
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 732917, 21 pages
doi:10.1155/2012/732917

Research Article
New Laguerre Filter Approximators to
the Grünwald-Letnikov Fractional Difference

Rafał Stanisławski

Institute of Control and Computer Engineering, Opole University of Technology, ul. Proszkowska 76,
45-758 Opole, Poland

Correspondence should be addressed to Rafał Stanisławski, r.stanislawski@po.opole.pl

Received 9 September 2012; Accepted 16 November 2012

Academic Editor: Alex Elias-Zuniga

Copyright q 2012 Rafał Stanisławski. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper presents a series of new results in modeling of the Grünwald-Letnikov discrete-
time fractional difference by means of discrete-time Laguerre filers. The introduced Laguerre-
based difference (LD) and combined fractional/Laguerre-based difference (CFLD) are shown to
perfectly approximate its fractional difference original, for fractional order α ∈ (0, 2). This paper
is culminated with the presentation of finite (combined) fractional/Laguerre-based difference
(FFLD), whose excellent approximation performance is illustrated in simulation examples.

1. Introduction

Noninteger or fractional-order dynamic models have recently attracted a considerable
research interest. Their specific properties can make them more adequate in modeling of
selected industrial systems [1–4]. Our interest is in discrete-time representations of fractional-
order systems, so we proceed with the Grünwald-Letnikov fractional-order difference (FD)
[5–9]. An infinite-memory filter incorporated in FD may lead to a computational explosion.
Therefore, a number of discrete-time FD-based systems have been modeled both via transfer
function or difference equation models [10–13] and state space ones [7, 9, 14].

Various approximations to the fractional difference have been pursued. Since FD
represents in fact (a sort of) an infinite impulse response (IIR) filter, one solution has been to
least-squares (LS) fit an impulse/step response of a discrete-time integer-difference IIR filter
to that of the associated FD [15–17]. These methods give digital rational approximations (IIR
filters) to continuous fractional-order integrators and differentiators. The problem here is to
propose a good structure of the integer-difference filter, possibly involving a low number
of parameters. On the other hand, an LS fit of the FIR filter to FD has been analyzed in



2 Mathematical Problems in Engineering

the frequency domain [18], with a high-order optimal filter providing a good approximation
accuracy, at the cost of a remarkable computational effort, however.

Another approach relies on the approximation of the FD filter with its truncated, finite-
memory version [14, 19, 20]. In analogy to finite impulse response (FIR) the term finite FD,
or FFD, has been coined [21]. Additionally, a series of results in finite and infinite-memory
modeling of a discrete-time FD by FFD-like models has been presented in [22].

An approach behind that research direction has been the employment of an
approximating filter incorporating orthonormal basis functions (OBF) [21, 23]. Another
attempt at the application of OBF in modeling of FD has been presented in [24]. This paper
provides a nice theoretical background for those rather intuitive approaches to the OBF-based
approximation of FD, in that the so-called Laguerre-based difference (LD) is shown to be
equivalent, in some sense, to FD.

The proposed approximation method is solved for the model parameters in an
analytical way. The paper is culminated with the introduction of a new model of FD, being
an effective combination of FFD and finite LD (or FLD), whose excellent performance results
from expert a priori knowledge used when constructing the model.

Having introduced the FD modeling problem, the Grünwald-Letnikov discrete-time
fractional difference is recalled, together with its FFD approximation, in Section 2. Section 3
presents the OBFmodeling problem, in particular via discrete-time Laguerre filters. Laguerre-
based difference (LD) is covered in Section 4, followed by a Laguerre-based approximation
to FD in terms of finite LD (FLD). Finally, Section 4 provides tools for selection of optimal
Laguerre pole for FLD approximation and presents a series of simulations, which show
the approximation efficiency of FLD modeling. Finally, combined fractional/Laguerre-based
difference (CFLD) and its finite approximation called finite (combined) FLD (or FFLD) have
been introduced in Section 5. That section also presents a method for selection of optimal
Laguerre pole for FFLD and includes a series of simulation examples which present a
high approximation accuracy of FFLD modeling. Conclusions of Section 6 summarize the
achievements of the paper.

2. Fractional Discrete-Time Difference

In our considerations, we use a simple generalization of the familiar Grünwald-Letnikov
difference [25], that is the fractional difference (FD) in discrete time t, described by the
following equation [7–9]:

Δαx(t) =
t∑

j=0

Pj(α)x(t)q−j = x(t) +
t∑

j=1

Pj(α)x(t)q−j t = 0, 1, . . . , (2.1)

where the fractional order α ∈ (0, 2), q−1 is the backward shift operator and

Pj(α) = (−1)jCj(α) (2.2)
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with

Cj(α) =
(
α
j

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1 j = 0

α(α − 1) · · · (α − j + 1
)

j!
j > 0.

(2.3)

Note that each element in (2.1) from time t back to 0 is nonzero so that each incoming sample
of the signal x(t) increases the complication of the model equation. In the limit, with t → +∞,
we have an infinite number of FD components leading to computational explosion.

Remark 2.1. Possible accounting for the sampling period T when transferring from a
continuous-time derivative to the discrete-time difference results in dividing the right-hand
side of (2.1) by Tα [19]. Operating without Tα as in the sequel corresponds to putting T = 1
or to the substitution of Pj(α) for Pj (α)/Tα , j = 0, . . . , t.

2.1. Finite Fractional Difference

In [21], truncated or finite fractional difference (FFD) has (in analogy to FIR) been considered
for practical, feasibility reasons, with the convergence to zero of the series Cj(α) enabling to
assume Cj(α) ≈ 0 for some j > J , where J is the number of backward signal samples used to
calculate the fractional difference. We will further proceed with FFD, to be formally defined
below.

Definition 2.2 (see [22]). Let the fractional difference (FD) be defined as in (2.1) to (2.3). Then
the finite fractional difference (FFD) is defined as

Δαx(t, J) = x(t) +
J∑

j=1

Pj(α)x(t)q−j , (2.4)

where J = min(t, J), and J is the upper bound for j when t > J .

The FFD model has been analyzed in some papers under the heading of a practical
implementation of FD [7, 26], a finite difference [14, 19], or a short-memory difference [20].

Remark 2.3. It is well known [22] that, equivalently to (2.1), FD can be rewritten as the limiting
FFD (for J → ∞) in the form

Δαx(t) = x(t) +
∞∑

j=1

Pj(α)x
(
t − j

)

= x(t) +XFD(t) t = 0, 1, . . .

(2.5)

with x(l) = 0 for all l < 0.

FFD is known to suffer from the steady-state modeling error with respect to FD [22,
27], so special means have been designed to provide steady-state error-free modeling [22, 27].
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3. Orthonormal Basis Functions

It is well known that an open-loop stable linear discrete-time IIR system governed by the
transfer function:

G(z) =
∞∑

j=1

gjz
−j (3.1)

with the impulse response gj = g(j), j = 1, 2, . . ., can be described in the Laurent expansion
form [28, 29]:

G(z) =
∞∑

j=1

cjLj(z), (3.2)

including a series of orthonormal basis functions (OBF) Lj(z) and the weighting parameters
cj , j = 1, 2, . . ., characterizing the model dynamics.

Various OBFs can be used in (3.2). Two commonly used sets of OBF are simple
Laguerre and Kautz functions. These functions are characterized by the “dominant”
dynamics of a system, which is given by a single real pole (p) or a pair of complex ones
(p, p∗), respectively. In case of discrete-time Laguerre filters to be exploited hereinafter, the
orthonormal functions

Lj(z) = Lj

(
z, p
)
=

k

z − p

[
1 − pz

z − p

]j−1
j = 1, 2, . . . (3.3)

with k =
√
1 − p2 and p ∈ (−1, 1), consist of a first-order low-pass factor and (j − 1)th-order

all-pass filters.

Remark 3.1. Depending on the domain context, we will use various arguments in Lj(·), for
example, Lj(z) in the z-domain and Lj(q) or Lj(q−1) in the time domain. The same concerns
the arguments in G(·).

The coefficients cj , j = 1, 2, . . ., can be calculated form the scalar product of G(z) and
Lj(z) [28] as follows:

cj =
〈
G(z), Lj(z)

〉
=

1
2πi

∮

γ

G∗(z)Lj(z)
dz

z
, (3.4)

where G∗(z) is the complex conjugate of G(z) and γ is the unit circle. Note that G(z) and
Lj(z), j = 1, 2 . . ., must be analytic in γ . It is also possible to calculate the scalar product in the
time domain

cj =
〈
g(t), lj(t)

〉
=

∞∑

t=1

g(t)lj(t) (3.5)

with g(t) = G(q−1)δ(t), lj(t) = Lj(q−1)δ(t), t = 1, 2, . . ., and δ(t) is the Kronecker delta.
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4. Laguerre-Based Difference

In analogy to FD, let us firstly define a “sort of” a difference to be referred to as the Laguerre-
based difference.

Definition 4.1. Let cj and Lj(z), j = 1, 2, . . ., be described as in (3.2) through (3.4). Then the
Laguerre-based difference (LD) is defined as

Δα
LDx(t) = x(t) +

∞∑

j=1

cjLj

(
q−1
)
x(t)

= x(t) +XLD(t) t = 0, 1, . . .

(4.1)

with x(l) = 0 for all l < 0.

Since xFD(t) in (2.5) represents a sort of IIR and so does XLD(t) as in (4.1), the question
arises whether there is relationship between XFD(t) and XLD(t) and, moreover, if yes then
when it is possible to obtain XLD = XFD.

Now, a new fundamental result in this respect is announced as follows.

Theorem 4.2. Let the FD be defined as in (2.1) through (2.3) or, equivalently, as in (2.5), and let the
LD be defined as in Definition 4.1. Then LD is identical with FD, that is, XLD(t) ≡ XFD(t), if and
only if

cj =
j−1∑

i=0

(
j − 1
i

)
k2i(−p)j−1−i

i!
diC1(z)
dzi

∣∣∣∣∣
z=p

j = 1, 2, . . . (4.2)

with k =
√
1 − p2, p ∈ (−1, 1) \ {0} being the dominant Laguerre pole and

C1(z) = k
(1 − z)α − 1

z
. (4.3)

Proof. See Appendix A.

Remark 4.3. Note that, rather surprisingly, an actual value of p ∈ (−1, 1) \ {0} is meaningless
for the validity of Theorem 4.2. This intriguing fact has been confirmed in a plethora of
our simulations, both in time and frequency domains. Well, on the other hand, the infinite
expansion as in (3.2) can also perfectly model any rational transfer function irrespectively of
an actual value of p.

Exemplary coefficients cj , j = 1, 2, 3 as in (4.2) are given in Appendix B.

Remark 4.4. The coefficients cj in (4.2) can as well be calculated in an experimental way on
the basis of (3.5):

cj =
〈
Δαx(t)|x(t)=δ(t), Lj

(
q−1
)
δ(t)

〉
=

∞∑

t=1

Pt(α)Lj

(
q−1
)
δ(t) j = 1, 2, . . . , (4.4)

where δ(t) is the Kronecker delta.
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Even though (2.5) and (4.1) are equivalent in the sense that XFD(t) ≡ XLD(t) under the
circumstances, the respective differences will still be referred to as FD and LD.

4.1. Finite Approximation of LD

Like for FD, we have an infinite number of LD components leading to computational
explosion. In analogy to the presented finite fractional difference (FFD), the convergence to
zero of the series cj enables to assume cj ≈ 0 for some j > M, where M is the number of
the Laguerre filters used to calculate the finite LD. We will further proceed with the finite
Laguerre-based difference (FLD), to be formally defined below.

Definition 4.5. Let the Laguerre-based discrete-time difference (LD) be defined as in
Definition 4.1. Then, the finite Laguerre-based difference (FLD) is defined as

Δα
FLDx(t) = x(t) +

M∑

j=1

cjLj

(
q−1
)
x(t), t = 0, 1, . . . , (4.5)

where M is the number of the Laguerre filters used to calculate the difference FLD, and cj ,
j = 1, 2, . . . ,M, are calculated as in (4.2).

Of course, an introduction of the bound M in FLD will lead to generation of an
approximation error as compared to the original FD/LD. Define this error in the time domain
as

εFLD(t,M) = Δα
FLDx(t) −Δαx(t). (4.6)

The energy of the sequence, εFLD(t,M), t = 1, 2, . . ., is given by

‖εFLD(t,M)‖2 = 〈εFLD(t,M), εFLD(t,M)〉 =
∞∑

t=0

ε2FLD(t,M), (4.7)

where 〈·〉 is the scalar product. For the considered FLD, the value of ||εFLD(t;M)||2 can be
easily computed as (compare [28]) follows:

‖εFLD(t,M)‖2 = ∥∥g(t)∥∥2 −
M∑

j=1

c2j =
∞∑

j=1

P 2
j (α) −

M∑

j=1

c2j =
∞∑

j=M+1

c2j , (4.8)

with Pj(α) as in (2.2) and (2.3), and cj as in (4.2). The value of ||εFLD(t;M)||2 depends on
three parameters: the limit M, the fractional order α, and the dominant Laguerre pole p.
Accounting for the fact that increasing the limitM enhances the complexity of the FLDmodel,
“costless” optimization of the FLD model with respect to ||εFLD(t;M)||2 can only be realized
by selection of a Laguerre pole p. So, in contrast to LD, selection of an optimal Laguerre pole
p in the FLD model is important from the accuracy point of view.
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4.2. Selection of Dominant Laguerre Pole

A choice of an optimal Laguerre pole has been given a due research attention [28, 30, 31].
Here, selection of a dominant Laguerre pole p can be obtained by optimization:

p = arg min
p

‖εFLD(t,M)‖2. (4.9)

The optimal Laguerre poles for various values of M and α ∈ (0, 1) are presented in
Figure 1. Since FLD is not quite effective for α ∈ (1, 2), which will be commented in the
sequel, we refrain from showing analogous results for that range of α.

On the basis of a plethora of simulations, in Appendix Gwe propose an approximation
of an optimal Laguerre pole for FLD as a (heuristic) function of α ∈ (0, 1) and M.

Example 4.6. Consider the fractional difference FD and its FLD model, with p = popt =
popt(M,p) selected as in (4.9). Figure 2 presents Bode plots for the FLD models versus
FD = LD, with α = 0.9 and various values of M. Table 1 presents the approximation errors
||εFLD(t,M)||2 of the FLD model for various values of M and α. It can be seen from Table 1
that (1) unsurprisingly, increasing the value of M increases an approximation accuracy of
the FLD model, (2) generally, for the same values of M the approximation accuracy of FLD
modeling is higher for greater α (excluding the area where α is close to (1)).

Qualitatively, the above results are quite similar to those for the FFD model [22, 27].
However, higher values of α lead to reduction of the approximation error for the FFD model
much faster as compared to the FLD one. So, FLD is effective (and, in fact, more effective
than FFD) for α ∈ (0, 1). This is illustrated in Table 2 which shows the values of J in the FFD
model, providing an equivalent approximation accuracy to the FLDmodel with specifiedM,
for various values of M and α. For instance, for α = 0.1, the FLD model with M = 27 is
equivalent, in terms of the approximation accuracy, to the FFD model with J = 445, but for
α = 1.5 is equivalent to the FFD one with J = 103.

Taking into account that the FLDmodel (1) needs a priori knowledge about the optimal
Laguerre pole and (2) is more complex than FFD from the computational point of view, the
FLD model can be recommended for α < 1 only.

Let us finally show some interesting feature related with the FLD model.

Example 4.7. Consider the fractional difference FD and its FLD model as in Example 4.6. The
approximation errors for the FLD model with various values of α and consecutive values of
M are presented in Table 3.

It can be seen from that table that the adjacent values of M provide the same
approximation accuracy for the FLD model. It is interesting to note that for α ∈ (0, 1) we
obtain the same approximation errors for the pairs M = {1, 2};M = {3, 4};M = {5, 6} . . ., but
for α ∈ (1, 2) the same errors are obtained for the pairs M = {2, 3};M = {4, 5};M = {6, 7} . . ..
Accounting for the computational aspect, we, thus, recommend to use odd values of M for
α ∈ (0, 1) and even values ofM for α ∈ (1, 2).

It is worth mentioning that when in the above examples popt is substituted by
its approximation computed as in Appendix C, the approximation errors are hardly
distinguishable from those of Tables 1 and 3.
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Figure 1: Plots of optimal Laguerre poles for FLD versus fractional-order α ∈ (0, 1).
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Figure 2: Bode plots for FLD model with α = 0.9 and various values ofM.

The above examples demonstrate that FLD is effective for α ∈ (0, 1). For α ∈ (1, 2), the
FLD is not as effective as FFD in approximation of FD. The motivation of the work presented
in the next section is searching for a “good” FLD-like model also for α > 1.

5. Combined Fractional/Laguerre-Based Difference

To cope with the problem, we introduce a new difference, which is a combination of the
“classical” FFD and our FLD.

Definition 5.1. Define the combined fractional/Laguerre-based difference (CFLD) as

Δα
CFLDx(t) = x(t) +XCFLD(t) t = 0, 1, . . . , (5.1)
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Table 1: Approximation errors for FLD with various values ofM and α.

M = 7 M = 17 M = 27
α = 0.1 6.3485e − 5 1.2127e − 5 4.8239e − 6
α = 0.5 5.4513e − 5 3.4898e − 6 7.4791e − 7
α = 0.9 1.2874e − 6 2.7372e − 8 3.1065e − 9
α = 0.98 5.7516e − 8 9.8064e − 10 9.6533e − 11
α = 1.5 3.2417e − 6 9.9157e − 9 4.1481e − 10
α = 1.8 7.1224e − 7 9.6608e − 10 2.5258e − 11

Table 2: Bound J for FFD providing equivalent accuracies to FLD, with various values of α and M.

M = 7 M = 17 M = 27
α = 0.1 53 207 445
α = 0.5 28 108 231
α = 0.9 17 65 141
α = 0.98 14 55 120
α = 1.5 12 47 103
α = 1.8 11 41 89

Table 3: Approximation errors for FLD with various values ofM and α.

α = 0.5 α = 0.9 α = 1.5
M = 1 3.4705e − 3 3.3670e − 4 2.0469e − 2
M = 2 3.4705e − 3 3.3670e − 4 4.5878e − 4
M = 3 4.9393e − 4 2.6149e − 5 4.5878e − 4
M = 4 4.9393e − 4 2.6149e − 5 2.5059e − 5
M = 5 1.3914e − 4 4.6882e − 6 2.5059e − 5
M = 6 1.3914e − 4 4.6882e − 6 3.2417e − 6
M = 7 5.4513e − 5 1.2874e − 6 3.2417e − 6
M = 8 5.4513e − 5 1.2874e − 6 6.623e − 7
M = 9 2.5931e − 5 4.5774e − 7 6.6237e − 7
M = 10 2.5931e − 5 4.5774e − 7 1.8047e − 7

where

XCFLD(t) =
J∑

i=1

Pi(α)x(t)q−i +
∞∑

j=1

cjLj

(
q−1
)
q−Jx(t), (5.2)

and the first component at the right-hand side of (5.2) constituting the FFD share in the CFLD,
the second one being the (J-delayed) LD share, with Pj(α), j = 1, . . . , J , as in (2.2) and (2.3),
Lj(q−1) and cj , j = 1, 2, . . ., as in (3.3) and (3.4), respectively.

Now, we have another fundamental result in perfect modeling of FD via CFLD.

Theorem 5.2. Let the Grünwald-Letnikov fractional difference (FD) be defined as in (2.1) through
(2.3), Laguerre-based difference (LD) is as in Definition 4.1 and combined fractional/Laguerre-based
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difference (CFLD). Then CFLD is equivalent to FD in that Δα
CFLDx(t) ≡ Δαx(t) (or XCFLD(t) ≡

XFD(t)) if and only if

cj =
j−1∑

i=0

(
j − 1
i

)
k2i(−p)j−1−i

i!
diD1(z)

dzi

∣∣∣∣∣
z=p

j = 1, 2, . . . (5.3)

with k =
√
1 − p2, p ∈ (−1, 1) \ {0} being the dominant Laguerre pole and

D1(z) = k
(1 − z)α − 1 −∑J

j=1 Pj(α)zj

zJ+1
. (5.4)

Proof. See Appendix D.

The first two coefficients cj , j = 1, 2, in (5.2) calculated as in (5.3) and (5.4) are
exampled in Appendix E.

Remark 5.3. Note that regardless of an actual value of p we have FD ≡ LD ≡ CFLD, in the
sense that XFD(t) ≡ XLD(t) ≡ XCFLD(t), t = 0, 1, . . ..

The CFLD model as in (5.1) can also be presented in the form:

Δα
CFLDx(t) = x(t) +

∞∑

j=1

cjfj
(
q−1
)
x(t), (5.5)

where cj and fj(q−1), j = 1, 2, . . ., are as follows:

cj =

⎧
⎨

⎩
Pj(α) j = 1, . . . , J

cj−J j = J + 1, . . . ,
(5.6)

fj
(
q−1
)
=

⎧
⎨

⎩
q−j j = 1, . . . , J

Lj−J
(
q−1
)
q−J j = J + 1, . . .

(5.7)

with cj−J , j = J + 1, . . ., calculated from (5.3).
An interesting CFLD orthonormality result can now be obtained.

Theorem 5.4. Consider the CFLD as in (5.5) with the filters fj(q−1), j = 1, 2, . . ., as in (5.7). The
filters fj(q−1), j = 1, 2, . . ., are orthonormal basis functions.

Proof. See Appendix F.

Remark 5.5. Like in the FD, possible accounting for the sampling period T in LD and CFLD
models when transferring from a continuous-time derivative to the discrete-time difference
results in dividing the right-hand side of (4.1) and (5.1) by Tα, respectively.
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Like in the FD/LD, the infinite length expansion incorporated in CFLD leads to
a computational explosion. Therefore, in analogy to FLD, we introduce a finite-length
approximation to CFLD called finite (combined) fractional/Laguerre-based difference
(FFLD).

5.1. Finite Approximation of CFLD

The idea behind combining FFD and FLD comes from a priori knowledge about the natures
of (1) FFD versus FD in the initial (or high-frequency) part of the model [22] and (2) FLD
versus classical FIR in the remaining (or medium/low-frequency) part. In fact, FFD ≡ FD for
t < J so the “only” problem is to find a “good” J and, on the other hand, the number M of
Laguerre filters is essentially lower than a number of FIR components (and FD is a “sort of”
IIR, in particular in the medium/low-frequency part).

Step by step, we arrive at the most practically important model of FD, being the
truncated or finite CFLD.

Definition 5.6. Let the combined fractional/Laguerre-based difference (CFLD) be defined as
in Definition 5.1. Then the finite (combined) fractional/Laguerre-based difference (FFLD) is
defined as

Δα
FFLDx

(
t, J,M

)
= x(t) +

J∑

i=1

Pi(α)x(t)q−i +
M∑

j=1

cjLj

(
q−1
)
q−Jx(t), t = 0, 1, . . . , (5.8)

where M is the number of Laguerre filters used in the model.

Again, the bound M in FFLD leads to an approximation error in FFLD modeling.
Immediately, based on Theorem 5.4, an approximation error for the FFLD model can be
calculated like for the FLD one (compare (4.8)):

∥∥∥εFFLD
(
t, J,M

)∥∥∥
2
=
∥∥g(t)

∥∥2 −
J+M∑

j=1

c2j =
∞∑

j=1

P 2
j (α) −

J+M∑

j=1

c2j =
∞∑

j=J+M+1

c2j (5.9)

with cj as in (5.6).

Remark 5.7. It is essential that, like for FLD, the approximation error for FFLD can be made
arbitrarily small by selection of sufficiently high M ≥ M0, which is the well-known feature
of OBF. However, the power of FFLD is that, owing to the FFD contribution, the value of M0

can be much lower than that for FLD.

5.2. Selection of Dominant Laguerre Pole

Here, an optimal Laguerre pole is selected by minimization of the approximation error (5.9)
in a similar way as in (4.9). Figures 3 and 4 present the optimal Laguerre pole p as a function
of the order α for J = 10 and various values of M, and for M = 15 and various values of J ,
respectively.



12 Mathematical Problems in Engineering

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.86

0.88

0.9

0.92

0.94

0.96

0.98

α

p

M = 25

M = 10
M = 5

M = 15
M = 20

Figure 3: Optimal Laguerre poles for FFLD model as a function of α, with J = 10 and various values ofM.
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Figure 4: Optimal Laguerre poles for FFLD model as a function of α, withM = 15 and various values of J .

As in the case of the FLDmodel, on the basis of a number of simulations, an (heuristic)
approximation of an optimal Laguerre pole in the FFLD model, as a function α ∈ (0, 2), M
and J , is presented in Appendix B.

Example 5.8. Consider the fractional difference FD and its FFLD model with p = popt. Table 4
presents the approximation error ||ε(t,M)||2 for the FFLD model with J = 10 and various
values of M and α. Table 5 shows values of J in the FFD model that are accuracy-equivalent
to the FFLD with specified M and J .

It can be seen fromTables 4 and 5 that the FFLDmodel is muchmore effective than FFD
inmodeling of FD in that FFD needs a huge number of J to provide equivalent approximation
accuracy to FFLD. Figure 5 presents Bode plots for the FFLD model versus FD = LD = CFLD,
with α = 0.9, J = 10, and various values of M.

Example 5.9. Consider the fractional difference FD with α = 0.9 and its FFD versus FFLD
models, with JFFD and JFFLD, respectively, and p = popt andM = 27 for FFLD. Table 6 presents
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Table 4: Approximation errors for FFLD model with J = 10 and various values of M and α.

M = 7 M = 17 M = 27
α = 0.1 3.2760e − 6 7.0817e − 7 2.9710e − 7
α = 0.5 4.2422e − 7 3.7965e − 8 9.5936e − 9
α = 0.9 1.2167e − 9 4.7492e − 11 7.2540e − 12
α = 0.98 2.6855e − 11 8.7066e − 13 9.8936e − 14
α = 1.5 1.8660e − 10 2.2660e − 12 1.3051e − 13

Table 5:Number of elements J in FFD providing equivalent approximation accuracy to FFLD, with J = 10
and various values of α and M.

M = 7 M = 17 M = 27
α = 0.1 612 2132 4195
α = 0.5 307 1024 2032
α = 0.9 197 625 1218
α = 0.98 184 577 1122
α = 1.5 126 375 718

the same approximation errors for both models under various values of JFFD and JFFLD. It can
be seen from Table 6 that increasing JFFLD by 5 in the FFLD model is equivalent to increasing
JFFD by some 500 in the FFDmodel. However, increasing J by 5 in both FFD and FFLDmodels
results in roughly the same increase in the computational burden. So, in FFLD modeling we
have some 100 times better computational efficiency.

It is worth emphasizing that the approximation error is so low for FFLD that the
normalization factor incorporated into FFD [22] may be not necessary for FFLD. Now, FFLD
can be competitive to another powerful adaptive (normalized) finite fractional difference
(AFFD) [22, 32], an intriguing issue to be a subject of a comparative research study.

6. Conclusion

This paper has offered a series of original results in modeling of Grünwald-Letnikov
discrete-time fractional-difference (FD) using Laguerre filters. Firstly, a new quality has
been presented, namely, the Laguerre-based difference (LD), which has been proven to be
equivalent, under specified conditions, to the FD. For implementation reasons, a finite LD
(FLD) approximator has been introduced as an analogue to the “classical” finite FD (FFD),
and the two have been shown to perform in a similar way.

Another new quality, is that combined fractional/Laguerre-based difference (CFLD)
has also been shown equivalent, under specified conditions, to the FD. Interestingly, a
finite-length approximator to CFLD, called finite (combined) FLD, or FFLD, has been
demonstrated in simulations to constitute an excellent model of FD, both in terms of the
accuracy and computational efficiency. This is due to the fact that FFLD constitutes an
expert combination of the high-frequency FFD component and medium/low-frequency FLD
part, both efficiently balanced using the bounds J and M, respectively. Additionally, simple
approximate derivations for optimal Laguerre poles are supplemented. Summing up, FFLD
is recommended as a high-performance approximator to FD. Future research in the area
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Table 6: Approximation errors for FFLD versus FFD model with α = 0.9, M = 27, and various values of J .

JFFLD 5 10 15 20
||ε||2 4.3055e − 11 7.2540e − 12 2.3650e − 12 1.0252e − 12

JFFD 646 1218 1802 2390

will concentrate on a comparison of FFLD and AFFD models of FD and their application
in fractional-order predictive control.

Appendices

A. Proof of Theorem 4.2

FD defined in (2.1) through (2.3) or in (2.5) can be presented as

Δαx(t) = x(t) +XFD(t)

= x(t) +G
(
q−1
)
x(t),

(A.1)

where G(z) is in form of (3.1) with

G(z) =
∞∑

j=1

Pj(α)z−j (A.2)

and Pj(α) defined as in (2.2) and (2.3).
Note that using the generalized Newton binomial

(a + b)α =
∞∑

j=0

(
α
j

)
aα−jbj (A.3)
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and accounting for the fact that
∑∞

j=0 Pj(α)z−j is the binomial expansion for a = 1 and b = −z−1,
and P0(α) = 1, we can write (A.2) as

G(z) =
(
1 − z−1

)α − 1. (A.4)

It has been shown in Section 3 that (A.2) can be described by (3.2), where Lj(z),
j = 1, 2, . . ., are the Laguerre filters presented in (3.3). The coefficients cj , j = 1, 2, . . ., can
be obtained using formula (3.4) [28]:

cj =
1

2πi

∮

γ

G∗(z)Lj(z)
dz

z

=
1

2πi

∮

γ

G
(
z−1
)
Lj(z)

dz

z
,

(A.5)

where G∗(z) = G(z−1) = (1 − z)α − 1 is the complex conjugate of G(z). Note that G(z) and
Lj(z), j = 1, 2, . . ., are analytic in γ . Using the Cauchy integral formula for j = 1, we have

c1 =
k

2πi

∮

γ

G
(
z−1
)

z − p

dz

z
= k

G
(
z−1
)

z

∣∣∣∣∣
z=p

= C1(z)|z=p, (A.6)

where C1(z) = k(G(z−1)/z).
For j = 2, 3, . . ., we have

cj =
k

2πi

∮

γ

G
(
z−1
)(
1 − pz

)j−1
(
z − p

)j
dz

z

=
1

2πi

∮

γ

C1(z)
z − p

(
k2

z − p
− p

)j−1
dz,

(A.7)

where k =
√
1 − p2. Now, expanding the element ((k2/(z − p)) − p)j−1 via the binomial

theorem, we arrive at

cj =
1

2πi

∮

γ

C1(z)
z − p

(
j−1∑

i=0

(
j − 1
i

)
k2i(−p)j−1−i
(
z − p

)i

)
dz

=
j−1∑

i=0

(
j − 1
i

)
k2i(−p)j−1−i 1

2πi

∮

γ

C1(z)
(
z − p

)i+1dz,

(A.8)

where
(

j−1
i

)
, i = 1, . . . , j − 1, are the binomial coefficients. Finally, on the basis of Cauchy

integral formula, again, we obtain (4.2).
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B. Exemplary Coefficients cj in (4.2)

Exemplary coefficients cj , j = 1, 2, 3 as in (4.2) are as follows:

c1 = k

(
1 − p

)α − 1
p

,

c2 = −k
(
1 − p

)α − 1
p

(
p +

k2

p

)
− k3α

(
1 − p

)α−1

p
,

c3 = k

(
1 − p

)α − 1
p

(
p2 + 2k2 +

k4

p2

)

+ k3α
(
1 − p

)α−1

p

(
2p +

k2

p

)
+
k5

2
α(α − 1)

(
1 − p

)α−2

p
.

(B.1)

C. Approximated Laguerre Pole for FLD

An approximation of the optimal Laguerre pole popt for the FLD model is given by the
following heuristic function:

popt ∼= a0 + a1α + a2e
a3α, (C.1)

where

a0 = 0.96949842 − 0.50616819e−0.48357222
√
M,

a1 = −0.064593783 − 0.96336530e−0.32042783
√
M,

a2 = −0.33695592e−0.023882929M−0.45318016,

a3 = −3.5706767 − 30.316352e−1.2122077
√
M.

(C.2)

Note that the approximation function can be used for α ∈ (0.001, 0.999) andM ∈ (5, 100).

D. Proof of Theorem 5.2

The GL fractional difference defined in (2.1) to (2.3) can be presented in the following IIR
model:

Δαx(t) = x(t) +
J∑

j=1

Pj(α)x(t)q−j +G2

(
q−1
)
x(t), (D.1)
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where G2(q−1) is the filter is transfer function of the form:

G2

(
q−1
)
=

∞∑

j=J+1

Pj(α)q−j = q−J
∞∑

j=J+1

Pj(α)q−j+J = q−JG2

(
q−1
)
. (D.2)

Using the generalized Newton binomial (compare Proof of Theorem 4.2), (D.2) can be pre-
sented as follows:

G2

(
q−1
)
=
(
1 − q−1

)α − 1 −
J∑

j=1

Pj(α)q−j . (D.3)

Getting back to Section 3, again, G2(q
−1) can be presented in the form of (3.2) so that

G2

(
q−1
)
= q−JG2

(
q−1
)
=

∞∑

j=1

cjLj

(
q−1
)
q−J , (D.4)

where Lj(q−1), j = 1, 2, . . ., is as in (3.3). The coefficients cj , j = 1, 2, . . ., are obtained from the
scalar product:

cj =
〈
G2

(
q−1
)
, Lj

(
q−1
)
q−J
〉
=
〈
G2(z), Lj(z)z−J

〉

=
1

2πi

∮

γ

G∗
2(z)Lj(z)

dz

zJ+1
.

(D.5)

Following the proof of Theorem 4.2, (A.6) is substituted by

c1 =
k

2πi

∮

γ

G2
(
z−1
)

z − p

dz

zJ+1
= k

G2
(
z−1
)

zJ+1

∣∣∣∣∣
z=p

= D1(z)|z=p (D.6)

withG2(z−1) = G∗
2(z) = (1−z)α−1−∑J

j=1 Pj(α)zj andD1(z) (substituted for C1(z)) as in (5.4).
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E. Exemplary Coefficients cj in (5.2)

The first two coefficients cj , j = 1, 2, in (5.2) calculated as in (5.3) and (5.4) are as follows:

c1 = k

(
1 − p

)α − 1 −∑J
j=1 Pj(α)pj

pJ+1

c2 = −k
(
1 − p

)α − 1 −∑J
j=1 Pj(α)pj

pJ+1

⎛
⎜⎝p +

(
J + 1

)
k2

p

⎞
⎟⎠

− k3
α
(
1 − p

)α−1 −∑J
j=1 jPj(α)pj−1

pJ+1
.

(E.1)

F. Proof of Theorem 5.4

The functions fj(q−1), j = 1, 2, . . ., are orthonormal to each other if and only if

〈
fi(z), fj(z)

〉
=

{
1 ∀i = j i, j ∈ I+

0 ∀i /= j i, j ∈ I+,
(F.1)

where I+ denotes the positive integers. Observe that fi(z), i = 1, . . . , J , is just FIR, that is, the
special case of the Laguerre filters as in (3.3)with the dominant Laguerre pole p = 0. Since the
Laguerre filters are orthonormal basis functions, we have 〈fi(z), fi(z)〉 = 1 for each i = 1, 2, . . .
(independently of a value of p) and 〈fi(z), fj(z)〉 = 0, i = 1, 2, . . ., for i, j ≤ J (p = 0) or i, j > J

(p ∈ (−1, 1)). In the last step, we prove that 〈fi(z), fj(z)〉 = 〈fj(z), fi(z)〉 = 0 for each j ≤ J

and i > J . In this case, we have

〈
fi(z), fj(z)

〉
=
〈
li(t), lj(t)

〉
=
〈
lj(t), li(t)

〉
=

∞∑

t=1

li(t)lj(t), (F.2)

where li(t) = fi(q−1)δ(t) and lj(t) = fj(q−1)δ(t). Accounting that li(t) = 0 for each t =
1, . . . , J, lj(t) = 0 for each t = 1, . . . , j − 1, j + 1, . . ., and j ≤ J , we obtain

∑∞
t=1 li(t)lj(t) = 0,

which completes the proof.

G. Approximated Laguerre Pole for FFLD

An approximation of the optimal Laguerre pole popt for the FFLD model is given by the
following heuristic function:

popt ∼= a0 + a1α + a2α
2, (G.1)
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Table 7: Values of the parameters in approximation (G.1).

Name Value Name Value Name Value
a1
0 13.821178 a1

1 −0.15915827 a1
2 −0.026978880

a2
0 −12.774481 a2

1 3.5023767 a2
2 −0.3859619

a3
0 −4.0530011 a3

1 −0.22109952 a3
2 0.55931846

a4
0 −0.81675544 a4

1 0.50001831 a4
2 −4.4609453

a5
0 −4.5738909 a5

1 −1.4689257 a5
2 −0.0023129853

a6
0 −0.14651483 a6

1 −0.32557155 a6
2 −1.1093519

a7
2 4.4590784

where

a0 =
(
a1
0 + a2

0 exp
[
a3
0M

a40
])

exp
[
a5
0J

a60
]
,

a1 =
(
a1
1 + a2

1 exp
[
a3
1M

a41
])

exp
[
a5
1J

a61
]
,

a2 = a1
2 exp

[
a2
2J

a32
]
+ a4

2 exp
[
a5
2M

a62
]
+ a7

2

(G.2)

with values of the parameters presented in Table 7. The function (G.1) can be used for α ∈
(0.01, 1.99).

Abbreviations

FD: Fractional difference
FFD: Finite fractional difference
LD: Laguerre-based difference
FLD: Finite Laguerre-based difference
CFLD: Combined fractional/Laguerre-based difference
FFLD: Finite (combined) fractional/Laguerre-based difference
IIR: Infinite impulse response
FIR: Finite impulse response
OBF: Orthonormal basis functions.
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