468 research outputs found

    Parallelising reception and transmission in queues of secondary users

    Get PDF
    In a cognitive radio network, the secondary users place the packets to be transmitted on a queue to control the order of arrival and to adapt to the network state. Previous conceptionsassigned to each secondary user a single queue that contains both received and forwarded packets. Our present article divides the main queue into two sub queues: one to receive the arrived packets and the other to transmit the available packets. This approach reduces the transmission delay due on the one hand; to the shifting of data placed on the single queue, and on the other hand; to the sequential processing of reception and transmission, in theprevious designs. All without increasing the memory capacity of the queue, in the new approach

    Reliability and Quality of Service in Opportunistic Spectrum Access

    Get PDF
    RÉSUMÉ Les réseaux radio-cognitif constituent une des meilleures options technologiques pour les réseaux sans-fil futurs. Afin d’étudier comment la fiabilité devrait être redéfinie dans ces réseaux, nous étudions d'abord les sources les plus fréquentes de panne dans les réseaux sans-fil et fournissons une procédure systématique de classement des pannes. Il est ensuite expliqué comment les radios cognitives peuvent profiter de leur propre capacité à mettre en œuvre des mécanismes efficaces de prévention et de récupération contre les pannes et ainsi assurer des communications sans-fil fiables et de qualité de service constante. En considérant des normes arrivantes sur la base de l'OSA, ce qui distingue un réseau radio-cognitif de ses prédécesseurs est des changements fréquents de canal ainsi que de nouvelles exigences telles la détection de disponibilité et la décision d'utilisation du spectre. Nous nous concentrons sur cet aspect et modélisons la remise du spectre comme une panne. Par conséquent, améliorer la fiabilité est équivalent à augmenter le temps moyen entre pannes, à rendre plus efficace le processus de récupération et à réduire le temps moyen de réparation. Nous étudions donc d'abord l'impact du temps de récupération sur la performance du réseau radio-cognitif. En classifiant les pannes en dures et souples, il est examiné comment la disponibilité, le temps moyen entre pannes et le temps moyen jusqu'à la réparation sont touchés par le procès de récupération. Nous observons que le temps dépensé pour la récupération empêche le réseau d'atteindre le maximum de disponibilité. Par conséquent, pour obtenir un temps plus élevé entre pannes et un temps de réparation plus court, une option disponible est d'augmenter le nombre de canaux pouvant être utilisés par le réseau radio-cognitif, de sorte que, avec une haute probabilité, un utilisateur qui a raté le canal puisse trouver bientôt un nouveau canal. De l'autre côté, un mécanisme de récupération efficace est nécessaire pour mieux profiter de ce grand nombre de canaux; l'amélioration de la récupération est donc indispensable. Pour étudier l'impact de la récupération sur les couches plus hautes (e.g., la couche liaison et réseau), l’approche de l’analyse de file d'attente est choisie. Compte tenu des périodes de récupération comme une interruption de service, un modèle général de file d'attente de M/G/1 avec des interruptions est proposé. Différents paramètres de fiabilité et de qualité de service peuvent être trouvés à partir de ce modèle de file d'attente pour étudier comment la spécification des canaux, tels la distribution des périodes de disponibilité et d'indisponibilité, et la spécification de l'algorithme de récupération, tels la durée de récupération, affectent les paramètres de performance comme la perte de paquets, de retard et de gigue, et aussi le temps entre pannes. Pour soutenir la différenciation des classes de trafic, nous proposons une approche de file d'attente avec priorité. Nous proposons une extension des résultats du modèle de file d'attente générale et présentons quatre différentes disciplines de file d'attente de priorité, allant d'un régime préemptif absolu à un régime complètement non préemptif. Les nouvelles disciplines augmentent la flexibilité et la résolution de décision et permettent au noeud CR de contrôler l'interaction des différentes classes de trafic avec plus de précision.---------- ABSTRACT Cognitive-radio based wireless networks are a technology of choice for incoming wireless networks. To investigate how reliability should be redefined for these networks, we study the most common sources of failure in wireless networks and provide a systematic failure classification procedure. It is then explained how cognitive radios can use their inherent capabilities to implement efficient prevention and recovery mechanisms to combat failures and thereby provide more reliable communications and consistent quality of service in wireless networks. Considering incoming OSA-based standards, what distinguishes a cognitive radio network from its predecessors is the frequent spectrum handovers along with new requirements such as spectrum sensing and spectrum usage decision. We thus focus on this aspect and model the spectrum handover as a failure, so improving the reliability is equivalent to increasing the mean time to failure, improving the recovery process and shortening the mean time to repair. We first study the impact of the recovery time on the performance of the cognitive radio network. By classifying the failures into hard and soft, it is investigated how the availability, mean time to failure and mean time to repair are affected by the recovery time. It is observed that the time spent for recovery prevents the network from reaching the maximum availability. Therefore, to achieve a high mean time to hard failure and low mean time to repair, an available option is to increase the number of channels, so that with a high probability, a user who missed the channel can soon find a new channel. On the other side, an efficient recovery scheme is required to better take advantage of a large number of channels. Recovery improvement is thus indispensable. To study the impact of recovery on higher communication layers, a queueing approach is chosen. Considering the recovery periods as a service interruption, a general M/G/1 queueing model with interruption is proposed. Different reliability and quality of service parameters can be found from this queueing model to investigate how channel parameters, such as availability and unavailability periods, and the recovery algorithm specifications, such as the recovery duration, affect packet loss, delay and jitter, and also the MTTF and MTTR for hard and soft failures. To support traffic differentiation, we suggest a priority queueing approach. We extend the results of the general queueing model and discuss four different priority queueing disciplines ranging from a pure preemptive scheme to a pure non-preemptive scheme. New disciplines increase the flexibility and decision resolution and enable the CR node to more accurately control the interaction of different classes of traffic. The models are solved, so it can be analyzed how the reliability and quality of service parameters, such as delay and jitter, for a specific class of traffic are affected not only by the channel parameters, but also by the characteristics of other traffic classes. The M/G/1 queueing model with interruptions is a foundation for performance analysis and an answer to the need of having closed-form analytical relations. We then extend the queueing model to more realistic scenarios, first with heterogeneous channels (heterogeneous service rate for different channels) and second with multiple users and a random medium access model

    Stochastic models for cognitive radio networks

    Get PDF
    During the last decade we have seen an explosive development of wireless technologies. Consequently the demand for electromagnetic spectrum has been growing dramatically resulting in the spectrum scarcity problem. In spite of this, spectrum utilization measurements have shown that licensed bands are vastly underutilized while unlicensed bands are too crowded. In this context, Cognitive Radio emerges as an auspicious paradigm in order to solve those problems. Even more, this concept is envisaged as one of the main components of future wireless technologies, such as the fifth-generation of mobile networks. In this regard, this thesis is founded on cognitive radio networks. We start considering a paid spectrum sharing approach where secondary users (SUs) pay to primary ones for the spectrum utilization. In particular, the first part of the thesis bears on the design and analysis of an optimal SU admission control policy, i.e. that maximizes the long-run profit of the primary service provider. We model the optimal revenue problem as a Markov Decision Process and we use dynamic programming (and other techniques such as sample-path analysis) to characterize properties of the optimal admission control policy. We introduce different changes to one of the best known dynamic programming algorithms incorporating the knowledge of the characterization. In particular, those proposals accelerate the rate of convergence of the algorithm when is applied in the considered context. We complement the analysis of the paid spectrum sharing approach using fluid approximations. That is to say, we obtain a description of the asymptotic behavior of the Markov process as the solution of an ordinary differential equation system. By means of the fluid approximation of the problem, we propose a methodology to estimate the optimal admission control boundary of the maximization profit problem mentioned before. In addition, we use the deterministic model in order to propose some tools and criteria that can be used to improve the mean spectrum utilization with the commitment of providing to secondary users certain quality of service levels. In wireless networks, a cognitive user can take advantage of either the time, the frequency, or the space. In the first part of the thesis we have been concentrated on timefrequency holes, in the second part we address the complete problem incorporating the space variable. In particular, we first introduce a probabilistic model based on a stochastic geometry approach. We focus our study in two of the main performance metrics: medium access probability and coverage probability. Finally, in the last part of the thesis we propose a novel methodology based on configuration models for random graphs. With our proposal, we show that it is possible to calculate an analytic approximation of the medium access probability (both for PUs and, most importantly, SUs) in an arbitrary large heterogeneous random network. This performance metric gives an idea of the possibilities offered by cognitive radio to improve the spectrum utilization. The introduced robust method, as well as all the results of the thesis, are evaluated by several simulations for different network topologies, including real scenarios of primary network deployments. Keywords: Markov decision process, fluid limit, stochastic geometry, random graphs,dynamic spectrum assignment, cognitive radi

    DYNAMIC SMART GRID COMMUNICATION PARAMETERS BASED COGNITIVE RADIO NETWORK

    Get PDF
    The demand for more spectrums in a smart grid communication network is a significant challenge in originally scarce spectrum resources. Cognitive radio (CR) is a powerful technique for solving the spectrum scarcity problem by adapting the transmission parameters according to predefined objectives in an active wireless communication network. This paper presents a cognitive radio decision engine that dynamically selects optimal radio transmission parameters for wireless home area networks (HAN) of smart grid applications via the multi-objective differential evolution (MODE) optimization method. The proposed system helps to drive optimal communication parameters to realize power saving, maximum throughput and minimum bit error rate communication modes. A differential evolution algorithm is used to select the optimal transmission parameters for given communication modes based on a fitness function that combines multiple objectives based on appropriate weights. Simulation results highlight the superiority of the proposed system in terms of accuracy and convergence as compared with other evolution algorithms (genetic optimization, particle swarm optimization, and ant colony optimization) for different communication modes (power saving mode, high throughput mode, emergency communication mode, and balanced mode)

    Improved handoff mechanism for infiltrating user equipments in composite networks

    Get PDF
    The wireless technology and communication plays a vital role in our daily life. The end users are expecting more Quality of Experience (QOE) rather than the Quality of Service (QOS). In order to provide full signal coverage the entire cellular network coverage is divided in to small cells called as femtocells, those femtocells are covered with femtocell antennas which are very small in size compared with regular antennas. With these femtocell coverage problem is solved but when a user moves from one location to another location the user has to switch from one base station to so many base station which cannot be maintained with present handoff methods. The present hand off methods working on distance calculation approach, the proposed method is based on the velocity and device direction calculated based on GPS location toward the Base Station (BS) of the device which may ping pong handoff effect

    Medium access control design for distributed opportunistic radio networks

    Get PDF
    Existing wireless networks are characterized by a fixed spectrum assignment policy. However, the scarcity of available spectrum and its inefficient usage demands for a new communication paradigm to exploit the existing spectrum opportunistically. Future Cognitive Radio (CR) devices should be able to sense unoccupied spectrum and will allow the deployment of real opportunistic networks. Still, traditional Physical (PHY) and Medium Access Control (MAC) protocols are not suitable for this new type of networks because they are optimized to operate over fixed assigned frequency bands. Therefore, novel PHY-MAC cross-layer protocols should be developed to cope with the specific features of opportunistic networks. This thesis is mainly focused on the design and evaluation of MAC protocols for Decentralized Cognitive Radio Networks (DCRNs). It starts with a characterization of the spectrum sensing framework based on the Energy-Based Sensing (EBS) technique considering multiple scenarios. Then, guided by the sensing results obtained by the aforementioned technique, we present two novel decentralized CR MAC schemes: the first one designed to operate in single-channel scenarios and the second one to be used in multichannel scenarios. Analytical models for the network goodput, packet service time and individual transmission probability are derived and used to compute the performance of both protocols. Simulation results assess the accuracy of the analytical models as well as the benefits of the proposed CR MAC schemes

    Channel assembling and resource allocation in multichannel spectrum sharing wireless networks

    Get PDF
    Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy (Ph.D.) in Engineering, in the School of Electrical and Information Engineering, Faculty of Engineering and the Built Environment, at the University of the Witwatersrand, Johannesburg, South Africa, 2017The continuous evolution of wireless communications technologies has increasingly imposed a burden on the use of radio spectrum. Due to the proliferation of new wireless networks applications and services, the radio spectrum is getting saturated and becoming a limited resource. To a large extent, spectrum scarcity may be a result of deficient spectrum allocation and management policies, rather than of the physical shortage of radio frequencies. The conventional static spectrum allocation has been found to be ineffective, leading to overcrowding and inefficient use. Cognitive radio (CR) has therefore emerged as an enabling technology that facilitates dynamic spectrum access (DSA), with a great potential to address the issue of spectrum scarcity and inefficient use. However, provisioning of reliable and robust communication with seamless operation in cognitive radio networks (CRNs) is a challenging task. The underlying challenges include development of non-intrusive dynamic resource allocation (DRA) and optimization techniques. The main focus of this thesis is development of adaptive channel assembling (ChA) and DRA schemes, with the aim to maximize performance of secondary user (SU) nodes in CRNs, without degrading performance of primary user (PU) nodes in a primary network (PN). The key objectives are therefore four-fold. Firstly, to optimize ChA and DRA schemes in overlay CRNs. Secondly, to develop analytical models for quantifying performance of ChA schemes over fading channels in overlay CRNs. Thirdly, to extend the overlay ChA schemes into hybrid overlay and underlay architectures, subject to power control and interference mitigation; and finally, to extend the adaptive ChA and DRA schemes for multiuser multichannel access CRNs. Performance analysis and evaluation of the developed ChA and DRA is presented, mainly through extensive simulations and analytical models. Further, the cross validation has been performed between simulations and analytical results to confirm the accuracy and preciseness of the novel analytical models developed in this thesis. In general, the presented results demonstrate improved performance of SU nodes in terms of capacity, collision probability, outage probability and forced termination probability when employing the adaptive ChA and DRA in CRNs.CK201

    Contributions to the routing of traffic flows in multi-hop IEEE 802.11 wireless networks

    Get PDF
    The IEEE 802.11 standard was not initially designed to provide multi-hop capabilities. Therefore, providing a proper traffic performance in Multi-Hop IEEE 802.11 Wireless Networks (MIWNs) becomes a significant challenge. The approach followed in this thesis has been focused on the routing layer in order to obtain applicable solutions not dependent on a specific hardware or driver. Nevertheless, as is the case of most of the research on this field, a cross-layer design has been adopted. Therefore, one of the first tasks of this work was devoted to the study of the phenomena which affect the performance of the flows in MIWNs. Different estimation methodologies and models are presented and analyzed. The first main contribution of this thesis is related to route creation procedures. First, FB-AODV is introduced, which creates routes and forwards packets according to the flows on the contrary to basic AODV which is destination-based. This enhancement permits to balance the load through the network and gives a finer granularity in the control and monitoring of the flows. Results showed that it clearly benefits the performance of the flows. Secondly, a novel routing metric called Weighted Contention and Interference routing Metric (WCIM) is presented. In all analyzed scenarios, WCIM outperformed the other analyzed state-of-the-art routing metrics due to a proper leveraging of the number of hops, the link quality and the suffered contention and interference. The second main contribution of this thesis is focused on route maintenance. Generally, route recovery procedures are devoted to the detection of link breaks due to mobility or fading. However, other phenomena like the arrival of new flows can degrade the performance of active flows. DEMON, which is designed as an enhancement of FB-AODV, allows the preemptive recovery of degraded routes by passively monitoring the performance of active flows. Results showed that DEMON obtains similar or better results than other published solutions in mobile scenarios, while it clearly outperforms the performance of default AODV under congestion Finally, the last chapter of this thesis deals with channel assignment in multi-radio solutions. The main challenge of this research area relies on the circular relationship between channel assignment and routing; channel assignment determines the routes that can be created, while the created routes decide the real channel diversity of the network and the level of interference between the links. Therefore, proposals which join routing and channel assignment are generally complex, centralized and based on traffic patterns, limiting their practical implementation. On the contrary, the mechanisms presented in this thesis are distributed and readily applicable. First, the Interference-based Dynamic Channel Assignment (IDCA) algorithm is introduced. IDCA is a distributed and dynamic channel assignment based on the interference caused by active flows which uses a common channel in order to assure connectivity. In general, IDCA leads to an interesting trade-off between connectivity preservation and channel diversity. Secondly, MR-DEMON is introduced as way of joining channel assignment and route maintenance. As DEMON, MR-DEMON monitors the performance of the active flows traversing the links, but, instead of alerting the source when noticing degradation, it permits reallocating the flows to less interfered channels. Joining route recovery instead of route creation simplifies its application, since traffic patterns are not needed and channel reassignments can be locally decided. The evaluation of MR-DEMON proved that it clearly benefits the performance of IDCA. Also, it improves DEMON functionality by decreasing the number of route recoveries from the source, leading to a lower overhead.El estándar IEEE 802.11 no fue diseñado inicialmente para soportar capacidades multi-salto. Debido a ello, proveer unas prestaciones adecuadas a los flujos de tráfico que atraviesan redes inalámbricas multi-salto IEEE 802.11 supone un reto significativo. La investigación desarrollada en esta tesis se ha centrado en la capa de encaminamiento con el objetivo de obtener soluciones aplicables y no dependientes de un hardware específico. Sin embargo, debido al gran impacto de fenómenos y parámetros relacionados con las capas físicas y de acceso al medio sobre las prestaciones de los tráficos de datos, se han adoptado soluciones de tipo cross-layer. Es por ello que las primeras tareas de la investigación, presentadas en los capítulos iniciales, se dedicaron al estudio y caracterización de estos fenómenos. La primera contribución principal de esta tesis se centra en mecanismos relacionados con la creación de las rutas. Primero, se introduce una mejora del protocolo AODV, que permite crear rutas y encaminar paquetes en base a los flujos de datos, en lugar de en base a los destinos como se da en el caso básico. Esto permite balacear la carga de la red y otorga un mayor control sobre los flujos activos y sus prestaciones, mejorando el rendimiento general de la red. Seguidamente, se presenta una métrica de encaminamiento sensible a la interferencia de la red y la calidad de los enlaces. Los resultados analizados, basados en la simulación de diferentes escenarios, demuestran que mejora significativamente las prestaciones de otras métricas del estado del arte. La segunda contribución está relacionada con el mantenimiento de las rutas activas. Generalmente, los mecanismos de mantenimiento se centran principalmente en la detección de enlaces rotos debido a la movilidad de los nodos o a la propagación inalámbrica. Sin embargo, otros fenómenos como la interferencia y congestión provocada por la llegada de nuevos flujos pueden degradar de forma significativa las prestaciones de los tráficos activos. En base a ello, se diseña un mecanismo de mantenimiento preventivo de rutas, que monitoriza las prestaciones de los flujos activos y permite su reencaminamiento en caso de detectar rutas degradadas. La evaluación de esta solución muestra una mejora significativa sobre el mantenimiento de rutas básico en escenarios congestionados, mientras que en escenarios con nodos móviles obtiene resultados similares o puntualmente mejores que otros mecanismos preventivos diseñados específicamente para casos con movilidad. Finalmente, el último capítulo de la tesis se centra en la asignación de canales en entornos multi-canal y multi-radio con el objetivo de minimizar la interferencia entre flujos activos. El reto principal en este campo es la dependencia circular que se da entre la asignación de canales y la creación de rutas: la asignación de canales determina los enlaces existentes la red y por ello las rutas que se podrán crear, pero son finalmente las rutas y los tráficos activos quienes determinan el nivel real de interferencia que se dará en la red. Es por ello que las soluciones que proponen unificar la asignación de canales y el encaminamiento de tráficos son generalmente complejas, centralizadas y basadas en patrones de tráfico, lo que limita su implementación en entornos reales. En cambio, en nuestro caso adoptamos una solución distribuida y con mayor aplicabilidad. Primero, se define un algoritmo de selección de canales dinámico basado en la interferencia de los flujos activos, que utiliza un canal común en todos los nodos para asegurar la conectividad de la red. A continuación, se introduce un mecanismo que unifica la asignación de canales con el mantenimiento preventivo de las rutas, permitiendo reasignar flujos degradados a otros canales disponibles en lugar de reencaminarlos completamente. Ambas soluciones demuestran ser beneficiosas en este tipo de entornos.Postprint (published version
    corecore