155 research outputs found

    Fractional-Order Discrete-Time Laguerre Filters: A New Tool for Modeling and Stability Analysis of Fractional-Order LTI SISO Systems

    Get PDF
    This paper presents new results on modeling and analysis of dynamics of fractional-order discrete-time linear time-invariant single-input single-output (LTI SISO) systems by means of new, two-layer, “fractional-order discrete-time Laguerre filters.” It is interesting that the fractionality of the filters at the upper system dynamics layer is directly projected from the lower Laguerre-based approximation layer for the Grünwald-Letnikov difference. A new stability criterion for discrete-time fractional-order Laguerre-based LTI SISO systems is introduced and supplemented with a stability preservation analysis. Both the stability criterion and the stability preservation analysis bring up rather surprising results, which is illustrated with simulation examples

    Improved IIR Low-Pass Smoothers and Differentiators with Tunable Delay

    Full text link
    Regression analysis using orthogonal polynomials in the time domain is used to derive closed-form expressions for causal and non-causal filters with an infinite impulse response (IIR) and a maximally-flat magnitude and delay response. The phase response of the resulting low-order smoothers and differentiators, with low-pass characteristics, may be tuned to yield the desired delay in the pass band or for zero gain at the Nyquist frequency. The filter response is improved when the shape of the exponential weighting function is modified and discrete associated Laguerre polynomials are used in the analysis. As an illustrative example, the derivative filters are used to generate an optical-flow field and to detect moving ground targets, in real video data collected from an airborne platform with an electro-optic sensor.Comment: To appear in Proc. International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, 23rd-25th Nov. 201

    New Laguerre Filter Approximators to the GrĂĽnwald-Letnikov Fractional Difference

    Get PDF
    This paper presents a series of new results in modeling of the GrĂĽnwald-Letnikov discrete-time fractional difference by means of discrete-time Laguerre filers. The introduced Laguerre-based difference (LD) and combined fractional/Laguerre-based difference (CFLD) are shown to perfectly approximate its fractional difference original, for fractional order . This paper is culminated with the presentation of finite (combined) fractional/Laguerre-based difference (FFLD), whose excellent approximation performance is illustrated in simulation examples

    Nonlinear Systems

    Get PDF
    The editors of this book have incorporated contributions from a diverse group of leading researchers in the field of nonlinear systems. To enrich the scope of the content, this book contains a valuable selection of works on fractional differential equations.The book aims to provide an overview of the current knowledge on nonlinear systems and some aspects of fractional calculus. The main subject areas are divided into two theoretical and applied sections. Nonlinear systems are useful for researchers in mathematics, applied mathematics, and physics, as well as graduate students who are studying these systems with reference to their theory and application. This book is also an ideal complement to the specific literature on engineering, biology, health science, and other applied science areas. The opportunity given by IntechOpen to offer this book under the open access system contributes to disseminating the field of nonlinear systems to a wide range of researchers

    Frequency-warped autoregressive modeling and filtering

    Get PDF
    This thesis consists of an introduction and nine articles. The articles are related to the application of frequency-warping techniques to audio signal processing, and in particular, predictive coding of wideband audio signals. The introduction reviews the literature and summarizes the results of the articles. Frequency-warping, or simply warping techniques are based on a modification of a conventional signal processing system so that the inherent frequency representation in the system is changed. It is demonstrated that this may be done for basically all traditional signal processing algorithms. In audio applications it is beneficial to modify the system so that the new frequency representation is close to that of human hearing. One of the articles is a tutorial paper on the use of warping techniques in audio applications. Majority of the articles studies warped linear prediction, WLP, and its use in wideband audio coding. It is proposed that warped linear prediction would be particularly attractive method for low-delay wideband audio coding. Warping techniques are also applied to various modifications of classical linear predictive coding techniques. This was made possible partly by the introduction of a class of new implementation techniques for recursive filters in one of the articles. The proposed implementation algorithm for recursive filters having delay-free loops is a generic technique. This inspired to write an article which introduces a generalized warped linear predictive coding scheme. One example of the generalized approach is a linear predictive algorithm using almost logarithmic frequency representation.reviewe

    Identification of Nonlinear Systems Using the Hammerstein-Wiener Model with Improved Orthogonal Functions

    Get PDF
    Hammerstein-Wiener systems present a structure consisting of three serial cascade blocks. Two are static nonlinearities, which can be described with nonlinear functions. The third block represents a linear dynamic component placed between the first two blocks. Some of the common linear model structures include a rational-type transfer function, orthogonal rational functions (ORF), finite impulse response (FIR), autoregressive with extra input (ARX), autoregressive moving average with exogenous inputs model (ARMAX), and output-error (O-E) model structure. This paper presents a new structure, and a new improvement is proposed, which is consisted of the basic structure of Hammerstein-Wiener models with an improved orthogonal function of MĂĽntz-Legendre type. We present an extension of generalised Malmquist polynomials that represent MĂĽntz polynomials. Also, a detailed mathematical background for performing improved almost orthogonal polynomials, in combination with Hammerstein-Wiener models, is proposed. The proposed approach is used to identify the strongly nonlinear hydraulic system via the transfer function. To compare the results obtained, well-known orthogonal functions of the Legendre, Chebyshev, and Laguerre types are exploited

    Generalized Volterra-Wiener and surrogate data methods for complex time series analysis

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (leaves 133-150).This thesis describes the current state-of-the-art in nonlinear time series analysis, bringing together approaches from a broad range of disciplines including the non-linear dynamical systems, nonlinear modeling theory, time-series hypothesis testing, information theory, and self-similarity. We stress mathematical and qualitative relationships between key algorithms in the respective disciplines in addition to describing new robust approaches to solving classically intractable problems. Part I presents a comprehensive review of various classical approaches to time series analysis from both deterministic and stochastic points of view. We focus on using these classical methods for quantification of complexity in addition to proposing a unified approach to complexity quantification encapsulating several previous approaches. Part II presents robust modern tools for time series analysis including surrogate data and Volterra-Wiener modeling. We describe new algorithms converging the two approaches that provide both a sensitive test for nonlinear dynamics and a noise-robust metric for chaos intensity.by Akhil Shashidhar.M.Eng

    Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview

    Get PDF
    Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic

    Bifurcation and Chaos in Fractional-Order Systems

    Get PDF
    This book presents a collection of seven technical papers on fractional-order complex systems, especially chaotic systems with hidden attractors and symmetries, in the research front of the field, which will be beneficial for scientific researchers, graduate students, and technical professionals to study and apply. It is also suitable for teaching lectures and for seminars to use as a reference on related topics
    • …
    corecore