes. A better alternative would hence
be to expand this idea with an additional step for fine-tuning the detected
bounding boxes prior to using them for estimating the translation [11].

Another obvious option for future work could be to integrate a tracker [2]
into the pipeline to filter away erroneous pose estimates as one can likely
assume that the pose of an object does not change drastically in a split second.
This idea is further supported by our pipeline being able to produce multiple
pose estimates within a short time span.
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Chapter 5

Conclusion

The work presented in this thesis was conducted as part of the EXOTIC
project which is based on the idea of creating a tongue controlled upper limb
exoskeleton for individuals with tetraplegia. The main contribution of this
thesis was to improve the tongue control of the exoskeleton through a semi-
autonomous control scheme based on computer vision. The base assumption
being that the addition of this vision-based intelligent control would make it
easier to control the upper limb exoskeleton.

A tongue-controlled upper limb exoskeleton was designed and imple-
mented as part of the EXOTIC project in a collaboration with multiple other
PhD students. The exoskeleton was designed to include five carefully se-
lected degrees-of-freedom (DoFs) in order to minimize both its weight and
size, while still enabling the user to perform the desired tasks. These desired
tasks were mainly found to concentrate around eating and drinking, and
namely snacking. The tongue-based interface enabled persons with tetraple-
gia to control the exoskeleton despite being completely paralyzed from the
neck and down. Extensive evaluation of this exoskeleton demonstrated that
it enabled a person to complete the desired tasks using only their tongue for
controlling it.

An initial review of existing literature supported the initial hypothesis
of using a computer vision-based semi-autonomous scheme to improve the
tongue-based control of the exoskeleton. Our review also revealed a clear
tendency to use very clear-cut schemes for arbitrating control between the
human and the system, at least in the context of robotic manipulators for as-
sistive purposes. This led to the hypothesis that a semi-autonomous control
scheme with a more adaptable level of autonomy would be more suitable
for an upper limb exoskeleton, and especially for individuals with tetraple-
gia. The hypothesis was tested across two studies on computer vision-based
semi-autonomous tongue-based control of the EXOTIC upper limb exoskele-
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ton. The first study included persons without any paralysis whereas the sec-
ond study included individuals with impaired or no movement in their right
arm and hand. These studies also served to verify the initial base assump-
tion of computer vision-based semi-autonomous control being beneficial for
a tongue-controlled upper limb exoskeleton. The result of the studies showed
significant improvements when using a vision-based semi-autonomous con-
trol over a completely manual approach. Furthermore, the adaptive approach
for the semi-autonomous control was in several cases found to result in a
significant improvement over the more fixed approach, where the level of
autonomy is static. This was especially true for the first study, which also
had a better base in terms of proving statistical significance as it included
more participants. These observations do suggest that the hypothesis of the
adaptive scheme being superior is true in at least some cases. Classical com-
puter vision algorithms were applied in both studies to ensure a stable system
with high repeatability to make it easier to test the semi-autonomous control
schemes. The used approaches were only applicable due to the controlled
nature of the conducted studies.

Research on using computer vision in a less constrained scenario was
hence conducted as well. The main focus of this research was pose esti-
mation of objects which could potentially be used in the semi-autonomous
tongue-based control of the EXOTIC exoskeleton to infer how to interact with
different objects. A pose regression network was proposed and tested based
on a state of the art pose estimation approach. This evaluation indicated both
an improvement in terms of the ability to correctly estimate the pose of dif-
ferent objects but also in terms of a reduction in both memory usage and
inference time. A custom loss function was proposed and used for training
this pose regression network which was designed to account for the prob-
lem of handling symmetric objects during training. Other approaches would
either completely ignore the problem or rely on manually predefined sym-
metries for each object. The proposed loss inherently handles symmetries
by relying on the visual similarity of objects in the different poses and does
not require these manually predefined symmetries. This work was expanded
further by showing how a single shared pose regression network could re-
place the need for having multiple object-specific pose regression networks.

The work presented in this thesis also gives rise to plenty of opportunities for
future work. The work on the single shared pose regression network could
be extended even further by having it estimate the translation of the objects
in addition to just their orientation. One approach could be to estimate this
translation based on the known size of the CAD models of each object in re-
lation to the size of the object as perceived by the camera. Another promising
extension for future work in terms of doing pose estimation of objects could
be to include temporal data. Using a tracking scheme it would be possible to
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integrate multiple pose estimates in order to increase the quality of the pose
estimates by smoothing out noise and discarding erroneous pose estimates.
Such an approach is especially promising given the low inference time of our
current approach which would allow it to produce multiple estimates within
a short time span.

In terms of the tongue-controlled EXOTIC exoskeleton, future work could
include developing a hybrid version both in terms of the actual exoskeleton
but also in terms of the modalities used for interfacing. The tongue-based
control could be supplemented by other ways of interfacing, such as using
BCI (brain computer interface) which would enable persons with limited to
no control of the tongue to use the system as well. Furthermore, parts of the
exoskeleton could be actuated using a tendon-based approach which would
likely reduce the size of it.

The proposed semi-autonomous control scheme produced promising re-
sults during both of the conducted studies. However, conducting similar
studies with even more participants in the future would likely solidify many
of these findings. Furthermore, these two studies did also indicate that it
would be beneficial to improve upon the existing method for estimating the
intention of the user. The implementation used for intent prediction in the
conducted studies relied solely on the direction of the end-effector consisting
of the user’s hand. It would likely be beneficial to partly base this intent
prediction on prior observations as well, for instance, the hand often being in
a certain orientation and/or position when going for a certain object.

This idea of using prior observations could be achieved by learning from
demonstration as part of the semi-autonomous control scheme. The system
would hence continually learn what to interact with and how to do it based
on observing how a person is using the exoskeleton. The context of an ex-
oskeleton would be perfect for such an approach as the human would be
present at all times and available to correct the system. Having to demon-
strate how to do various things, in order for the system to learn, would hence
be a natural part of using the system and not associated with extra work for
the human. This whole idea agrees well with the main idea of both the EX-
OTIC project and the proposed adaptive semi-autonomous control where in-
put from the user is considered as a valuable resource not to be disregarded.
After all, the main essence of the EXOTIC project and hence this thesis was
to help people with tetraplegia. The presented work has by no means com-
pletely solved all problems that a person with tetraplegia might encount but
it has advanced our understanding of how using computer vision for semi-
autonomous control of a tongue-controlled exoskeleton can be part of the
solution.
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1. Introduction

Abstract

Complete, high spinal cord injuries can lead to a condition known as tetraplegia
wherein the body is paralyzed from the neck down. Individuals with tetraplegia
are greatly limited in their independence and quality of life. Due to the paralysis,
these individuals are bound to a wheelchair and require a high level of assistance
throughout their everyday. To enable these individuals to regain some of their lost
mobility, exoskeletons holds a great potential. Therefore, this work explores the re-
quirements and design choices that went into creating the EXOTIC exoskeleton, an
upper-limb exoskeleton designed for individuals with tetraplegia, which enables the
user to drink and eat, while maintaining a relatively small form factor. Finally, the
available workspace is simulated and visualized, and a pilot test of the basic function-
ality shows that picking up an item and transferring it to the mouth takes 41 seconds
on average.

1 Introduction

Individuals who have suffered a spinal cord injury may become paralyzed,
which entails reduced mobility and, in approximately half of the cases, re-
sults in tetraplegia; paralysis from the neck down. This condition greatly lim-
its the independence and quality of life of these individuals [1]. Additionally,
tetraplegia results in a constant need for assistance and thus very little pri-
vacy. A study by Maheu et al. [2] found that introducing an assistive robotic
device could reduce the need for assistance by up to 41%, while increasing
the level of independence for individuals with tetraplegia. Yet, fully assistive
upper limb exoskeletons are mostly used for rehabilitation purposes [3–6].
Rehabilitation exoskeletons are not necessarily limited in the physical space
they occupy, nor the aesthetics they afford, and thus they often lead to bulky
exoskeletons that are not fit for assistive applications.

For an upper-limb exoskeleton to be feasible and acceptable to a user, a
reduction of the physical dimensions of the current exoskeletons are neces-
sary. Ongoing efforts to reducing bulkiness have taken various approaches: 1)
moving actuators towards or beyond the root of the exoskeleton and transfer-
ring the actuation forces through tendons [7]; 2) Creating soft-exoskeletons,
often with actuation mechanisms removed from the exoskeleton or embed-
ded through pneumatics or similar [7, 8] and finally; 3) Reducing the degrees
of freedom in underactuated designs [9].

These opportune design choices each have their merits and flaws. While
moving actuators towards the root can greatly reduce both weight and ap-
pearance of the extremity of an exoskeleton, it comes at potential overhead in
terms of design, as forces must be guided to where the actuation is needed.
The transfer of forces, often achieved using Bowden cable transmission de-
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signs, leads to some design challenges in terms of friction and control [10].
Others have attempted to transfer the forces through pulley systems, with
success in control, but with implications on physical size and appearance [11].

The most opportune design would likely be a soft exoskeleton in terms of
physical size and discreteness. Lessard et al. [7] investigated such a system
and while they achieve a remarkably small design, such solutions present
major problems with regards to control of the arm, as it is difficult to ob-
tain positional feedback from the joints in soft robotics and, thus, it hinders
closed-loop control.

Finally, under-actuation has obvious limitations that directly affect the
available workspace, however, this approach is taken in most exoskeleton
designs, as the human arm has 6 degrees of freedom (not including displace-
ments of the shoulder), which requires equally many actuators and conse-
quently leads to increased bulk. Some exoskeletons have been developed for
assistive applications and disabled individuals, and yet, the physical extent
remains problematic [5, 12–14] or the assisted degrees of freedom (DoFs) are
not suitable to assist individuals with tetraplegia, as these individuals require
some wrist and hand actuation for the exoskeleton to be useable [8, 15, 16].

In this paper, we propose a new, compact exoskeleton design that targets
individuals with tetraplegia and others with severe disability in the upper
limbs. Furthermore, this paper shows preliminary experimentation with the
proposed EXOTIC exoskeleton and perspectives and considerations for fu-
ture iterations.

2 Methods

2.1 User driven design

In the design of the presented exoskeleton, a user-driven approach was taken.
Users were involved through interviews and through design games. Five
users participated in the investigations [17]. The most important insights
found during the investigation were the following [17, 18]: 1) Eating had
a high priority. However, this was not confined to eating a whole meal,
but rather it was snacking in front of e.g. the television or in the garden.
Currently, the users have to ask a helper every time they would like another
piece of food; 2) Drinking was found to be just as important as eating, both in
a social situation, but likewise to snacking over an extended period, i.e. being
able to sip of a drink; 3) The ability to scratch an itch (in the facial region);
4) Turning pages on newspapers and books and being able to grab reading
materials themselves; 5) Personal grooming, especially the act of brushing
teeth and shaving.

When asked about the physical appearance and size of an exoskeleton for
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the arm, the following was found: 1) Three out of five prioritized functions
over form, i.e. it was more important to them that an exoskeleton should
be versatile and enable many tasks, as compared to the physical appearance
of the exoskeleton; 2) Two out of the five where heavily concerned with the
appearance of the exoskeleton, the remaining participants likewise expressed
their apprehension with respect to appearance. Especially, the exoskeleton
should be constructed in such a way that it would minimize further stigma-
tization; 3) Finally all participants stated that the donning and doffing had to
be as simple as possible, as helpers and caregivers must be able to don and
doff with relative ease and speed.

In addition to user desires, clinical considerations have to be taken into
account for individuals with tetraplegia, as tetraplegia may result in auto-
nomic dysreflexia (an autonomic uncontrolled blood pressure increase that
can occur from e.g. irritations/pressure on the skin). As this autonomic re-
sponse is dangerous and can be lethal in rare cases, care must be taken to
ensure that excessive pressure and irritation are diminished.

2.2 Biomechanical considerations

In the research and design of the presented exoskeleton, under-actuation of
the shoulder joint was considered, and a biomechanical feasibility study was
conducted to ascertain the impact of under-actuating the shoulder [19]. In
this research, Casanova et al. [19] tested a 3D-printed exoskeleton model
where the shoulder abduction degree of freedom could be restricted. Able-
bodied participants were asked to perform a set of tasks: drinking with a
straw, eating a chocolate bar and pouring water into a cup while their shoul-
der abduction was either free to move, constrained to the resting pose (i.e.
perpendicular to the ground), or constrained to a 10 degree offset outwards
from the resting pose. Their movements were tracked using a motion cap-
ture system, and later these motions were analyzed in the biomechanical
modelling software AnyBody. From the movements, both relative joint an-
gles and joint reaction forces where analyzed and compared. The results
showed that all tasks could be completed with a fixed shoulder abduction
angle and that only the water pouring task resulted in exaggerated joint re-
action forces at the wrist when shoulder abduction was constrained. Based
on these findings, the abduction joint of the shoulder can be omitted, for the
most important ADLs requested by the users.

2.3 Design of the EXOTIC exoskeleton

A rigid exoskeleton design with geared motors was chosen as it provides
a simple control solution with well-defined joint rotations, as compared to
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Fig. A.1: Image of the proposed exoskeleton here shown to successfully move the users hand to
grasp a bottle and consecutively move it to the users mouth to sip from the straw.

soft exoskeletons, yet it is possible to achieve a relatively compact design as
shown in Fig. A.1.

For anatomical compatibility with most individuals, the exoskeleton is
designed to be adjustable in the upper arm link and at the lower braces,
which can be adjusted along the axis of the lower arm. Physical stoppers
were implemented to limit the joint movement range to be within the range of
the corresponding human joint. To prevent potential autonomic dysreflexia
reactions, custom-made orthopedic braces where used for the arm rest and
wrist rest to provide a distribution of the forces applied to the user, see Fig.
A.1.

Two DOF exoskeleton shoulder joint: The shoulder flexion/extension joint
consists of a maxon EC-flat type motor (maxon Group AG) with a harmonic
drive (Harmonic Drive LLC). The shoulder abduction/adduction joint was
omitted in order to reduce the size of the exo as the results from [19] indicated
that it could be omitted for the most typical tasks (e.g. drinking, snacking)
without incurring significantly different joint torques. Instead, an adjustable
joint is used, which can be fixed to a selected angle. This joint is located
before the shoulder flexion/extension joint on the exoskeleton mount. To
further remove bulk from the shoulder, the external/internal rotation of the
upper arm was moved to a half-circular joint, a mechanism similar to [3], [5],
but drastically smaller. The joint consists of a half-circular dove-tail guide
attached to the shoulder joint and a movable sled onto which the rest of the
exoskeleton is attached. The joint is actuated by a maxon EC-4pole motor
with a planetary gearing located along the upper arm which actuates the
joint through a gear and teeth along the half-circular guide, see Fig. A.1
and Fig. A.2. Previous exoskeletons have used full-ring joints working in a
similar manner [12]; however, a full-ring would require that the users arm is
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Fig. A.2: Schematic overview of the basic build of the exoskeleton. On the right are schematics
of the exoskeleton build together with the range of motion of each joint, and on the left is a 3D
rendering of a human arm with depictions of the actuated joints and their axes of rotation.

put through the ring, which would be problematic given that the exoskeleton
must be relatively easy to don and doff in order to be used in domestic
settings. Instead, a brace carries the upper arm from the exoskeleton and this
combination enables donning by only lifting the arm into the exoskeleton.

One DOF exoskeleton elbow joint: The elbow joint is actuated through an-
other EC-4pole motor with a planetary and a worm gear. The lower arm link
has another ergonomic brace attached to it, which carries the lower arm, see
Fig. A.1.

One DOF exoskeleton wrist joint: To achieve maneuverability of the hand,
the wrist joint is actuated through another half-circular joint with a brace
attached, allowing for wrist rotations. To ensure that the wrist follows the
exoskeleton wrist joint, a single Velcro strip extends from the brace around
the brace and wrist, which thereby distributes the force on the ergonomic
braces, see Fig. A.1.

One DOF exoskeleton glove: Finally, to facilitate hand closing, a tendon
based soft-exoskeleton glove (BioServo Carbonhand) is mounted on the hand.
Hand opening is provided using passive elastic bands attached to the wrist
brace on rigid guides that extend out to the middle flange.

2.4 Exoskeleton control

All joints incorporate absolute encoders, allowing for direct joint angle feed-
back. To control the exoskeleton with end effector-based control, a Robot
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Operating System (ROS) interface was implemented (ROS Kinetic) using a
set of packages: The MoveIt! [20] package was used to provide inverse kine-
matics and closed-loop trajectory planning and control; The RViz viewer [21]
package, was used visualize the state of the exoskeleton in real-time (A visu-
alization of the exoskeleton, viewed in RViz, is visible in the background in
Fig. A.1); To add real-time jog control of the exoskeleton, the jog_control [22]
package was used and controlled through velocity commands.

To establish the connection from the ROS controllers to the motor drivers
(maxon EPOS4 Compact 50/8 CAN) a custom interface was created, which
translates the joint position commands from MoveIt! to the appropriate CAN-
bus commands, which are sent using a USB to CAN adapter (USB-CAN-SI-
M, TITAN Electronics Inc.) enabling update frequencies at approximately
100 Hz. The high-level position commands are fed to the EPOS modules,
which implement a PID controller that use incremental encoders as the feed-
back signal. Further, the incremental encoders enable the use of sinusoidal
commutation for smooth motion.

2.5 Analysis and initial testing

A workspace analysis was conducted in which the inverse kinematics were
tested for feasible solutions within the maximum reach of the exoskeleton
(configured for an average human arm; upper arm length, from shoulder
(Acromion) to the elbow (Olecranon) 38 cm and lower arm from elbow (Ole-
cranon) to the wrist (Ulna head) 27.5 cm).

The main load applied to the exoskeleton joints during operation will be
applied to the shoulder joint. Therefore, a small strength test was performed
by attaching weights, corresponding to the approximate weight of an arm
(5 kg) and an additional payload of 1 kg at the end effector, resulting in a
combined required torque of 15.6 Nm. While keeping the exoskeleton in a
horizontal pose, the load metrics (current and calculated torque) were ob-
served, to verify that they were within nominal values. These measures were
extracted through the EPOS module.

To verify that the exoskeleton can perform the tasks that were prioritized
by the users, a set of tasks were arranged in a pilot test. The user, an able-
bodied co-author of this paper, was seated in a wheelchair in front of a table
with the exoskeleton mounted on the right arm and hand. The tasks con-
sisted of the most requested ADLs found in the initial user investigation,
namely: drinking and eating. A bottle of water with a straw, a banana and a
strawberry were placed in front of the user. Starting with the exoskeleton in
a resting pose, the objective was to pick up the objects, one-by-one, transfer
them to the mouth and put them back on the table in turn.

As control input for the exoskeleton, a generic gamepad was used to pro-
vide Cartesian end-effector control with a maximum speed set to 0.04 m/s.

70



3. Results

Fig. A.3: Visualization of the valid workspace of the exoskeleton. Green dots correspond to a
pose, wherein the end-effector (the approximate position of a hand in the exoskeleton) has a
valid inverse kinematics solution. Axes indicate the extent of the workspace. The mid-point
on the axes correspond to the position of the end-effector when the exoskeleton is in the pose
depicted in grey (the resting pose).

Wrist rotation control and hand closing and opening was enabled through
a D-pad also located on the generic gamepad. The exoskeleton was con-
trolled with the left hand, while the right hand and arm was mounted in the
exoskeleton. The test was approved by the local ethical committee.

3 Results

3.1 Exoskeleton workspace and load

From a resting pose (upper arm link perpendicular to the ground, lower arm
link parallel to ground) the exoskeleton end effector was able to reach 31.2
cm to the right (across the body midline), 25.9 cm forwards, 51.2 cm upwards
and 26.8 cm downwards. A visualization of the workspace is shown in Fig.
A.3.

Testing of the shoulder motor assembly showed that the exoskeleton could
safely apply a torque of 15.6 Nm without exceeding nominal values.

3.2 Pilot testing

Images from the pilot test are shown in Fig A.4. Timings of the tasks are
shown in Table A.1. The average time to pick an item up and transfer it to
the mouth of the user was 41s. Finally, the workspace allowed for the hand
to be moved into close proximity to the head, which might enable the user to
scratch itches on the front and side of the head. A video of the exoskeleton
attached to a mannequin is available at: https://www.youtube.com/embed/
L-jhidyzWiM?mute=1
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Fig. A.4: The three tasks tested with the exoskeleton. Each row of images shows the progression
of each task. From the top: 1) The strawberry task, 2) the banana task, and 3) the bottle task.

4 Conclusion

In this work we have presented a new exoskeleton design with a focus on a
small physical structure, while remaining functional for individuals with a
severe disability of the upper limb. The exoskeleton has been tested in the
lab, showing the ability to solve tasks that were set as the objective for this
work by the target user group.

In this paper a gamepad control was used to test the workspace and func-
tionality of the exoskeleton, however, this control modality is not possible to
use for individuals with tetraplegia. This paper focused on the exoskeleton,
however, future work will focus on the control input available to such user
groups and how these control modalities can be optimized to help users in
performing their desired tasks.

Table A.1: Timings of the exoskeleton tasks performed.

Task Time to grasp [s] Time to mouth [s]
Strawberry task 16 39

Banana task 13 21
Bottle task 20 14
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1. Introduction

Abstract

This paper presents the EXOTIC - a novel assistive upper limb exoskeleton for in-
dividuals with complete functional tetraplegia that provides an unprecedented level
of versatility and control. The current literature on exoskeletons mainly focuses on
the basic technical aspects of exoskeleton design and control while the context in
which these exoskeletons should function is less or not prioritized even though it
poses important technical requirements. We considered all sources of design require-
ments; from the basic technical functions to the real-world practical application. The
EXOTIC features: (1) a compact, safe, wheelchair-mountable, easy to don and doff
exoskeleton capable of facilitating multiple highly desired activities of daily living for
individuals with tetraplegia; (2) a semi-automated computer vision guidance system
that can be enabled by the user when relevant; (3) a tongue control interface allowing
for full, volitional, and continuous control over all possible motions of the exoskele-
ton. The EXOTIC was tested on ten able-bodied individuals and three users with
tetraplegia caused by spinal cord injury. During the tests the EXOTIC succeeded
in fully assisting tasks such as drinking and picking up snacks, even for users with
complete functional tetraplegia and the need for a ventilator. The users confirmed the
usability of the EXOTIC.

1 Introduction

Each year, between 250,000 and 500,000 individuals worldwide are believed
to suffer a spinal cord injury (SCI) [1]. In Northern America alone, SCI cases
account for approximately 250,000 individuals [2], of which more than half
suffer from tetraplegia [3] with all four limbs being affected. When a high-
level complete SCI occurs, the injured individual may not be able to move
from the neck down (complete functional tetraplegia). This devastating con-
dition can lead to a loss in quality of life [4] as well as a reduced life ex-
pectancy [1]. Further, approximately 22% of individuals with SCI suffer from
depression and premature death [5].

Furthermore, individuals with tetraplegia often require constant care from
health professionals and a single individual with complete functional tetraple-
gia may need a team of up to eight caregivers. Meanwhile, human resources
from the health care sector are increasingly sparse as the ageing world de-
mography is bound to require more resources within the next decades [6].
This poses an urgent need for solutions that empower individuals with se-
vere disabilities while potentially freeing resources in the health care sector.

An approach to achieve this goal is to apply robotic assistive technolo-
gies. A study by Maheu et al. [7] found that introducing an assistive robotic
manipulator (ARM) for individuals with upper limb disabilities could re-
duce the need for help by up to 41%. Consequently, upper arm exoskeletons
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hold great potential as assistive devices for individuals with severe paresis or
paralysis as a tool to regain some independence [8].

Recently, significant advances have been seen in upper limb exoskele-
ton (ULE) design [9]. However, generally applicable systems with a critical
level of usability that enables domestic assistance of multiple activities of
daily living (ADL) for individuals with complete functional tetraplegia are
still lacking. To be able to support a user with complete or severe func-
tional tetraplegia in performing multiple ADLs in domestic settings, several
critical attributes of the exoskeleton system should be considered. Interdis-
ciplinary development of ULEs including user involvement, involvement of
clinicians, biomedical engineers, mechanical engineers, and electrical engi-
neers may help reveal the multifaceted nature of these attributes. Based
on our experience from such an interdisciplinary study, we have identified
several critical attributes for the domestic use and the potential adoption of
ULEs in the everyday life of individuals with complete functional tetraple-
gia. These attributes are summarized in the onion model shown in Figure
B.1. For an assistive ULE to be fully useful as a domestic assistive device, it
should support a large variety of motions and ADLs in a manner where the
user is always in control and without compromising the social identity, the
safety, or the health of the user. Further, the system should be fast to mount
and calibrate and it should be mobile.

Fig. B.1: Onion model representing the meta levels of design considerations for assistive ex-
oskeleton design. To the right, attributes of each level are specified into actionable attributes.
Note: the figure should be read bottom up.

The existing literature on upper arm exoskeletons focuses mostly on ex-
oskeletons for industrial or rehabilitation purposes [10]. Rehabilitation ex-
oskeletons are often advanced high degree of freedom (DoF) exoskeletons
that could provide good support in assistive applications, but they mostly
suffer from two major obstacles: “bulkiness” and lack of mobility [9, 11–14].
However, there are exceptions such as the Recupera [15, 16], which is mo-
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bile and compact but protrudes significantly from the wearers arm. Often,
industrial exoskeletons only actuate a subset of DoFs needed to perform
ADLs, which renders them incapable of supporting individuals with com-
plete tetraplegia.

A few systems have been developed for physical assistance, especially for
individuals with weakened physique [9, 17–19]. However, only three systems
have been found which focus on providing assistance and which can poten-
tially support ADL tasks for individuals with tetraplegia: The HAL-UL [20],
the “mobile wearable upper-limb exoskeleton” [21], and the NESM exoskele-
ton [22, 23]. However, the HAL-UL lacks a wrist supination/pronation joint,
which means that it can only grab objects that are standing upright, thereby
limiting the number of tasks it can perform. Contrary to the HAL-UL, the
mobile wearable upper-limb exoskeleton has four DoFs and is compact, but
the order and type of joints in the kinematic chain limit the range of mo-
tion due to singularities such that if the elbow is flexed, it is impossible to
pronate/supinate the wrist and a similar problem is true for the upper arm
internal/external rotation. Additionally, both exoskeletons have been created
with power assistance in mind rather than complete arm support and they
require active movement of the arm or muscle activity to operate them, which
individuals with complete functional tetraplegia are not capable of.

The NESM exoskeleton [22, 23] has been designed for individuals with
stroke and features five DoFs in the arm and four DoFs in the hand and wrist
enabling a good range of motion and full arm assistance. While it can likely
perform many ADLs for individuals with tetraplegia, it has a considerable
size and weight. Although Crea and Nann et al. [22, 23] showed good results
testing it on individuals with stroke, it used a combined encephalography
(EEG) and electro-oculography (EOG) brain machine interface (BMI) that, de-
spite its efficient recognition of commands, essentially acted as a start signal
to a preprogrammed movement. In addition to being used within rehabili-
tation, this system has great potential in assistance of users with, e.g., late-
stage Amyotrophic Lateral Sclerosis (ALS) or locked-in syndrome, in which
the interface options are limited. A similar exoskeleton has been presented
by Barsotti et al. [24], but it suffers from the same shortcomings in relation
to control interface and is not wheelchair-mountable. Table B.1 summarizes
some of the attributes of these exoskeleton systems.

While exoskeletons hold great promise for individuals with severe dis-
abilities, a paradox arises as the disabilities at the same time make it harder
for the individuals to operate such assistive technologies. For example, an
individual with paralysis or severe paresis in the arms is not able to use, e.g.,
arm movements, a joystick, or pushbuttons as control input for an exoskele-
ton.

Currently existing interfaces for individuals with complete functional tetraple-
gia consist of either chin sticks [25], sip and puff, voice activation, eye-
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tracking [26], BMI [22, 23, 27, 28] or combinations thereof [29]. Common for
these interfaces is that they exhibit one or more of the following: being in-
discreet; being inefficient in terms of the time needed to activate a command;
being inflexible in the sense that they only allow for very limited number of
command inputs; or they require substantial and or repeated calibration.

To increase the efficiency of assistive devices, autonomous functionality is
often applied [30, 31], which can perform some portion of the motions for a
given task. Indeed, this can increase performance and accuracy [31, 32]. Kim
et al. [31] found that the way in which these functions are invoked is likely of
high importance, especially for individuals with physical disabilities. Indi-
viduals with SCI found it less satisfying to initiate autonomous execution of
a task with an ARM, as opposed to completing the given task manually, due
to the reduced sense of agency. This despite a worse performance using the
manual control. Hence, autonomous functionality can increase performance,
but the way in which it is implemented is of great importance, as users prefer
to be in control at all times [31].

Finally, minimal attention has been given to uncovering the opinions, de-
sires, and concerns of potential end-users of the exoskeletons [33, 34]. There-
fore, we have previously developed methods to engage users in the design
of the exoskeleton arm and conducted interviews and workshops with nine
adults living with severe tetraplegia [35, 36]. Complemented by user expe-
riences from experiments with a tongue controlled assistive robot [37], these
interviews showed that the users prioritized being able to drink and eat on
their own. Not necessarily in the sense of consuming a whole meal but rather
during repetitive activities such as eating fruit or candy (snacking) while, e.g.,
watching television; this to avoid constantly having to ask for assistance to
get yet another piece. Another important insight was that the time necessary
to don and doff the exoskeleton arm was of high priority as the addition of
further time might down-prioritize mounting the exoskeleton and potentially
lead to abandonment [34, 38]. Regarding size and function, the interviewees
prioritized function but emphasized that a balance between the function and
size was paramount [36,38].

Apart from user desires, special attention must be paid to tetraplegia as
a medical condition. In particular, individuals with SCI-related tetraplegia
are prone to exhibit autonomic dysreflexia (AD); a sudden attack in which
the blood pressure rises dramatically and which can be fatal in rare circum-
stances [39]. AD can be triggered by pressure applied to the skin or excessive
skin stretching. In addition, individuals with SCI may suffer from spasticity.
These issues may add requirements to safety and the attachment between the
exoskeleton and the user.

In this paper, we present the EXOTIC exoskeleton system, see Figure B.2,
in which we have strived to include all the considerations and challenges
listed in each layer of the model presented in Figure B.1. To evaluate the
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Fig. B.2: The EXOTIC exoskeleton system. An individual commands the EXOTIC exoskeleton
using a tongue interface shared with computer vision based semi-automation. The individual
shown in the image has given a written consent to the use of the image.

proposed system, it was tested with ten able-bodied individuals and three
individuals with severe to complete functional tetraplegia. The tests com-
prised of four ADL tasks inspired by a qualitative investigation of the desires
and needs of individuals with severe tetraplegia [38]. The EXOTIC exoskele-
ton system is the first exoskeleton system empowering users with complete
functional tetraplegia to perform arbitrary motions and multiple prioritized
ADLs independently and efficiently while continuously being in control of
the exoskeleton through intelligent shared tongue control. Table B.1 com-
pares existing ULEs with the proposed EXOTIC exoskeleton system.

2 System Design

2.1 Overview

The EXOTIC exoskeleton system consisted of three main elements: (1) the
exoskeleton; (2) a tongue control interface (TCI); and finally, (3) a computer
vision guiding system.

2.2 Exoskeleton design

The core design goals for this exoskeleton were to fully assist upper arm mo-
tions enabling simple ADLs for users with tetraplegia and at the same time
reduce the “bulkiness” and accommodate the user desires. This included a
relatively easy donning and doffing and mitigating the risk of provoking AD
through ergonomic mounting.
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To remedy the problem of “bulkiness”, various strategies can be employed
such as: using Bowden-tube cable drives to move the actuation mechanisms
towards the base frame or completely off the exoskeleton [40, 41]; using flexi-
ble materials with discreet pneumatic actuators or cable drives [42]; or simply
by reducing the DoFs [17]. Each of these approaches has its advantages but
comes with limitations. Flexible exoskeletons can be compact, to the point
where they can be worn underneath clothes [43], and thus could be an ideal
solution to the problem of “bulkiness”. However, they suffer from non-linear
actuation, and challenges in getting positional feedback from the joints make
reliable closed-loop control difficult. A reduction of the DoFs has obvious
implications on the flexibility of the exoskeleton but provides a simple way
to reduce the “bulkiness” at the cost of function. The human arm has seven
main DoFs, which would ideally be needed in an exoskeleton arm to achieve
a workspace similar to that of the human arm. However, to reduce the “bulk-
iness” of our exoskeleton, we chose to focus on the gross motions of the
arm that are necessary for simple ADLs. These motions can be performed
mainly through the shoulder extension/flexion, upper arm internal/external
rotation, elbow flexion/extension, and finally the wrist supination/prona-
tion. Whereas the omission of the shoulder abduction/adduction is limiting
the flexibility, a previous biomechanical study conducted at our lab [44] in-
vestigated the effects of locking the shoulder abduction/adduction joint and
showed that the joint was not necessary to perform simple ADLs. Besides the
obvious advantage of reducing the “bulkiness” around the shoulder gained
from omitting the shoulder adduction/abduction, this also has other advan-
tages. For instance, it ensures that the arm of the user stays within the fixed
boundaries of the wheelchair, thus avoiding potential harm to the immedi-
ate environment and the user. A passive abduction/adduction shoulder joint
was added to afford a more natural pose. This joint was fixed to have an
abduction angle of 20◦.

To mitigate the medical concern regarding AD, a set of three ergonomic
braces were used, of which two were manufactured by an orthopedist (SAHVA
A/S, Brøndby, Denmark). As opposed to strapping the arm in, the orthope-
dic braces “carried” the arm instead, see Figures B.1, B.3 and B.4, akin to how
an end-effector arm support supports the arm [45]. This provided a “loose”
connection between the human arm and the exoskeleton, allowing the arm to
adjust in the exoskeleton, thus reducing the risk of applying excessive pres-
sure or twisting to the skin of the user, which can cause AD. Additionally,
this ensured a relatively fast donning and doffing during which the users
arm was simply lifted into the three ergonomic braces. Two straps were used
at the wrist and palm to secure the position of the hand relative to the ex-
oskeleton.

The exoskeleton frame was created using a custom fabricated aluminum
(7075) frame with variable link lengths to accommodate different arm lengths.
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To actuate the upper arm rotational joint, elbow flexion/extension joint, and
the wrist pronation/supination joints, three motors with planetary gears
were fitted (EC-4pole, Maxon motor ag, CH), see Figure B.3. Actuation of
the shoulder flexion/extension was realized through a more powerful motor
(EC-i40, Maxon motor ag, CH) and a strain wave gear (Harmonic Drive LLC,
MA, USA). The shoulder and elbow flexion/extension joints were actuated
directly on the joint axis, whereas the rotational joints located on the axis of
the arm were actuated through two dovetail, half-circular ring designs with
the actuator actuating a gear that turned a semi-circular teeth-set [46], see
Figure B.2 and Figure B.4.

Table B.2: DenavitHartenberg parameters of the EXOTIC exoskeleton. Parameters Lu and L f
correspond to the lengths of the upper arm and forearm, respectively, which are both adjustable.

Link ai �i di �i

1 0 �/2 0 �/2 º �1

2 0 �/2 Lu � + �2

3 0 º�/2 0 �3

4 0 0 Lf �4

Fig. B.3: Detail drawings of the EXOTIC exoskeleton and the range of motion of the four main
degrees of freedom contributing to gross motion. From left: side view with shoulder (θ1) and
elbow (θ3) flexion/extension and indications of link lengths (Lu and L f ), which are adjustable;
front view with wrist (θ4) supination/pronation; top view with upper arm internal/external
rotation (θ2) and arrows that indicate the three braces used to support the arm. Notation corre-
sponds to the Denavit-Hartenberg parameters given in Table B.2.

The joints were practically non-backdrivable except for the shoulder flex-
ion/extension. However, this could only be backdriven under heavy load.
The exoskeleton could be mounted onto wheelchairs and was designed to
be powered by regular wheelchair batteries (24V). Perspective 3D renders of
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the exoskeleton and a simulated workspace are shown in Figure B.4. The
Denavit-Hartenberg parameters of the four main DoFs of the exoskeleton are
shown in Table B.2 and visualized in Figure B.3. While the focus of this paper
is primarily on the overall user-based system design and particularly on the
experimental side of our five DoF intelligently tongue controlled exoskele-
ton system as in [20, 22], kinematics and modelling such as in [47, 48], are
available for a similar exoskeleton in Gull et al. [46].

Fig. B.4: Threedimensional renders of the exoskeleton with light blue arrows indicating the
rotational joints and the available workspace indicated by the green volume on the right. Sim-
ulation was performed by permutating the joint angles over the range of motion of each joint
and recording the hand location. The visualization was created from an approximation of the
bounding volume of the resulting point cloud.

Each motor was fitted with incremental encoders (>500 counts per ro-
tation) for accurate motor control with sinusoidal commutation. Joint-level
angular control was provided through miniature magnetic absolute encoders
(RLS Merilna tehnika d.o.o., Sl) added directly to the shoulder and elbow
flexion/extension joint axes. As direct attachment of encoders to the joint axis
of the internal/external shoulder rotation and the wrist pronation/supina-
tion was not possible due to the joint axis being internal to the arm of the
wearer, a custom gearing was used on these encoders to extract the joint
angles. Detail drawings of the exoskeleton frame are shown in Figure B.3.

The tendon-based soft-exoskeleton glove, CarbonHand (Carbonhandr,
Bioservo Technologies AB, SE), was used to provide one DoF for grasping
objects. As the CarbonHand glove only enabled grasping and not actively
released the grasp, a set of fabric elastic bands were used to counteract the
grasping of the glove such that when the tendons were relaxed, the elastic
bands would pull the hand back into an open pose.
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2.3 Control interface

Of the available interfaces for individuals with tetraplegia, chin sticks are reli-
able control inputs but are limited in the number of available commands and
unattractive due to their indiscretion; if the users are even able to command
them. Similarly, sip and puff systems are reliable but have a limited number
of command inputs and are indiscrete. Conversely, eye-tracking can accom-
modate many simultaneous commands and can be useful when no other op-
tions are available, but it occupies the users gaze and attention and moreover
the reliability can be a challenge [25]. Lastly, BMIs are particularly important
for users who are paralyzed throughout the body as seen in the late stages of
ALS. BMIs have recently shown promising results for exoskeleton control in
laboratory settings [27]. However, BMIs often require substantial calibration,
may be invasive [27], and are still too complicated to render applicable in ev-
eryday domestic settings for the continuous control of many DoFs. However,
state-based control of exoskeletons using BMIs has recently shown promising
results in assistive applications [22, 28], even outside the laboratory [28].

To address the problem of providing a reliable interface for individuals
with tetraplegia, research into user interface technology is ongoing and has
produced the intraoral tongue control interface, which was originally devel-
oped in our group [49, 50], see Figure B.5.

Fig. B.5: The iTongue tongue interface. (a) A standard commercial iTongue mouthpiece with
sensor placements superimposed, (b) a temporary silicon palate brace as used in the current
study together with an activation unit, and finally, (c) the control layout developed in this study
to control the exoskeleton with shared computer vision based semiautomation. The topmost
part acts as a joystick to control the position of the exoskeleton in a horizontal plane, while the
up/down slider controls the vertical axis. The wrist supination/pronation is controlled through
the bottommost slider. The remaining three icons on the interface act as simple pushandhold
buttons. Note: the text size in the layout has been increased in the figure to increase readability.

As the name suggests, this interface allows the user to control technology
through movements of the tongue. In particular, the tongue control interface
has proven to be powerful allowing individuals with tetraplegia to control
a wide range of assistive solutions, including robots [51–55]. The intraoral
tongue control system consists of an inductive sensing device embedded in a
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palate brace that works in conjunction with an activation unit attached to the
tongue. The inductive sensing area detects the position of the activation unit,
which corresponds to the position of the tongue. This allows the interface to
have several simultaneously available command inputs. In effect, this can be
used for direct control of several DoFs. The control takes place without the
need for visual feedback in the form of, e.g., a screen as the user is able to
feel where the tongue is, given that the user is trained in using the system.

The intraoral control interface used in this study was an adapted version
of the commercially available CE-certified wireless iTongue device (iTonguer,
TKS A/S, Nibe, DK) [49, 50] as it enables an invisible and unintrusive way to
control the exoskeleton, see Figure B.6.

The mouthpiece of the iTongue is self-contained with a battery, onboard
processing, and a wireless radio allowing it to be completely concealed in
the mouth. It features 18 sensor areas that can be programmed to act as
individual buttons or be interpolated to create larger virtual buttons and
joysticks [37], see Figure B.5 for a visual representation of the interface and
its sensors and layout. The wireless signals are picked up using a central unit
which conveys the signals to a computer for further processing.

Fig. B.6: System overview. From the right bottom: The exoskeleton communicates via CANbus
with a computer. From here all sensors of the exoskeleton are read and all motors are controlled.
The RGBD camera on the shoulder feeds its images through a computer vision pipeline resulting
in a relative position and orientation of a target object (red bottle) enabling autonomous control.
The user commands the exoskeleton through the adapted iTongue mouth unit. The wireless
signals are received by the iTongue central unit, which in turn sends the received commands
through a serial connection to a PC running the ROS ecosystem. Linear and square arrows indi-
cate communication, double arrows indicate bidirectional communication. Note: the exoskeleton
glove used in this study is not shown in this overview, but it is controlled through a USB serial
interface.

89



Paper B.

2.4 Computer vision-based shared control system

Whereas the iTongue tongue control system is a versatile control method, it is
a two-dimensional control interface meaning that a maximum of two degrees
of freedom (DoF) can be controlled intuitively at the same time, for example
for controlling an end-effector in a 2D plane. By adding intelligence to the
control through intention prediction and spatial awareness, the same inter-
face can be used to enable simultaneous control of more degrees of freedom
through shared semi-automation. This approach has previously been ap-
plied for ARMs [30–32] and recently in an exoskeleton glove using different
interfacing methods [22]. In effect, this allows a single button to control an
exoskeleton with an arbitrary number of DoFs to guide it towards an object
of interest.

In some previous systems [22, 30, 31], autonomous functionality was in-
tegrated with a “point and click” approach, e.g., pointing to an object of
interest, clicking, and letting the robot/exoskeleton perform the desired ac-
tion without any user opportunity to stop the system, potentially causing
harm [56, 57]. However, this approach has two caveats: the individual oper-
ating the device may feel that it is acting on its own accord and thus may feel
distanced from it rather than identifying with the device [31]. In the case of
the EXOTIC, this point is particularly important as the sense of empowerment
gained from performing and achieving with the exoskeleton may in turn be
paramount to avoid abandonment of the technology [38]. Secondly, if the
control algorithms command the exoskeleton to perform unintended move-
ments or the movement is not entirely correct, the “point and click” method
may mean that the device cannot be stopped before reaching its destination.
The optimal strategy seems to be a shared control, in which the user is always
in control while autonomy assists in performing the movements [30, 31].

To overcome these caveats, the intelligent control system presented here
acted as a “push and hold” function, such the user was to command the
exoskeleton to move continuously until the user deemed the motion complete
or wanted to stop the motion in case the exoskeleton was not moving as
intended. If the latter was the case, the user could manually correct the
motion using direct manual control. Not only did this ensure that the user
was always in control, but it also increased the safety considerably [56, 57].

To enable spatial awareness and semi-autonomous control, a color and
depth camera (Intel RealSense D415, Intel Corporation, CA, USA) was added
to the EXOTIC exoskeleton system. The camera was placed above the shoul-
der joint, see Figure B.6. The camera pointed towards the workspace in front
of the exoskeleton enabling the use of computer vision algorithms to locate
the position and orientation of objects of interest. An overview of the system
is shown in Figure B.6.
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3 Methods

3.1 Exoskeleton control

The actuators located at each joint on the exoskeleton were controlled through
CAN-bus enabled motor controllers (EPOS4, Maxon motor ag, CH). Each
motor controller was connected via a CAN-bus USB interface (USB-CAN-SI-
M, TITAN Electronics Inc., TW) allowing the exoskeleton to be controlled
from a PC, see Figure B.6.

The encoders on the joints were connected to the motor controller mod-
ules allowing the use of a built-in PID control (autotuned). Communications
were handled through the CAN-bus network management (NMT) service
setting the motor controller modules as NMT Slaves, while a computer with
the USB to the CAN-bus dongle acted as NMT Master. This setup allowed the
system to update motor targets and read sensors at 100 Hz simultaneously
for all motors.

To command the exoskeleton efficiently and continuously, a custom soft-
ware interface was created to bridge the CAN-bus USB interface to the Robot
Operating System (ROS), which was used as the main ecosystem for con-
trol. A forward kinematic model of the exoskeleton was defined and the
MoveIt package [58], which relies on the Orocos Kinematics and Dynamics
Library [59], was used to manage inverse kinematics and trajectory planning,
thus enabling end-effector control. Live end-effector control of the exoskele-
ton was facilitated via the jog_control package [60]. See Figure B.6 for a
system overview.

3.2 Intelligent control

For the intelligent control to work, the essential task was to detect and de-
termine the position and orientation of an object of interest in relation to
the exoskeleton. To find the objects of interest, a computer vision algorithm
was used to process the combined color and depth camera feed. The al-
gorithm started by performing an initial thresholding operation in the HSV
color space to extract red hues in the image, as we deliberately choose red
objects as the objects of interest. By having the depth and color information
aligned, the resulting mask of the red objects obtained from the thresholding
operation could be applied to the depth map, and thus the depth maps of red
objects were isolated. Subsequently, the masked depth map was converted
into point clouds, thereby forming point clouds for each of the red objects
in the original image. Each of these point clouds were evaluated using a
random sample consensus (RANSAC) approach for their resemblance to a
cylinder shape. The computer vision algorithm is illustrated in Figure B.7.
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Fig. B.7: Image processing pipeline. A threshold is applied to the RGB image (top left), which
results in a mask of all the red objects in the image (in this case the bottle, top middle). This
mask is used to isolate the same objects in the point cloud (bottom middle), which is obtained
from the depth image (bottom left). A random sample consensus method is performed to find
the best fitting cylinder shape on the extracted point cloud object(s) (bottom right). The center
of the found cylinder(s) is determined to be the target position (top right).

Once the position and orientation of the object were known, the trajectory
could be calculated and the motion to go from the current pose of the ex-
oskeleton to a grasp pose around the object of interest could be performed.
The trajectory from the current pose of the exoskeleton was planned contin-
uously through the jog_package. The software packages used to extract the
target object from the image and depth feed were OpenCV for thresholding
and reading the incoming camera data and the Point Cloud Library [61] was
used to perform RANSAC [62]. The computer vision algorithm and control
method is described in greater detail in Bengtson et al. [63] (referred to as the
“Fixed Semi-autonomous Control” scheme).

3.3 Tongue control interface adaptations

Based on previous experiences and studies on optimizing the layout of the
tongue interface [37, 64, 65], a weighted average of neighboring sensor ap-
proach was used to create a continuous sensing surface similar to a touchpad
on a laptop. In a previous study from our group, this approach was found to
achieve a throughput of 0.73 bits per second [37]. Additionally, a dwell time
was used to prevent accidental activation during, e.g., speaking as found in
a previous study [66].

Similar to Mohammadi et al. [65], a virtual joystick was implemented on
the front surface of the mouth piece to control the position of the hand in a
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2D plane (forwards/backwards and left/right), see Figure B.5c. Beneath the
virtual joystick, a 1D virtual joystick controlled up/down and the rear surface
had buttons for: opening and closing the hand; activating the autonomous
control; and yet another 1D joystick to control the wrist rotation. This pro-
vided the user with direct, manual, and continuous control of the movements
of the exoskeleton. The auto grasp button activated the intelligent control for
approaching an object as long as the button was activated.

3.4 Test of the EXOTIC exoskeleton

To test how the exoskeleton worked in activities of daily living, two stud-
ies were conducted. One five-day study was conducted with able-bodied
individuals, and another three-day study was performed with users with
tetraplegia.

Participants

Able-bodied individuals
Ten able-bodied individuals (one female, mean age: 26.3 ± 4.8) were re-

cruited for this study. The main exclusion criteria were severe right arm in-
juries, cognitive impairments, and drug addiction. Able-bodied participants
were reimbursed for their time with DKK 100 per hour (equivalent to EUR
13.45 per hour) subject to income tax.

Individuals with tetraplegia (Users)
Three individuals with tetraplegia (all male, mean age: 44.7 ± 19.1) were

recruited for the study. Main inclusion criteria for individuals with tetraple-
gia were: 1) between 18 and 75 years of age; 2) reduced or absent motor
function in the right arm (tetraplegia) caused by a spinal cord injury (ASIA
Impairment scale score of grade A to D) or ALS; 3) not able to repeatedly use
the right hand and arm to grab a bottle with a straw (300g) from a table and
drink from it while in a seated position, and finally; 4) at least have some
tongue functionality.

User 1 was able to flex and extend the elbow against gravity but had little
to no function in wrist and fingers (ASIA: D, C4 injury), user 2 had a good
arm function but little to no function of the fingers and wrist (ASIA: A, C5
injury). User 3 had no functional use of the upper limbs and depended on
a ventilator (ASIA: C, C2 injury). Thus, this user had complete functional
tetraplegia. INCSCI assessment results for each individual are available in
Table B.3.
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Experiment description and setup

Able-bodied individuals
The able-bodied individuals attended a five-day study comprising a se-

ries of training sessions and experiments with the EXOTIC exoskeleton sys-
tem. The data shown in this paper were assessed at the end of the five-day
study. The five-day study was split into two segments: three consecutive
days followed by two consecutive follow-up days approximately one month
later. Each session consisted of approximately two hours of focused use of
the EXOTIC exoskeleton system. The initial three days tested the manual
tongue control of the exoskeleton with two different tongue control meth-
ods [67], whereas the fourth and fifth sessions added semi-autonomy. The
data presented in this article represent the performance of the able-bodied
participants at the end of the final session (session 5).

The able-bodied participants were instructed to relax their arm and hand
as much as possible during the experiments to simulate a paralyzed limb.
To verify their cooperation with this request, eight surface electromyography
(sEMG) electrodes (Myo Armband, Thalmic Labs Inc., CA, 20132018) were
mounted on the arm on the transverse line between the medial acromion and
the fossa cubit at 1/3 of the distance from the fossa cubit (approximately the
peak of the biceps muscle). An sEMG recording of the max contraction of the
participant was collected before mounting the exoskeleton. From this record-
ing, a threshold was determined as 1/5 of the maximum contraction, which,
if passed, would give the experimenter a warning during the tests such that
the experimenter could remind the participant to relax the muscles.

Individuals with tetraplegia (Users)
The experiment with the users comprised of three sessions in total. The

first session consisted of tongue controlling a simulation of the exoskeleton
running on a computer. The extent of the spinal cord injuries for each user
was determined through an ISNCSCI assessment performed by a trained
medical doctor. In the second session, the users trained using the exoskeleton.
Finally, semi-autonomous control was added to the experiment in the third

Table B.3: ISNCSCI assessment of users. Summary ratings of the ISNCSCI assessments for each
user who participated in the study. * Indicates that the user used a ventilator.

Age (Years

since Injury)
Neurological Levels

Neurological

Level of Injury

Complete/

Incomplete

ASIA Impair,

ment Scale

Zone of Partial

Preservation

Sensory Motor Sensory Motor

User L R L R L R L R

1 59 (0.6) C4 C4 C5 C4 C4 I D NA NA NA NA

2 52 (32) C5 C5 C6 C7 C5 C A T11 L3 S1 S1

3 * 23 (0.7) C2 C3 C2 C3 C2 I C NA NA L3 L3
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session. The data presented here are from the last part of the final session.
The first and second session consisted of approximately 11⁄2 hours and the last
session approximately 21⁄2 hours of focused exoskeleton control. Following
the tests, a short semi-structured interview was conducted with the users
to obtain feedback from and opinions on their experience with the EXOTIC
exoskeleton system. The interviews were recorded and later transcribed.

Experiment setup

The commercial version of the iTongue tongue control interface has the active
elements embedded in an acrylic palate brace with custom fitted prongs that
secure it to the teeth. However, in this study a dental two-component A-
silicone putty (Top Dent ImpressA Putty Soft, DAB Dental AB, SE) was used
to create a temporary palate brace for the users to accommodate reuse of
the system, see Figure B.5b. Furthermore, a temporary activation unit was
glued to the tongue of the participants as opposed to the medically inserted
activation unit used for the iTongue commercial interface. The temporary
activation unit was a 5mm titanium sphere with flattened top and bottom, see
Figure B.5b. The unit was glued near the tip of the tongue using a surgical
skin adhesive (Histoacrylr B. Braun Surgical S.A., Rubí (Barcelona), Spain).

For both users and able-bodied individuals, the custom silicone mouth-
piece was molded during the first session. It was created by pressing the
two-component silicone putty containing the tongue interface up against the
palate of the individuals until the putty solidified (approximately 2 mins.).
Before donning the exoskeleton, the exoskeleton links were adjusted to match
the body size of the wearer. Likewise, an appropriate CarbonHand exoskele-
ton glove size was used for each individual. Additionally, to avoid errors
related to slightly different hand mounting on the exoskeleton, the hand po-
sition was calibrated by moving it to a grasping pose on an already tracked
object of interest. Knowing the position of the object, the position of the hand
could be corrected in the kinematic chain such that when activating the au-
tonomous function there would not be any offset issues. The activation unit
was glued to the tongue as the last step before commencing the experiment.

Each participant was seated in a chair, wheelchair, or powered wheelchair
in front of a height adjusted table in such way that when the exoskeleton was
mounted correctly, the wrist of the exoskeleton would be directly above the
table edge, see Figure B.8. A face shield was mounted to the head of the
participant due to safety concerns.

Experiment tasks

The four ADL tasks used to evaluate the performance of the EXOTIC ex-
oskeleton system for both able-bodied individuals and individuals with tetraple-
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Fig. B.8: Experimental setup overview. The participant was positioned in front of a table with
a bottle positioned 10 cm away from the table front. The iTongue system was mounted at the
palate of the participant and the activation unit was glued to the tongue. A screen on the table
showed dynamic visual feedback of the control layout and the position of the activation unit on
the control layout. The objects used for ADL tasks are pictured on the right. From the top left:
the bottle, the scratch stick, and the strawberry.

gia were: (1) The bottle task: grabbing a bottle with a straw from a table and
moving it towards the face to make the straw touch the face shield (straw
was 10 cm long above the lid, straight for able-bodied individuals and with
a 90◦, bend at 5 cm for individuals with tetraplegia to accommodate a more
slanted sitting posture); (2) The strawberry task: grabbing a strawberry from
a table and moving it to the face shield; (3) The scratch stick task: picking up
a mock-up scratch stick from the table and moving it to make the end touch
the side of the face or the face shield, and finally; (4) The switch task: de-
pressing a standard Danish wall outlet switch (LK Fugar, wall outlet switch
542D6001, 50 x 50 mm rocker switch surface) mounted to the right of the
participant. As shown in Figure B.8, the bottle was upright, whereas the
strawberry and scratch stick were lying on the table. The end of the scratch
stick was a ball made from a soft material in order not to cause any harm in
case of errors. The strawberry was an artificial plastic strawberry. The three
grasp-and-transfer task objects were placed at a marked spot 10 cm from the
table front centered in front of the user. A screen showing dynamic visual
feedback from the tongue control interface was placed approximately 50 cm
from the table front, see Figure B.8. The switch was located 35 cm above the
table, 10 cm from the table front and 5 cm to the right of the exoskeleton
shoulder.

Each task was performed three times and the averages of the three trials
were used to obtain the results presented here. During the trials the exoskele-
ton was configured to move at 4.5 cm/s and was configured to start at a pre-
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defined rest position, see Figure B.8. If an object was dropped during a trial
performed by able-bodied individuals, the trial was restarted. However, dur-
ing trials performed by users, the objects were picked up by an experimenter
and replaced in the hand while the user continued as if the object was still
held in the hand. The reason for this discrepancy between the able-bodied
individuals and users was more frequent drops and a higher risk of fatiguing
the users in case of restarting the tasks too many times. The time for these
tasks was recorded for the grasping part of the task as measured from the
first command issued on the iTongue until the “close hand” command. The
transferring to the face part of the task was measured from the “close hand”
command until the task was completed. For the three grasp-and-transfer
tasks, all participants were instructed to use the semi-autonomous control.

4 Results

All experimental participants were able to control the EXOTIC exoskeleton
system directly and continuously to perform the desired ADLs; even in the
case of complete functional tetraplegia and the use of a ventilator (user 3).

The able-bodied individuals were able to grab the bottle and move it to
the face shield in 38.7 ± 6.1 seconds on average. The three users managed to
perform the same task in 55.4 ± 8.0 seconds on average. When performing
the increasingly difficult strawberry task requiring the wrist to be pronated
while grabbing the strawberry and requiring the wrist to be supinated when
reaching the face shield, the able-bodied individuals managed to perform the
entire task in 62.7 ± 8.54 seconds on average. The same task was completed
in 92.3 ± 11.6 seconds on average by the three users. The able-bodied indi-
viduals were able to perform the scratch stick task in 70.3 ± 12.0 seconds on
average. The three users performed the same task in 106.7 ± 16.9 seconds on
average. Finally, the switch task took 34.30 ± 10.78 seconds on average for
the able-bodied individuals, while it took individuals with tetraplegia 41.39
± 9.47 seconds on average. These results along with the number of issued
commands are shown in Table B.4 and as scatter and box plots in Figure B.9
and Figure B.10.

During the four ADL tasks for the users, the soft exoskeleton glove could
sometimes not apply sufficient force due to the added elastic bands which
led to dropped objects. In these cases, the users were asked to continue as
if the object was still in their hand. The objects were then placed back in
the hand by an experimenter while continuing the motion of the exoskeleton,
and if needed the object was supported by the experimenter until the task
was completed. This was only observed during the user tests and not during
the tests with the able-bodied individuals. As the exoskeleton glove was
not the focus of this work, this was not considered for performance metrics.
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Fig. B.9: Scatter plots of the mean performance metrics for the individuals with tetraplegia (the
users). The two groupings in each plot show the results from the reaching phase and the moving
object phase, respectively, and each column corresponds to each task: bottle, strawberry, scratch
stick, and switch, respectively. (a) Shows the number of commands used during each phase of
each task while (b) shows the time it took to complete each phase of each task. The data for the
switch task for one of the users (user 3) was unfortunately lost.

Fig. B.10: Boxplots of the mean performance metrics for ablebodied individuals. The two group-
ings in each plot show the results the reaching phase and the moving object phase, respectively,
and each column corresponds to each task: bottle, strawberry, scratch stick, and switch, respec-
tively. (a) Shows the number of commands used during each phase of the task while (b) shows
the time it took to complete each phase of each task.
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Table B.4: Metrics for the tests with ablebodied individuals and users. Mean and standard devi-
ations of each metric of the described tests for both individuals with tetraplegia and ablebodied
individuals.

Able,Bodied Individuals Individuals with Tetraplegia

Measure Bottle
Scratch

Stick
Strawberry Switch Bottle

Scratch

Stick
Strawberry Switch

Time to object [s]
17.66

± 4.13

29.66

± 8.25

20.69

± 4.09

34.30

± 10.78

21.08

± 4.05

44.17

± 17.94

33.58

± 13.44

41.39

± 9.47

Time to reach mouth/

face shield [s]

21.02

± 8.04

40.62

± 15.76

42.05

± 12.99

34.30

± 12.00

62.50

± 15.91

58.69

± 9.82

Number of commands

until object [#]

4.60

± 1.78

6.62

± 2.41

5.10

± 1.86

9.31

± 3.95

6.22

± 1.71

11.94

± 3.87

8.78

± 2.78

11.33

± 2.83

Number of commands

to face [#]

5.37

± 2.82

9.10

± 2.82

9.35

± 4.33

7.78

± 3.37

15.06

± 8.94

13.89

± 5.32

Fig. B.11: Image series of the strawberry task being performed by a user. The images show the
initial approach, turn of the wrist, grasping and transfer to the mouth. Note: the blue plastic
sleeve on the arm and the purple glove underneath the exoskeleton glove are only present due
to the Covid19 outbreak happening during the experiments.

There were no occurrences of AD during the experiments. For an image
series showing the strawberry task with a user, see Figure B.11. For video
sequences of the ADL tasks, see Movie M1.

4.1 Interviews

After ending the experiments, a semi-structured individual interview was
conducted with each of the three users with tetraplegia. When questioned
about how they experienced the functioning of the exoskeleton, the users
indicated that the functioning was good. However, one of the users, user 1,
who had some remaining arm function noted, “There is one function that I
think I would like to have eventually. Currently, it can turn the wrist, but
it cannot tip the wrist [abduction/adduction]. I think that will be missing if
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it is not there in the long run.” User 2 answered, “I think there is so much
potential in this project. The freedom it would be to be able to pick up a
bottle, drink from it yourself, and decide yourself. It would mean a massive
difference. Function-wise, I think it is good, about where it should be.” User
3, who had the highest cervical damage and no arm function, agreed, “It has
been great, great to be able to move the arm again - it was delightful.”

When asked whether they could see themselves use it in their everyday,
the consensus was that the appearance should be more attractive, but they
could all imagine using it. User 1 noted, “With respect to functioning and
sound, I wouldnt have second thoughts about using it, [...] but I think it is
unattractive.” When asked about the appearance, user 3 noted, “It looked big,
but it would probably be smaller when attached to the arm [if it was attached
directly to the powered wheelchair], so I think it is good at this point” and
added that function and appearance are equally important. When questioned
about the soft exoskeleton glove functionality, all users agreed that it needed
substantial improvements as it simply could not supply enough grip force
and spread between the fingers and the thumb.

The final questions revolved around the control method. The users, except
user 3, agreed that the tongue control was tricky at first but noted that, “It
will likely be easier with more time and training.” This fits well with prior
experiences with learning curves [65] and the short time for training in this
study.

5 Discussion

Through this work, we present the first shared, semi-autonomous, tongue-
based upper limb exoskeleton system capable of fully assisting individuals
with severe tetraplegia to perform multiple ADLs. In particular, this work
shows the prospect for users with complete functional tetraplegia to be em-
powered through high DoF robotic devices by using a tongue control inter-
face in combination with computer vision assistance as any possible motions
of the compact arm and hand exoskeleton could be controlled directly and
continuously by the users, thus facilitating a large variety of ADLs.

The EXOTIC exoskeleton was created to solve several challenges regard-
ing full upper limb assistance, compact and mobile design, calibration and
mounting time, ergonomic mounting to mitigate the risk of provoking AD,
incorporation of user desires to perform certain ADLs, and finally to pro-
vide an effective, intelligent, and invisible control interface. These challenges
were resolved by creating a novel five DoF exoskeleton with an ergonomic
and loose mounting to the user and a workspace that included the space
in which common ADLs could be performed. The control interface, the
adapted iTongue, provided a concealed, flexible, and effective control of the
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exoskeleton shared with an optional semi-autonomous functionality to as-
sist in grasping. Despite using a screen for visual feedback in this study,
the tongue interface can be used without it in trained users who memorize
the control layout, akin to touch-typing on regular computer keyboards. The
results from the tests performed in this study showed that it was possible
to grab a bottle and move it to the face in less than one minute on average
for both groups, whereas other more complicated tasks could be performed
within two minutes in most cases. The users, who were interviewed after the
experiment, endorsed the exoskeleton and attested the use of exoskeletons as
assistive devices for individuals with tetraplegia.

During the user tests, it became apparent that the simple implementa-
tion of the soft exoskeleton glove chosen for this experiment exhibited some
shortcomings that were not observed during tests on able-bodied individu-
als. The explanation for this discrepancy is most likely that the able-bodied
individuals have flexible finger joints compared with the users, who exhib-
ited contractures and spasticity in the finger joints. Thus, more advanced
[22,28] or mechanically rigid solutions for grasping are recommended in fu-
ture studies.

Further, the temporary silicone fitting used for the tongue interface in
this study has a significantly larger size than the standard interface, which
may have reduced the mobility of the tongue and may have affected the
control efficiency and learnability as compared with the standard iTongue
interface. The commercial iTongue unit would be a drop-in replacement for
the modified device used in this study as they are technically identical, except
from the software defining the layout of the commands (Figure B.5c). The
commercial version would be a safer, more comfortable, and likely an even
easier device to use.

When comparing the able-bodied individuals with the actual users, a dis-
crepancy between the two groups is clear. This discrepancy is probably due
to the differences in demographics, prior training with the iTongue control
interface, and the difficulties with he soft exoskeleton glove. Finally, the able-
bodied individuals had a longer training period with the system and the age
of the two groups was considerably different. These factors may well have
caused the discrepancy. The differences observed would most likely diminish
with more training, matched groups, and a better hand opening and closing
mechanism. Further, a larger sample group of individuals with tetraple-
gia would better represent the actual performance of this group, though the
number of participants is comparable to similar studies on individuals with
complicated medical conditions [15, 22, 23]. An increase in the number of
participants is often accompanied by a shorter experiment [22].

Nann et al. [22] demonstrated the use of state-based BMI control of a four
DoF upper limb exoskeleton [23] with a five DoF wrist and hand exoskele-
ton. Their results showed that individuals with hemiparesis from stroke were
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able to execute a drinking task using their system. However, the users in that
study still had arm functionality and the exoskeleton used was of a consider-
able size compared with the exoskeleton presented here. As indicated in the
user interviews in our study, both functionality and appearance should be of
high priority. BMIs have the advantage that they can be used by individuals
without tongue function, but while the deployed state-based control for the
BMI [23] may ensure better compliance in performing certain tasks, it reduces
the flexibility considerably compared to the direct continuous tongue-based
control employed in this work. All the users with tetraplegia participating in
this study could imagine using the presented EXOTIC exoskeleton system in
their everyday life.

6 Conclusion

Until recently, options for individuals with complete functional tetraplegia
to control all motions of high DoF arm/hand exoskeletons continuously and
directly have been practically non-existing. The results of and the user feed-
back on the presented combination of an adapted available tongue control
system, optional shared autonomous function, and a full compact and mo-
bile arm/hand exoskeleton with a user-driven design indicate that this may
be a viable solution to regain some independence and significantly increase
the quality of life, even for individuals with complete functional tetraplegia.

Supplementary Materials: The following supporting information can be
downloaded at: https://www.mdpi.com/article/10.3390/s22186919/s1, Video
S1: Demonstration of the experiment tasks using the EXOTIC exoskeleton.
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1. Introduction

Abstract

Purpose: The advances in artificial intelligence have started to reach a level where
autonomous systems are becoming increasingly popular as a way to aid people in their
everyday life. Such intelligent systems may especially be beneficially for people strug-
gling to complete common everyday tasks, such as individuals with movement-related
disabilities. The focus of this paper is hence to review recent work in using computer
vision for semi-autonomous control of assistive robotic manipulators (ARMs).

Methods: Four databases were searched using a block search, yielding 257 papers
which were reduced to 14 papers after apply-ing various filtering criteria. Each paper
was reviewed with focus on the hardware used, the autonomous behaviour achieved
using computer vision and the scheme for semi-autonomous control of the system.
Each of the reviewed systems were also sought characterized by grading their level of
autonomy on a pre-defined scale.

Conclusions: A re-occurring issue in the reviewed systems was the inability to
handle arbitrary objects. This makes the systems unlikely to perform well outside a
controlled environment, such as a lab. This issue could be addressed by having the
systems recognize good grasping points or primitive shapes instead of specific pre-
defined objects. Most of the reviewed systems did also use a rather simple strategy
for the semi-autonomous control, where they switch either between full manual con-
trol or full automatic control. An alternative could be a control scheme relying on
adaptive blending which could provide a more seamless experience for the user

1 Introduction

Machines are becoming increasingly smarter and the effort invested into re-
search in artificial intelligence is at an all time high. This large interest in
artificial intelligence is triggered by its ability to make smart decision to aid
us in our everyday life.

The healthcare sector is one area which could benefit immensely from
artificial intelligence by enabling assistive devices to act autonomously. Au-
tonomous machines could for instance assist the elderly and disabled indi-
viduals in feeding, getting dressed and other activities of daily living. This is
especially of interest given the increasing demand for caregivers [1, 2].

Persons suffering from quadriplegia, i.e. total or partial loss of control
of all four limbs, would especially benefit from such assistance due to the
severity of their disability. For instance, a study found that the use of an as-
sistive robotic manipulator (ARM) could reduce the need for assistance with
1.25 hours per day for persons with upper-extremity disabilities [3]. Another
study confirmed these findings as their results showed that the use of an
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ARM could reduce the need for assistance by 41% [4]. This reduced need
for assistance would not only be economically beneficial but also increase the
users’ quality of life by empowering them and providing them with some
privacy. Furthermore, a survey on disabled persons found that 86% of the
participants would consider purchasing an ARM given the possibility [5] .

Another factor making autonomous control of ARMs increasingly inter-
esting is how readily available the necessary hardware is becoming. For
instance, the commercially available ARMs, which are specifically targeted
at empowering users with movement impairments, such as JACO from Ki-
nova [6] or iARM from Exact Dynamics [7].

However, any system which is to behave autonomously must rely on
some sort of input to make informed decision, for instance knowledge of
its immediate environment. Computer vision is hence often a part of such
autonomous systems as it enables the system to capture and understand vi-
sual information. For instance, recognizing objects in an image and figuring
out how to grasp said object [8–10].

The purpose of introducing autonomous behaviour into these systems is
to reduce both the time it takes to execute a task and to reduce the cognitive
burden on the user. This research has been expanded to other types of ARMs
as well, such as exoskeletons [11, 12]. The idea of using an exoskeleton is
to provide a more integrated solution than e.g. a robotic arm mounted on a
wheelchair.

However, having an ARM act autonomously is not necessarily a bliss for
the user, even though it might reduce the time it takes to execute different
tasks [13, 14]. An important aspect of using this technology is hence how the
control is shared between the human and the machine, i.e. the design of a
scheme allowing for semi-autonomous control of the ARM.

The contribution of this paper is hence a review of recent efforts in em-
ploying computer vision for semi-autonomous control of ARMs, such as ex-
oskeletons or robotic arms. The goal of this review is to: (1) provide an
overview of existing efforts in using computer vision for semi-autonomous
control of ARMs; (2) highlight the current challenges associated with this
area of research; and thereby (3) point out new directions of interest for this
field.

2 Methods

The following outlines how the review was conducted in the terms of the
literature search and subsequent sorting of found material. The extraction of
data from each reviewed paper is described as well.
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2.1 Data sources

The literature search was based on the following databases: Engineering Vil-
lage, Web of Science, Scopus, and Embase. The search was conducted by con-
structing blocks of keywords related to computer vision, robotic manipula-
tors and people with disabilities. A paper had to match at least one keyword
from each of these blocks to show up when searching each database.

The keywords in each of these blocks were as follows:

• Block 1 - computer vision: ("computer vision" OR "robot vision" OR
"robotic vision" OR "object detection" OR "image-based" OR "grasp detec-
tion" OR "vision-based" OR perception*)

• Block 2 - robotic manipulators: ("robot arm" OR "robotic arm" OR "robot
manipulator" OR "robotic manipulator" OR exoarm OR exoskeleton OR "per-
sonal robot")

• Block 3 - people with disabilities: (disab* OR impair* OR adl* OR "ac-
tivities of daily living" OR handicap* OR "personal robot" OR rehabilitat*)

It should be noted that the asterisk * serves as a wildcard for unknown terms
and different inflections of the same word.

Only the titles, abstracts and keywords were used while searching and
any results not in English were removed. Publications before 2008 and dupli-
cates were removed as well. Only conference proceedings, reports and jour-
nals were included during the literature search and book chapters or book
reviews were removed from the list of results. This initial search resulted in
257 results after applying the above filters, as illustrated in figure (C.1).

Enginnering
Village

Scopus

Web of
Science

combined

215

204

68

531
257

Embase
44

Remove
duplicates

Remove
books

Remove
pre-2008

Fig. C.1: Databases and exclusion criteria used during the initial literature search.
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2.2 Filtering Criteria

Additional criteria were imposed on the initial search to further narrow down
the amount of relevant papers. Each paper should fulfil each of the following
criteria to be considered relevant:

1. Purpose: The intended use of the system described in the paper should
be object manipulation tasks. Papers focusing on e.g. rehabilitation and
wheelchair navigation were discarded. This criterion was imposed to
focus the scope of the review.

2. Camera: The system described in the paper should make use of a cam-
era or a similar visual sensor, such as a laser scanner. Any papers failing
this criterion are not doing computer vision and are hence outside the
scope of this review.

3. Disabled user: The intended user of the system described in the paper
should be a person suffering some kind of movement impairment, such
that they would benefit from an ARM.

4. Autonomous behaviour: The papers should describe a system capa-
ble of exhibiting some degree of autonomous behaviour. Papers solely
describing a way of directly controlling an ARM are discarded.

5. Details: The paper should be described in a sufficiently detailed way.
A paper is considered sufficiently detailed if it is possible to identify
the parameters and information described in the next section.

The initial set of 257 papers was reduced to 14 papers after applying the
above criteria. Papers which were of interest, even though they failed the
criteria, are included in the discussion part later.

2.3 Data Extraction

The first set of parameters extracted from each of the included papers relates
to the platform and the hardware used in the system, namely: the type of
sensor(s) used, the placement of the sensor(s), the type of robotic manipu-
lator and the associated number of degrees of freedom. These parameters
are of interest as they impact how both the computer vision and the semi-
autonomous control functions. Furthermore, this information could reveal
interesting tendencies in terms of hardware selection. It should be noted that
the technologies for the user to interface with the different systems are not
covered in this review.

The second set of parameters extracted from each paper focuses on the
semi-autonomous behaviour of the different systems. This is done by iden-
tifying which parts of the system that acts autonomous, using computer vi-
sion, and in which part the human is still in control. These parameters are
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extracted in systematic way by using the widely cited framework proposed
by Parasuraman et al. [15].

This framework suggests that a semi-autonomous system can be split into
four stages, as shown in figure (C.2). This model is based on a simple model
of the way humans process information and act on it. The model is hence
not intended to be perfect and all-encompassing but rather a simplification
making it possible to impose some structure when analysing a system.

Information Acquisition

Data acquisition
Sensor position

Action Implementation

Actuation of links
Actuation of gripper

Information Analysis

Data segmentation
Object recognition

Cup

Mug

Ball

Decision Selection

Make decision
Grasp detection

Target

Fig. C.2: The four-stage model originally proposed by Parasuraman et al. [15], with examples of
the tasks associated with each individual stage. The figure is adapted from Pitzer et al. [16].

The different stages of this four-stage model are:

• Stage 1: Information acquisition
This stage contains functions related to sensing the environment such
as gathering raw data from e.g. a camera. Calculations related to depth
estimation can also be considered to belong in this step, for instance the
registration between two cameras in a stereo vision setup. This stage
can also include strategies for automatically moving the sensor(s) to
better observe certain things. For instance, re-positioning the camera to
get a better view of an object.

• Stage 2: Information analysis
This stage is associated with the cognitive functions of the system. This
is essentially the stage where the system interprets the information ac-
quired during the previous stage. An example of such could be recog-
nition of an object in an image, i.e. detecting an object’s position and
classifying the type of object.

• Stage 3: Decision selection
The focus of this stage is to make a decision based on the multiple
alternative options identified in the previous stage. The decision could
for instance be which of the detected objects to pick-up and how to
grasp said object. A system with a low level of autonomy would for
instance offer the user all possible options. A system with a high level
of autonomy would, on the other hand, act without user input and grab
an object based on some pre-defined measure, e.g. the nearest object.
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• Stage 4: Action implementation
The final stage encompasses the actual execution of the necessary ac-
tions once a decision has been made. This includes sending the correct
signals to the actuators, i.e. motors, of the robot to reach the desired
goal such as the position of an object. It is also the stage responsible for
actuating the gripper during grasping of objects.

Furthermore, Parasuraman et al. [15] also suggests a continuum when
speaking of autonomous behaviour, ranging from a low-level to a high-level
of autonomy. The authors specifically suggest 10 levels of autonomy, as out-
lined in table (C.1). This autonomy scale mainly relates to the last two stages
of the four-stage model, i.e. decision selection and action implementation,
and will hence only be applied in relation to these two stages.

Table C.1: The different levels of autonomy. Adapted from Parasuraman et al. [15].

Levels of autonomy

1) The system offers no assistance.
2) - offers a complete set of decisions/actions.
3) - narrows down the selection to a few.
4) - suggests one alternative.
5) - executes the suggestion if the human approves.
6) - allows the human a restricted time to veto before executing.
7) - executes automatically, then necessarily informs the human.
8) - informs the human only if asked.
9) - informs the human only if it, the system, decides to.

10) - decides everything, ignoring the human.

3 Results

The first part of this section summarizes the different hardware used in each
of the reviewed papers. The second part outlines the semi-autonomous be-
haviour of each reviewed system by following the four-stage model presented
earlier.

3.1 Hardware Selection Overview

The hardware associated with each of the reviewed systems are summarized
in table (C.2). It should be noted that the stated degrees of freedom (DoF)
in the table refers to the ARM only. DoFs gained from mounting on mobile
platforms, such as wheelchairs, are not included.
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Table C.2: Overview of the hardware used in the different reviewed papers. Hardware such as
wheelchairs have been omitted from the table as the focus of this review is object manipulation
using an ARM.

Year Sensor Robotic platform

[17] 2008 Sensor: Passive stereo vision (custom).
Placement: End-effector.

Platform: MANUS (Exact Dynamics)
Degrees of freedom: 6

[8] 2009 Sensor: Passive stereo vision (custom).
Placement: End-effector.

Platform: MANUS (Exact Dynamics)
Degrees of freedom: 6

[16] 2011 Sensor: Active stereo vision (Kinect v1).
Placement: Robot’s head.

Platform: PR2 (Willow Garage)
Degrees of freedom: 8

[18] 2012
Sensor: Passive stereo vision (custom) and
force sensor.
Placement: End-effector.

Platform: MANUS (Exact Dynamics)
Degrees of freedom: 6

[19] 2013 Sensor: 2x Monocular RGB cameras.
Placement: End-effector and overhead.

Platform: iARM (Exact Dynamics)
Degrees of freedom: 6

[9] 2013
Sensor: Active stereo vision (2x Kinect v1).
Placement: Table. Towards user and towards
objects.

Platform: JACO (Kinova)
Degrees of freedom: 6

[11] 2014 Sensor: Active stereo vision (Kinect v1).
Placement: Table. Facing the user.

Platform: L-Exos, active wrist and
hand orthosis (custom)
Degrees of freedom: 8

[20] 2015 Sensor: Active stereo vision (Kinect v1).
Placement: Overhead.

Platform: JACO (Kinova)
Degrees of freedom: 6

[21] 2016
Sensor: Active stereo vision (2x Kinect v1).
Placement: Table. Towards user and towards
objects.

Platform: JACO (Kinova)
Degrees of freedom: 6

[22] 2017 Sensor: Active stereo vision (Carmine).
Placement: End-effector.

Platform: Baxter (Rethink Robotics)
Degrees of freedom: 7

[10] 2017 Sensor: Passive stereo vision (Bumblebee).
Placement: Overhead.

Platform: WAM Arm (Barrett Tech)
Degrees of freedom: 7

[23] 2017
Sensor: Time-of-flight camera (2x Kinect v2).
Placement: Table. Towards user and Towards
objects.

Platform: JACO (Kinova)
Degrees of freedom: 6

[24] 2017 Sensor: Time-of-flight camera (Kinect v2).
Placement: Table. Towards user.

Platform: JACO (Kinova)
Degrees of freedom: 6

[25] 2017
Sensor: Eye-tracking (EyeX) and RGB
camera.
Placement: Table.

Platform: Dobot Magician (Dobot)
Degrees of freedom: 4

Sensor

Looking at the choice of sensor, most of the papers rely on some form of
stereo vision to gather depth information with several of the papers using
the Kinect v1 from Microsoft. This is a sensible choice given how easy the
it is to acquire and work with, but it does impose restrictions in terms of
possible mounting locations as it has a minimum distance of ≈ 0.5 m [26].
Any object closer than that is unlikely to be captured by the sensor.

The newer model, Kinect v2, is used in some of the more recent papers
such as [23, 24]. This model relies on a time-of-flight (ToF) camera, instead
of stereo vision, to acquire depth information but its minimum working dis-
tance is identical to the Kinect v1. These restrictions in terms of minimum
distance is also clearly visible in the table, as no one mounts their Kinect
sensors near the end-effector for this exact same reason.
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A few of the reviewed papers, [9, 21, 23], even use two Kinects with the
second one being orientated towards the user of the system. The purpose
being either gesture recognition and/or detection of the user’s face to move
e.g. food to the mouth of the user.

The papers which mount their sensor near the end-effector primarily rely
on customized stereo vision setups, likely because it allows them to control
the baseline distance and hence their minimum distance. The only exception
being [22] utilizing the Carmine camera from PrimeSense but this device is
also marketed as having a minimum distance of ≈ 0.35 m, making it more
suitable for such a mounting location than the Kinect.

Another discerning characteristics in terms of sensor choice is whether
active or passive stereo vision is used. Active stereo vision relies on a light
source, e.g. infrared light, to actively illuminate the scene whereas passive
stereo vision relies on the ambient light only. Active stereo vision is hence
more robust in terms of lacking illumination. Another benefit of active stereo
vision is its ability to handle lack of texture as the active light source can be
used to introduce texture in the scene. Lack of texture is a general problem in
stereo vision as it makes it harder to recognize the same point in two images,
which is needed to estimate the depth to said point. However, most of the
reviewed systems using passive stereo vision are tested using highly textured
objects, for instance [8, 17, 18], and may hence not experience this problem
during the tests.

Furthermore, all the custom stereo vision setups found in the review are
of the passive variety. This is not surprising as active stereo vision setups are
generally more complicated to implement due to the active light source.

Robotic platform

There is a clear tendency of using robotic arms amongst the selected papers,
as only one of them relies on an exoskeleton as their platform. This tendency
can likely be explained by the accessibility of robotic arms, as they are gen-
erally cheaper than an exoskeleton and more readily available in the market.
This observation is further emphasized by the fact that all the robotic arms
listed in table (C.2) are commercially available.

The single exoskeleton, the L-Exos, is on the other hand custom made by
one of the co-authors of the paper as described in [27]. This exoskeleton is
also notable in the sense of its high number of degrees of freedom in com-
parison to the other system. It should however be noted that Loconsole et
al. [11] states the redundancy of some of these DoFs.

Another outlier in terms of platform selection is the PR2 from Willow
Garage, which is a full-blown robot featuring two arms and multiple sensors,
such as the Kinect. This robot is intended to be used for teleoperation, i.e.
being controlled remotely from a distance. Baxter from Rethink Robotics
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(a) L-Exos [27]. (b) PR2 robot. (c) JACO.

Fig. C.3: Example of ARMs used in the reviewed papers.

is a full-blown robot as well, intended for industrial purposes. Gualtieri et
al. [22] did however describe that they salvaged an arm from a Baxter robot,
essentially reducing it to an ARM on-par with e.g. JACO from Kinova. A few
of the mentioned robotic platforms are shown in figure (C.3).

3.2 Semi-autonomous Control Overview

The aspects related to the semi-autonomous behaviour of each reviewed sys-
tem is summarized in table (C.3). The table follows the four-stage model
from earlier and seeks to characterize the autonomous behaviour of each
system by highlighting how each of them deals with certain aspects associ-
ated with each stage. Note that the system presented by Quintero et al. [20]
can function in two distinct ways when considering the information analysis
stage and the decision selection stage. This is signified by the notation [20]a
and [20]b which is used to distinguish between these two configurations of
the same system.

Information Acquisition

Two parameters where emphasized in this stage; 1) the type of data acquired
by the system and 2) the ability to adapt the position of the sensors. Know-
ing the type of data gathering is important as it imposes restrictions on the
system later. The ability to change the position is an important factor as well,
as it influences what data that can be acquired.

All the reviewed papers collect RGB information, even though some sys-
tem does not directly use it during the subsequent information analysis stage.
This information is however used during the decision selection stage, to vi-
sualize different options to the user. Most of the reviewed papers do also
acquire depth information, which is sensible given that the systems are ex-
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pected to navigate in three dimensions to complete their task. The depth
information are either represented as a point cloud or as a range image, as
shown in figure (C.4).

(a) Color (RGB). (b) Range image.

(c) Point cloud with RGB data.

Fig. C.4: Different types of data from the same scene.

However, a few systems do not gather any depth information at all, which
should in theory complicate tasks such as grasping objects. Remazeilles et
al. [17] solves this issue by employing an optical sensor to detect when an
object is inside the gripper and force sensors to ensure sufficient force when
picking up the object. Another approach, used by Zeng et al. [25], is to make
the simplifying assumption that all objects are cuboids and placed on a table.

Looking at the positioning of the sensors, over half of the reviewed sys-
tems employ a fixed position, which could make them susceptible to blind
spots. For instance, the ARM occluding the view of the camera. A strat-
egy to avoid such issue is to enable the user to influence the position of the
sensor by mounting it on the end-effector as done in several of the reviewed
systems (see table (C.2) from earlier). A third option is to have the system
automatically position the camera [8, 18, 19, 22].

Information Analysis

This stage can generally be characterized by two important tasks; 1) segmen-
tation of data into what is of interest and what is not and 2) recognizing
patterns in the data to recognize e.g. an object. Computer vision-systems
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will often have well-defined strategies for these tasks which is why it was
chosen to focus on these two aspects for this stage.

Looking at segmentation, a quite popular strategy is to remove the main
planar surface in the scene, leaving behind objects placed on e.g. a table.
An example of such is shown in figure (C.5). This planar surface is often
found by using RANSAC (Random Sample Consensus) [28] to fit a plane to
the point cloud data. The main drawback of this approach is the underlying
assumption that the objects of interest are placed on a single planar surface
without much else in the scene.

(a) Before segmentation. (b) After segmentation.

Fig. C.5: Example of segmentation of objects in a scene.

Another often used strategy amongst the reviewed papers is to rely on
the user to manually perform the segmentation task. This is done either by
drawing a bounding box around the object of interest or by selecting a single
point on said object. In case of the latter, the point is used as the initial
seed for segmentation algorithms such as the system describes by Pitzer et
al. [16]. However, some of the reviewed papers, such as [9, 19], downright
skip the segmentation step and are therefore processing information from the
entire scene during the subsequent recognition step. This is possible as these
systems relies on the SURF keypoint extractor and feature descriptor [29]
which are optimized to be fast.

In terms of recognition, many of the reviewed papers relies on matching
against a database of known objects. This is commonly done by extracting
a set of features from the input data and then applying machine learning to
match the features against the database of known objects. The majority of
the papers either rely on point cloud or image data during this process, with
only Jiang et al. [21] making use of both information sources in this step.
Zhang et al. [23] combines both the feature extraction and matching process
by training a CNN (Convolutional Neural Network) to distinguish between
four pre-defined objects.

The drawback of relying on a pre-defined set of known objects is the
inability to deal with objects which are not present in the database. Especially
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the approach by Arrichiello et al. [24] suffers from this issue as it also requires
the objects to be physically marked using pre-defined tags. A much more
general approach is to match against primitive shapes, for instance cylinders
[11]. In doing so, the system should be able to handle anything cylinder-
shaped.

An even more general approach is used by Gualtieri et al. [22] which relies
on identifying good grasping points instead of detecting objects in the scene.
This essentially negates the need for both the segmentation and recognition
steps for this system. The main problem of this approach is the time it takes to
detect the grasping points in the scene, with the authors stating a processing
time of two minutes on average.

Decision Selection

In this stage, each reviewed system was sought characterized based on; 1)
how the system selects what to do, for instance what object to grasp and 2)
its approach when deciding how to grasp an object. I.e. how to position and
orient the end-effector of the ARM for the grasping procedure.

In relation to the decision selection of each reviewed system it is quite
natural to also consider the associated level of autonomy. The scale pre-
sented earlier, see table (C.1), have hence been used to determine the level of
autonomy for each system. The result is shown in table (C.4).

Table C.4: The reviewed papers and their level of autonomy based on their decision selection
behaviour (stage 3). The indicators (a,b) signifies different configurations of the same system, as
outlined in Table C.3.

Decision selection
(level of autonomy)

Level 1 [8, 16–18, 22] and [20]a
Level 2 [25] and [20]b
Level 3 [9, 19, 21, 23, 24]
Level 6 [10]

Level 10 [11]

Many of the reviewed systems rely on the user directly selecting the object
to interact with. This is either done by having the user draw a bounding
box around the object or selecting a point on it, as mentioned above. Such
approaches rely entirely on the user and can hence be associated with the
lowest level of autonomy. A few systems are a bit more restrictive, as they
narrow the user’s options down, either based on the objects detected in the
scene by the system or a pre-defined set of options. These systems are given
a rating of 2 and 3, respectively.
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The system by Loconsole et al. [11] is however characterized by a high
level of autonomy, as it will try to grasp any cylinder-shaped object presented
to it. This system has been given a rating of 10, as the user has no say in the
matter. Another outlier is the system described by Mülling et al. [10], as
it automatically infers the intention of the user based on the end-effectors
proximity to objects and how well the end-effectors orientation aligns with
these objects. The system will automatically start to act on this estimated
intention, but the user can still veto this decision by moving the end-effector
in another direction, hence the rating of 6.

An important part of the decision selection stage is to figure out how to
grasp an object to manipulate it. This entails figuring out how to position
and orient the end-effector for the best grasp. How much to close the gripper
is an important step in the grasping procedure as well but this part is not
included in this review.

Several of the reviewed systems rely on both grasp positions and poses
being pre-defined for a set of known objects. The drawback of relying on
pre-defined information for a small set of objects is the inability to handle
unknown objects, as stated earlier. Other papers ignore the problem of iden-
tifying a proper orientation of the end-effector and only estimates where to
position the end-effector for grasping. This approach is possible as these sys-
tems makes assumptions like the objects always being placed such that their
major axis is aligned vertically with the ARM. Such assumptions restrict the
system’s ability to function in an uncontrolled environment, where the ob-
jects are likely to be placed arbitrarily.

A few of the reviewed systems, like [8, 18], uses a PCA-based approach
(Principal Component Analysis) in order to estimate the major axis of each
object. This approach relies on point cloud data for each object and are hence
dependent on proper segmentation of the object. Another drawback is that
the estimated axis of the object may easily be miscalculated in cases where
parts of the object are not present in the point cloud.

The approach used by Loconsole et al. [11] avoids this issue as it is quite
straightforward to extract the major axis of a cylinder, which the system
identified during the information analysis step. The disadvantage of this
approach is the underlying assumption that every object is cylinder-shaped.

The only reviewed system which is truly able to grasp arbitrary objects
is the one described by Gualtieri et al. [22] as it relies on detecting good
grasping poses. The process of detecting these grasping poses is split into
two stages; grasp synthesis and grasp analysis, as illustrated in figure (C.6).
The synthesis stage seeks to generate a large number of grasp candidates
whereas the analysis seeks to reduce the larger number of candidates to a
few good ones. It should be noted that Mülling et al. [10] describes a similar
extension of their system in their future works which enables them to handle
arbitrary objects as well.
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(a) Grasp synthesis stage. (b) Grasp analysis stage.

Fig. C.6: Detecting grasping poses for an arbitrary object using the algorithm by Gualtieri et
al. [22].

Action Implementation

This stage is sought characterized by considering who is in control of the
ARM’s movement, i.e. who controls the actuation of the ARM’s links and
its end-effector. Factors like how trajectories are planned could have been
considered as well in this stage, but it is deemed outside the scope of this
review.

The action implementation stage is also a good candidate for judging a
system’s level of autonomy and this stage have hence been mapped using the
autonomy scale as well. The result is shown in table (C.5).

Table C.5: The reviewed papers and their level of autonomy based on their action implementa-
tion behaviour (stage 4).

Action implementation
(level of autonomy)

Level 5 [8, 20]
Level 6 [17]
Level 7 [9, 25]

Level 10 [11, 16, 18, 19, 21–24]
Adaptive [10]

The majority of the reviewed systems is assigned a score of 10, as the
actuation of both the ARM’s links and end-effector is fully automatic once a
decision have been made. Jiang et al. [9] and Zeng et al. [25] are assigned a
lower score of 7, as these two systems relies on the idea of dividing the control
of the ARM into fine and coarse control. Coarse control entails moving the
end-effector to the general position of the object to manipulate and is done

129



Paper C.

automatically. Fine control deals with grasping the object and is initiated by
the system, which then asks the user to take over and perform the grasping.
It should be noted that Zeng et al. [25] does estimate the orientation of the
object to be grasped but this information is only used to guide the user during
fine control.

The system by Remazeilles et al. [17] is assigned a rating of 6 as it es-
sentially allows the user to veto the automatic actuation of the ARM. Kim et
al. [8] and Quintero et al. [20] employs a scheme where the user continuously
have to allow the system to operate automatically, for instance by holding
down a button. This results in a score of 5 as the system is essentially limited
to only executing actions if the user approves. Finally, the system by Mülling
et al. [10] is not assigned a score as the automation level changes depending
of the system’s confidence in inferring the intention of the user. For instance,
the user will be completely in control if the system has no idea about the
intention of the user. Furthermore, it should be noted that authors of Para-
suraman et al. [15] do point out that their framework fails to encompass such
adaptive automation well.

3.3 Level of Autonomy Summary

The purpose of this section is to summarize the results related to the level of
autonomy of the reviewed systems to highlight tendencies. This is done by
grouping each of the reviewed papers, as shown in table (C.6).

These groups are created by grouping systems where the level of auton-
omy is identical for both the decision selection and action implementation
stage. The resulting groups are then plotted, as shown in figure (C.7), with
respect to their level of autonomy for the decision selection and action imple-
mentation stage.

Table C.6: Grouping of the reviewed systems based on their level of autonomy for the decision
selection and action implementation stage. The indicators (a,b) signifies different configurations
of the same system, as outlined in Table C.3

Group Paper(s)
A [19, 21, 23, 24]
B [16, 18, 22]
C [8] and [20]a
D [17]
E [20]b
F [25]
G [10]
H [9]
I [11]
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Looking at the plot in figure (C.7) it is quite clear that most of the re-
viewed systems are placed in the upper left quadrant. Such systems are
characterized by having a quite clear-cut strategy for sharing control, as the
user decides what to grasp whereas the system performs the actual grasping.
These approaches are hence quite similar to e.g. the claw machines found at
arcades; the user points the machine towards the object of interest, the user
presses a button and the machine takes over. A few of the reviewed systems
did however allow the user some control in such scenarios, for instance the
systems found in group C and E. These systems rely on constant confirma-
tion from the user, e.g. holding down a button, to continue executing the
planned action.

An entirely different approach for semi-autonomous control can be seen
in group G consisting of only the system by Mülling et al. [10]. This group
differs from the others due to its adaptive nature which is also sought illus-
trated in figure (C.7) by having this group span the entire action implemen-
tation continuum.

Another outlier is group I, consisting of the system by Loconsole et al.
[11], which have the highest possible level of autonomy for both its decision
selection and action implementation stage. It can hence be argued that this
system is fully autonomous and hence of no interest when discussing semi-
autonomous systems. To be fair, it should be noted that the focus of Locon-
sole et al. [11] is skewed towards computer vision and not semi-autonomous
control.

4 Discussion

The purpose of this section is to expand upon the findings in the previous
sections by pointing out challenges in relation to reviewed systems and sug-
gest further potential avenues to explore. Three challenges will be discussed;
ensuring optimal semi-autonomous control, handling arbitrary objects and
sensing the environment.

4.1 Challenge: Optimal Semi-Autonomous Control

Most of the reviewed systems tend to rely on pre-defined roles for respec-
tively the human and the system, as shown earlier in figure (C.7). The user
decides what to do and the system takes over control, thereby creating this
claw machine-like behaviour. The benefit of such schemes is that the user is
never in doubt as to who is in control at any time.

However, this behaviour could be problematic as the user has no or very
limited control once the system is in charge. This issue was outlined in a
study by Chung et al. [13] which found that the users felt less accomplished
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Fig. C.7: Plot of the groups from table (C.6). The size of each circle increases with the number
of members in the group. The large span of group G signifies the adaptive nature of the action
implementation stage for the system by Mülling et al. [10].

when relying entirely on the system to complete the task automatically. The
participants did in fact experience a lower level of satisfaction, despite com-
pleting the task faster, due to this lack of accomplishment. A similar ob-
servation was made by Kim et al. [14] where individuals with movement
impairment appeared less inclined to relinquish control of the ARM than
able-bodied persons.

A way to address the above issue could be to rely on adaptive semi-
autonomous control, as seen in the system by Mülling et al. [10]. Such
a scheme will allow the user some control throughout the entire process,
thereby providing the user with some sense of accomplishment when finish-
ing a task, while still aiding the user to some extent.

This form of semi-autonomous control can be viewed as an arbitration of
control between the system and the user which can essentially be reduced
to a linear blending, controlled by the arbitration factor α, as shown in fig-
ure (C.8). This is also the approach used by Mülling et al. [10] where α is
computed using a sigmoid function dependent on the confidence of the goal
predicted by the system.

The idea of viewing the arbitration as a blending problem is based on the
work by Dragan et al. [30], which also uses the plots of different arbitration
factors α to characterize the behaviour of semi-autonomous systems. An
example of different arbitration behaviours is shown in figure (C.9).
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User Input U

Predicted goal P

Blending
(1-α)U + αP

ARM
actuation

Fig. C.8: Arbitration between the user U and the goal P predicted by system using linear blend-
ing. The figure is adapted from [30].

The idea of defining the behaviour of the system using arbitration func-
tions may also make it easier to customize the behaviour of the system to the
preference of the user. A lot of different behaviours can be achieved by sim-
ply changing the function governing the arbitration factor used during the
blending. For instance, the behaviour of the system by Mülling et al. [10] can
be characterized by figure (C.9b) whereas the behaviour of e.g. [16, 18] can be
characterized by figure (C.9d) as the action implementation stage is always
fully automatic for these systems. Customization through these arbitration
curves may also be beneficial due to their visual nature making it easier to
understand for people with a non-technical background.

However, an important prerequisite for adaptive semi-autonomous con-
trol is for the system to be able to gauge its confidence. For instance, how
confident the system is that the user is reaching for object B and not object
A. One way of inferring confidence in this scenario could be to rely on prox-
imity, i.e. how close is the end-effector of the ARM to each object. Such
proximity-based approaches is used in the work of [10, 30, 31]. A possible
downside of proximity-based approaches is that they are memory-less, i.e.
they only consider the system in its current state. An example of why this
lack of memory can be problematic is shown in figure (C.10), where the user
is reaching for object A but the system misinterprets the user’s goal as being
object B due to the proximity-based approach.

A way to introduce memory into the process of inferring the intention of
the user is to consider the trajectory of the ARM, as done by [30, 32]. Looking
at figure (C.10) again, it is possible to see that considering the trajectories it
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Fig. C.9: Examples of different functions which can be used to control the arbitration factor.
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would have been possible to correctly infer that the user was reaching for
object A.

B
A

S
U

Fig. C.10: A scenario with two objects, A and B, with an ARM denoted by the current position
U and initial position S of its end-effector. The figure is adapted from Dragan et al. [30].

The different measures of confidence, mentioned above, are all related
to stage 3, i.e. decision selection. However, it is possible to expand the
model to make use of confidences derived from the other stages as well. For
instance, the confidence of the sensor data gathered during the information
acquisition stage. Another idea could be extract a confidence measure from
the information analysis stage based on how certain objects are commonly
used.

This idea could be achieved through affordance detection, with affordance
being the notion that objects “invite” the user to interact with them in certain
ways. A handle on a mug would for instance be an obvious affordance for
grasping. The idea of grasp detection, as discussed earlier, could hence be
considered a limited form of affordance detection, which only focuses on the
affordance related to grasping. However, multiple other affordances exist,
for instance; cutting, scooping, containing, pounding and supporting. These
affordances are the focus in the work by for instance Myers et al. [33], which
proposes a way of detecting different affordances using RGB and depth in-
formation. An example of their results is shown in figure (C.11).

Input scene. Grasp detection.

Support detection. Scoop detection.

Fig. C.11: Example of affordances detected in a scene. The input scene is from the dataset
published by Myers et al. [33].
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Affordance detection could hence be useful in scenario where the user is
trying to accomplish a task involving multiple objects. For instance, using
a spoon to scoop something or when the user wants to pour a liquid into a
container.

Yet another possibility is to incorporate the system’s confidence in the
user, which is suggested by Dragan et al. [30] as well. An interesting addition
to this idea could be for the system to provide a level of assistance which
keeps the user in a state of flow or “being in the zone”. The idea of flow is
described as a mental state where the user would feel a sense of mastery and
satisfaction by ensuring that the difficulty of the tasks matches the skill of the
user [34].

This idea is often illustrated as shown in figure (C.12), where a person
is kept in a state of mental flow by matching the difficulty of the task with
the skill level of the person. Failure to match these two parameters could
cause a person to enter either a state of boredom or anxiety, which is not
desirable. The presence of the flow state can hence influence a person’s sense
of accomplishment and satisfaction which is why it could be interesting to
consider it in relation to semi-autonomous control.

Task difficulty
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e
l

High

High

Low

Flow

Anxiety

Boredom

Fig. C.12: Illustration of how flow can be achieved by matching task difficulty and skill level.
The figure is adapted from Csikszentmihalyi et al. [34].

4.2 Challenge: Handling Arbitrary Objects

Another challenging aspect of using computer vision for semi-autonomous
control of ARMs is to be able to handle arbitrary objects, i.e. objects never
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encountered by the system before. Most of the reviewed papers seem to agree
that this is an important issue but only a few of them actually address it.

Looking at the reviewed systems, both Gualtieri et al. [22] and Mülling
et al. [10] address this issue by discarding the notion of detecting separate
objects and instead rely on detecting good grasping points on arbitrary object.
However, detecting good grasping points can be rather slow [22] due to the
synthesis stage which is time-consuming because of the large search space
(six variables; three for grasp position and three for grasp orientation).

A way to speed up this process could be to look into approaches such
as [35, 36], which rely on a range image instead of a point cloud data during
grasp synthesis. Domae et al. [35] reports a processing time of 0.31 seconds
or less, making it significantly faster than Gualtieri et al. [22]. The work
by [37, 38] relies on both RGB and range images to infer grasping points
using CNNs, with Redmon et al. [37] reporting processing times of ≈ 77
milliseconds. The low processing time is likely because a GPU is used to
accelerate the computations by taking advantage of the highly parallelizable
nature of CNNs.

Another way of handling arbitrary objects is to decompose them into
primitive shapes like cylinders, cuboids and spheres, as illustrated in fig-
ure (C.13). This is somewhat similar to the idea used by Loconsole et al. [11],
which focused on cylinder-shaped objects only. The idea is to expand this ap-
proach to encompass any object by including more shapes than just cylinders
and by allowing these shapes to be combined [39, 40].

Fig. C.13: Example of an object and its decomposition into primitive shapes. This approach was
used by Milleret al. [39].

How to handle arbitrary objects is not necessarily limited to one of the
approaches mentioned above. In fact, combining multiple approaches could
be a viable solution. An example of such is the work by Ciocarlie et al. [41],
which defines a grasping procedure for known objects and a procedure for
unknown objects not encountered before. This idea is especially interesting in
the scope of semi-autonomous control as an unknown object could be added
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to the set of known objects by the user showing the system how to grasp
said object. This is somewhat similar to the approach by Herzog et al. [42],
where the system learns grasp poses through demonstration by the user. The
work of Krainin et al. [43] could also help expand this idea as it describes an
approach for creating 3D models of objects once they have been grasped by
a robotic manipulator.

4.3 Challenge: Sensing the Environment

The last challenge which this paper will touch upon is how to acquire com-
plete and precise data about the environment that the ARM is to operate
in. These aspects are important as the subsequent stages in any system will
suffer if the information acquisition stage is not up to par.

Roughly half of the reviewed papers decided to mount their sensors near
or on the end-effector, a configuration sometimes called eye-in-hand. Such as
configuration is advantageous as it is near impossible for the ARM to occlude
the view of the sensor and it offers some flexibility, as the sensor can be re-
positioned using the ARM. Allowing the user to re-position the sensor, by
controlling the end-effector, could also make it easier to infer the intention of
the users as they would likely orient the end effector towards the object they
are interested in. A few of the reviewed papers, see [8, 18], utilize this option
by having the system automatically re-positioning the end-effector such that
the user’s selection is centred in the view of the camera. The idea is to get a
better view of the object to interact with.

The work by Gualtieri et al. [22] takes this approach a step further by
re-positioning the sensor to gather information from multiple viewpoints in
order to increase the quality of the gathered point cloud. The authors specif-
ically states that doing so have shown an improvement in grasp detection ac-
cording to their prior work [44]. This idea is somewhat similar to the work by
Klingensmith et al. [45] where an end-effector mounted depth sensor is used
to map the nearby environment using a SLAM-like approach (Simultaneous
Localization And Mapping). The authors demonstrate that their approach
improves the quality of the data gathered while continuously estimating the
position of the end-effector, i.e. the localization part of SLAM. Employing
some strategy for accumulating data from multiple viewpoints may hence be
beneficial when dealing with an eye-in-hand configuration [22, 45].

Another way to improve upon the depth information acquired by the sys-
tem could be to use techniques for depth completion [46]. The idea is to
use information from a colour image to estimate the missing depth informa-
tion, as shown in figure (C.14). The colour image is used to estimate surface
normals for the entire scene which are then combined with the sparse set of
depth measurements to infer depth for the entire scene.

The main drawback of this work is the processing time, as the authors
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states a processing time of between 0.3 and 1.5 seconds, depending on the
hardware used. It can be argued that the processing time is not a big issue
as it may not be necessary to use depth completion on every single frame
received from the sensor. However, a benefit of this approach is that it will
work with sensors mounted in a fixed position, as opposed to the SLAM-like
approaches mentioned earlier.

(a) Color information. (b) Depth information. (c) Completed depth.

Fig. C.14: Example of depth completion using the algorithm from Zhang and Funkhouser [46].

An area which could also improve the system’s ability to sense its imme-
diate environment is the actual sensors employed by each system. Most of
the reviewed systems rely on stereo vision to gather depth information and
it may hence be interesting to explore other options such a ToF cameras like
the Kinect v2 used by [23, 24]. The absence of ToF cameras amongst the other
reviewed paper can likely be attributed to the available ToF cameras at the
time, which were likely expensive and bulky.

A general difference between ToF cameras and stereo vision cameras is
that the former does not rely on a baseline to estimate depth. ToF cameras can
hence be made more compact, making it possible to mount them in location
not possible for stereo vision cameras. For instance, inside the gripper of the
ARM. An example of such is the CamBoard Pico flexx camera from PMD
Technologies [47] which is significantly smaller than the Kinect sensors while
featuring a minimum working distance of 0.1 m.

5 Conclusion

The focus of this review paper was on computer vision systems enabling
movement impaired individuals to do object manipulation using an assistive
robotic manipulator (ARM). The initial literature search yielded 257 results
which were narrowed down to 14 relevant papers. These papers where re-
viewed in relation to their selection of hardware and their use of computer
vision for the semi-autonomous behaviour of the system. Different schemes
for the semi-autonomous control were reviewed as well. A four-stage model
was used during the review of each system to characterize their behaviours
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in terms of; information acquisition, information analysis, decision selection
and action implementation. A scale, consisting of 10 levels [15], was used to
rate the autonomy of each system as well.

The reviewed papers mainly made use of stereo vision-based sensors to
capture depth information. Many of the papers used the Kinect from Mi-
crosoft which was often mounted near the shoulder or head of the user, view-
ing the scene from a distance. The second most popular sensor placement
was at the end-effector, making it possible for both the user and the system
to re-position the sensor. However, only a few of the reviewed systems fully
utilized this option by mapping the immediate environment using data from
multiple viewpoints. Furthermore, exploring other options in terms of sen-
sor choice may be interesting as well. For instance, a small ToF camera which
could be mounted inside the gripper of the ARM.

Handling of arbitrary objects was found to be a general issue with only
a few of the reviewed systems being able to do so. The majority made sim-
plifying assumptions such as all objects having a certain shape or all object
being in a database of pre-defined objects. A way to approach the issue of
handling arbitrary objects could be to reduce it to a problem of detecting
good grasping points or decomposing objects into primitive shapes.

Most of the reviewed papers rely on a clear switch between the user and
the system for the semi-autonomous control of said system. Adaptable au-
tomation, in the form of linear blending, is used in one of the reviewed papers
but should be explored further. Such a scheme could be beneficial as it allows
the user some control at all times which is especially important for movement
impaired users. A scheme based on linear blending may also allow for easy
customization of the semi-autonomous control. Such an adaptive approach
may also benefit from the concept of flow, known from psychology, to adjust
the level of assistance based on the skill level of the user and the difficulty of
the task at hand.

To summarize; there is a substantial amount of on-going research focusing
on using computer vision for semi-autonomous control of ARMs. Several
working prototypes have demonstrated that this idea can work in a controlled
environment, such as a lab. The next big step is to advance the technology to
a point where it is possible to move beyond the labs and into the home of the
actual user. The benefit of doing so would be priceless for the individual user,
and society in general may benefit as well due to less demand for caregivers.
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1. Introduction

Abstract

We propose the use of computer vision for adaptive semi-autonomous control of an
upper limb exoskeleton for assisting users with severe tetraplegia to increase indepen-
dence and quality of life. A tongue-based interface was used together with the semi-
autonomous control such that individuals with complete tetraplegia were able to use it
despite being paralyzed from the neck down. The semi-autonomous control uses com-
puter vision to detect nearby objects and estimate how to grasp them to assist the user
in controlling the exoskeleton. Three control schemes were tested: non-autonomous
(i.e., manual control using the tongue) control, semi-autonomous control with a fixed
level of autonomy, and a semi-autonomous control with a confidence-based adaptive
level of autonomy. Studies on experimental participants with and without tetraple-
gia were carried out. The control schemes were evaluated both in terms of their
performance, such as the time and number of commands needed to complete a given
task, as well as ratings from the users. The studies showed a clear and significant
improvement in both performance and user ratings when using either of the semi-
autonomous control schemes. The adaptive semi-autonomous control outperformed
the fixed version in some scenarios, namely, in the more complex tasks and with users
with more training in using the system.

1 Introduction

The use of robotics for aiding people in everyday life is becoming increasingly
more common and assistive robotics is a promising aspect for individuals
who would otherwise be dependent on a caregiver for daily activities [1, 2].
This potential for assistive robots is especially high for individuals who are
exceedingly dependent on caregivers in everyday life such as individuals
with tetraplegia, i.e., partial or complete loss of control in both arms and legs.
A typical cause of tetraplegia is SCI (spinal cord injury), and it is estimated
that 250,000 to 500,000 people suffer from SCI every year [3], with roughly
one-third of these cases resulting in tetraplegia [4].

The mean age of individuals with tetraplegia was reported to be 33 years
old when sustaining the injury [4], but especially males aged 20–29 years and
females aged 15–19 years have seen spikes in the incident rate of traumatic
spinal cord injuries [3]. The motivation for focusing on tetraplegia is further
supported by a high life expectancy after the injury, especially for young in-
dividuals [3]. An individual with tetraplegia caused by SCI at the age of 25
years can often expect to live for another 40 years. One of the most important
tools for individuals with tetraplegia is often a powered wheelchair, offering
both mobility and independence [3]. However, tasks requiring interaction
with an object, such as drinking and eating, still require assistance from a
caregiver. The frustration of not being able to perform these things inde-
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pendently becomes even greater for prolonged sessions, for instance, during
recreational activities, such as watching a movie while enjoying a beverage
or snacking [5].

To mitigate the challenges above and increase the independence of in-
dividuals with tetraplegia, we propose the novel combination of using a
tongue-based interface combined with computer vision in a semi-autonomous
control scheme to enable individuals with tetraplegia to effectively control an
upper limb exoskeleton, as shown in Figure D.1.

Computer Vision

Tongue-based
Interface

Upper Limb
Exoskeleton

Semi-Autonomous
Control Scheme

Fig. D.1: Overview of the proposed system. A semi-autonomous control scheme combines input
from a tongue-based interface and a computer vision module to assist a user in controlling an
upper limb exoskeleton.

An upper limb exoskeleton is used, as several studies have successfully
demonstrated how it can help restore some of the lost functionality for in-
dividuals with movement impairments in the arms [6, 7]. Furthermore, the
tongue-based interface has previously been shown to be an efficient and suit-
able interface for individuals with tetraplegia to control an exoskeleton [8, 9].
Finally, a semi-autonomous control scheme assists the user in controlling the
exoskeleton based on input from a computer vision module, which detects
and analyzes nearby objects. This is performed as several studies suggest
that such an approach can be beneficial for controlling assistive robotic ma-
nipulators [10].

Hence, the main contributions of the paper are the following:

• We design and implement an adaptive semi-autonomous control scheme
based on computer vision and evaluate it in the context of controlling
an upper limb exoskeleton through a tongue-based interface.

• We evaluate the effectiveness and intuitiveness of various control schemes
for performing semi-autonomous tongue-control of an upper limb ex-
oskeleton, through studies including both participants with and with-
out tetraplegia.
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2 Related Work

The proposed system consists of an upper limb exoskeleton as it would en-
able individuals with tetraplegia to regain some of the lost functionality in
their arms. The idea of upper limb exoskeletons for users with movement
impairments have, in several previous studies, been shown to be useful for
both assistive purposes [6, 11] and for rehabilitation [7, 12, 13].

However, a challenging aspect of using an exoskeleton for people with
tetraplegia is how to interface with it. A common approach for controlling
upper limb exoskeletons is with EMG (electromyography) [7, 14] to detect
muscle activity, which is not feasible in case of severe tetraplegia. Other ap-
proaches require the user to control the exoskeleton using a joystick, operated
by a single finger [6], which is not possible for complete functional tetraple-
gia either. Others have explored the idea of using eye movements [13] or
voice commands [6] to allow individuals with movement impairments to in-
terface with an upper limb exoskeleton. Eye movements or voice commands
are plausible options but can be very tedious to use in the long run and
are easily susceptible to noise such as accidental eye movements or nearby
sounds. In one study, the majority of the participants preferred other options
over the voice-based control [6]. Another possibility is BCI-based control
(brain–computer interface), where signals are measured from the brain of the
user controlling the upper limb exoskeleton [12]. However, weak points of a
BCI-based interface is the low signal-to-noise ratio, the need for substantial
calibration, and the low throughput, both in terms of the number of different
commands and also how fast one can issue them. This often restricts the
use of BCI-based interfaces to rely on predefined movements which are com-
pletely automated [15], forcing the user to relinquish control completely for
periods of time.

A tongue-based interface does not suffer from many of the issues high-
lighted above. It offers high throughput, both in terms of the number of
possible commands and also in terms of how fast they can be issued [16].
Furthermore, several studies have demonstrated that a tongue-based inter-
face can be used by individuals with tetraplegia to control various assistive
devices, such as an upper limb exoskeleton [8] or a robotic arm [17]. These
considerations have led to the choice of a tongue-based interface.

A semi-autonomous control scheme, where parts of the control are au-
tomated using computer vision, is included in the system to further en-
hance the tongue-based control of the exoskeleton. Several studies have
reported increased performance when employing computer vision for semi-
autonomous control of assistive robotic manipulators [10], such as complet-
ing tasks faster [18, 19] or being more precise in the movement of the manip-
ulator [20, 21]. Furthermore, there are several examples of computer vision
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either improving the fine control of an upper limb exoskeleton [13, 21] or
automating entire parts of a task [11, 22, 23] for users with paralysis.

Many of the approaches relying on computer vision employ a clear-cut
strategy for arbitrating control between the user and the system, where cer-
tain parts of the process are completely automated [10]. For example, reach-
ing for and grasping an object once the user triggers this predefined task,
either from a tongue-based interface [20], through voice commands [18], or
through eye movements [11, 22]. The user would, in these cases, relinquish
complete control until the task is completed, i.e., the object is reached and
grasped. This fixed level of autonomy, where the automated process is clearly
defined, is likely common because it is easy to implement, easy to under-
stand for the user, and it improves performance in many cases. Sometimes
it is also the only option due to the limitations of the interface used for the
control [11, 22].

However, using a fixed level of autonomy introduces the problem of find-
ing an optimal balance in the arbitrating control between the user and the
system [10]. If the user is primarily in control at all times, without any
automating, it defeats the purpose of having semi-autonomous control in
the first place. On the other hand, a high level of autonomy where nearly
everything is automated may not be a satisfying experience for the user ei-
ther [24]. Automating may even counteract what the user is trying to achieve
in cases where the automating performs the wrong action, e.g., reaching for
the wrong object, and it may impose a safety risk. Even cases where the
automating acts as intended may result in lower satisfaction for the user as
they may no longer feel in control, especially for individuals with movement
impairments [19].

One way to avoid or minimize many of these issues is to rely on an adap-
tive level of autonomy instead of a fixed one. Several studies on teleportation
of robots have successfully demonstrated semi-autonomous control with an
adaptive level of autonomy based on a confidence-measure [25, 26]. This
confidence-measure is an expression of how certain the system is in its own
prediction of the intent of the user, such as interacting with a certain object.
The system will hence offer a lot of assistance in scenarios where it has a high
confidence of being able to correctly assist the user. The opposite is also true;
the system will offer no or little assistance in cases of low confidence where
it is unclear what the user is trying to accomplish. A benefit is hence that it
can adapt its level of autonomy to fit different scenarios.

Hence, in the current study, three different control schemes were imple-
mented: a non-autonomous (i.e., manual) control, a semi-autonomous con-
trol with a fixed level of autonomy, and a semi-autonomous control using a
confidence-based adaptive level of autonomy. The implementation of each
is described in further detail in Section 3.4. These three different control
schemes are evaluated and compared against each other, as described in
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Section 4. The purpose is to determine whether using computer vision for
tongue-based control of an upper limb exoskeleton is beneficial or not and
whether semi-autonomous control with a fixed or adaptive level of autonomy
is preferable in this context.

3 Method

The following describes the different main components of the proposed sys-
tem, as also shown in Figure D.1. The upper limb exoskeleton is controlled
by mixing input from the user and from the computer vision module. The
user provides input to the system through a tongue-based interface as the
exoskeleton is designed for individuals with tetraplegia. The computer vi-
sion module is designed to detect objects in front of the user and infer how
to grasp them. The computer vision module is also designed to predict the
intention of the user, i.e., what object to grasp, to assist the user in controlling
the exoskeleton. Finally, the control scheme module combines input from the
user and the computer vision module to actuate the exoskeleton.

3.1 Upper Limb Exoskeleton

The exoskeleton used in this study is the EXOTIC upper limb exoskeleton,
as shown in Figure D.2a. It has four degrees of freedom (DoFs): two in the
shoulder, one in the elbow, and one in the wrist. The number of DoFs is kept
at a minimum to reduce the bulkiness of the exoskeleton. The DoFs included
have been carefully selected to support tasks such as picking up objects from
a table and bringing them to the mouth of the user. The number of DoFs in
the exoskeleton also means that it must use three of its four DoFs to reach an
arbitrary position, leaving only rotation around the wrist as the free DoF for
altering the orientation of the end effector, i.e., the hand. A more thorough
description of the upper limb exoskeleton and its capabilities can be found
in [27, 28].

For the end effector, a Carbonhand from Bioservo Technologies AB is
used and provides active actuation when closing the hand of the user. Only
the thumb, middle finger, and ring finger are actuated in the Carbonhand.
Opening of the hand is passive and is performed using an elastic fabric on
the back of the hand.

3.2 Tongue-Based Interface

The proposed system makes use of an inductive intra-oral tongue interface
(ITCI) [9, 29], as shown in Figure D.2b. The ITCI sits in the roof of the user’s
mouth and is held in place similar to a dental brace. The unit contains a
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(a) The EXOTIC upper limb exoskeleton with a
camera at the shoulder joint.

(b) The inductive tongue
interface (ITCI).

(c) The control layout for
the ITCI.

Fig. D.2: An overview of the hardware used in the proposed system. (a) The EXOTIC upper
limb exoskeleton along with the Carbonhand for the end effector. An RGB-D camera is mounted
at the shoulder joint. (b) The part of the inductive tongue interface (ITCI) placed in the roof of
the user’s mouth. (c) The layout of the ITCI used to control the exoskeleton.

small battery and can hence operate wirelessly while sitting in the mouth of
the user. The entire area of the ITCI is covered by 18 small inductive sensors
which can be activated using a tongue piercing made of metal. The tongue
piercing and dental braces are for long-term usage and not for temporary
usage. In the studies, surgical glue was used to attach a small piercing-like
metal cylinder on the tongue of the participants instead. The ITCI was held
in place in the roof of the participant’s mouth using dental putty instead of a
custom dental brace.

The inductive sensors of the ITCI were mapped to the layout shown in
Figure D.2c to control the upper limb exoskeleton [28]. The upper part of
the ITCI functions as a joystick where the user can control the forward (F),
backward (B), left (L), and right (R) motion of the exoskeleton. A slider
is used to control the exoskeleton either down or up and is placed right
below the joystick-like control. All these movements happen in relation to the
current position of the end-effector, i.e., the hand of the user. The lower part
of the ITCI contains controls for opening and closing the Carbonhand along
with a slider for controlling the wrist rotation of the exoskeleton. Finally, an
“auto grasp” button is located slightly below the middle of the ITCI layout.
When pressed, the button will activate the fixed semi-autonomous control of
the exoskeleton which is described in more detail later in Section 3.4. The
exact same layout is used for both the manual control and the adaptive semi-
autonomous control. The only exception is that the auto grasp button does
nothing while using these two control schemes.

The layout of the ITCI, along with the current location of the tongue pierc-
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ing in the mouth, is shown to the user only when training to use the tongue
interface. All the results presented later are hence gathered without any vi-
sual feedback from the tongue interface. This is performed as the main idea
of the system is to be able to use it without any visual feedback besides the
actual movement of the exoskeleton.

3.3 Computer Vision Module

The computer vision part of the system is mainly responsible for performing
object detection, intent prediction, and grasp detection, as outlined in Figure
D.3. The input for the computer vision module is a small RGB-D camera (In-
tel RealSense D415), providing both color and depth information, mounted at
the shoulder joint of the exoskeleton (see Figure D.2a) and pointing towards
the area in front of the user. This specific camera was chosen for its small
baseline, i.e., the distance between the two sensors used for depth measure-
ments, making it suitable for capturing depth data at close range (minimum
operating range ≈30 cm). The small baseline also results in a small camera
footprint, making it easier to mount on the exoskeleton discreetly and with-
out the camera getting in the way. The depth information from the camera is
not used during object detection but it is used for both the intent prediction
and grasp detection, as described later.

RGB
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Fig. D.3: Overview of the pipeline for the computer vision module. An RGB-D camera (Intel
RealSense D415) is mounted at the shoulder joint of the exoskeleton and captures both RGB and
depth information from the area in front of the user. The object detection relies on the RGB data
where objects are detected using color thresholding. The depth information is masked based on
the detected objects and then converted to a point cloud. Cylinder-like shapes are then detected
in the resulting masked point cloud using an RANSAC-based algorithm. Finally, the detected
cylinders are converted to grasp poses for the exoskeleton using a rule-based approach.
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Object Detection

An important part of the computer vision module is to be able to detect any
objects of interest in front of the user that the exoskeleton might be able to
reach. The current state-of-the-art approaches for object detection are often
based on deep learning [30, 31], where neural networks are trained on huge
amounts of labeled data [32]. These huge amounts of training data are re-
quired for the deep learning-based object detectors to learn a wide range of
different objects and to generalize well to different environments. However,
performing object detection in this way adds another layer of complexity, and
thereby uncertainty, on top of an already complex system.

Instead, a classic approach of relying on color for segmentation of the
objects is used, where thresholding is applied to the HSV (hue, saturation,
value) color space, such that all bright red objects in the RGB image from
the camera are detected. This approach is characterized by producing stable
object detections in a controlled environment for a few objects, which is what
is needed for the experiment. The decision to use this classic approach based
on colors for object detection is hence an attempt at minimizing any uncer-
tainty during the experiment related to object detection. This decision was
deemed acceptable as the focus is not the computer vision part but rather on
testing the different control schemes.

Intent Prediction

Once any objects are detected, the system must predict the intent of the user.
The intent prediction is based on the direction of the user’s palm, the intu-
ition being that people generally have their palm pointed towards an object
when grasping it. Using this assumption also had the benefit of making it
easy to explain how the system works to the users of the exoskeleton.

The intent prediction works by projecting a ray from the palm of the user,
as depicted in Figure D.4. The orthogonal Euclidean distance between this
ray ~R and any object in the scene is then calculated and the object resulting
in the shortest distance is then considered the predicted intention of the user,
i.e., object A. Additionally, only objects facing the palm of the user’s hand
are considered during the intent prediction and any objects facing the back
of the hand are ignored, such as object C.

An alternative to this ray-based method could have been an approach
based purely on distance [26], i.e., finding the nearest object. The obvious
drawback of such an approach is that it would only consider the nearest ob-
ject, i.e., B, and disregard all other objects in the scene. Furthermore, using
solely the shortest distance may also cause the intent prediction to gravitate
towards the nearest object to the point where it might become difficult for the
user to break away from that object. This effect is less pronounced with the
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Fig. D.4: Example of the intent prediction using the Euclidean distance from the detected objects
(A, B, C) to a ray ~R projected from the palm of the user’s hand in the exoskeleton. The example
is shown in a plane (2D) for simplification.

ray-based method as only slight adjustments of the exoskeleton are required
to point it towards the intended target. Finally, the ray-based approach for
intent prediction was found to be quite stable when moving towards an ob-
ject. This behavior avoids problematic scenarios where the system might
suddenly change the predicted intention while moving towards an object;
something that could easily occur if using a nearest object approach for the
intention prediction.

Grasp Detection

The last part of the computer vision pipeline detects how to grasp the target
object, i.e., the object that the user is interested in interacting with. The exper-
imental setup included two objects for the user to interact with: a strawberry
and a bottle. A simple rule-based strategy relying on fitting cylinders [23]
was hence used for the grasp detection. First, the detection from earlier (Sec-
tion 3.3) was used to mask the depth information from the RGB-D camera
such that the result was a point cloud of the target object, as shown in Fig-
ure D.3. An RANSAC-based algorithm [33] was then used to fit a cylinder
to the masked point cloud [34], resulting in both the position and orientation
of the object (the central axis of the cylinder) along with its approximate size
(the cylinder diameter and height).

The fitted cylinders were then converted into a grasp pose for the ex-
oskeleton, as illustrated in Figure D.5, which depicts how the coordinate
frame of end-effector, i.e., the Carbonhand, should be positioned and oriented
in order to grasp the two objects on the table. The frame of the end-effector
is placed in the palm of the Carbonhand and oriented such that the z-axis is
pointing out from the palm, the y-axis points upwards, and the x-axis points
towards the thumb of the Carbonhand.
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Fig. D.5: The grasp detection identifies how the coordinate frame of the Carbonhand (i.e., the
end-effector) should be positioned and oriented in order to grasp the two objects on the table.

A rule-based approach is used for grasping the objects such that:

• Position—The coordinate frame of the end-effector should be posi-
tioned halfway along the height of the cylinder, such that the object
is grasped in the middle for stability. Furthermore, the position for
grasping the object should be on the outer perimeter of the cylinder
to avoid pushing the object away. An offset, equal to the radius of the
detected cylinder, is applied in the direction towards the end-effector to
avoid this.

• Orientation—The coordinate frame of the end-effector should be ori-
ented such that the y-axis is parallel with the axis of the cylinder, while
also pointing upwards to avoid infeasible grasping orientations (such
as trying to grasp the object with the palm of the hand facing away
from the person in the exoskeleton). Furthermore, the z-axis should be
orthogonal to the axis of the cylinder to avoid grasping the object at a
skewed angle.

Furthermore, smaller objects (height less than ≈3 cm) are difficult to grasp
using an upright orientation (such as the orientation of the Carbonhand de-
picted in Figure D.5). This is partly due to the design of the Carbonhand,
where only the thumb, middle finger, and ring finger are actuated. An ad-
ditional check is therefore implemented in the grasp detection, such that all
objects fewer than 3 cm in height will be approached as a cylinder laying flat
on the table, as also illustrated for the small strawberry in Figure D.5. Finally,
it should be noted that a cylinder is a poor fit for a strawberry. Nevertheless,
the above approach was found to produce an acceptable grasp for both the
bottle and the strawberry.
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3.4 Control Schemes

The purpose of the control schemes is to arbitrate input from the user, re-
ceived through the ITCI, with the information from the computer vision
module, i.e., what object to grasp and how to grasp it, in order to actuate
the upper limb exoskeleton. Parts of the control of the exoskeleton will hence
be automated, which is why some of the control schemes are referred to as
semi-autonomous control.

Three different control schemes are implemented and tested against each
other:

• Non-Autonomous Control —The system offers no assistance at any
point and the input from the computer vision module is ignored. The
exoskeleton is manually controlled by the user at all times.

• Fixed Semi-Autonomous Control—A fixed level of autonomy is used
where the system will take over control of the exoskeleton when the
user presses and holds the “auto grasp” button in the ITCI layout (Fig-
ure D.2c). While doing so, input from the computer vision module
guides the hand of the exoskeleton towards the most likely object to
grasp.

• Adaptive Semi-Autonomous Control—The system will at all times as-
sist the user in controlling the exoskeleton. The level of autonomy is
adapted based on a confidence measure related to the certainty of the
intent prediction from the computer vision module. A high certainty of
the predicted intention being correct will result in a high confidence and
the system will provide more assistance. In low-confidence scenarios,
the opposite is true, and the system will provide little to no assistance.
If the user does not activate the tongue interface the system does not
move. The “auto grasp” button does nothing in this control scheme.

Fixed Semi-Autonomous Control

The fixed scheme for the semi-autonomous control switches from manual to
automatic control as long as the user presses and holds the “auto grasp” but-
ton on the ITCI layout, as shown earlier in Figure D.2c. Having to press and
hold the button instead of only pressing the button once is a safety measure
as it provides an intuitive and easy way to stop the automatic control of the
exoskeleton by simply letting go of that button. It also reduces the impact of
random noise activating the “auto grasp” button or the user activating it by
mistake. Both scenarios can easily occur, especially when learning to use the
ITCI.

Once the automatic control is activated, the exoskeleton will move to-
wards the target object as detected by the computer vision module. The ex-
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oskeleton will move the hand towards the detected grasp pose linearly while
controlling both the position and orientation. While using the automatic con-
trol, the exoskeleton will avoid collisions with the table as an added safety
measure. The actuation of the hand open/close of the Carbonhand is not
part of the automatic control and will have to be activated manually by the
user.

Adaptive Semi-Autonomous Control

The adaptive scheme for the semi-autonomous control relies on continuously
blending input from the user and input from the computer vision module
based on a confidence measure. This confidence measure is based on calcu-
lating the similarity of the command received from the user with the intention
predicted by the computer vision module.

All commands from the user for manually moving the exoskeleton (up,
right, forward, and so on) can be described in 3D using the vector ~Ux,y,z. As
only the direction of the user input is considered for calculating the confi-
dence, the normalized vector, Û, is used. A similar vector can be formulated
for the computer vision module, ~Cx,y,z, which describes how the position of
the exoskeleton’s end-effector should change in order to reach the grasp pose
for the predicted target. The direction of this vector from the computer vi-
sion module is expressed as the normalized vector, Ĉ. The confidence is then
measured using the scalar product between these two normalized direction
vectors:

ρ(Û, Ĉ) =
(
Ĉ · Û

)
+ 1

2
. (D.1)

The addition and division of the scalar product between the two direction
vectors serves to normalize the resulting scalar to a value between 0 and 1.
A high confidence indicates that the user and the computer vision want to
move in the same direction and vice versa. A confidence measure of 0.5 or
below corresponds to an angle of 90o or more between the direction from the
user input, Û, and the direction from the computer vision module, Ĉ.

The adaptive semi-autonomous control relies on the above confidence
measure to arbitrate the control of the exoskeleton between the user and the
computer vision module. This arbitration is performed using a linear blend-
ing [26] between the input from the user and the input from the computer
vision module:

~Ex,y,z,θ = (1 − α)~Ux,y,z,θ + α~Cx,y,z,θ (D.2)

where α is the arbitration factor controlling the blending, such that the user is
completely in control of the exoskeleton when α = 0, and vice versa. ~Ex,y,z,θ is
the output used to actuate the exoskeleton in terms of a linear velocity x, y, z
and an angular velocity θ for the wrist rotation. Only the angular movement
around the wrist is considered in the above blending because the user is
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limited to wrist rotation only, as explained earlier in Section 3.1. Lastly, ~E, ~U,
and ~C are velocity vectors and hence not normalized.

Finally, the arbitration factor α for the adaptive semi-autonomous control
is dependent on the confidence measure ρ, as shown in Figure D.6. The main
property of the selected arbitration curve was to ensure that the confidence
reached an acceptable level before providing any assistance. No assistance is
provided at all until the confidence measure ρ > 0.5, which corresponds to
an angular difference of less than 90◦ between the direction vectors from the
user and the computer vision module.

The selected arbitration curve is inspired by another study [26] that tested
a very aggressive arbitration curve with a sudden jump in the arbitration
factor against a more timid one with a gradual change. Their results indicated
that the aggressive one worked well in scenarios where the task was difficult
and the intent prediction was correct. However, for all other scenarios the
timid arbitration curve was to be preferred in terms of task completion time
and user preference. The arbitration curve for the adaptive semi-autonomous
control was hence designed to be more timid with a gradual change in the
arbitration factor.
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Fig. D.6: The behavior of the different control schemes is illustrated using an arbitration curve.
The non-autonomous control (non) is fixed at α = 0 as the human is always in control. The curve
for the adaptive semi-autonomous control (adp) is given by the function α = max(0, 2ρ− 1). The
fixed semi-autonomous control (fix) is characterized by a sudden jump from the human being in
control to the system being in control, which is triggered when the user presses the “auto grasp”
button.

The behavior of the two other control schemes can also be illustrated using
an arbitration curve, as also shown in Figure D.6. For the non-autonomous
control, the user is always in full control and the computer vision provides
no assistance. The arbitration factor is hence fixed at α = 0, i.e., the human
is in control, no matter what the confidence of the system is for this control
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scheme. The arbitration curve for the fixed semi-autonomous control is also
fixed at α = 0 with the exception of a sudden jump to α = 1. This jump
illustrates the behavior of the fixed semi-autonomous control which takes
complete control of the exoskeleton while the user presses and holds the
“auto grasp” button. The confidence measure for the fixed semi-autonomous
control can hence also be viewed as a step function, where ρ = 1 when the
user is pressing and holding the “auto grasp” button, and ρ = 0 otherwise.

4 Evaluations

To test the developed system, two studies were conducted; study A included
10 participants without tetraplegia and study B included 7 participants with
tetraplegia. The overall structure of both studies is described in this section
and the points where the two studies differ are described in more detail later.

The purpose of the study is to test the following hypotheses:

• H1: “The adaptive semi-autonomous control is better than the non-autonomous
control”.

• H2: “The fixed semi-autonomous control is better than the non-autonomous
control”.

• H3: “The adaptive semi-autonomous control is better than the fixed semi-
autonomous control”.

Whether a respective control scheme can be considered better than the
others is assessed using different performance metrics and questionnaires,
described later in Sections 4.2 and 4.3.

4.1 Setup

An example of the setup using during both studies can be seen in Figure
D.7a, where the participant is placed in a wheelchair while the exoskeleton
is attached to their right arm. The length of each link in the exoskeleton was
adjusted to fit the participant and the kinematic model of the exoskeleton
was updated accordingly. Once the exoskeleton was attached, the partici-
pant was asked to complete a small calibration procedure to find the center
point of their hand. This was necessary as the soft nature of the Carbonhand
meant that the participant’s hand did not always end up in the same loca-
tion. The calibration procedure consisted of grasping a bottle with a known
position and orientation and was repeated each time the participant wore the
exoskeleton.
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(a) The test setup. (b) The objects for grasping.

Fig. D.7: An overview of the test setup. (a) The participant is placed in a wheelchair with the
exoskeleton attached to the right arm in the starting position. In front of the participant is a table
with different objects to grasp. (b) The two objects used in the studies for the task of grasping: a
plastic strawberry and a plastic bottle. The objects can be placed on the two predefined positions
marked on the table below the objects.

The participant was seated at a table with a computer screen, the wireless
receiver for the tongue-based interface, several ArUco markers, and the ob-
jects to interact with. The computer screen is used to provide visual feedback
to the user during the experiment. The screen displayed visual feedback for
the tongue-based interface while the user learned to control it during the first
days of the study. When testing the control schemes, the screen is only used
to display the current control scheme to the participant. The ArUco mark-
ers were added to make it possible to cross-reference recorded images and
videos from multiple sources.

Finally, the objects on the table included either a plastic bottle or a plastic
strawberry, as shown in Figure D.7b. Both objects are bright red to make de-
tection easier. These two objects could be placed in two predefined positions,
as illustrated by the markers under each object. The choice of using a straw-
berry and a bottle was to have a larger object which was easy to grasp and to
have a smaller object which would be more difficult to grasp. Grasping the
strawberry would, in most cases, require the participant to rotate the wrist of
the exoskeleton. This was not necessary in the case of the bottle.

Four possible test scenarios were constructed from these two objects:

• Bottle—Single: Only the bottle is present in one of the two predefined
positions. The user must grasp and lift the bottle.

• Strawberry—Single: Only the strawberry is present in one of the two
predefined positions. The user must grasp and lift the strawberry.

• Bottle—Multi: Both the bottle and the strawberry are present and

161



Paper D.

placed in the two predefined positions. The user must grasp and lift
the bottle.

• Strawberry—Multi: Both the bottle and the strawberry are present and
placed in the two predefined positions. The user must grasp and lift
the strawberry.

The test scenarios were constructed to create both easy and difficult situ-
ations. In easy scenarios, with only a single object, the intention prediction
would always be correct. In the more challenging scenarios, with two objects,
the intent prediction could possibly be wrong, and the participant would also
have to avoid collision with the object not to grasp. Furthermore, the test sce-
narios involving the strawberry are anticipated to be more difficult due to its
smaller size and as it requires using the wrist rotation of the exoskeleton in
order to grasp it.

Each trial started with the exoskeleton being in a predefined home posi-
tion, as shown in Figure D.7a. The participant was then told what control
scheme was active, and what object to grasp and lift; afterwards, they could
start moving the exoskeleton. The start of each trial is marked by the partici-
pant starting to move the exoskeleton, and the trial ends once the participant
has grasped and lifted the object from the table for a few seconds. The trial is
restarted if it is deemed impossible to finish the trial successfully. The most
common occurrence was situations where an object was accidentally pushed
outside the reach of the exoskeleton by the participant.

4.2 Performance Metrics

During each trial, the following metrics were measured to assess the perfor-
mance of participants in controlling the exoskeleton:

• Time—How long it takes the participant to finish the task, measured
from when the exoskeleton is first actuated until the participant has
grasped and lifted the target object.

• Commands—The number of changes in issued commands during the
different tasks. Repeatedly pressing the same button on the tongue-
controlled interface would hence not count towards this number. Only
commands different from the previous command are counted.

• Cartesian Travel—The length of the path traveled by the end-effector,
i.e., the Carbonhand, during the tasks as measured in Cartesian space.
The Cartesian position of the end-effector at each time instant is found
using the forward kinematics of the exoskeleton.
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4.3 Questionnaires

Two questionnaires were used to assess the intuitiveness and performance of
the three tested control schemes. The first questionnaire is the INTUI [35]
questionnaire to assess the intuitiveness of completing the tasks when using
the different control schemes. It consists of 16 questions where the partic-
ipant is asked to rate opposite statements on a 7-point scale. The second
questionnaire is the raw NASA-TLX (NASA Task Load Index) [36] to assess
the workload as perceived by the participant when controlling the exoskele-
ton using the different control schemes. In the questionnaire, the participant
is asked to rate workload based on five factors: mental demand, physical de-
mand, temporal demand, performance, effort, and frustration. Each of these
factors is graded on a 21-point scale between two opposite statements, e.g.,
“Very High” and “Very Low”.

Both questionnaires were provided after conducting the last experiment
on the last day. The participant was asked to score the different control
schemes simultaneously on the same question in the questionnaires, as op-
posed to separate and successive questionnaires for each control scheme. This
was a deliberate choice as separate and successive questionnaires could make
it hard for the participant to keep track of previous scoring and the main pur-
pose was to find the difference between the control schemes.

4.4 Statistics

The following describes the post-processing of the metrics and, namely, the
statistical analysis of the collected data. The performance metrics measured
during the trials, i.e., time, commands, and Cartesian travel, were first grouped
based on participant ID, what object to grasp (strawberry or bottle), and
whether there was a single object or multiple objects in the scene. This re-
sulted in four groups for each participant, with six samples for each of the
three control schemes. Many repetitions per group were performed to avoid
problems with outliers. To also avoid problems with pseudo replication, i.e.,
artificially inflating the number of samples and hence the power in the statis-
tical analysis, only the mean of these samples is used for each group in the
following statistical analysis.

All the measured performance metrics were found to be positively skewed
and hence log transformed. Afterwards, the normality of the transformed
data was then confirmed using Shapiro–Wilk’s test. A one-way repeated
measures ANOVA with the three control schemes were factors used to test
for significance. Mauchly’s test was used to test for sphericity and in the
case where sphericity was violated, the Greenhouse–Geisser correction was
used. Post hoc analysis was conducted for each of the metrics which showed
significance in the repeated measures ANOVA test. These post hoc tests
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consisted of pairwise comparisons among the different conditions, i.e., the
three control schemes, using Bonferroni correction.

The data from the TLX and INTUI questionnaires were tested for signif-
icance using the nonparametric Friedman test. This was followed by a post
hoc analysis using the Wilcoxon signed rank tests between each unique pair-
ing of the three control schemes. Bonferroni correction was applied in this
post hoc analysis as well. Nonparametric tests were used, as both question-
naires rely on an ordinal scale. It should be noted that a significance level of
p = 0.05 is used throughout the discussion of the results in regard to whether
a result was statistically significant or not.

5 Study A—Without Tetraplegia

A total of 10 participants without tetraplegia were recruited for study A.
The recruited participants consisted of 1 female and 9 males within the age
range of 19–34, with the average age being 25 years. None of them had any
connections to the departments of the respective authors.

The participants in study A did not have tetraplegia and were therefore
asked to relax both their hand and arm entirely when using the system. This
was performed to replicate the intended use case of the system, where an in-
dividual with tetraplegia would control the exoskeleton. Furthermore, elec-
tromyography (EMG) was recorded at all times during the study to ensure
that the participant did not move their hand or arm independently of the
exoskeleton by accident. The EMG was recorded using a Myo armband [37]
placed on the right upper arm of the participant. After mounting the Myo
armband, the participants were asked to repeatedly flex their biceps. These
measurements served as a reference for the maximum muscle activation that
the participant was capable of. Anytime the measured EMG of a partici-
pant would exceed just 20% of the measured maximum muscle activation,
the participant would be instructed to relax and possibly repeat any ongoing
task.

All participants had received three days of training in using the ITCI for
controlling the exoskeleton 4–5 weeks prior to the study, as previous studies
on the ITCI have shown that long resting periods are beneficial when learning
to use the tongue-based interface [38]. Besides the prior training in using the
ITCI, study A consisted of two consecutive days where the first day was
used to train using the three different control schemes and refresh how the
tongue-based interface worked. In the last day, the participants used the
three different control schemes to complete the four test scenarios described
earlier, where they had to grasp and lift either a bottle or a strawberry. This
was repeated six times to counteract outliers, as also described earlier in
Section 4.4.
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The ordering of the test scenarios was completely randomized, and the
used control scheme was randomized such that the same control scheme
could not appear more than twice in a row before using another control
scheme. This was performed to avoid having large concentrations of a spe-
cific control scheme at the start or end of the study which could skew the
data.

5.1 Study A—Performance Results

The results of using the one-way ANOVA test with repeated measures on
the performance metrics collected during study A can be seen in Table D.1.
The results show that the used control scheme has a statistically significant
effect. This is true for all of the four tested scenarios and for all of the three
measured performance metrics.

Table D.1: Study A—Result of running a one-way ANOVA test with repeated measures for each
of the four different scenarios and the three different performance metrics.

Time (Seconds) Commands (Integer) Cartesian (Meters)

Bottle Single
F(2,18) = 14.35,

p < 0.001
F(2,18) = 17.06,

p < 0.001
F(2,18) = 28.1,

p < 0.001

Strawberry Single
F(2,18) = 65.49,

p < 0.001
F(2,18) = 35.45,

p < 0.001
F(2,18) = 16.11,

p < 0.001

Bottle Multi
F(2,18) = 5.67,

p = 0.012
F(2,18) = 9.09,

p = 0.002
F(2,18) = 7.0,

p = 0.006

Strawberry Multi
F(2,18) = 30.16,

p < 0.001
F(2,18) = 17.26,

p < 0.001
F(2,18) = 5.72,

p = 0.012

The ANOVA test was hence followed up by a pairwise comparison be-
tween the three different control schemes as the selection of control schemes
was found to have a statistically significant effect. The results of the pairwise
comparison are shown in Table D.2, where the mean percentage-wise perfor-
mance increase is reported for each pair being compared, for each metric and
for each of the four scenarios used in the study.

For the comparison between the non-autonomous and the adaptive semi-
automatic control, in Table D.2a, it can be seen that adaptive semi-automatic
control results in an improved performance across all 12 cases, with 9 of
these being significant and another being close to the threshold of p < 0.05.
It would hence suggest that the hypothesis, H1: “The adaptive semi-autonomous
control is better than the non-autonomous control”, is true with only a few excep-
tions in terms of the performance metrics.

Looking at non-autonomous, i.e., manual, control versus fixed semi-autonomous
control, in Table D.2b the fixed semi-autonomous control results in the best
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Table D.2: Study A —Pairwise comparison between the three tested control schemes. The
mean percentage-wise increase in performance for each comparison is reported, where positive
numbers denote an improvement (i.e., reduction) in favor of the hypothesis. The Bonferroni-
corrected p-value and the 95% confidence interval are reported as well. Bold font indicates
statistical significance for the p-values and an improvement in favor of the hypothesis. Significant
results supporting the hypothesis are marked with green while results supporting the hypothesis
but lacking significance are marked with yellow. Results marked with red do not support the
hypothesis.

(a) Hypothesis H1, adaptive semi-autonomous control (adp)
is better than non-autonomous control (non).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single
37% [6.0, 10],

p = 0.001
37% [1.2, 2.3],

p = 0.007
33% [0.14, 0.2],

p < 0.001

Strawberry Single
58% [19, 31],

p < 0.001
60% [3.9, 8.5],

p < 0.001
38% [0.18, 0.3],

p = 0.001

Bottle Multi
31% [4.9, 10],

p = 0.051
17% [0.52, 1.0],

p = 0.43
30% [0.12, 0.22],

p = 0.026

Strawberry Multi
43% [14, 22],

p < 0.001
44% [2.7, 5.6],

p = 0.003
16% [0.08, 0.12],

p = 0.073

(b) Hypothesis H2, fixed semi-autonomous control (fix)
is better than non-autonomous control (non).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single
18% [3.1, 4.7],

p = 0.046
−4.1% [−0.27,−0.14],

p = 1.0
23% [0.1, 0.13],

p = 0.001

Strawberry Single
46% [14, 25],

p < 0.001
37% [2.6, 5.1],

p = 0.009
25% [0.11, 0.22],

p = 0.074

Bottle Multi
14% [2.2, 4.5],

p = 0.77
−26% [−3.8,−0.56],

p = 0.11
19% [0.07, 0.14],

p = 0.28

Strawberry Multi
49% [15, 26],

p < 0.001
35% [2.4, 4.0],

p = 0.002
28% [0.13, 0.23],

p = 0.034

(c) Hypothesis H3, adaptive semi-autonomous control (adp)
is better than fixed semi-autonomous control (fix).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single
23% [3.0, 5.4],

p=0.09
40% [1.4, 2.4],

p=0.001
13% [0.04, 0.06],

p=0.092

Strawberry Single
22% [4.2, 5.5],

p=0.001
36% [1.8, 2.7],

p<0.001
17% [0.07, 0.09],

p=0.022

Bottle Multi
20% [3.1, 4.9],

p=0.054
39% [1.6, 3.0],

p=0.003
13% [0.05, 0.07],

p=0.1

Strawberry Multi
−10% [−3.9,−1.4],

p=0.96
13% [0.6, 1.0],

p=0.46
−15% [−0.14,−0.04],

p=0.64

performance in 10 out of 12 cases, with 7 of these being significant. The hy-
pothesis, H2: “The fixed semi-autonomous control is better than the non-autonomous
control”, is hence not entirely implausible but it cannot be confirmed either.
The cases where the fixed semi-autonomic control is significantly better than
non-autonomous control are primarily the scenarios involving the strawberry.
This scenario is also difficult as the wrist of the exoskeleton needs to be ro-
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tated to grasp the strawberry. It could hence indicate that the fixed semi-
autonomous control is beneficial once the task reaches a certain level of diffi-
culty.

For the comparison between the adaptive and the fixed semi-autonomous
control, shown in Table D.2c, the adaptive scheme results in the best perfor-
mance in 10 out of 12 cases, with five out of these cases being significant
and another being close to p < 0.05 significance threshold. It is hence not
possible to decisively confirm or deny the hypothesis, H3: “The adaptive semi-
autonomous control is better than the fixed semi-autonomous control”. However, it
can be argued that this hypothesis is true for some scenarios, such as the one
with a single strawberry which resulted in a significant improvement across
all metrics.

Finally, the measured performance metrics from the last day of study A
are shown as box plots in Figure D.8. Each plot is split based on the four
different scenarios used during the study. Any pairwise significance between
the three control schemes is indicated with asterisks in the plots.
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Fig. D.8: Study A—Box plots for the performance metrics; (a) completion time, (b) number of
commands used, and (c) Cartesian travel. Lower is better for all three metrics. Any significance
between the different control schemes is indicated using asterisks (* = p < 0.05, ** = p < 0.01,
and *** = p < 0.001).
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5.2 Study A—Questionnaire Results

At the end of study A, each participant had to answer the INTUI and the
NASA-TLX questionnaires. These questionnaires serve to evaluate the intu-
itiveness of the control schemes and how demanding it was to complete the
tasks when using the different control schemes. Applying the Friedman test
showed a statistically significant difference in the scores depending on the
used control scheme, for both the INTUI (X2(2) = 14.824, p < 0.001) and
NASA-TLX (X2(2) = 15.846, p < 0.001).

A post hoc analysis of the results was performed using Wilcoxon, with
Bonferroni correction for multiple comparisons, to identify statistical signif-
icance between the three control schemes. The results for the INTUI ques-
tionnaire show a statistically significant difference when comparing the non-
autonomous control with either the adaptive semi-autonomous control (Z =
−2.67, p = 0.024) or fixed semi-autonomous control (Z = −2.67, p = 0.024).
This statistical significance is also indicated in the box plot of the scores
shown in Figure D.9a. From the box plot it is also clear that the significant
difference is an improvement, i.e., an increase in the score, in favor of both
the adaptive and fixed semi-autonomous control. However, there is little to
no difference when comparing the adaptive and the fixed semi-autonomous
control, and no statistical significance was found (Z = −0.341, p = 1.0).

1 2 3 4 5 6 7
INTUI score (higher is better)

*
*

(a) INTUI.

0 5 10 15 20
NASA-TLX score (lower is better)

*
*

non
adp
fix
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Fig. D.9: Study A—Box plots of the scores for the different control schemes from the two ques-
tionnaires; (a) INTUI measuring intuitiveness (higher is better) and (b) NASA-TLX measuring
the task load (lower is better). Any significance between the different control schemes is indi-
cated using asterisks (* = p < 0.05, ** = p < 0.01, and *** = p < 0.001).

A similar trend is seen for the results of the NASA-TLX questionnaire in
Figure D.9b. There is a clear and significant improvement, i.e., decrease, in
the task load when using either the adaptive semi-autonomous control (Z =
−2.807, p = 0.015) or the fixed semi-autonomous control (Z = −2.805, p =
0.015) in comparison to the non-autonomous control. The results of the com-
parison between the adaptive and fixed semi-autonomous control are similar
to what was observed for the INTUI questionnaire as there is no significant
difference (Z = −1.423, p = 0.465).
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The results for the two questionnaires would have suggested that both
hypotheses, H1: “The adaptive semi-autonomous control is better than the non-
autonomous control”, and H2: “The fixed semi-autonomous control is better than
the non-autonomous control”, are true. The last hypothesis, H3: “The adaptive
semi-autonomous control is better than the fixed semi-autonomous control”, cannot
be confirmed based on the results from the questionnaires.

6 Study B—With Tetraplegia

Study B included 10 individuals with varying degrees of tetraplegia, but all
of them had to fullfill the following criteria:

• Reduced or no function in their upper body, especially their right arm
and hand, where the exoskeleton had to be mounted.

• Tongue must be functional such that the tongue-based interface can be
used.

• While seated and without assistance they must not be able to grasp and
lift a bottle of water placed on a table.

However, 3 of the 10 participants had to be omitted from further data
analysis due to incomplete data. The cause of the incomplete data was due to
fatigue by the participants, at which point it was deemed best to cut the cur-
rent session shorter. Study B was subsequently reduced to only include two
out of the four scenarios previously used in study A to avoid situations such
as this. The more difficult scenarios with two objects present were skipped
and only the scenarios with either a single bottle or a single strawberry were
tested. The data analysis of study B is hence based on the seven participants
with complete data, after reducing the number of tested scenarios. These
participants had a mean age of 55 years, ranging from 23 to 69, with one
female.

The structure of study B consisted of three consecutive days: in the first
day, the participants trained to use the ITCI on a simulation of the exoskeleton
and in the second day they continued their training on the real exoskeleton.
The third and final day was used to train using the different control schemes
and conduct the final test of the system.

Study B was hence two days shorter than study A and with one of the
days training on a simulation of the exoskeleton. Furthermore, all days were
right after each other, unlike study A, which included an intermediate period
of rest for several weeks. The setup for study B was not ideal and did omit
many of the considerations from study A, but it was a matter of making it
feasible for individuals with tetraplegia to participate. The structure of study
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B was hence condensed to minimize the amount of time that the participants
would have to travel and/or stay in a hotel.

6.1 Study B—Performance Results

The result of applying one-way ANOVA with repeated measures on the per-
formance metrics collected for study B is shown in Table D.3. Statistical
significance was found for both the tested scenarios and for all the three col-
lected performance metrics.

Table D.3: Study B—Result of the one-way ANOVA test with repeated measures for each of the
four different scenarios and the three different performance metrics.

Time (Seconds) Commands (Integer) Cartesian (Meters)

Bottle Single
F(2,12) = 15.58,

p < 0.001
F(2,12) = 5.54,

p = 0.02
F(2,12) = 6.77,

p = 0.011

Strawberry Single
F(2,12) = 11.28,

p = 0.002
F(2,12) = 8.32,

p = 0.005
F(2,12) = 6.42,

p = 0.013

A pairwise comparison between the three control schemes was carried out
to identify any statistical significance between the control schemes. The re-
sults of this comparison are shown in Table D.4, reporting the mean percentage-
wise increase in performance, the associated p-values, and confidence inter-
vals with Bonferroni correction. The same color scheme is used as previously
described for the results in study A.

For the comparison between the non-autonomous control and the adap-
tive semi-autonomous control, the adaptive semi-autonomous improves per-
formance across all six of the tested cases. Statistical significance is found
in three out of six of these cases. The results are somewhat similar for
the comparison between the non-autonomous control and the fixed semi-
autonomous control, where the latter improves performance across all six of
the tested cases as well. Furthermore, four out of these six cases are statis-
tically significant. The performance metrics from study B do hence indicate
the plausibility of hypothesis H1: “The adaptive semi-autonomous control is bet-
ter than the non-autonomous control”, and especially hypothesis H2: “The fixed
semi-autonomous control is better than the non-autonomous control”, without ulti-
mately being able to outright confirm them. Finally, for the comparison be-
tween the adaptive and the fixed semi-autonomous control, there is an equal
split between which of the two control schemes performed the best. How-
ever, none of these cases were found to have any statistical significance. It is
hence not possible to support hypothesis H3: “The adaptive semi-autonomous
control is better than the fixed semi-autonomous control”based on the results from
study B.
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Table D.4: Study B—Pairwise comparison between the three tested control schemes. The mean
percentage-wise increase in performance for each comparison is reported, along with the asso-
ciated p-value and 95% confidence interval (both Bonferroni-corrected). Statistically significant
p-values are marked with bold. Significant results supporting the hypothesis are marked with
green while results supporting the hypothesis but lacking significance are marked with yellow.
Results marked with red do not support the hypothesis.

(a) Hypothesis H1, adaptive semi-autonomous control (adp)
is better than non-autonomous control (non).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single
41% [12, 27],

p = 0.02
43% [2.4, 8.3],

p = 0.072
41% [8.9, 35],

p = 0.22

Strawberry Single
54% [23, 57],

p = 0.004
56% [4.7, 16],

p = 0.014
33% [0.17, 0.45],

p = 0.099

(b) Hypothesis H2, fixed semi-autonomous control (fix)
is better than non-autonomous control (non).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single
53% [14, 39],

p = 0.009
42% [2.3, 8.7],

p = 0.1
53% [12, 45],

p = 0.02

Strawberry Single
54% [17, 78],

p = 0.048
50% [3.5, 17],

p = 0.089
31% [0.18, 0.38],

p = 0.048

(c) Hypothesis H3, adaptive semi-autonomous control (adp)
is better than fixed semi-autonomous control (fix).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single
−21% [−13,−2.2],

p = 0.35
0.37% [0.01, 0.04],

p = 1.0
−21% [−12,−2.4],

p = 0.8

Strawberry Single
−0.29% [−0.17,−0.05],

p = 1.0
12% [0.47, 2.0],

p = 1.0
2.6% [0.01, 0.02],

p = 1.0

The measured performance metrics from the last day of study B are shown
in Figure D.10, along with the results from the last day of study A for com-
parison. Only the two scenarios with a single bottle and a single strawberry
are shown, as the scenarios with multiple objects were skipped for study B.
Pairwise significance between the three control schemes are indicated with
asterisks in the box plots, as previously. Looking at the performance metrics
for study B, the difference between the three control schemes appears similar
to the pattern observed for study A. Using either of the two semi-autonomous
control schemes improves all the performance metrics in comparison with
the non-autonomous control. However, most of the metrics from study B
also appear to be higher than for study A, suggesting a worse performance
in general for participants in study B.
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Fig. D.10: Box plots for the performance metrics for both study A and B in the scenarios with
only single objects; (a) completion time, (b) number of commands used, and (c) Cartesian travel.
Lower is better. Any significance between the different control schemes is indicated using aster-
isks (* = p < 0.05, ** = p < 0.01 and *** = p < 0.001).

6.2 Study B—Questionnaire Results

The results of applying a Friedman test to the scores from the NASA-TLX and
INTUI questionnaires from study B indicated statistical significance between
the control schemes for both INTUI (X2(2) = 8.222, p = 0.016) and NASA-
TLX (X2(2) = 10.333, p < 0.006). However, post hoc analysis using Wilcoxon
signed rank tests showed no statistical significance between any of the con-
trol schemes once adjusting for multiple comparisons using Bonferroni cor-
rection. Despite the lack of significance, the scores do differ for the three
control schemes, as shown in Figure D.11. For both INTUI and NASA-TLX,
the non-autonomous control scheme appears to perform the worst while the
fixed semi-autonomous control performs the best across both questionnaires.
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Fig. D.11: Study B—Box plots of the scores for the different control schemes for the two ques-
tionnaires; (a) INTUI measuring intuitiveness (higher is better) and (b) NASA-TLX measuring
the task load (lower is better).

7 Discussion

Looking at the pairwise comparison for the performance metrics from study
A (Table D.2), there appears to be a trend of the scenarios with multiple ob-
jects lacking significance and vice versa. For the multi-object scenarios, there
is a lack of statistical significance in 11 out of 18 cases, whereas it is 4 out of
18 cases for the single object scenarios. Another interesting observation in re-
lation to this is how the different control schemes behave when moving from
a scenario with only a single object to one with multiple objects. In the case
of the non-autonomous control scheme, the introduction of multiple objects
does not seem to alter any of the measured performance metrics much. The
opposite is true for both the adaptive and fixed semi-autonomous control,
as most of their metrics in Figure D.8 appear to increase when introducing
multiple objects. This is expected, as having multiple objects in the scene re-
quires the system to predict the intention of the user. However, these results
indicate that improving the current approach for intention prediction could
be beneficial.

The current method for intention prediction can be considered amnesic
as it relies solely on the current state, i.e., where the object is in relation
to the hand right now. It could be beneficial to use prior information in a
memory-based approach for the intent prediction, such as considering the
entire trajectory traveled by the hand so far [25, 26].

The idea of having two different objects in the two studies was to provide
varying levels of difficulty. Looking at the results from both studies A and B,
in Figure D.10, it appears that this choice was successful as some scenarios
are clearly more difficult than others when using the manual control scheme.
For example, the strawberry generally takes a longer time and requires more
commands to pick up as compared to the bottle. This is not surprising as the
small size of the strawberry often requires a pincer grasp where the wrist of
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the exoskeleton needs to be rotated. The bottle can instead be grasped using
a palm grasp where there is no need to rotate the wrist of the exoskeleton.
In further studies, it may hence be beneficial to include even more of these
difficult tasks as the benefits of using semi-autonomous control are more
pronounced in these cases. This is also clear when looking at the pairwise
comparisons for both study A (Table D.2) and study B (Table D.4), where the
scenarios involving a strawberry account for the majority of the statistically
significant results. This observation of semi-autonomous control being more
beneficial for difficult tasks has been made in several other studies as well [18,
20].

However, this difference in performance between grasping the strawberry
and the bottle is less apparent for the adaptive and fixed semi-autonomous
controls. A possible explanation is the fact that both these two control schemes
can simultaneously adjust both the position and orientation of the exoskele-
ton. Performing simultaneous control of both the position and orientation
is not possible for the non-autonomous control as it would require issu-
ing two commands at once, which is not possible due to the nature of the
tongue-based interface. The simultaneous adjustment of both position and
orientation is hence a clear benefit of using either the adaptive or fixed semi-
autonomous control instead of the non-autonomous, i.e., manual, control.

In the results for the performance metrics from study B, there is no signif-
icant difference between the adaptive semi-autonomous control and the fixed
version. This differs from the results found in study A, where the adaptive
semi-autonomous control resulted in a significant reduction in at least a few
cases, especially when considering the number of commands used. Another
major difference between the results of study A and B is a consistent de-
crease in performance for all the different control schemes. In general, the
participants in study B use longer time, more commands, and the hand of
the exoskeleton travels further in comparison to the participants from study
A. This is despite the task being identical and using the exact same system in
terms of both hardware and software. The results from study B also appear
to carry less statistical power than the results found from study A; this is
likely due to the smaller sample size, i.e., number of participants, but also
partly due to a higher amount of noise in the collected measurements for
study B. The presence of more noise is clear when looking at the distribution
of measurements in study A and B in Figure D.10.

A likely explanation for the difference in the results could be the different
structure used in the two studies. In study B, the participants had less time
for training to use the system, both in terms of using the ITCI, learning how
the exoskeleton moves, and how the different control schemes behave. This
could have impacted the performance of the participants in study B as the
ITCI may have a relatively long learning curve [38], even though most learn-
ing takes place within the first 3 days. Another possible factor contributing to
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the different performance between studies A and B could the age difference.
The mean age of the participants in study B is over twice the age of the par-
ticipants in study A (25 versus 55 years). Similar observations were made in a
study on controlling a computer using neck movements, where performance
decreased as the age of the participants increased [39]. This could indicate
that age is indeed a factor when using the proposed system.

Looking at the NASA-TLX and INTUI questionnaires, they confirm many
of the same observations made from the performance metrics for both stud-
ies. For study A, both the adaptive and fixed semi-autonomous control are
significantly better than non-autonomous control in terms of both the INTUI
and NASA-TLX questionnaires. However, there is no significant difference
between the adaptive and fixed semi-autonomous control in the question-
naires in study A. This is despite the performance metrics indicating some
significance in at least certain scenarios.

It is possible that making the questionnaires more fine-grained, e.g., one
for each of the scenarios, would have yielded a significant difference between
the adaptive and fixed semi-autonomous control in some cases, similarly to
what was observed for the performance metrics. However, such an approach
was deemed infeasible as it would require the participants to answer four
times as many questionnaires.

The INTUI and NASA-TLX results from study B show a more pronounced
difference between the adaptive and fixed semi-autonomous control for both
questionnaires in comparison to study A. This may be altered slightly if the
learning of using the ITCI had been completed as further learning takes place
after the currently used 3–5 days. This difference lacks statistical significance,
but it could indicate that users without much training, i.e., study B, prefer the
fixed semi-autonomous control, whereas there is no clear preference between
the adaptive and fixed semi-autonomous control for users with more train-
ing, i.e., study A. The difference between study A and B in terms of the
questionnaires could once again be related to a combination of less training
for participants in study B and the age difference between the two groups
of participants. This could indicate that it would have been beneficial to run
study B using the same structure as study A and preferably with a younger
age group. However, at the time when study B was conducted, this was not
possible, but it is something to keep in mind for future studies.

Finally, the current system relies on classic image processing techniques
when performing object detection for the sake of producing reliable results
in a controlled environment. This approach will hence not work well in an
unconstrained environment with unknown objects, such as the home of an in-
dividual with tetraplegia. This shortcoming may be remedied by using deep
learning approaches [30, 31] trained on vast datasets [32] or applying meth-
ods for object-agnostic grasp detection, which should work for any arbitrary
object [40, 41].
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8 Conclusions

Three control schemes with varying degrees of autonomy were implemented
and used in the context of performing tongue-based control of an upper limb
exoskeleton for individuals with tetraplegia. Computer vision was used to
detect nearby objects to infer the intention of the user. The confidence of this
prediction was used by an adaptive semi-autonomous control to continually
adjust the amount of assistance provided when controlling the exoskeleton.
The adaptive semi-autonomous control was tested against non-autonomous
(i.e., manual) control and fixed semi-autonomous control, where the level of
assistance was always the same.

The three control schemes were tested across two studies: 10 partici-
pants without tetraplegia and 7 participants with tetraplegia. Both studies
showed a clear improvement when using either the adaptive or fixed semi-
autonomous control instead of the non-autonomous control. The participants
without tetraplegia also showed a significant improvement for several of the
tested tasks when using the adaptive semi-autonomous control instead of its
fixed counterpart. However, the participants with tetraplegia performed bet-
ter with the fixed semi-autonomous control instead of the adaptive one in
many cases. These different results and preferences across the two studies
could be attributed to a much higher average age for the participants with
tetraplegia along with less training in using the tongue-based control as well.

The benefits of using an adaptive versus a fixed level of autonomy for the
semi-autonomous control appear to depend on the user and their amount of
experience in using the system. Nevertheless, the results clearly show that
both the semi-autonomous control schemes are to be preferred over manual
control. Furthermore, using the adaptive semi-autonomous control instead
of the manual non-autonomous control did not appear to have any draw-
backs during the two studies as it was found to improve performance in all
the tested cases. The fixed semi-autonomous control did, on the other hand,
reduce performance in a few cases when compared to the non-autonomous
control.
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1. Introduction

Abstract

We propose a novel multi-pose loss function to train a neural network for 6D pose es-
timation, using synthetic data and evaluating it on real images. Our loss is inspired
by the VSD (Visible Surface Discrepancy) metric and relies on a differentiable ren-
derer and CAD models. This novel multi-pose approach produces multiple weighted
pose estimates to avoid getting stuck in local minima. Our method resolves pose
ambiguities without using predefined symmetries. It is trained only on synthetic
data. We test on real-world RGB images from the T-LESS dataset, containing highly
symmetric objects common in industrial settings. We show that our solution can
be used to replace the codebook in a state-of-the-art approach. So far, the codebook
approach has had the shortest inference time in the field. Our approach reduces in-
ference time further while a) avoiding discretization, b) requiring a much smaller
memory footprint and c) improving pose recall.

1 Introduction

As robotics moves towards flexible and autonomous solutions, computer vi-
sion is gradually playing a bigger role in robotic solutions, especially for
6D pose estimation. This topic has actively been researched in the robotics
community [1] for many years, as the pose of an object is very useful when
figuring out how to interact with it. Pose estimation is useful in other areas
as well, e.g. in augmented reality.

However, it is still a challenging problem, and pose estimation has hence
been the focus of many public datasets and challenges issued by the commu-
nity. One challenging aspect of pose estimation is the symmetry of objects,
as it complicates both the process of labeling the data and constructing meth-
ods that can adequately deal with these ambiguities in the object pose. The
T-LESS dataset [2] is an industry benchmark for this problem, featuring 30
industry-like objects with multiple symmetries, examples shown in Fig. E.1.
Estimating poses from the T-LESS dataset is also more challenging due to
the lack of distinguishable features in the textures of the objects, which could
otherwise help solve pose ambiguities caused by symmetries.

Fig. E.1: Examples from the T-LESS dataset [2]. From left to right: object 2, 30, 5 and 10. The
two left-most objects exhibit continuous semi-symmetries where the two others include discrete
semi-symmetries.
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In this paper we propose an adaptation of the 6D pose estimation ap-
proach in [3, 4], that relies on an autoencoder for feature extraction in a
codebook-based approach. By replacing their codebook with a neural net-
work and utilizing differential rendering [5], we provide a solution that has
a significantly smaller memory footprint, is faster at inference and has im-
proved pose recall when tested on the T-LESS dataset. The solution we
propose does not require discretizing poses and it is therefore more easily
extendable. Like [3, 4] our method is trained on synthetic RGB images ren-
dered from CAD models or reconstructions and requires no labelled data or
predefined symmetries.

Our solution retains many of the properties making [4] interesting for use
in robotics. Low inference time allows real-time execution. Only requiring
RGB images imposes less restrictions on the hardware. Training on synthetic
images makes the process of operating on new objects automatic, with no
need for manual labor.

The main contributions of this paper are:

• We propose a depth-based loss function which inherently handles ob-
ject symmetries without using predefined global symmetries. Our loss
does not require a depth sensor as we leverage a differentiable renderer
to produce depth maps from CAD models.

• We demonstrate that a pose regression network can be trained to do
pose estimation of objects in RGB images using this new loss. We show
that this network can replace the codebook used in [4], thereby avoiding
discretization.

• We introduce a scheme where the network outputs multiple pose esti-
mates and a weighting between them, and we show that this increases
pose recall.

• We show that our pose regression network consumes orders of magni-
tude less memory, results in faster inference and improves pose estima-
tion recall.

2 Related Work

Traditional methods for pose estimation have commonly relied on matching
features, edges and templates [6, 7]. Other approaches use iterative search
to find the pose of an object, such as the widely used ICP (Iterative Closest
Point) algorithm. Due to their iterative nature, ICP and similar methods are
slow, unless optimized for speed [8].

Lately, many of these methods have started to be replaced or comple-
mented by machine learning methods [1, 9–12]. Supervised machine learning
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relies on ground truth labels to estimate performance and generate the loss
that drives the learning. This makes the way in which that loss is affected
by visual traits, like symmetries, an important part of any method for pose
estimation.

An object that is symmetrical or semi-symmetrical has many poses that
are similar. Such poses should often be treated equally. That means that
each input image might match many poses and should not be punished for
predicting one of the symmetries rather than the real ground truth pose. For
example, a cylinder rotated around its major axis should be treated identi-
cally independent of angle, as shown in Fig. E.2a. This problem is especially
important for learning algorithms, as they need a consistent way to evaluate
if a proposed pose is good or bad.

There are however some types of apparent symmetry that are more com-
plex than others. When parts of an object are occluded, either by external
objects or by other parts of the object itself, i.e. self-occlusion, an object can
appear identically for many different poses even if it is not actually sym-
metrical, such as the example in Fig. E.2. Any method that wishes to use
learning to estimate poses for these objects need to address how to resolve
these ambiguities as well.

Machine learning solutions for 6D pose estimation come in many vari-
eties. Some methods focus on comparing the pose they produce directly with
the target pose and predefined global symmetries for each object [13], while
other methods utilize 2D or 3D comparisons as loss metrics to train neural
networks [3, 4, 14]. In the latter cases, objects with symmetries and semi-
symmetries automatically avoid being penalized for miss-classifying along
those symmetries. 2D image comparison methods that only consider visi-
ble parts of the object can handle apparent symmetries that arise from self-
occlusions [3, 4].

Machine learning needs a large amount of data on which to train. For

(a) (b) (c) (d)

Fig. E.2: (a) Rotationally symmetric objects should be treated equally independent of angle
around its major axis. Examples of how symmetries can occur for a mug with a handle. (b)
Handle visible, no pose ambiguity. (c) Self-occluded due to a slight rotation and (d) occluded by
another object, both of these have ambiguities in pose.
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pose estimation, accurate labeling of that data is difficult and costly. To alle-
viate this problem synthetic data can be produced, for instance by rendering
CAD models of target objects together with real images and domain random-
ization [3, 15].

The work in this paper is based on [3, 4] and relies on a similar synthetic
data regime for training. Their work is based on training one or several au-
toencoders for the objects one wishes to estimate the pose of. The latent space
vector produced by the encoder is in their work compared to a codebook of
reference latent space vectors, the closest of which becomes the initial pose
estimate. When higher accuracy is required, the estimate can be improved
by producing extra temporary codebook entries of poses similar to the initial
estimate.

While a codebook is in general a good solution, it has a large memory
footprint, and it requires a discretization of the predictions. By replacing
the codebook in [4] with a pose regression neural network and utilizing dif-
ferential rendering [5] we show that these problems can be alleviated while
simultaneously improving performance.

3 Method

The novel method for 6D pose estimation proposed in this paper is based
on the approach initially proposed by [3, 4]. This method retains the central
element of the autoencoder, but a neural network replaces the example-based
codebook approach for pose regression, as shown in Fig. E.3. The encoder is
a feature extractor, producing a 128-dimensional latent vector from an input
image of an object. The latent vector is provided as input for the pose regres-
sion network. We use the encoder provided by [4]. During training, synthetic
images are rendered based on CAD models or reconstructions, with back-
grounds and augmentation in accordance with domain randomization [15].
This allows the system to be trained on new objects without manual data
collection.

The benefits of replacing the codebook with a neural network are to pro-
vide a continuous pose space instead of having to discretize it into a code-
book while reducing the memory consumption. Furthermore, it should be
more easily extendable than the codebook. The size of a codebook grows
exponentially with the number of degrees of freedom, while a pose estima-
tion network only needs to add three more output parameters to expand a
rotational representation to include e.g. translations in 3D. Our approach
of using a neural network instead of a codebook can be considered a more
general and scalable solution as it does not suffer from these limitations.

The pose regression network is structured loosely on the network pro-
posed by [16]. Their network is designed to estimate the pose of an ob-
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Fig. E.3: Overview of the proposed pose estimation pipeline. During training, synthetic data
are continuously generated by rendering RGB images of the relevant object from a CAD model.
These RGB images are augmented and fed into the encoder part [4], resulting in a latent vector z.
This latent vector z is fed into a pose regression network, consisting of five fully-connected layers,
which outputs n poses P̂1, P̂2, ..., P̂n and associated confidences w1, w2, ...wn. These confidences
are normalized with the softmax function. Depth maps are generated from the poses using
a differentiable depth renderer in order to produce the final loss. During inference, both the
RGB renderer and the differentiable depth renderer are omitted. We use a pre-trained encoder
provided by [4] as the first part of the pipeline.

ject from a feature vector produced from a pre-trained CNN. Their setup
is thus similar to how our pose regression network estimates poses from
the output of a pre-trained encoder. Our network consists of seven fully
connected layers. To maintain training performance with a deeper network,
skip-connections between the first three fully connected layers are added.

Note that our network, shown in Fig. E.3, produces not only one but
multiple pose estimates along with a confidence for each, which is described
in more detail in Sec. 3.2. The network outputs the pose in terms of the
representation proposed by [17], as it performs better than regression directly
on e.g. rotation matrices or quaternions. This pose representation consists of
two vectors in R3, i.e. 6 parameters in total, which are converted into an
orthonormal basis. A 3 × 3 rotation matrix can then be formed using this
basis as column vectors. Using this method also ensures that the resulting
rotation matrix is orthogonal.

During training, each predicted pose is used to render depth images using
CAD models and a differentiable renderer [5]. Those images are in turn
used in the network’s loss function. The motivation for this depth-based loss
function and how it works are described in the following section.

3.1 Single-Pose Depth Loss

The depth-based loss function used in our pose regression network is heavily
inspired by the VSD (Visible Surface Discrepancy) error metric proposed by
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[18, 19]. The VSD metric is defined as:

eVSD(Ŝ, S̄, V̂, V̄, τ) = avg
p∈V̂∪V̄


0, if p ∈ V̂ ∩ V̄ and

|Ŝ(p)− S̄(p)| < τ
1, otherwise

(E.1)

where Ŝ and S̄ are depth maps (called distance maps in [18, 19]) based on
the estimated pose P̂ and the ground-truth pose P̄ respectively. Both poses
have an associated visibility mask, V̂ and V̄, that contains the set of pixels
actually visible in the given test image I. These visibility masks are found
using the real depth map SI for each test image I. It includes all objects in
the scene and can thus be used to determine how those objects occlude each
other. The union of these two visibility masks makes up the set of pixels p
that are considered by the VSD metric and ensures that only visible pixels are
considered. Lastly, τ defines a threshold for the tolerance when comparing
the distance maps Ŝ and S̄.

One of the main benefits of the VSD metric, and why it is often used in
pose estimation benchmarks, is how it inherently can cope with symmetric
objects, as it is solely based on the appearance of the object. I.e., the estimated
pose and the ground truth pose may be off by 180o but the VSD metric would
still report a low error for symmetric objects where such an error will not be
visible. The VSD metric is able to deal with global symmetries, such as dis-
crete and continuous symmetries, but it is also able to cope with symmetries
caused by self-occlusion of the object. Furthermore, the inclusion of the vis-
ibility masks, V̂ and V̄, makes it robust to symmetries caused by occlusion
from other objects in the scene.

The loss function proposed in this paper relies on comparing depth maps.
In an effort to achieve the same benefits as the VSD metric in Eq. E.1 each
pose is evaluated by the loss function:

Lsingle(Ŝ, S̄) = avg
p∈V̂∪V̄

(
min(δ, |Ŝ(p)− S̄(p)|)

δ

)
(E.2)

The value δ serves as a threshold such that there is an upper limit of how
much each individual pixel in the distance maps can contribute to the final
loss. Without this threshold the loss would be dominated by pixels where
the object is present in one of the distance maps but not in the other. This is
similar to comparing silhouettes and is hence not ideal as any distance/depth
discrepancies on the object itself are dominated by the silhouette.

In order to train the pose regression network with backpropagation, this
equation needs to be differentiable with respect to P̂ and thereby Ŝ. Regu-
lar renderers do not produce differentiable output, but some differentiable
renderers have recently become available [5].
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(a)                       (b)                       (c)                        (d)

(e)

Fig. E.4: Visualization of Lsingle for different pose estimates in relation to specific ground truth
pose for object 10. Rotations in the image plane are omitted to get a 2D visualisation. The
global minimum (ground truth) pose is (a), and its 180 deg semi-symmetry is (c). The two most
isolated non-symmetry local minima are given by (b) and (d). The loss landscape is visualized
in (e), ignoring in-plane rotations.

However, one major difference from the VSD metric is how our loss is
continuous instead of being limited to the binary set {0, 1} as is the case of
Eq. E.1. This is necessary as the binary set is essentially a step function and
thus not differentiable.

3.2 Multi-Pose Depth Loss

The loss function described in Eq. E.2 introduces many local minima, as can
be seen in Fig. E.4. These new minima are problematic, as the training of the
network easily gets stuck in them, owing to the output being constrained to
the SO(3) space. Common training methods only consider the local environ-
ment and can therefore not easily overcome these issues. By extending the
network to output multiple pose estimates, along with a confidence associ-
ated to each, this limitation can be circumvented. The final prediction for a
given input is the pose with the highest confidence. As the output confidence
distribution changes, the estimated pose can change drastically, if the set of
predicted poses are spread over the output space. The benefits of multiple
pose estimates are explored in the ablation study in Sec. 4.2.

To bring these concepts together we propose a new loss function L, that
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we call "multi-pose loss". It expands on Eq. E.2, and is defined as follows:

L(Ŝ, S̄, P̂) = Lpose(P̂) +
n

∑
i=1

Lsingle(Ŝi, S̄) · (γ + wi) (E.3)

where wi is the confidence associated with the i’th estimated pose P̂i for the
set of poses P̂, Ŝ the set of depth maps associated with those poses and n is
the number of poses output by the network. The confidences, w1, w2, ...wn,
predicted by the network are normalized using the softmax function. The γ
parameter ensures that pose estimates with a near zero confidence also con-
tribute to the loss. This is necessary to make sure that the network improves
all pose estimates.

The Lpose term in Eq. E.3 forces the network to spread its pose estimates
by penalizing poses that are too similar. This loss is defined as follows:

Lpose(P̂) =
∑RA∈P̂

(
∑RB∈P̂ ∆(RA, RB)

)
n2 (E.4)

where RA and RB are rotation matrices converted from the 6D pose repre-
sentation, and P̂ is the set of predicted poses from the network. The function
∆(RA, RB) is a measure of similarity between the two rotation matrices as
shown in Eq. E.5.

∆(RA, RB) = 1 − min (φ, θ)

φ
(E.5)

with

θ = arccos

(
Tr(RBRT

A)− 1
2

)
(E.6)

where RBRT
A is the rotation matrix needed to transform RA to RB, and Tr(...)

is the trace of this matrix. This similarity measure is essentially a conversion
of the rotation matrix RBRT

A into its corresponding axis-angle representation,
while ignoring the axis of rotation. The threshold φ serves as a boundary,
with rotation matrix pairs that differ by φ or more not contributing any loss,
while loss is maximized for rotation matrices that are identical. It ensures that
the pose regression network has some leeway when predicting the multiple
poses instead of just spreading them uniformly, while punishing poses that
are close to one another.

3.3 Training

Our method is trained solely on synthetic data. Objects from the T-LESS
dataset [2] are rendered in different poses, randomly sampled in SO(3) based
on a uniform sampling of quaternions as done by [3]. CAD models of the
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objects from the dataset are rendered using OpenGL and the resulting images
are augmented in a similar way to [3].

A shared encoder is used for all objects as proposed by [4] and we use
the publicly available pre-trained encoder they supply1. It is trained on 3D
reconstructions of object 1-18 from the T-LESS dataset.

A separate pose regression network is trained for each individual object
using a depth max of δ = 30mm and a pose similarity threshold of φ =
0.7 radians (i.e. ≈ 40o). We render n = 10 poses, per input image and
the minimum loss weight for each pose is γ = 0.01. Each pose regression
network is trained for 200 epochs of 10.000 samples each, using a learning
rate cycle [20] between 0.005 and 0.0005. All these training parameters are
selected through trial-and-error.

It should be noted that all weights in the pre-trained encoder are frozen
when training our pose regression networks. This is done to ensure that
any differences in performance are directly linked to replacing the codebook-
based approach by [4] with our pose regression network, rather than addi-
tional training of the encoder.

4 Evaluation

In the following we evaluate our approach against the one proposed in [4].
We test against the publicly available codebooks and pre-trained encoder
from [4], the same encoder used in our solution. The methods are compared
on their ability to predict correct poses and performance in terms of memory
consumption and inference time.

The pose prediction performance of our method is evaluated on real-
world images from the T-LESS dataset [2] using the scripts provided as part
of the BOP benchmark [21]. We report the recall of each object averaged
across different thresholds for the VSD metric eVSD (defined in Eq. E.1) and
different tolerance thresholds τ.

In this paper we focus on the correctness of the estimated rotation of
the object pose. Errors related to the translation estimate are hence ignored
by using the ground truth translation at all times during evaluation for all
approaches. Furthermore, the ground truth bounding boxes are used to make
the results independent of any errors introduced by an object detector.

4.1 Pose Estimation Performance

In terms of pose recall, the results in Table E.1 show that our method out-
performs [4] on average. Our approach has a higher performance when eval-
uating on object 1-18 in comparison to object 19-30. This is expected as the

1github.com/DLR-RM/AugmentedAutoencoder/tree/multipath
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pre-trained encoder is only trained on object 1-18. The approach by [4] suffers
similarly and to a greater extent than our method, as shown in Table E.1.

In Fig. E.5a an example of our predictions are superimposed on a test
image. Here, objects 5 (yellow), 6 (magenta) and 7 (green) all match the target
well, even though object 7 has a bad overall recall when compared to the two
other objects, as seen in Table E.1. This discrepancy could be explained by
instances as the one found in Fig. E.5b where the pose prediction for object 7
failed, likely due to the partial occlusion by the two objects in front of it.

Occlusion is of course a challenging scenario in general for pose estima-
tion, but our approach appears to be able to handle it well for some objects.
An example of such is the cylinder-shaped objects in Fig. E.6b, where the
predicted poses appear correct even for heavily occluded objects.

In general, our approach performs better on cylinder-shaped objects with
continuous symmetries. This is exemplified in Fig. E.6a where the pose
predictions for the box-shaped objects do not appear to fit as well with the

Table E.1: Average VSD recall for the T-LESS primesense test dataset, for our solution and the
codebook-based solution [4]. The table is split in two parts; object 1-18 for which the encoder
was trained and object 19-30 not seen before by the encoder. Finally, the average VSD recall
across all objects is listed in the lower right corner. Results from our method are shown by the
mean and standard deviation from three experiments.

Obj. Codebook Ours
01 37.82 51.84 ± 2.8
02 51.88 63.74 ± 1.8
03 62.87 71.53 ± 3.3
04 56.00 62.66 ± 3.5
05 77.18 80.82 ± 0.3
06 68.04 66.71 ± 4.6
07 65.18 65.68 ± 4.9
08 63.11 61.21 ± 0.8
09 68.96 55.66 ± 0.5
10 58.55 54.14 ± 2.0
11 52.15 51.48 ± 2.4
12 62.19 56.58 ± 1.6
13 63.56 64.21 ± 5.0
14 57.29 63.01 ± 1.2
15 64.91 66.37 ± 3.8
16 75.82 73.16 ± 2.7
17 76.62 77.72 ± 0.9
18 71.26 62.71 ± 2.0

mean 62.97 63.85 ± 1.2

Obj. Codebook Ours
19 51.19 54.15 ± 1.7
20 40.71 35.96 ± 1.6
21 43.25 43.31 ± 1.4
22 38.15 32.03 ± 0.5
23 39.18 56.68 ± 1.1
24 58.97 61.93 ± 3.3
25 69.86 63.08 ± 1.6
26 57.94 58.87 ± 2.3
27 68.09 77.62 ± 1.2
28 68.06 73.33 ± 1.3
29 76.43 80.67 ± 0.7
30 77.81 83.41 ± 2.1

mean 57.47 60.09 ± 0.4

All Codebook Ours
mean 60.77 62.34 ± 0.9
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(a) Scene 2, image 170. (b) Scene 2, image 490.

Fig. E.5: Colorized renditions of pose predictions superimposed onto images from the T-LESS
test dataset. In (a) the poses for objects 5 (yellow), 6 (magenta) and 7 (green) all fit well, but in
(b) the pose of object 7 is severely wrong. This is probably due to occlusion.

(a) Scene 1, image 190. (b) Scene 20, image 10.

Fig. E.6: Colorized renditions of pose predictions superimposed onto images from the T-LESS
test dataset. The pose predictions for the cylindrical objects in (a) are better than those for
the rectangular objects. In (b) cylinder-shaped objects are well predicted, even though it is a
complicated scene with a lot of occlusion.

test image as the cylinder-shaped objects.
The observation that our approach does better on cylinder-shaped objects

is further supported by Table E.2, showing the average recall when dividing
the T-LESS test dataset into objects with continuous symmetries and objects
without. For objects with continuous symmetries, i.e. cylinder-shaped ob-
jects, our method outperforms [4] by a clear margin. For non-cylindrical
objects there is little difference in performance between the methods.

The performance discrepancy between objects with continuous symme-
tries and those with discrete symmetries could be because cylinder-shaped
objects are easier than other objects to estimate the pose for. This is sen-
sible, as objects with a continuous symmetry around an axis essentially ig-
nore any rotation around that axis. The number of degrees of freedom in
the pose estimation problem are thus less for objects with continuous sym-
metries. This pattern of higher performance for cylindrical objects is also
present in our baseline experiments using the method in [4], but to a lesser
extent. However, for our proposed approach, the difference in performance
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Table E.2: Average VSD recall for the T-LESS primesense test dataset divided into objects with
continuous symmetries and objects with discrete symmetries. Both our and the codebook-based
approach performs better on objects with continuous symmetries. However, the difference in
performance between continuous and discrete symmetries is more pronounced for our method.
Our results are shown with mean and standard deviation as in the previous table.

Codebook [4] Ours
Continuous
symmetries

62.14 67.23 ± 2.7

Discrete
symmetries

59.97 59.51 ± 0.3

between objects with and without continuous symmetries is much more pro-
nounced than for [4]. A possible explanation could be that our depth-based
loss landscape exhibits less of the problematic local minima for objects with
continuous symmetries than for those without.

4.2 Multi-Pose Ablation Study

Through an ablation study we show that using the multi-pose depth loss
(in this case with 10 poses) increases the performance of the pose prediction
recall considerably compared to the single-pose depth loss, as shown in Table
E.3. As we discussed earlier in Sec. 3.2, the single-pose depth loss may be
more prone to get stuck in local minima during training.

Table E.3: Average VSD recall for the T-LESS primesense test dataset with the single-pose loss
function and with the multi-pose loss function (10 poses). Multiple poses increases performance
considerably, especially for objects with discrete symmetries. Results are shown with mean and
standard deviation as in previous tables.

1 pose 10 poses improvement
Continuous
symmetries

57.37 ± 1.6 67.23 ± 2.7 9.86

Discrete
symmetries

50.62 ± 0.9 59.51 ± 0.3 8.89

All objects 53.10 ± 0.6 62.34 ± 0.9 9.24

4.3 Memory Consumption

A comparison of the memory consumption between our approach and the
one by [4] is shown in Table E.4. The memory consumption of both the
encoder and the codebook are taken directly from [4] while the memory
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consumption of our pose regression network is found by calculating the the-
oretical size of the network and confirming it in a PyTorch implementation.
Our approach consumes significantly less memory than [4]. The codebook is
replaced entirely by the pose regression network, where the latter consumes
≈ 70 times less memory.

Loading the necessary encoder, codebooks, and pose regression network
for all 30 T-LESS objects would hence require ≈ 1365 MB for [4] and only
≈ 33 MB for our method. The relative difference gets larger as the number
of objects increases. It should be noted that the reported memory consump-
tion does not include the overhead of loading the different machine learning
frameworks, such as TensorFlow and PyTorch, into memory.

Table E.4: Memory consumption during inference of 30 objects. Our solution consumes ≈ 40
times less memory than the codebook-based solution.

Encoder Codebook
Pose

Regression
Network

Total

Codebook [4]
15 MB

30×45 MB - 1365 MB
Ours - 30×0.6 MB 33 MB

4.4 Inference Time

The inference time of our approach, implemented in PyTorch, is evaluated
against the public codebase by [4], implemented in TensorFlow. All timings
were measured on a laptop equipped with the following hardware: an i7-
7700HQ CPU (2.80GHz) and a NVIDIA GTX 1060 6GB GPU. Note that any
measurements related to the projective distance calculation originally men-
tioned by [4] have been excluded as it is only needed for translation estima-
tion.

Our approach achieves real-time performance with an inference time of
≈ 6.2 ms, to estimate the pose of an object. This is an improvement over the
current state-of-the-art codebook-based approach by [4] which takes ≈ 7.0ms
per object. Replacing the codebook-based approach, and thereby both the
cosine similarity and nearest neighbor computations, with our network, de-
creases inference time slightly. The computation time for the encoder should
be nearly identical for both approaches as the exact same architecture is used
with the only exception being the deep learning framework. Note that the
slight increase in computation time when comparing to the measurements
reported in [4] is due to the differences in hardware used in the two evalua-
tions.
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5 Future Work

The method in this paper predicts the rotation of each object, given a bound-
ing box placing the object in the image. We base our output on a rotation
matrix, but thanks to the differential rendering scheme this can easily be ex-
tended to output both a rotation and translation estimate instead. This could
then be used to do small translation corrections within the bounding box or
even determine the full translation in the input image if larger images are
provided to the encoder. We expect this would improve the final 6D pose
prediction without costly fine-tuning procedures.

Another natural extension for our method is to replace the individual
pose regression networks for each object with a single shared pose regres-
sion network. This would decrease memory consumption further and it is
possible that a pose regression network trained on all objects simultaneously
would generalize better. Another benefit of using a shared pose regression
network is that it does not require classification of the detected objects as our
pose regression network could be trained to also perform the classification.

Our current results are based on freezing the weights of the encoder dur-
ing training of our pose regression networks. It may be possible to increase
the performance of our approach by fine-tuning the encoder or some part of
it while training the pose regression network. Another unexplored option is
to increase the size of the latent space produced by the encoder as it could in-
crease performance of our pose regression network. Keeping the latent space
small makes sense for the codebook-based approach by [4] as the memory
consumption of the codebook scales linearly with it. Our approach is much
less affected by the size of the latent space.

In many applications where our method would be useful, for instance
real-time robotics, inference is done on video rather than independent im-
ages. In that context the system can be improved by integrating the temporal
aspect, though a particle filter or similar methods [22]. For such a solution,
multiple candidates from the multi-pose approach can be utilized.

Finally, we would also like to explore how each pose in our multi-pose
solution behaves as a function of the pose in the input image. One question
is whether each pose estimate is localized to a certain pose region, while the
confidence jumps between them, or if the pose estimates vary more as the
input changes. Analysis similar to the principal component analysis done
by [4] could reveal this, as well as strengths and weaknesses of our approach.

6 Conclusion

In this paper, we proposed a novel multi-pose loss function to train a neu-
ral network to estimate the rotation of an object from an RGB image. This
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loss is constructed such that it accounts for any symmetries, an important
issue in pose estimation, without relying on predefined symmetries. Our
loss is inspired by the VSD (Visible Surface Discrepancy) metric and relies
on evaluating the estimated pose by depth comparison. This solution only
requires RGB images as input, as the depth maps for the loss are produced
by differential renderings of CAD models.

Our network is trained purely on synthetic data. We expand upon an
existing state-of-the-art method which utilizes an encoder and codebook to
estimate poses [4]. We show that our pose regression network can replace
the codebook entirely by directly estimating poses from the output of the
encoder. By making our network output multiple poses together with con-
fidences that selects one of them, we show that the recall, as measured by
the VSD metric, can be increased. When training our network on top of a
pre-trained encoder, shared for all objects, we get a solution that requires a
fraction of the memory and has higher pose recall than the state-of-the-art
codebook-based approach. It is slightly faster and is not limited by a dis-
cretization. Our solution retains or improves many of the interesting proper-
ties for robotic applications such as real-time inference, low memory usage,
training on synthetic data and only requiring RGB images.

Relying on a neural network instead of a codebook should also make
our approach more easily extendable. For instance, integrating a translation
estimate into the pose regression network, or training a single pose regression
network for multiple objects, instead of having separate networks for each
object. These extensions are left for future work.
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1. Introduction

Abstract

In this paper we propose a shared regression network to jointly estimate the pose of
multiple objects, replacing multiple object-specific solutions. We demonstrate that
this shared network can outperform other similar approaches that rely on multiple
object-specific models by evaluating it on the T-LESS dataset using the VSD (Vis-
ible Surface Discrepancy). Our approach offers a less complex solution, with fewer
parameters, lower memory consumption and less training required. Furthermore, it
inherently handles symmetric objects by using a depth-based loss during training
and can predict in real-time. Finally, we show how our proposed pipeline can be used
for fine-tuning a feature extractor jointly on all objects while training the shared pose
regression network. This fine-tuning process improves the pose estimation perfor-
mance.

1 Introduction

6D pose estimation entails identifying both the orientation and position of
an object. These two pieces of information are useful in multiple scenarios,
for instance, the pose of an object could be used for a robotic manipulator to
infer possible ways to interact with that object such as grasping.

One aspect that complicates the process of pose estimation is the presence
of symmetries in some objects, making it hard or impossible to distinguish
some poses from each other. This is exemplified in the T-LESS dataset [1],
which features multiple highly symmetric objects, as shown in Fig. F.1. The
problem of symmetries is further complicated for the type of objects found
in T-LESS, as they lack textures that could help resolve such ambiguities.

Another important aspect of pose estimation is the context in which it is
used, as there is often a trade-off between the accuracy of the estimates and
the inference time. For instance, an approach [2] can produce highly accurate
pose estimates but require several seconds to process a single image crop.
This will not be ideal for some robotic applications, like bin-picking, where
speed is key. Spending several seconds per object in a scene such as the ones
shown in Fig. F.1, would for many applications be unacceptable. In such a
scenario it may be more preferable to use an approach capable of running in
real-time at the cost of a lower pose estimation accuracy [3].

This paper concerns the cases where speed is of the essence. Currently,
one of the fastest [3, 4] approaches rely on a codebook-based approach [5]
which can achieve a high frame rate in most scenarios, making it applica-
ble for purposes requiring real-time execution. This approach has been im-
proved by replacing the codebooks by small object-specific pose regression
networks [6], while relying on a pre-trained feature extractor from the pre-
vious approach. By using these small regression networks, pose estimation
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Fig. F.1: Four scenes from the T-LESS dataset [1] containing highly symmetric objects without
any texture. The dataset contains a total of 30 objects across 20 scenes.

performance is increased and memory consumption is reduced, while main-
taining a low inference time. Another benefit of these approaches is that they
implicitly account for any symmetries that an object might have by consider-
ing the visual similarity of the object when comparing poses.

In this paper we show how a single shared pose regression network can
replace multiple object-specific networks [6]. While doing so, we not only
improve pose estimation performance, but also reduce complexity, memory
consumption and training time.

The main contributions of this paper are:

• We propose a single shared pose regression network, replacing multi-
ple separate object-specific networks. This reduces training time and
memory consumption.

• We evaluate our method against two other approaches, multiple object-
specific networks and multiple object-specific codebooks.

• We show that fine-tuning the pre-trained feature extractor improves the
shared networks pose estimation performance noticeably.

• We show that a shared network can reduce training data needed by a
third and memory usage by half, while running in real time and slightly
improving VSD recall.
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2 Related Work

Traditional methods relying on handcrafted descriptors have been successful
in the area of pose estimation in the recent decade, with many of these meth-
ods relying on depth information for calculating hand-crafted features based
on 3D points [7, 8]. These extracted features are used in various matching
and voting schemes in order to produce pose estimates to align the input
data with predefined models of the objects. However, computing these fea-
tures and the matching process are often quite computationally heavy, and it
can take several seconds to process a single object.

More recent approaches for pose estimation harness the power of deep
learning to produce pose estimates directly from RGB images of the objects
of interest [9, 10]. The drawback of these approaches is the huge amount of
training required, which prompts the need for massive amounts of training
data and expensive computing power.

Furthermore, the process of training these approaches may also prove
troublesome for objects with symmetries due to the resulting pose ambigui-
ties. For instance, training samples may be labeled as having widely different
poses despite looking visually very similar due to symmetries, such as in Fig.
F.2a and F.2b. Some approaches try to counteract this issue by relying on pre-
defined symmetries for each object, such that the pose with lowest error is
always chosen from the set of symmetric poses [9, 10]. However, some sym-
metries are not easily pre-defined as they might occur due to occlusion as
illustrated in Fig. F.2c. Furthermore, identifying pre-defined symmetries of-
ten relies on a manually selected threshold specifying whether two poses are
similar enough to be considered symmetric [4, 9]. This approach does hence
fail to encompass the strength of the symmetries, for instance, how visually
similar two poses might be. For instance, the poses in Fig. F.2a and F.2b may
or may not be considered a symmetry depending on how this threshold is
set.

Yet another solution is to avoid the issues of symmetries by confining
the set of poses in the training data such that any symmetries are avoided
altogether [11, 12]. This approach is similar to relying on pre-defined sym-
metries, as it also relies on specific knowledge about the symmetries of each
object beforehand and therefore will fail to encompass symmetries caused by
occlusion.

A lot of these problems related to symmetric objects can be avoided by
focusing on the visual similarity of the object in the different poses instead of
focusing on the actual poses. Examples of such includes using a codebook-
based approach to identify visually similar poses [5] or training a model
to predict poses which just has to be visually similar to the ground truth
pose [6]. Both of these approaches can implicitly handle symmetric objects
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(a) Rotation: 0o . (b) Rotation: 180o . (c) Occluded.

Fig. F.2: Examples of the same object in multiple poses. The poses depicted in a) and b) appear
visually similar despite a difference of 180o due to the semi-symmetric nature of the object.
Finally, the object in c) is occluded causing the remaining visible part to have a high visual
similarity with the poses depicted in both a) and b).

and do hence not require pre-defined symmetries for each object.
Recently, pose estimation methods have started to rely on deep learning

for solely extracting local feature descriptors across an RGB image of an ob-
ject. These local descriptors are then used to estimate the pose of the object
by solving the PnP (Perspective-n-Point) problem in a RANSAC-like fash-
ion [2, 3, 13]. The actual process of estimating the pose is hence not part of
the training of the DNN (deep neural network) thereby avoiding the issue of
pose ambiguities caused by object symmetries while achieving state-of-the-
art pose estimation performance [2]. However, the process of estimating the
pose from these local descriptors is often a slow process which could take
several seconds per object, just like some of the traditional approaches based
on hand-crafted 3D features [7, 8]. These approaches relying on local features
are hence either impractical or infeasible for real-time applications.

Approaches with a decent pose estimation performance but with low in-
ference time are hence still needed [3]. This is especially important in scenar-
ios where real-time execution is important, which is often the case for e.g.,
robotic applications. Using a codebook-based approach [5] can easily achieve
a frame rate of over 20 FPS in most scenarios, making it applicable for pur-
poses requiring real-time execution. This approach was subsequently further
improved by replacing the codebooks by small object-specific pose regression
networks [6] which preserved the low inference time while reducing memory
usage and increasing the pose estimation performance as well.

3 Method

The work in this paper is based on an approach relying on multiple object-
specific pose regression networks [6] and shows how this approach can be
improved and simplified by replacing the many object-specific networks with

208



3. Method

Shared Pose
Regression 

Networkfe
a
tu

re

Encoder fc

Pose 
Regression 
Network n

Pose 
Regression 

...

Pose 
Regression 
Network 1

fe
a
tu

re

Encoder..
.

..
.

..
.

Image crops Predicted poses

MULTIPLE OBJECT-SPECIFIC NETWORKS

SINGLE SHARED NETWORK

Fig. F.3: Top: Multiple object-specific pose regression networks are trained independently of
each other [6]. These networks rely on a shared feature extractor in the form of the pre-trained
encoder [5]. Bottom: We propose to replace all these object-specific networks with a single shared
pose regression network. Furthermore, we suggest fine-tuning the last fully-connected layer of
the pre-trained encoder while training the shared network jointly on all objects.

one shared pose regression network, as shown in Fig. F.3. We show that it is
possible to train this single shared pose regression network for all the objects
while simultaneously increasing the overall performance. Both approaches
are based on the same feature extractor, in the form of the pre-trained encoder
from a codebook-based approach [5]. This paper also includes an exploration
of the benefits of fine-tuning parts of the pre-trained encoder for the pose
regression task, while training the shared network.

The proposed method assumes input from an object detector in terms of
a bounding box and an associated object ID. This is similar to the codebook-
based approach [5] and the approach using multiple object-specific networks
[6].

3.1 Network Architecture

The structure of the proposed shared pose regression network is illustrated in
Fig. F.4. The first part of the network resembles the object-specific networks
[6], where a pre-trained encoder from the codebook-based approach [5] is
used as a feature extractor for the network. The input for the pose regression
part of the network is thus the latent space produced by this encoder. The
size of this feature vector, or latent space, is set at 128 as this is considered
optimal in previous work [5].

We propose to fine-tune the last fully-connected layer of the encoder based
on the hypothesis that it could provide a better feature representation for
doing pose estimation later on. This fine-tuning of the encoder is done while
training the shared pose regression network.

During training, synthetic RGB images of various objects in random poses
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Fig. F.4: The architecture of the shared posed regression network, including the pre-trained en-
coder used as feature extractor [5]. The network is nearly identical to the original pipeline [6]
and includes several skip connections as these were found to increase performance. The excep-
tion is the final layer of the network which has been modified to output multi-pose estimates
for all the k different object categories, regardless of the class ID of the input. Additionally, a
masking scheme is introduced to ensure that only the estimated poses for the correct object ID
is propagated further in the pipeline. It is assumed that the object ID is available from a prior
detection step.

are continuously rendered from CAD models of the objects and used as train-
ing data [5]. This avoids the issue of having to provide massive amounts of
hand-labeled data while training the network, and have proven to generalize
well to real data [5, 6].

Each of the estimated poses are represented using a 6D vector, as previous
studies have shown that it is more stable for pose regression tasks than other
representations such as quaternions and rotation matrices [14].

Finally, similar to the approach relying on multiple object-specific pose
regression networks [6], only the orientation of the object is estimated by the
network. Estimating the translation of the object is not included in the pro-
posed pipeline but can be done similarly to how it was solved in connection
to the codebook approach [5], or included as a task for the shared network in
future work.

The proposed shared network is able to predict poses for multiple objects
by expanding the size of the final output layer, as illustrated in Fig. F.4. The
network therefore always outputs a multi-pose [6] estimate for each of the k
different objects, where k is the number of objects the network is trained to
estimate poses for. Some of the weights in the final fully-connected layer are
therefor tied to a certain object and are class specific, while the rest of the
model is shared between all the objects.

The size of the output layer in the proposed shared network is scaled in
a linear fashion with k. One drawback of this approach is that the number
of parameters in the model will increase as the number of object categories
increases. However, this increase is negligible compared to the rest of the
pipeline. This can be seen in Section 4.2, where the overall memory usage of
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3. Method

the proposed approach is compared against having multiple object-specific
networks instead.

Training the proposed shared network relies on a masking scheme to en-
sure that only the predicted poses for the correct objects are propagated to
the loss function. This is illustrated in Fig. F.4, where only one of the pose
estimates propagates further to the loss function after applying the object ID
mask. This approach assumes that an object ID is provided from a prior ob-
ject detection step, both during training and inference, in order to apply the
mask correctly.

The actual loss is calculated by comparing depth maps of the object in
different poses in the same way as the individual pose regression approach
[6], as illustrated in Fig. F.5.
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Fig. F.5: The depth-based loss [6] used when training the shared pose regression network. It
avoids any symmetry-related issues by using rendered depth maps to measure the similarity
of poses. Multiple possible hypotheses are predicted for each pose estimate to avoid getting
stuck in local minima and the final loss is a weighted average of these hypotheses using their
confidences as weights. The parameter, γ, ensure that each hypothesis contributes to the loss so
that it gets updated by back-propagation. The regularization term, Lpose, is included to incur a
high loss if the pose hypotheses becomes to similar.
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This depth-based loss is heavily inspired by the VSD (Visible Surface Dis-
crepancy) metric [15, 16], that is commonly used in pose estimation bench-
marks. The idea is to render depth maps of the different objects in the esti-
mated poses and in the groundtruth poses, respectively. These depth maps
are then compared in a pixel-wise approach to identify the visual similarity
of the estimated versus ground truth poses. The main motivation of this ap-
proach is that it implicitly accounts for any symmetries that the objects might
have as the depth maps will look similar in that case and hence incur a small
error. These depth maps are produced using differential rendering [17] in
order to allow back-propagation when training the shared pose regression
network.

Furthermore, each estimation consists of multiple hypotheses in order to
avoid getting stuck in local minima, which can easily occur in this depth-
based loss [6]. Each estimate includes n hypotheses for each of the estimated
poses along with a predicted confidence for each hypothesis w1, ..., wn. This
is illustrated in Fig. F.5, where n = 3. The final loss is essentially then a
weighted average amongst the different pose hypotheses using the predicted
confidences as the weights. The parameter, γ, ensures that each pose hypoth-
esis always contributes a little to the loss, so that back-propagation updates
all hypotheses during training, and the regularization term, Lpose, ensures
that the multiple pose hypotheses do not become too similar, which would
defeat the purpose of the multiple hypotheses [6]. Finally, this depth-based
loss is only used during training of the shared network. No depth maps are
rendered during inference.

4 Evaluation

Our approach is evaluated on the T-LESS dataset [1], containing 30 objects
that are characterized by a lack of texture and by being highly symmet-
ric. This combination, no texture and many symmetries, is what makes this
dataset challenging.

The network is trained on synthetic data using the same scheme as in the
original pipeline using multiple object-specific networks [6] but with a fixed
learning rate of = 0.001 instead of an adaptive one [18]. A fixed learning rate
is used as it allows training the network for an unknown amount of epochs
until it converges, since the adaptive learning rate scheme originally used for
training the object-specific networks requires a fixed number of epochs that
has to be specified prior to training. The network is trained until convergence,
with 100,000 newly generated synthetic samples each epoch. These samples
are generated randomly from the 30 objects in the T-LESS dataset using the
CAD models supplied in the dataset.

The vertices of the CAD models are normalized so that all objects have the
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same length along their respective largest dimension. This normalization was
found necessary in order to avoid some objects dominating the training phase
by being bigger than other objects and therefore more likely to incur a bigger
loss. Such considerations, regarding some objects being more dominant than
others, is not a concern when training a separate network for each object. All
the other parameters used during training are identical to the ones used for
training the many object-specific pose regression networks [6].

The shared pose regression network described above is evaluated in two
variations; with and without fine-tuning of the last layer in the encoder that
provides the input to the shared network. We hypothesize that fine-tuning
the last layer of the encoder used for feature extraction can increase the per-
formance of the shared pose regression network. Jointly fine-tuning the
encoder on all objects is easily done as only one single shared network is
trained.

As a comparison, we note that when training multiple object-specific net-
works [6] it is complicated to jointly fine-tune the encoder in a similar way.
It may be possible to train all the object-specific networks concurrently, in
order to jointly fine-tune the same encoder in the process. However, such an
approach is complex and requires hardware capable of training the many net-
works concurrently; 30 networks in case of the T-LESS dataset. Alternately, a
separate encoder can be fine-tune for each specific object, but this increases
the complexity of the system, both in terms of parameters to be trained and in
terms of increased memory consumption. However, fine-tuning the encoder
in the context of the shared pose regression network proposed in this paper
does not incur any of the drawbacks mentioned above and we can therefore
evaluate this network both with and without fine-tuning.

4.1 Results - Pose Estimation

We evaluate our approach on the T-LESS dataset using the VSD metric [15,
16], both with (+FT) and without (÷FT) fine-tuning of the encoder. Both are
trained until convergence, which is achieved at 200 epochs. Our approach is
compared against an approach using multiple object-specific pose regression
networks [6] and an approach using multiple object-specific codebooks [5],
as shown in Table F.1. Both ground truth translations and object IDs are
used during the evaluation, as both the proposed approach and the multiple
object-specific networks approach [6] do not include translation estimation
nor object classification. This is done for all the evaluated approaches to
ensure a fair comparison.

From these results, it is clear that fine-tuning parts of the encoder im-
proves the performance noticeably as our approach outperforms both the
codebook-based approach [5] and the object-specific model approach [6] on
average, when fine-tuning is included. Furthermore, the proposed approach
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Table F.1: VSD recall on the T-LESS dataset for our proposed shared pose regression network.
The results with (+FT) and without (÷FT) fine-tuning of the encoder are reported along with
previously published results [6] for the object-specific approaches using either 30 codebooks
(30CB) [5] or 30 pose regression networks (30PN) [6].

Object 30CB [5] 30PN [6] Ours +FT Ours ÷FT
01 37.82 51.84 54.00 41.2
02 51.88 63.74 62.12 54.88
03 62.87 71.53 73.03 60.25
04 56.00 62.66 67.14 56.9
05 77.18 80.82 76.26 68.47
06 68.04 66.71 72.27 55.99
07 65.18 65.68 57.16 50.5
08 63.11 61.21 55.21 49.1
09 68.96 55.66 53.24 51.87
10 58.55 54.14 55.79 31.7
11 52.15 51.48 48.09 42.23
12 62.19 56.58 54.45 47.79
13 63.56 64.21 69.19 59.36
14 57.29 63.01 67.89 59.57
15 64.91 66.37 71.98 56.3
16 75.82 73.16 78.25 71.91
17 76.62 77.72 76.77 73.79
18 71.26 62.71 61.97 53.26
19 51.19 54.15 57.50 44.89
20 40.71 35.96 43.71 33.4
21 43.25 43.31 47.63 35.1
22 38.15 32.03 37.62 22.08
23 39.18 56.68 55.50 45.58
24 58.97 61.93 63.64 56.93
25 69.86 63.08 63.71 52.62
26 57.94 58.87 60.24 55.22
27 68.09 77.62 69.28 74.67
28 68.06 73.33 69.23 69.52
29 76.43 80.67 83.48 77.68
30 77.81 83.41 87.42 82.42

mean 60.77 62.34 63.13 54.51
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(a) 30PN [6]. (b) Ours +FT.

(c) 30PN [6]. (d) Ours +FT.

Fig. F.6: Examples of pose estimates from the proposed shared network and an approach using
object-specific networks [6]. Using the different pose estimates, CAD models are plotted on top
of the images from the T-LESS test dataset. The colorization is solely for illustration purposes.

also results in the best performance for 15 out of the 30 objects found in the T-
LESS dataset. Without fine-tuning of the encoder, the shared pose regression
network performs worse than the other two approaches.

Examples of pose estimates produced using both the proposed shared net-
work and multiple object-specific networks are shown in Fig. F.6. In the first
scene (Fig. F.6a and F.6b) the predicted poses appear similar for most objects.
Exceptions are object 20 (red) and object 21 (orange) where the object-specific
models fail to produce feasible pose estimates. The shared network, on the
other hand, produces reasonable pose estimates in both cases. Examples like
these contribute to the discrepancy in performance in Table F.1, where the
shared network performs the best on both these objects.

In the second scene (Fig. F.6c and F.6d) both approaches appear to per-
form similarly on the objects in the front region of the scene. Both approaches
also struggle with object 10 (magenta, top left) but this particular object is in
general difficult, as seen in the results reported in Table F.1. However, the
pose prediction from the two approaches differs for the group of objects in
the upper right corner, consisting of object 13 (orange), 14 (red), 15 (yellow)
and 16 (green). In this case, the shared network produces pose estimates
which are better aligned with the input images, particularly for the occluded
objects where the multi-network approach fails.
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4.2 Results - Other Metrics

Besides the pose estimation recall improvement, the proposed approach also
reduces the complexity of the system by using a single shared model instead
of multiple different ones. The number of parameters, the main contributor
to memory usage during inference, is reduced. In the case of the 30 objects
in the T-LESS dataset, the reduction in memory consumption is ≈ 51% com-
pared to multiple object-specific networks [6] and ≈ 98% compared to using
codebooks [5].

Additionally, using a single shared model reduces training time. The pro-
posed approach was trained for 200 epochs with 100k samples each, amount-
ing to 20 million samples in total. For comparison, each object-specific pose
regression network was trained for 200 epochs with 10k samples each [6],
resulting in 2 million samples per object. Training 30 separate pose regres-
sion networks thus requires three times as many samples as the shared pose
regression network.

Finally, it takes ≈ 6.4ms to estimate the pose of an object during inference,
for the proposed shared pose regression network. This is comparable to the
inference time for the approach using multiple object-specific networks (≈
6.2ms) and slightly better than the codebook-based approach (≈ 7.0ms). Note
that all the timings in terms of the inference time exclude object detection,
which is a necessary prior step for all three approaches. Finally, all timings
are measured using the same hardware (i7-7700k and GTX1060). Thus, it is
possible to achieve a frame rate of 20 FPS in terms of the pose estimation for
scenes with 7 objects or less, even if all estimations are done in sequence.

Finally, the different characteristics for the evaluated approaches are sum-
marized in Table F.2. This includes both pose estimation performance in
terms of average VSD recall, inference time, memory usage and number of
samples required during training, as discussed in detail in previous sections.

Table F.2: Summary of the main characteristics of our approach with fine-tuning (+FT) com-
pared to using codebooks [5] and multiple pose regression networks [6]. *The number of training
samples is not reported for the codebook-based approach as only the encoder requires training and is as-
sumed to come pre-trained for all approaches.

Avg. VSD
recall

Inference
time

Memory
usage

Training
samples

30CB [5] 60.77 7.0ms 1365MB NA*

30PN [6] 62.61 6.2ms 33MB 60M

Ours +FT 63.13 6.4ms 16.6MB 20M
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5 Conclusion
This paper proposes a shared regression network for pose estimation of dif-
ferent objects, and shows that it can replace approaches with several object-
specific solutions. This shared network is evaluated on the T-LESS dataset
and a comparison is made to estimators with multiple object-specific mod-
els, either in the form of codebooks or pose regression networks. Our ap-
proach achieved the highest overall pose estimation recall by fine-tuning the
pre-trainer encoder used for feature extraction while training the shared net-
work. This shared network also offers a less complex solution, with fewer
parameters and less memory usage, and it requires less training than the
method with multiple object-specific networks. We do this while maintain-
ing the main properties of the two other approaches, as our method handles
symmetric objects similarly and has a low inference time, making it suitable
for real-time applications. These results indicate that our shared model is
preferable over approaches relying on multiple object-specific solutions for
pose estimation.

6 Future Work
A way to improve the presented work is to consider temporal information,
based on the main assumption that the pose of an object does not change
in a fraction of a second. Either using various filters [19] or by integrating
multiple estimates, in the form of multiple view-points [9]. The benefits of
these approaches are promising given the low inference time of the proposed
approach, making it possible to produce many pose estimates fast.

Another idea for future work is to include translation estimation, which
the approach presented in this work currently lacks, just like the approach
using multiple networks [6]. One way could be to infer translation for objects
from the size of their bounding boxes in relation to the known size of the
objects, from, e.g., the CAD models. However, this approach is very sensitive
to noise in the bounding boxes and hence the object detector used [5, 20].
This issue could be counteracted by training a model to estimate adjustments
to the bounding box of each object [10].

Yet another avenue for further research could be to expand the presented
approach to also predict object IDs as it currently relies on a prior object
detection step for this information. Estimating object IDs as part of the shared
pose regression network could be based on the idea of visual similarity from
depth renderings, just like the pose estimation. Doing so may prove beneficial
as wrong predictions in terms of the object ID would be punished less harshly
if the objects are visually similar and vice versa.

Finally, it would be interesting to further explore the impact of fine-tuning
the pre-trainer encoder, as is essential for the performance of the shared pose
regression network in this work. Exploring how similar fine-tuning would
impact other approaches is thus another obvious path for future work.
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[1] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zab-
ulis, “T-LESS: An RGB-D dataset for 6D pose estimation of texture-less
objects,” WACV, 2017.

[2] R. L. Haugaard and A. G. Buch, “Surfemb: Dense and continuous cor-
respondence distributions for object pose estimation with learnt surface
embeddings,” in Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2022, pp. 6749–6758.

[3] T. Hodan, D. Barath, and J. Matas, “EPOS: Estimating 6d pose of objects
with symmetries,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, Jun. 2020.
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[16] T. Hodaň, J. Matas, and Š. Obdržálek, “On evaluation of 6d object pose
estimation,” in ECCV Workshops, G. Hua and H. Jégou, Eds., 2016, pp.
606–619.

[17] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. John-
son, and G. Gkioxari, “Accelerating 3d deep learning with pytorch3d,”
arXiv:2007.08501, 2020.

[18] L. N. Smith and N. Topin, “Super-convergence: very fast training of
neural networks using large learning rates,” in Artificial Intelligence and
Machine Learning for Multi-Domain Operations Applications, 2019.

[19] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox, “PoseRBPF:
A rao–blackwellized particle filter for 6-d object pose tracking,” IEEE
Transactions on Robotics, vol. 37, no. 5, pp. 1328–1342, Oct. 2021.

[20] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel,
“Implicit 3d orientation learning for 6d object detection from rgb im-
ages,” in ECCV, September 2018.

219



Stefa
n

 H
ein

 B
en

g
tSo

n
Sem

i-a
u

to
n

o
m

o
u

S C
o

n
tr

o
l o

f a
n

 exo
Sk

eleto
n

 u
Sin

g
 C

o
m

pu
ter

 ViSio
n

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-791-8


	Omslag_SHB
	PHD_SHB_TRYK.pdf
	Kolofon_SHB.pdf
	shbe_phd_thesis_final.pdf
	Front page
	Curriculum Vitae
	Abstract
	Resumé
	Contents
	Thesis Details
	Preface
	I Overview of the Work
	1 Introduction
	1 Thesis Structure
	References

	2 The EXOTIC Project
	1 Background - Tetraplegia
	2 Related Work - Assistive Technologies
	3 The EXOTIC Project
	4 User Centered Design
	5 Upper Limb Exoskeleton
	6 Tongue Control
	7 Evaluation
	8 Summary
	References

	3 Human-Robot Interaction
	1 Man Versus Machine?
	2 Semi-Autonomous Control of an Upper-body Exoskeleton
	3 Evaluation
	3.1 Study A - Results
	3.2 Study B - Results

	4 Summary
	References

	4 Computer Vision for Object Manipulation
	1 Pose Estimation of Objects
	2 Pose Ambiguities due to Object Symmetries
	3 Pose Error based on Visual Similarity
	4 Multiple Views to Escape Local Minima
	5 Shared Pose Regression Network
	6 Summary
	References

	5 Conclusion

	II Papers
	A EXOTIC - A Discreet User-Based 5 DoF Upper-Limb Exoskeleton for Individuals with Tetraplegia 
	1 Introduction
	2 Methods
	2.1 User driven design
	2.2 Biomechanical considerations
	2.3 Design of the EXOTIC exoskeleton
	2.4 Exoskeleton control
	2.5 Analysis and initial testing

	3 Results
	3.1 Exoskeleton workspace and load
	3.2 Pilot testing

	4 Conclusion
	5 Acknowledgements
	References

	B User Based Development and Test of the EXOTIC Exoskeleton: Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control 
	1 Introduction
	2 System Design
	2.1 Overview
	2.2 Exoskeleton design
	2.3 Control interface
	2.4 Computer vision-based shared control system

	3 Methods
	3.1 Exoskeleton control
	3.2 Intelligent control
	3.3 Tongue control interface adaptations
	3.4 Test of the EXOTIC exoskeleton

	4 Results
	4.1 Interviews

	5 Discussion
	6 Conclusion
	References

	C A Review of Computer Vision for Semi-Autonomous Control of Assistive Robotic Manipulators (ARMs) 
	1 Introduction
	2 Methods
	2.1 Data sources
	2.2 Filtering Criteria
	2.3 Data Extraction

	3 Results
	3.1 Hardware Selection Overview
	3.2 Semi-autonomous Control Overview
	3.3 Level of Autonomy Summary

	4 Discussion
	4.1 Challenge: Optimal Semi-Autonomous Control
	4.2 Challenge: Handling Arbitrary Objects
	4.3 Challenge: Sensing the Environment

	5 Conclusion
	References

	D Computer Vision-Based Adaptive Semi-Autonomous Control of an Upper Limb Exoskeleton for Individuals with Tetraplegia 
	1 Introduction
	2 Related Work
	3 Method
	3.1 Upper Limb Exoskeleton
	3.2 Tongue-Based Interface
	3.3 Computer Vision Module
	3.4 Control Schemes

	4 Evaluations
	4.1 Setup
	4.2 Performance Metrics
	4.3 Questionnaires
	4.4 Statistics

	5 Study A—Without Tetraplegia
	5.1 Study A—Performance Results
	5.2 Study A—Questionnaire Results

	6 Study B—With Tetraplegia
	6.1 Study B—Performance Results
	6.2 Study B—Questionnaire Results

	7 Discussion
	8 Conclusions
	References

	E Pose Estimation from RGB Images of Highly Symmetric Objects using a Novel Multi-Pose Loss and Differential Rendering 
	1 Introduction
	2 Related Work
	3 Method
	3.1 Single-Pose Depth Loss
	3.2 Multi-Pose Depth Loss
	3.3 Training

	4 Evaluation
	4.1 Pose Estimation Performance
	4.2 Multi-Pose Ablation Study
	4.3 Memory Consumption
	4.4 Inference Time

	5 Future Work
	6 Conclusion
	References

	F A Shared Pose Regression Network for Pose Estimation of Objects from RGB Images 
	1 Introduction
	2 Related Work
	3 Method
	3.1 Network Architecture

	4 Evaluation
	4.1 Results - Pose Estimation
	4.2 Results - Other Metrics

	5 Conclusion
	6 Future Work
	References



	Blank Page

	Omslag_SHB.pdf
	Blank Page
	Blank Page



