869 research outputs found

    An Energy Efficient Self-healing Mechanism for Long Life Wireless Sensor Networks

    Full text link
    In this paper, we provide an energy efficient self- healing mechanism for Wireless Sensor Networks. The proposed solution is based on our probabilistic sentinel scheme. To reduce energy consumption while maintaining good connectivity between sentinel nodes, we compose our solution on two main concepts, node adaptation and link adaptation. The first algorithm uses node adaptation technique and permits to distributively schedule nodes activities and select a minimum subset of active nodes (sentry) to monitor the interest region. And secondly, we in- troduce a link control algorithm to ensure better connectiv- ity between sentinel nodes while avoiding outliers appearance. Without increasing control messages overhead, performances evaluations show that our solution is scalable with a steady energy consumption. Simulations carried out also show that the proposed mechanism ensures good connectivity between sentry nodes while considerably reducing the total energy spent.Comment: 6 pages, 8 figures. arXiv admin note: text overlap with arXiv:1309.600

    A Cooja-based tool for coverage and fifetime evaluation in an in-building sensor network.

    Get PDF
    Contiki’s Cooja is a very popular wireless sensor network (WSN) simulator, but it lacks support for modelling sensing coverage, focusing instead on network connectivity and protocol performance. However, in practice, it is the ability of a sensor network to provide a satisfactory level of coverage that defines its ultimate utility for end-users. We introduce WSN-Maintain, a Cooja-based tool for coverage and network lifetime evaluation in an in-building WSN. To extend the network lifetime, but still maintain the required quality of coverage, the tool finds coverage redundant nodes, puts them to sleep and automatically turns them on when active nodes fail and coverage quality decreases. WSN-Maintain together with Cooja allow us to evaluate different approaches to maintain coverage. As use cases to the tool, we implement two redundant node algorithms: greedy-maintain, a centralised algorithm, and local-maintain, a localised algorithm to configure the initial network and to turn on redundant nodes. Using data from five real deployments, we show that our tool with simple redundant node algorithms and reading correlation can improve energy efficiency by putting more nodes to sleep

    Proceedings of the 2005 IJCAI Workshop on AI and Autonomic Communications

    Get PDF

    The 7th Conference of PhD Students in Computer Science

    Get PDF

    Survey of Autonomic Computing and Experiments on JMX-based Autonomic Features

    Get PDF
    Autonomic Computing (AC) aims at solving the problem of managing the rapidly-growing complexity of Information Technology systems, by creating self-managing systems. In this thesis, we have surveyed the progress of the AC field, and studied the requirements, models and architectures of AC. The commonly recognized AC requirements are four properties - self-configuring, self-healing, self-optimizing, and self-protecting. The recommended software architecture is the MAPE-K model containing four modules, namely - monitor, analyze, plan and execute, as well as the knowledge repository. In the modern software marketplace, Java Management Extensions (JMX) has facilitated one function of the AC requirements - monitoring. Using JMX, we implemented a package that attempts to assist programming for AC features including socket management, logging, and recovery of distributed computation. In the experiments, we have not only realized the powerful Java capabilities that are unknown to many educators, we also illustrated the feasibility of learning AC in senior computer science courses

    Development of a GIS-based method for sensor network deployment and coverage optimization

    Get PDF
    Au cours des dernières années, les réseaux de capteurs ont été de plus en plus utilisés dans différents contextes d’application allant de la surveillance de l’environnement au suivi des objets en mouvement, au développement des villes intelligentes et aux systèmes de transport intelligent, etc. Un réseau de capteurs est généralement constitué de nombreux dispositifs sans fil déployés dans une région d'intérêt. Une question fondamentale dans un réseau de capteurs est l'optimisation de sa couverture spatiale. La complexité de l'environnement de détection avec la présence de divers obstacles empêche la couverture optimale de plusieurs zones. Par conséquent, la position du capteur affecte la façon dont une région est couverte ainsi que le coût de construction du réseau. Pour un déploiement efficace d'un réseau de capteurs, plusieurs algorithmes d'optimisation ont été développés et appliqués au cours des dernières années. La plupart de ces algorithmes reposent souvent sur des modèles de capteurs et de réseaux simplifiés. En outre, ils ne considèrent pas certaines informations spatiales de l'environnement comme les modèles numériques de terrain, les infrastructures construites humaines et la présence de divers obstacles dans le processus d'optimisation. L'objectif global de cette thèse est d'améliorer les processus de déploiement des capteurs en intégrant des informations et des connaissances géospatiales dans les algorithmes d'optimisation. Pour ce faire, trois objectifs spécifiques sont définis. Tout d'abord, un cadre conceptuel est développé pour l'intégration de l'information contextuelle dans les processus de déploiement des réseaux de capteurs. Ensuite, sur la base du cadre proposé, un algorithme d'optimisation sensible au contexte local est développé. L'approche élargie est un algorithme local générique pour le déploiement du capteur qui a la capacité de prendre en considération de l'information spatiale, temporelle et thématique dans différents contextes d'applications. Ensuite, l'analyse de l'évaluation de la précision et de la propagation d'erreurs est effectuée afin de déterminer l'impact de l'exactitude des informations contextuelles sur la méthode d'optimisation du réseau de capteurs proposée. Dans cette thèse, l'information contextuelle a été intégrée aux méthodes d'optimisation locales pour le déploiement de réseaux de capteurs. L'algorithme développé est basé sur le diagramme de Voronoï pour la modélisation et la représentation de la structure géométrique des réseaux de capteurs. Dans l'approche proposée, les capteurs change leur emplacement en fonction des informations contextuelles locales (l'environnement physique, les informations de réseau et les caractéristiques des capteurs) visant à améliorer la couverture du réseau. La méthode proposée est implémentée dans MATLAB et est testée avec plusieurs jeux de données obtenus à partir des bases de données spatiales de la ville de Québec. Les résultats obtenus à partir de différentes études de cas montrent l'efficacité de notre approche.In recent years, sensor networks have been increasingly used for different applications ranging from environmental monitoring, tracking of moving objects, development of smart cities and smart transportation system, etc. A sensor network usually consists of numerous wireless devices deployed in a region of interest. A fundamental issue in a sensor network is the optimization of its spatial coverage. The complexity of the sensing environment with the presence of diverse obstacles results in several uncovered areas. Consequently, sensor placement affects how well a region is covered by sensors as well as the cost for constructing the network. For efficient deployment of a sensor network, several optimization algorithms are developed and applied in recent years. Most of these algorithms often rely on oversimplified sensor and network models. In addition, they do not consider spatial environmental information such as terrain models, human built infrastructures, and the presence of diverse obstacles in the optimization process. The global objective of this thesis is to improve sensor deployment processes by integrating geospatial information and knowledge in optimization algorithms. To achieve this objective three specific objectives are defined. First, a conceptual framework is developed for the integration of contextual information in sensor network deployment processes. Then, a local context-aware optimization algorithm is developed based on the proposed framework. The extended approach is a generic local algorithm for sensor deployment, which accepts spatial, temporal, and thematic contextual information in different situations. Next, an accuracy assessment and error propagation analysis is conducted to determine the impact of the accuracy of contextual information on the proposed sensor network optimization method. In this thesis, the contextual information has been integrated in to the local optimization methods for sensor network deployment. The extended algorithm is developed based on point Voronoi diagram in order to represent geometrical structure of sensor networks. In the proposed approach sensors change their location based on local contextual information (physical environment, network information and sensor characteristics) aiming to enhance the network coverage. The proposed method is implemented in MATLAB and tested with several data sets obtained from Quebec City spatial database. Obtained results from different case studies show the effectiveness of our approach

    Energy adaptive buildings:From sensor data to being aware of users

    Get PDF
    Energie besparen is fundamenteel voor het realiseren van een duurzame energievoorziening. Het besparen van energie draagt bij aan milieudoelstellingen, verbetert de zakelijke positie van landen, en levert werkgelegenheid. Er zijn tal van mogelijkheden voor het behalen van aanzienlijke energiebesparingen in gebouwen gezien individuen en bedrijven gebaat zijn bij energiebesparingen en daardoor zelf de verantwoordelijkheid nemen. Het is bewezen dat het gedrag van gebouwgebruikers een grote impact heeft op de verwarming en ventilatie van ruimtes, en op het energieverbruik van verlichting en huishoudelijke apparaten. Huidige gebouwautomatiseringssystemen kunnen niet overweg met veranderingen in het gedrag van gebruikers en zijn daardoor niet in staat om het energieverbruik terug te dringen met behoud van gebruikerscomfort. Mijn promotieonderzoek wordt gedreven door het doel om een dergelijk energy adaptive building te realiseren dat intelligent systemen aanstuurt en zich aanpast aan de gebruiker en gebruikersactiviteiten door deze te leren, terwijl energieverspilling wordt teruggedrongen. Mijn focus ligt op het ontwikkelen van een framework, beginnende bij de hardware infrastructuur voor sensoren en actuatoren, het verwerken en analyseren van de sensordata, en de nodige informatie over de omgeving en gebruikersactiviteiten verkrijgen zodat het gebouw aangestuurd kan worden. Onze oplossing kan 35% besparen op het totale energieverbruik van een gebouw. Als een succesverhaal, besparen de software systemen zelfs 80% op het energieverbruik van de verlichting in het restaurant van de Bernoulliborg. Wij commercialiseren de resultaten verkregen in ons onderzoek door het oprichten van de start-up SustainableBuildings, een spin-off bedrijf van onze universiteit, om onze oplossing aan te bieden aan kantoorgebouwen.Saving energy is the foundation for achieving a sustainable energy supply. Saving energy contributes to environmental objectives, improves the competitiveness of a country’s businesses, and boosts employment. There are numerous opportunities for achieving significant energy savings in buildings since individuals and businesses have an interest themselves in saving energy and will shoulder the responsibility for doing so.Occupant behaviour has shown to have large impact on space heating and cooling demand, energy consumption of lighting and appliances. Current building automation systems are unable to cope with changes caused by occupants’ behaviour and interaction with the environment, therefore they fail to reduce unnecessary energy consumption while preserving user comfort.My PhD research is driven by the aim of realising such energy adaptive buildings that facilitate intelligent control, that learn and adapt to the building users and their activities, while reducing energy waste. My particular focus is on a framework, going from the hardware infrastructure for sensing and actuating, to processing and analysing sensor data, providing necessary information about the environment and occupants’ activities for the system to produce adaptive control strategies, regulating the environment accordingly.Our solution can save 35% of energy for a single building. As a success story, the software system saves 80 percent on energy spent for lighting in the restaurant of the Bernoulliborg.We are commercialising the results of our research by creating the SustainableBuildings start-up, a spin-off from our university, to offer the solutions to non-residential buildings, first in the Netherlands, and later extending wider
    • …
    corecore