544 research outputs found

    Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts

    Full text link
    Despite the availability of large empirical data sets and the long history of traffic modeling, the theory of traffic congestion on freeways is still highly controversial. In this contribution, we compare Kerner's three-phase traffic theory with the phase diagram approach for traffic models with a fundamental diagram. We discuss the inconsistent use of the term "traffic phase" and show that patterns demanded by three-phase traffic theory can be reproduced with simple two-phase models, if the model parameters are suitably specified and factors characteristic for real traffic flows are considered, such as effects of noise or heterogeneity or the actual freeway design (e.g. combinations of off- and on-ramps). Conversely, we demonstrate that models created to reproduce three-phase traffic theory create similar spatiotemporal traffic states and associated phase diagrams, no matter whether the parameters imply a fundamental diagram in equilibrium or non-unique flow- density relationships. In conclusion, there are different ways of reproducing the empirical stylized facts of spatiotemporal congestion patterns summarized in this contribution, and it appears possible to overcome the controversy by a more precise definition of the scientific terms and a more careful comparison of models and data, considering effects of the measurement process and the right level of detail in the traffic model used.Comment: 18 pages in the published article, 13 figures, 2 table

    Agent Based Modeling and Simulation: An Informatics Perspective

    Get PDF
    The term computer simulation is related to the usage of a computational model in order to improve the understanding of a system's behavior and/or to evaluate strategies for its operation, in explanatory or predictive schemes. There are cases in which practical or ethical reasons make it impossible to realize direct observations: in these cases, the possibility of realizing 'in-machina' experiments may represent the only way to study, analyze and evaluate models of those realities. Different situations and systems are characterized by the presence of autonomous entities whose local behaviors (actions and interactions) determine the evolution of the overall system; agent-based models are particularly suited to support the definition of models of such systems, but also to support the design and implementation of simulators. Agent-Based models and Multi-Agent Systems (MAS) have been adopted to simulate very different kinds of complex systems, from the simulation of socio-economic systems to the elaboration of scenarios for logistics optimization, from biological systems to urban planning. This paper discusses the specific aspects of this approach to modeling and simulation from the perspective of Informatics, describing the typical elements of an agent-based simulation model and the relevant research.Multi-Agent Systems, Agent-Based Modeling and Simulation

    Square Root Cubature Kalman Filter-Kalman Filter Algorithm for Intelligent Vehicle Position Estimate

    Get PDF
    AbstractA new filtering algorithm, adaptive square root cubature Kalman filter-Kalman filter (SRCKF-KF) is proposed to reduce the problems of amount of calculation, complex formula-transform, low accuracy, poor convergence or even divergence. The method uses cubature Kalman filter (CKF) to estimate the nonlinear states of model while its linear states are estimated by the Kalman filter (KF). The simulation and practical experiment results show that, compared to the extended Kalman filter (EKF) and unscented Kalman filter (UKF). The modified filter not only enhances the numerical stability, guarantees positive definiteness of the state covariance, but also increases accuracy, which has high practicability

    Modelling, Test and Practice of Steel Structures

    Get PDF
    This reprint provides an international forum for the presentation and discussion of the latest developments in structural-steel research and its applications. The topics of this reprint include the modelling, testing and practice of steel structures and steel-based composite structures. A total of 17 high-quality, original papers dealing with all aspects of steel-structures research, including modelling, testing, and construction research on material properties, components, assemblages, connection, and structural behaviors, are included for publication

    PREDICTIVE ENERGY MANAGEMENT IN SMART VEHICLES: EXPLOITING TRAFFIC AND TRAFFIC SIGNAL PREVIEW FOR FUEL SAVING

    Get PDF
    This master thesis proposes methods for improving fuel economy and emissions of vehicles via use of future information of state of traffic lights, traffic flow, and deterministic traffic flow models. The first part of this thesis proposes use of upcoming traffic signal information within the vehicle\u27s adaptive cruise control system to reduce idle time at stop lights and lower fuel use. To achieve this goal an optimization-based control algorithm is formulated for each equipped vehicle that uses short range radar and traffic signal information predictively to schedule an optimum velocity trajectory for the vehicle. The objectives are timely arrival at green light with minimal use of braking, maintaining safe distance between vehicles, and cruising at or near set speed. Three example simulation case studies are presented to demonstrate potential impact on fuel economy, emission levels, and trip time. The second part of this thesis addresses the use of traffic flow information to derive the fuel- or time-optimal velocity trajectory. A vehicle\u27s untimely arrival at a local traffic wave with lots of stops and goes increases its fuel use. This paper proposes predictive planning of the vehicle velocity for reducing the velocity transients in upcoming traffic waves. In this part of the thesis macroscopic evolution of traffic pattern along the vehicle route is first estimated by combining a traffic flow model and real-time traffic data streams. The fuel optimal velocity trajectory is calculated by solving an optimal control problem with the spatiotemporally varying constraint imposed by the traffic. Simulation results indicatethe potential for considerable improvements in fuel economy with a little compromise on travel time
    • …
    corecore