29 research outputs found

    Forecasting tools and probabilistic scheduling approach incorporatins renewables uncertainty for the insular power systems industry

    Get PDF
    Nowadays, the paradigm shift in the electricity sector and the advent of the smart grid, along with the growing impositions of a gradual reduction of greenhouse gas emissions, pose numerous challenges related with the sustainable management of power systems. The insular power systems industry is heavily dependent on imported energy, namely fossil fuels, and also on seasonal tourism behavior, which strongly influences the local economy. In comparison with the mainland power system, the behavior of insular power systems is highly influenced by the stochastic nature of the renewable energy sources available. The insular electricity grid is particularly sensitive to power quality parameters, mainly to frequency and voltage deviations, and a greater integration of endogenous renewables potential in the power system may affect the overall reliability and security of energy supply, so singular care should be placed in all forecasting and system operation procedures. The goals of this thesis are focused on the development of new decision support tools, for the reliable forecasting of market prices and wind power, for the optimal economic dispatch and unit commitment considering renewable generation, and for the smart control of energy storage systems. The new methodologies developed are tested in real case studies, demonstrating their computational proficiency comparatively to the current state-of-the-art

    Accommodating maintenance in prognostics

    Get PDF
    Error on title page - year of award is 2021Steam turbines are an important asset of nuclear power plants, and are required to operate reliably and efficiently. Unplanned outages have a significant impact on the ability of the plant to generate electricity. Therefore, condition-based maintenance (CBM) can be used for predictive and proactive maintenance to avoid unplanned outages while reducing operating costs and increasing the reliability and availability of the plant. In CBM, the information gathered can be interpreted for prognostics (the prediction of failure time or remaining useful life (RUL)). The aim of this project was to address two areas of challenges in prognostics, the selection of predictive technique and accommodation of post-maintenance effects, to improve the efficacy of prognostics. The selection of an appropriate predictive algorithm is a key activity for an effective development of prognostics. In this research, a formal approach for the evaluation and selection of predictive techniques is developed to facilitate a methodic selection process of predictive techniques by engineering experts. This approach is then implemented for a case study provided by the engineering experts. Therefore, as a result of formal evaluation, a probabilistic technique the Bayesian Linear Regression (BLR) and a non-probabilistic technique the Support Vector Regression (SVR) were selected for prognostics implementation. In this project, the knowledge of prognostics implementation is extended by including post maintenance affects into prognostics. Maintenance aims to restore a machine into a state where it is safe and reliable to operate while recovering the health of the machine. However, such activities result in introduction of uncertainties that are associated with predictions due to deviations in degradation model. Thus, affecting accuracy and efficacy of predictions. Therefore, such vulnerabilities must be addressed by incorporating the information from maintenance events for accurate and reliable predictions. This thesis presents two frameworks which are adapted for probabilistic and non-probabilistic prognostic techniques to accommodate maintenance. Two case studies: a real-world case study from a nuclear power plant in the UK and a synthetic case study which was generated based on the characteristics of a real-world case study are used for the implementation and validation of the frameworks. The results of the implementation hold a promise for predicting remaining useful life while accommodating maintenance repairs. Therefore, ensuring increased asset availability with higher reliability, maintenance cost effectiveness and operational safety.Steam turbines are an important asset of nuclear power plants, and are required to operate reliably and efficiently. Unplanned outages have a significant impact on the ability of the plant to generate electricity. Therefore, condition-based maintenance (CBM) can be used for predictive and proactive maintenance to avoid unplanned outages while reducing operating costs and increasing the reliability and availability of the plant. In CBM, the information gathered can be interpreted for prognostics (the prediction of failure time or remaining useful life (RUL)). The aim of this project was to address two areas of challenges in prognostics, the selection of predictive technique and accommodation of post-maintenance effects, to improve the efficacy of prognostics. The selection of an appropriate predictive algorithm is a key activity for an effective development of prognostics. In this research, a formal approach for the evaluation and selection of predictive techniques is developed to facilitate a methodic selection process of predictive techniques by engineering experts. This approach is then implemented for a case study provided by the engineering experts. Therefore, as a result of formal evaluation, a probabilistic technique the Bayesian Linear Regression (BLR) and a non-probabilistic technique the Support Vector Regression (SVR) were selected for prognostics implementation. In this project, the knowledge of prognostics implementation is extended by including post maintenance affects into prognostics. Maintenance aims to restore a machine into a state where it is safe and reliable to operate while recovering the health of the machine. However, such activities result in introduction of uncertainties that are associated with predictions due to deviations in degradation model. Thus, affecting accuracy and efficacy of predictions. Therefore, such vulnerabilities must be addressed by incorporating the information from maintenance events for accurate and reliable predictions. This thesis presents two frameworks which are adapted for probabilistic and non-probabilistic prognostic techniques to accommodate maintenance. Two case studies: a real-world case study from a nuclear power plant in the UK and a synthetic case study which was generated based on the characteristics of a real-world case study are used for the implementation and validation of the frameworks. The results of the implementation hold a promise for predicting remaining useful life while accommodating maintenance repairs. Therefore, ensuring increased asset availability with higher reliability, maintenance cost effectiveness and operational safety

    Real-time and semantic energy management across buildings in a district configuration

    Get PDF
    Existing building and district energy management strategies are in urgent need of an overhaul to meet the energy and environmental challenges of the 21st Century. The immense growth in the availability of data through the Internet of Things (IoT), the decentralisation of energy generation, and the increasing power of Artificial Intelligence (AI) presents an opportunity to achieve a paradigm shift in the way energy is controlled and managed. To contribute to this field, this PhD project undertook a thorough literature review combined with a participatory, action research approach to identify and understand the key challenges faced by facility managers and to identify potential areas of improvement. Following this, the PhD thesis aims to tackle three key research areas using simulated case study experiments. These aim to optimise thermal energy management within buildings at a zone-level, control energy generation at a district-level, and combine the learnings from these two experiments with a holistic energy management solution that controls both the energy supply and demand at a building and district-level. At a building-level, a model predictive control approach combining a genetic algorithm and surrogate artificial neural network is used. A predictive and context aware controller is able to produce 24 hour heating set point schedules for each zone within a building. This approach achieved an energy saving of 18% whilst maintaining thermal comfort for users. The methodology also had the capability to adapt to dynamic energy pricing tariffs and capable of optimising for energy cost by shifting load to cheaper periods. At a district-level, a predictive, optimisation-based approach was developed to determine the operation of a multi-vector, district heating, energy centre. When thermal storage and several generation sources are available, alongside variable renewable energy generation and building demand, static, rulebased controllers cannot perform adequately in all conditions. Instead, the optimisation-based approach, developed in this thesis, was able to increase profit to the energy centre by 45% as well as decrease CO2 emissions whist adapting to errors in energy demand and supply forecasting. Finally, the most significant contribution of this thesis was provided by efvii fectively combining the approaches made at a building and district-level. This case study aimed to simultaneously control the energy generation of the district energy centre, alongside the thermal demand of one of the buildings within the district. The additional flexibility provided by partially controlling the building demand led to a further 8% increase in profit to the energy centre, compared to just optimising energy supply. This demonstrates the vital importance of treating the consumer as an integral, active component of the energy system. It is argued that the contributions made throughout this thesis will become more relevant when coupled with additional research fields. This includes the growth in available data from IoT sources, advanced AI including unsupervised learning, and utilising a shared semantic description of smart building, smart energy and smart city concepts. At its core, this thesis aims to demonstrate that ‘thinking’, predictive, control strategies, that are more context-aware, can achieve significant benefits over the traditional reactive, rule-based controllers of the past

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    A World-Class University-Industry Consortium for Wind Energy Research, Education, and Workforce Development: Final Technical Report

    Full text link

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)

    Artificial Intelligence Forecasting Techniques For Reducing Uncertainties In Renewable Energy Applications [vĂ©dĂ©s elƑtt]

    Get PDF
    The work presented in this thesis provides an integrated view and related insights for solar and wind farm operators and renewable energy regulators regarding factors influencing electricity production using those resources. The findings help production planning and grid stability improvements through better energy forecasting to reduce uncertainty. With the high increase in energy demand expected in both the near and far future, generating energy from green sustainable resources has now become an imperative necessity. Renewable energy sources like wind and solar are among the most promising and environmentally-friendly energy generation options. However, wind and solar energy production are influenced by many variables which affect the reliability, stability, and economic benefits of wind and solar energy projects, therefore, forecasting the potential amount of energy from wind and solar resources is of great importance. Hence, the objective of the work reported here was to explore the possibility of using artificial intelligence methods to accurately predict the generated renewable power from solar and wind farms based on the available data. Specifically, this thesis reports on the following results: 1. At first, solar photovoltaic (PV) energy forecasting was studied. Operators of grid-connected PV farms do not always have full sets of data available to them, especially over an extended period of time as required by key forecasting techniques such as multiple regression (MR) or artificial neural network (ANN). Therefore, the work reported here considered these two main approaches of building prediction models and compared their performance when utilizing structural, time-series, and hybrid methods for data input. Three years of PV power generation data (of an actual farm), as well as historical weather data (of the same location) with several key variables, were collected and utilized to build and test six prediction models. Models were built and designed to forecast the PV power for a 24-hour ahead horizon with 15 minutes resolutions. Results of comparative performance analysis show that different models have different prediction accuracy depending on the input method used to build the model: ANN models perform better than the MR regardless of the input method used. The hybrid input method results in better prediction accuracy for both MR and ANN techniques while using the time-series method results in the least accurate forecasting models. Furthermore, sensitivity analysis shows that poor data quality does impact forecasting accuracy negatively, especially for the structural approach. 2. Then, wind energy forecasting was studied utilizing three machine learning techniques namely Artificial Neural Network (ANN), Support vector machine (SVM), and k-nearest neighbors (K-NN). The three mentioned techniques were used to design, train and test wind energy, forecasting models. Later, a hybrid model was proposed based on these three techniques. Real data obtained from a 2MW grid-connected wind turbine has been used to train and validate the different machine learning techniques. To compare the accuracy of the models over different performance measures with different scales, a comparative evaluation method was devised and used. Results show that the ANN model has great performance in forecasting long-term wind energy, but in contrast, it has very poor short-term performance. SVM model shows better short-term forecasting performance than ANN but presents weak long-term forecasting abilities. K-NN model shows very good short-term forecasting abilities and fair long-term performance. The suggested hybrid model was able to forecast both long and short-term wind energy with very good performance. To that degree, the suggested model can help grid and wind farm operators to forecast the potential amount of wind energy for both long and short term with a good degree of certainty. 3. Finally, the effect of the input data resolution on the forecasting accuracy was studied for both wind and solar. So, datasets were collected from a 546 KWp grid-connected PV farm and a 2 MW wind turbine for one full year. This data was used to train and test Artificial Neural Network models to forecast day-ahead PV and wind energy utilizing time-series input data with 15, 30, and 60 minutes resolutions. The models were able to forecast the PV energy accurately, while the same models trained for wind showed poor performance. Higher input data resolutions lead to slightly better forecasting performance for the PV farm. Utilizing data with higher resolution can improve the forecast by 1-5%. While for wind energy forecasting, the resolution has very minor effects, the 30-minute resolution shows a bit better forecasting performance

    Book of abstracts of the 10th International Chemical and Biological Engineering Conference: CHEMPOR 2008

    Get PDF
    This book contains the extended abstracts presented at the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, over 3 days, from the 4th to the 6th of September, 2008. Previous editions took place in Lisboa (1975, 1889, 1998), Braga (1978), PĂłvoa de Varzim (1981), Coimbra (1985, 2005), Porto (1993), and Aveiro (2001). The conference was jointly organized by the University of Minho, “Ordem dos Engenheiros”, and the IBB - Institute for Biotechnology and Bioengineering with the usual support of the “Sociedade Portuguesa de QuĂ­mica” and, by the first time, of the “Sociedade Portuguesa de Biotecnologia”. Thirty years elapsed since CHEMPOR was held at the University of Minho, organized by T.R. Bott, D. Allen, A. Bridgwater, J.J.B. Romero, L.J.S. Soares and J.D.R.S. Pinheiro. We are fortunate to have Profs. Bott, Soares and Pinheiro in the Honor Committee of this 10th edition, under the high Patronage of his Excellency the President of the Portuguese Republic, Prof. AnĂ­bal Cavaco Silva. The opening ceremony will confer Prof. Bott with a “Long Term Achievement” award acknowledging the important contribution Prof. Bott brought along more than 30 years to the development of the Chemical Engineering science, to the launch of CHEMPOR series and specially to the University of Minho. Prof. Bott’s inaugural lecture will address the importance of effective energy management in processing operations, particularly in the effectiveness of heat recovery and the associated reduction in greenhouse gas emission from combustion processes. The CHEMPOR series traditionally brings together both young and established researchers and end users to discuss recent developments in different areas of Chemical Engineering. The scope of this edition is broadening out by including the Biological Engineering research. One of the major core areas of the conference program is life quality, due to the importance that Chemical and Biological Engineering plays in this area. “Integration of Life Sciences & Engineering” and “Sustainable Process-Product Development through Green Chemistry” are two of the leading themes with papers addressing such important issues. This is complemented with additional leading themes including “Advancing the Chemical and Biological Engineering Fundamentals”, “Multi-Scale and/or Multi-Disciplinary Approach to Process-Product Innovation”, “Systematic Methods and Tools for Managing the Complexity”, and “Educating Chemical and Biological Engineers for Coming Challenges” which define the extended abstracts arrangements along this book. A total of 516 extended abstracts are included in the book, consisting of 7 invited lecturers, 15 keynote, 105 short oral presentations given in 5 parallel sessions, along with 6 slots for viewing 389 poster presentations. Full papers are jointly included in the companion Proceedings in CD-ROM. All papers have been reviewed and we are grateful to the members of scientific and organizing committees for their evaluations. It was an intensive task since 610 submitted abstracts from 45 countries were received. It has been an honor for us to contribute to setting up CHEMPOR 2008 during almost two years. We wish to thank the authors who have contributed to yield a high scientific standard to the program. We are thankful to the sponsors who have contributed decisively to this event. We also extend our gratefulness to all those who, through their dedicated efforts, have assisted us in this task. On behalf of the Scientific and Organizing Committees we wish you that together with an interesting reading, the scientific program and the social moments organized will be memorable for all.Fundação para a CiĂȘncia e a Tecnologia (FCT
    corecore