7,423 research outputs found

    Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay

    Full text link
    [EN] This paper deals with asymptotic stabilisation of a class of nonlinear input-delayed systems via dynamic output feedback in the presence of disturbances. The proposed strategy has the structure of an observer-based control law, in which the observer estimates and predicts both the plant state and the external disturbance. A nominal delay value is assumed to be known and stability conditions in terms of linear matrix inequalities are derived for fast-varying delay uncertainties. Asymptotic stability is achieved if the disturbance or the time delay is constant. The controller design problem is also addressed and a numerical example with an unstable system is provided to illustrate the usefulness of the proposed strategy.This work was partially supported by: Ministerio de EconomĂ­a y Competitividad, Spain (TIN2017-86520-C3-1-R); Universitat PolitĂšcnica de ValĂšncia (FPI-UPV 2014 PhD Grant); and Israel Science Foundation (Grant No. 1128/14).Sanz Diaz, R.; GarcĂ­a Gil, PJ.; Fridman, E.; Albertos PĂ©rez, P. (2020). Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay. International Journal of Control. 93(2):217-225. https://doi.org/10.1080/00207179.2018.1562204S217225932Ahmed-Ali, T., Cherrier, E., & Lamnabhi-Lagarrigue, F. (2012). Cascade High Gain Predictors for a Class of Nonlinear Systems. IEEE Transactions on Automatic Control, 57(1), 221-226. doi:10.1109/tac.2011.2161795Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Bekiaris-Liberis, N., & Krstic, M. (2011). Compensation of Time-Varying Input and State Delays for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 134(1). doi:10.1115/1.4005278Besançon, G., Georges, D. & Benayache, Z. (2007). Asymptotic state prediction for continuous-time systems with delayed input and application to control. 2007 European control conference (ECC) (pp. 1786–1791).Engelborghs, K., Dambrine, M., & Roose, D. (2001). Limitations of a class of stabilization methods for delay systems. IEEE Transactions on Automatic Control, 46(2), 336-339. doi:10.1109/9.905705Fridman, E. (2001). New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters, 43(4), 309-319. doi:10.1016/s0167-6911(01)00114-1Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Fridman, E. (2014). Tutorial on Lyapunov-based methods for time-delay systems. European Journal of Control, 20(6), 271-283. doi:10.1016/j.ejcon.2014.10.001Furtat, I., Fridman, E., & Fradkov, A. (2018). Disturbance Compensation With Finite Spectrum Assignment for Plants With Input Delay. IEEE Transactions on Automatic Control, 63(1), 298-305. doi:10.1109/tac.2017.2732279Germani, A., Manes, C., & Pepe, P. (2002). A new approach to state observation of nonlinear systems with delayed output. IEEE Transactions on Automatic Control, 47(1), 96-101. doi:10.1109/9.981726Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Karafyllis, I., & Krstic, M. (2017). Predictor Feedback for Delay Systems: Implementations and Approximations. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-42378-4Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010LĂ©chappĂ©, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003LĂ©chappĂ©, V., Moulay, E. & Plestan, F. (2016). Dynamic observation-prediction for LTI systems with a time-varying delay in the input. 2016 IEEE 55th conference on decision and control (CDC) (pp. 2302–2307).Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Mazenc, F. & Malisoff, M. (2016). New prediction approach for stabilizing time-varying systems under time-varying input delay. 2016 IEEE 55th conference on decision and control (CDC) (pp. 3178–3182).Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Najafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627Najafi, M., Sheikholeslam, F., Hosseinnia, S., & Wang, Q.-G. (2014). Robust H ∞ control of single input-delay systems based on sequential sub-predictors. IET Control Theory & Applications, 8(13), 1175-1184. doi:10.1049/iet-cta.2012.1004Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Sanz, R., GarcĂ­a, P., & Albertos, P. (2018). A generalized smith predictor for unstable time-delay SISO systems. ISA Transactions, 72, 197-204. doi:10.1016/j.isatra.2017.09.020Sanz, R., GarcĂ­a, P., Fridman, E. & Albertos, P. (2017). A predictive extended state observer for a class of nonlinear systems with input delay subject to external disturbances. 2017 IEEE 56th annual conference on decision and control (CDC) (pp. 4345–4350).Sanz, R., Garcia, P., Fridman, E., & Albertos, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control, 28(6), 2457-2467. doi:10.1002/rnc.4027Shustin, E., & Fridman, E. (2007). On delay-derivative-dependent stability of systems with fast-varying delays. Automatica, 43(9), 1649-1655. doi:10.1016/j.automatica.2007.02.009Suplin, V., Fridman, E., & Shaked, U. (2007). Sampled-data H∞ control and filtering: Nonuniform uncertain sampling. Automatica, 43(6), 1072-1083. doi:10.1016/j.automatica.2006.11.024Yao, J., Jiao, Z., & Ma, D. (2014). RISE-Based Precision Motion Control of DC Motors With Continuous Friction Compensation. IEEE Transactions on Industrial Electronics, 61(12), 7067-7075. doi:10.1109/tie.2014.2321344Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.83753

    Stability Analysis of Integral Delay Systems with Multiple Delays

    Full text link
    This note is concerned with stability analysis of integral delay systems with multiple delays. To study this problem, the well-known Jensen inequality is generalized to the case of multiple terms by introducing an individual slack weighting matrix for each term, which can be optimized to reduce the conservatism. With the help of the multiple Jensen inequalities and by developing a novel linearizing technique, two novel Lyapunov functional based approaches are established to obtain sufficient stability conditions expressed by linear matrix inequalities (LMIs). It is shown that these new conditions are always less conservative than the existing ones. Moreover, by the positive operator theory, a single LMI based condition and a spectral radius based condition are obtained based on an existing sufficient stability condition expressed by coupled LMIs. A numerical example illustrates the effectiveness of the proposed approaches.Comment: 14 page

    Reduction-Based Robustness Analysis of Linear Predictor Feedback for Distributed Input Delays

    Full text link
    Lyapunov-Krasovskii approach is applied to parameter- and delay-robustness analysis of the feedback suggested by Manitius and Olbrot for a linear time-invariant system with distributed input delay. A functional is designed based on Artstein's system reduction technique. It depends on the norms of the reduction-transformed plant state and original actuator state. The functional is used to prove that the feedback is stabilizing when there is a slight mismatch in the system matrices and delay values between the plant and controller

    A Review of Some Subtleties of Practical Relevance

    Get PDF
    This paper reviews some subtleties in time-delay systems of neutral type that are believed to be of particular relevance in practice. Both traditional formulation and the coupled differential-difference equation formulation are used. The discontinuity of the spectrum as a function of delays is discussed. Conditions to guarantee stability under small parameter variations are given. A number of subjects that have been discussed in the literature, often using different methods, are reviewed to illustrate some fundamental concepts. These include systems with small delays, the sensitivity of Smith predictor to small delay mismatch, and the discrete implementation of distributed-delay feedback control. The framework prsented in this paper makes it possible to provide simpler formulation and strengthen, generalize, or provide alternative interpretation of the existing results

    Delay-robust stabilization of an n + m hyperbolic PDE-ODE system

    Get PDF
    International audienceIn this paper, we study the problem of stabilizing a linear ordinary differential equation through a system of an n + m (hetero-directional) coupled hyperbolic equations in the actuating path. The method relies on the use of a backstepping transform to construct a first feedback to tackle in-domain couplings present in the PDE system and then on a predictive tracking controller used to stabilize the ODE. The proposed control law is robust with respect to small delays in the control signal
    • 

    corecore