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Abstract

Existing building and district energy management strategies are in urgent need
of an overhaul to meet the energy and environmental challenges of the 21st
Century. The immense growth in the availability of data through the Internet
of Things (loT), the decentralisation of energy generation, and the increas-
ing power of Artificial Intelligence (Al) presents an opportunity to achieve a
paradigm shift in the way energy is controlled and managed.

To contribute to this field, this PhD project undertook a thorough literature
review combined with a participatory, action research approach to identify and
understand the key challenges faced by facility managers and to identify poten-
tial areas of improvement. Following this, the PhD thesis aims to tackle three
key research areas using simulated case study experiments. These aim to
optimise thermal energy management within buildings at a zone-level, control
energy generation at a district-level, and combine the learnings from these two
experiments with a holistic energy management solution that controls both the
energy supply and demand at a building and district-level.

At a building-level, a model predictive control approach combining a genetic
algorithm and surrogate artificial neural network is used. A predictive and con-
text aware controller is able to produce 24 hour heating set point schedules for
each zone within a building. This approach achieved an energy saving of 18%
whilst maintaining thermal comfort for users. The methodology also had the
capability to adapt to dynamic energy pricing tariffs and capable of optimising
for energy cost by shifting load to cheaper periods.

At a district-level, a predictive, optimisation-based approach was developed
to determine the operation of a multi-vector, district heating, energy centre.
When thermal storage and several generation sources are available, along-
side variable renewable energy generation and building demand, static, rule-
based controllers cannot perform adequately in all conditions. Instead, the
optimisation-based approach, developed in this thesis, was able to increase
profit to the energy centre by 45% as well as decrease CO, emissions whist
adapting to errors in energy demand and supply forecasting.

Finally, the most significant contribution of this thesis was provided by ef-
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fectively combining the approaches made at a building and district-level. This
case study aimed to simultaneously control the energy generation of the district
energy centre, alongside the thermal demand of one of the buildings within the
district. The additional flexibility provided by partially controlling the building
demand led to a further 8% increase in profit to the energy centre, compared
to just optimising energy supply. This demonstrates the vital importance of
treating the consumer as an integral, active component of the energy system.

It is argued that the contributions made throughout this thesis will become
more relevant when coupled with additional research fields. This includes the
growth in available data from IoT sources, advanced Al including unsupervised
learning, and utilising a shared semantic description of smart building, smart
energy and smart city concepts. At its core, this thesis aims to demonstrate
that ‘thinking’, predictive, control strategies, that are more context-aware, can
achieve significant benefits over the traditional reactive, rule-based controllers
of the past.
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1 Introduction

Our energy transition towards a cleaner, more efficient, and renewable future,
is a process of paramount importance. This research aims to produce prac-
tical methods to smooth the transition and produce new energy management
solutions to adapt to this energy landscape. This Chapter will outline the core
challenges and drivers from an energy, environmental and technological per-
spective. It will also define the central hypothesis and subsequent research
questions that this thesis will address. Finally the key contributions resulting
from this research are summarised and presented.

1.1 Global View

One of the greatest global challenges of this century is the requirement to
transition from an energy infrastructure primarily based on fossil fuels to an
affordable, sustainable, and resilient energy system that leads to a reduction in
greenhouse gas emissions and mitigates the effects of climate change whilst
maintaining economic growth. The first key landmark in aiming to tackle the
problem of global warming was the Kyoto protocol [1] which legally commit-
ted signatories to binding targets on greenhouse gas emissions. The Kyoto
Protocol was subsequently criticised for largely ignoring the emissions from
developing countries as well as failing to enforce penalties for countries that
failed to meet their emission targets. The initial foundation provided at Kyoto
was improved upon in 2015 with the adoption of the Paris climate agreement
[2]. This treaty set a global target of reducing global temperature rises to "well
below 2 °C " with an ambition of limiting temperature rises to below 1.5°C .
Despite widescale recognition of the need to reduce greenhouse gas emis-
sions, global energy consumption has continued to rise as demonstrated in
Figure 1.1. This is partly due to population growth, increased access to elec-
tricity, and industrialisation of developing countries. The context is somewhat
different within the European Union (EU) where total primary energy consump-
tion and primary energy consumption from fossil fuels is beginning to decrease
as shown in Figure 1.2. As a result of both the Kyoto Protocol and the Paris cli-
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CHAPTER 1. INTRODUCTION

mate agreement, the EU implemented clear targets regarding the reduction of
greenhouse gas emissions, increasing the share of renewable energy and the
improvement of energy efficiency. These targets have been directly translated
into specific targets for each member state to be delivered by 2020, 2030 and
2050 with the eventual aim of an 80% reduction in greenhouse gas emissions
compared to 1990 levels in both the UK and the entire EU.

1.1.1 Renewable Energy Expansion

To achieve global emissions targets, significant effort has been placed on in-
creasing the share of consumed energy derived from renewable resources.
Renewable energy resources are those derived from naturally replenishable
phenomena such as sunlight, wind, biomass, geothermal heat, tides and rain
[6]. Historically, the largest form of renewable energy was produced from hy-
dropower at either large scales, facilitated by dams, or smaller scales deployed
in rivers. The renewable energy sector has now expanded to include wind tur-
bines, solar photovoltaic (PV) panels and beyond, to novel emerging technolo-
gies such as concentrated solar power stations, tidal stream turbines, and tidal
lagoons. However, there is no silver bullet with regards to renewable energy
with a balance needing to be struck between opinions of locals who may per-
ceive their presence as an eyesore or may object to land being denied as use
for food production.

Within the power sector, total renewable power capacity has more than
doubled in the decade from 2007 to 2017 [7], fuelled largely by expansions in
solar PV and wind power capacity as shown in Figure 1.3. These renewable
technologies are now comparable in price to electricity generation from fossil
fuels and therefore require little to no subsidy from national governments [8].
Whilst the decarbonisation of the power sector continues to progress, decar-
bonisation of other sectors such as heating, cooling and transport remains a
significant challenge.

1.1.2 Energy Security

As well as the environmental obligations and economic desires, energy secu-
rity is another important factor in the current energy transition. Energy security
can be viewed from two angles [9]; a political point of view due to reliance on
foreign imports and hence lack of control over import prices, and a dispatch
point of view in which energy networks need to balance short-term demand
surges to prevent black-outs or voltage drops.
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CHAPTER 1. INTRODUCTION

From the political point of view, it is estimated that current reserves of con-
ventional oil and gas will be largely depleted by 2100 [10]. Due to the basic
economics of supply and demand, it is expected that during this century fossil
fuel prices will continue to rise. From the perspective of the UK, local produc-
tion of fossil fuels fell for 15 successive years prior to 2014, leading to a depen-
dency on energy imports. In 2014 the UK imported nearly 50% of the primary
energy that it consumed [11]. This lack of self-sufficiency means the UK, and
most other EU countries in a similar position, will have very little control of the
price they pay for raw fossil fuels over the next century. Furthermore, the de-
pletion of fossil fuel reserves leaves the UK exposed to regional instability and
uncontrollable events [12]. Increasing a nations share of local renewable en-
ergy generation is likely to decrease widescale trading of fossil fuel resources
and hence lower exposure to random events and price fluctuations [13].

From the energy dispatch point of view, the matching of energy supply and
demand is expected to become a more difficult task due to the growth in uncon-
trollable energy generation from stochastic renewable resources such as solar
or wind. Diversification of energy supply alongside an increase in local and grid
level energy storage capacity is required to mitigate the potential problems as-
sociated with a low-carbon, future energy system [14]. A further method of
mitigation would be the closer integration of energy systems at a wider supra-
national level such as the EU’s Energy Union [15]. Closer integration would
provide a more dynamic energy trading system, reduce the requirement for
curtailment, and increase supply diversity. It is estimated that closer coupling
of the EU’s electricity markets could save €3.9 billion/yr [16].

1.1.3 Energy and the Built Environment

Building energy consumption is an important sector in both the current and fu-
ture energy landscapes given that it is estimated to account for 40% of the total
EU energy consumption [17]. Significant effort has been placed on the tight-
ening of building standards and comprehensive renovation of existing housing
stock to make buildings more efficient through legislation such as the Energy
Performance of Buildings Directive (EPBD) [18]. This has largely led to poli-
cies of improved insulation, higher efficiency boilers and building integrated
renewables. However, while energy efficiency improvements within buildings
is a worthwhile goal, progress on decarbonisation of heating and cooling in
the built environment is lagging, relative to progress made in the power sector
[7]. Improving building energy efficiency alone will not be sufficient to hit 2050
carbon reduction targets [19].
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The majority of European buildings are equipped with gas boilers to gen-
erate hot water or steam, which is distributed throughout the building. Whilst
gas is often viewed as the transition fuel [20], ultimately, to make significant
progress on reducing emissions, gas will also have to be phased out of use
within buildings. Current emphasis has been placed on the electrification of
heating through electrical heaters or heat pumps, the use of biogas or biomass
driven cogeneration units for improved efficiency, the conversion of the gas
network to include more hydrogen or the use of district heating networks in
densely populated areas [19, 21, 22].

1.2 Key Drivers

The wider context in which this research is carried out has been discussed in
Section 1.1. This section will aim to outline the specific, key drivers, partially
resulting from this context, for the work carried out in this thesis.

1.2.1 Energy Decentralisation

As eluded to in the Section 1.1, the current energy infrastructure requires a
large overhaul. Previously, electricity generation was concentrated in relatively
few, large-scale, fossil fuel power plants. The electricity generated from these
power plants is then distributed via a nationwide distribution network. Similarly,
gas is provided to the majority of consumers from which heating is provided
through local gas boilers [23]. Due to the fundamental changes occurring in the
energy supply mix, such as the inclusion of small scale renewable resources,
this nationwide, centralised, energy supply model relied upon for over a cen-
tury no longer stands [24]. As consumers are encouraged to generate their
own energy by exploiting local renewable resources they become ‘prosumers’
requiring a paradigm shift in the relationship between the distribution network
and the individual. At this point energy exchange becomes bi-directional and
much more dynamic and complex than the existing centralised model.

This dynamism is one of the driving forces of the ‘microgrid’, which is an in-
terconnected energy network at a community level with its own energy supply,
demand and distribution system that is often also connected to the national grid
[25]. The interconnection of several, intelligent microgrids will form the back-
bone of the proposed ‘smart grid’ [26]. It is proposed that intelligent manage-
ment of interconnected energy systems at a local level can aid the integration
of renewable resources, reduce energy losses due to reduced transportation
distances, and reduce emissions [27]. Furthermore, there is the potential to
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integrate previously distinct energy vectors to allow truly holistic energy man-
agement. A multi-vector energy approach becomes more pivotal as energy
networks become more interconnected. For example, cogeneration units can
produce heat and electricity from natural gas, heat pumps provide heat energy
from an input of electricity and power-to-gas systems can produce hydrogen to
fuel cars or synthetic natural gas for combustion or stored for later use. Only
by taking a holistic, entire network approach can optimal energy management
be achieved [28].

To deliver heating and possibly cooling energy to buildings within a micro-
grid, district heating and cooling networks (DHC) are becoming increasingly
popular [29]. DHC centralises the generation of a community heat energy
generation and distributes via the medium of water or steam through a pip-
ing network. Benefits of this approach include an increased diversification of
heat energy supply, the ability to incorporate cogeneration or trigeneration units
bringing with them greater efficiency, and the capacity to incorporate previously
wasted energy sources such as excess heat from industry and waste inciner-
ation plants [30]. The next generation of DHC aims to transition towards lower
temperature flows to reduce energy losses, integration with modern energy
efficient buildings, better control through advanced planning and prediction of
demand, and they must be integrated and managed holistically with additional
energy vectors [31].

1.2.2 The Growth of Data

Implementation of the smart grid or smart energy networks can only be achieved
if facilitated by the application of accompanying, advanced ICT infrastructure
[32]. A more complex energy system will require increased monitoring at a
microgrid level to inform facility managers, in the clearest possible way, the ap-
propriate steps to take. At a district-level much information is captured through
Supervisory Control and Data Acquisition (SCADA) systems [33]. For larger,
more complex buildings, a Building Management Systems (BMS), also based
on SCADA principles, will be in place to record several important variables
such as zone-level room temperature, disaggregated energy consumption, oc-
cupancy, and indoor air quality [34]. On a residential scale, there has been a
concerted effort to install ‘smart meters’ which can provide more regular re-
porting of building electricity and gas consumption. An estimated €45bn will
be spend by EU member states by 2020 to roll out smart gas and electricity
meters [35]. Smart meters are expected to make the direct cost of energy
consumption more tangible to consumers and therefore encourage behaviour
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change. In addition they could pave the way for more advanced Time of Use
(ToU) tariffs to encourage voluntary load shifting. The data produced by smart
meters could also provide opportunity for microgrid energy management and
utility companies in learning usage patterns to assist the scheduling of energy
supply [36].

As well as the more traditional metering devices, there has also been an
explosion in internet connected devices capable of measurement, data record-
ing and automated controls due to the Internet of Things (loT) paradigm [37].
This greatly increases the wealth of data available in a smart building or smart
district. There is potential to integrate this wider, contextual information with
existing building-level and district-level energy monitoring to provide a more
holistic view of a smart energy system and more actionable observations. This
vast array of sensing capability can be leveraged by energy management sys-
tems at both a district [38] and a building level [39].

Recent state-of-the-art reviews by Keirstead et al. [40], Allegrini et al. [41]
and Howell et al. [42] argue for increased data integration within smart cities
and districts. Allegrini et al. [41] specifically argues that BMS need to embrace
urban-scale data to improve building energy management. Also it is essential
that buildings are viewed and managed as an integral and active part of a wider
district and urban energy system. A city-level integration of data, analysis and
strategy can lead to opportunities by linking different sectors for mutual benefit
and holistic city governance. Examples include linking energy and municipal
waste through anaerobic digestion or waste incineration, energy and the econ-
omy though city level Energy Service Companies (ESCo’s), and the energy
and transport sector through electric vehicles. Potential benefits can only be
reaped through city-level open data integration [43].

1.2.3 The Need for Demand-Side Management

Another consequence of the growth of uncontrollable energy generation and
energy decentralisation is the greater requirement for demand-side manage-
ment. Previously, the energy sector was demand-led whereby the fully control-
lable, and centralised energy supply was managed to follow the largely uncon-
trollable demand. As greater uncertainty and lower control can be exerted on
energy supply, a paradigm shift must be made towards a system in which both
supply and demand are partially controlled to ensure a continued energy bal-
ance. At a local microgrid level, demand-side management can take greater
emphasis if the microgrid is operating in ‘islanded’ mode where the microgrid
is not connected to the main national grid and is self sufficient from an en-
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ergy perspective. Even when a microgrid is not operating in ‘islanded’ mode,
some level of demand-side management may be necessary to maximise the
economic benefit from local renewable resources rather than selling excess
energy to the national grid at relatively low prices. There are two broad cate-
gories of demand side management; market-based and physical-based [44].
Market-based demand side management is largely aimed at developing volun-
tary consumer behaviour change via financial incentives. This could include
ToU tariffs, dynamic real-time pricing, and peak pricing alerts. By charging
higher prices during peak periods, users will voluntarily limit their consumption
during these periods, helping to balance the grid. The implementation of these
more complex energy tariffs would be facilitated by wide-scale deployment of
smart meters as discussed in the previous section.

Physical-based demand-side management is a more formal, contractual,
relationship between the energy network and generally, very large, industrial
consumers. During critical periods the energy grid sends out binding demands
for specific clients to shed demand to balance the network. Whilst this sort
of arrangement has previously only been available to a small number of very
large consumers, it is theorised that due to the decentralisation of energy man-
agement, these arrangements could be available to small-scale consumers
aggregated together at microgrid level [45].

A significant factor in tackling the challenge of meeting fluctuating demand
could lie with improvements in energy storage technology. Traditional means of
large-scale electricity storage lay in pumped hydro and compressed air energy
storage. However, in recent years there has been a wealth of development
in the use of batteries for grid ancillary support [46]. If the expected growth
in electrical vehicle ownership increases then these vehicles could also be
viewed as an additional bank of energy storage capacity through vehicle to grid
interactions [47]. These types of energy storage technologies are economically
viable and appropriately scalable for integration at microgrid level as well as
existing national-scale solutions.

Aside from emerging energy storage solutions, demand flexibility can pro-
vide similar short-term effects. It is estimated that 247GW of consumption is
adaptable to be brought forward and 93GW of consumption can be delayed
across the whole of Europe [48]. Similarly, in 2010 it was estimated that a
quarter of demand in the US could be dispatchable if utilised appropriately
[49]. Although, to achieve this level of demand flexibility, significant regulatory
framework must be provided to ensure consumers are appropriately incen-
tivised and compensated for the flexibility services they provide to the local or
national grid [50].
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1.2.4 The Rise of Artificial Intelligence

Exact definitions of Artificial Intelligence (Al) are debated within the Al commu-
nity and are often rather loose and vague. One such definition is provided by
Luger [51]: "Artificial intelligence (Al) may be defined as the branch of com-
puter science that is concerned with the automation of intelligent behavior.". In
this thesis, a very broad definition of Al will be taken to include (but not limited
to) applications of machine learning, expert systems, agent-based systems,
advanced optimisation, and modelling. Al is set to revolutionise almost all sec-
tors of society over the coming decades including the fields of manufacturing
and robotics [52], medicine [53], social care [54], and energy [55].

A focus on Al at urban scale has led to the concept of ‘Smart Cities’. Al has
facilitated improvement in large scale transportation networks through adapta-
tions such as dynamic traffic lighting controls and increased predictive analytics
for public transport arrival times [56]. Analytics powered by Al is equally appli-
cable in for the smart water and energy sector. Increased instrumentation and
interconnectivity can allow automatic analysis for fault detection and extreme
events within water, transportation and energy networks. Through optimisation
and modelling, mitigation measures can be implemented to minimise losses
and the impact to the public [57].

At a ‘Smart Home’ level, Al can be leveraged to predict factors such as
user demand and building integrated solar energy generation [58, 59]. To ex-
tract the largest value from small scale renewable energy generation, users
need to maximise the self-consumption of this energy. It is unreasonable to
expect the consumer to micromanage their building energy consumption on
an hourly basis, instead autonomous, intelligent agents can be used to opti-
mise the energy generation in conjunction with building scale energy storage
devices [60]. Residential level, solar connected battery storage has become
much more available in recent years from companies such as Tesla, Nissan
and lkea. In the near future, Al within a smart home will become more neces-
sary with the introduction of electric vehicles and vehicle-to-grid systems [61].
The automated building controller will have to balance and predict the require-
ment to maximise solar self consumption, ensure electric vehicles are charged
when they are needed and maximise the economic gain to the consumer.

1.2.5 User Perceptions, Security and Privacy

Developing smart homes and allowing users to take a more active role within
energy markets is viewed as a key component of achieving the smart grid
vision by policy makers [62]. Smart home products are now widely available
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commercially through products such as British Gas’s Hive and Google’s Nest.
A recent survey of over 1000 UK homeowners found that users perceive smart
home services “through an energy management lens” [63], and believe that
these devices can save them energy and money. However, participants did
have concerns about increasing their dependence on systems and technology
and hence a loss of direct control on appliances. An additional concern relating
to smart meters is perceived loss of privacy and security epitomised by a fear
of ‘Big Brother’ watching [64].

The potential growth in smart meters and smart home devices could provide
opportunities for third party, Energy Service Companies (ESCo’s) to provide an
energy management and automation solutions to consumers. External compa-
nies could utilise modern high performance computing to offer a cloud-based,
virtual energy management solution. This proposition brings with it an obvi-
ous conflict with users concerns of privacy and security. The anonymisation of
data, storage location and sharing of data with additional companies are likely
to be key questions for ESCo’s to answer to assuage consumers concerns.
Ultimately, for this model to thrive within a liberalised energy market, service
providers will have to make a clear value proposition which translates to tan-
gible benefits for the consumer (likely financial) to overcome their concerns
related to privacy.

A technological solution that could aid in fostering trust within consumers is
the recent advances in blockchain. Previous iterations of blockchain enabled
crypto-currencies such as Bitcoin. Blockchain provides an open, verifiable,
distributed, and immutable record of interactions and transactions. Blockchain
technology has now moved beyond just crypto-currencies to theoretically en-
able smart contracts and peer-to-peer energy trading, an example of which
is being developed by LO3Energy deployed to a small microgrid in New York
[65]. It is envisaged that a blockchain enabled smart home could enhance the
security and privacy of a loT based smart home system [66]. Furthermore, it
could enable a basis for trustworthy transactions between users within a smart
grid environment without the requirement of a third party facilitator [67].

1.3 Problem Statement

The key drivers discussed in Section 1.2 all combine to form a unique opportu-
nity for a step change in energy management at building, district, national and
supranational levels. The way energy has previously been managed is increas-
ingly outdated. A new generation of controllers must be deployed to transition
towards a holistic, predictive and pre-emptive management approach leaving
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behind the top-down, reactive, rule-based approaches of the past. Energy
decentralisation and growth in renewable energy generation requires more co-
operative, localised energy management to fully maximise the economic and
environmental benefits of these systems. This can be facilitated by a suite of
modern Al techniques such as machine learning-based prediction and mod-
elling, in conjunction with advanced optimisation and scheduling strategies.
This sort of optimal control requires a wealth of sensors, actuators and data,
which is more commonly available due to the increased penetration of smart
meters and loT devices.

1.4 Research Objectives

Following the key drivers and problem statement, the aim of this research is
to pave the way for the next generation of energy management controllers.
These controllers must be increasingly context-aware and adaptable to chang-
ing external environments. By taking into account external factors, such as
predicted weather conditions, district demand, renewable supply, energy tariffs
and demand response events, a more holistic energy management solution
can be achieved. The specific target of this thesis is to test a central hypothesis
through decomposition into several research questions. The central hypothe-
sis to be tested is:

"Simultaneous control of building and district energy systems can achieve greater
energy savings and environmental benefits by operating cooperatively and in-
creasing their awareness of external, contextual building information such as
weather conditions, occupancy, energy generation, or energy prices."

To evaluate the central hypothesis, the following research questions have
been formulated:
1. How can the components found within a district energy system be mod-
elled for the purposes of operational optimisation?

2. Can predictive control of building energy demand with consideration of
external factors lead to reductions in energy cost and improve demand-
side flexibility?

3. Can taking an optimisation-based approach to the control of district heat
generation improve upon existing rule-based priority order strategies?

4. Can integrated, holistic control of both energy supply and energy demand
lead to greater economic and environmental benefits than independent
control?
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5. Can a semantic web approach ease the deployment of advanced energy
management strategies on a wider scale and aid integration with addi-
tional domains?

The origin and relevance of these research questions will be made clear in
Chapter 2 through a thorough literature review and the method by which they
will be answered will be detailed in Chapter 3.

1.5 Thesis Outline

This chapter has aimed to provide the wider context and background as to
the motivation and significance of the research provided in this thesis. The
following chapter, Chapter 2, provides a thorough review of the existing body
of literature. It is split into four main parts; the modelling of building energy,
the optimisation of building energy demand, the modelling of district energy
systems at a component level, and optimisation strategies applied at a district
level. From this review, the foundation of the research gap will be developed.

Chapter 3 will detail the overarching methodology and approach to carrying
out the research described in this thesis. It will discuss the philosophy behind
the research, clarify the method by which the research questions will be an-
swered, and report how the work throughout this thesis has been validated.
This chapter will also introduce the core theory behind the main components
used throughout the thesis, namely artificial neural networks, genetic algo-
rithms, and model predictive control.

Chapter 4 specifically addresses energy management at a building level.
This chapter will outline the methodology behind the zone-level optimisation
strategy leading to contribution number 1 and go towards answering research
question 2. This is evidenced by a simulated case study applied to a small
office building in Cardiff.

Chapter 5 instead targets energy management from the supply-side at a
district-level. It introduces an optimisation strategy to schedule the genera-
tion load from several energy conversion technologies and a thermal energy
storage tank. It takes a predictive and pre-emptive control approach improv-
ing upon a static, rule-based, priority order control system. This is evidenced
through application on a simulated eco-district.

Chapter 6 effectively integrates the methodology of both Chapter 4 and
Chapter 5 to simultaneously and holistically manage both energy supply and
energy demand. This is achieved through scheduling the energy conversion
technologies as well as the heating set point schedule of the office building
within the district. Control of both supply and demand provides additional flex-
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ibility to the district controller to shift load to reduce cost to the energy centre
as well as consumers.

Chapter 7 explores the role semantic and ontologies can play to translate
the ad-hoc optimisation strategies into scalable and robust energy manage-
ment solutions. It will also discuss additional research fields that can supple-
ment the research carried out in this thesis.

Chapter 8 concludes this thesis by re-visiting and answering the research
questions provided in this Chapter. Through answering these research ques-
tions the central hypothesis can be tested. In addition, the main contributions
to the body of knowledge resulting from this research are summarised.

1.6 Contribution

This thesis makes a number of contributions to the wider body of knowledge.

1. A contribution is made within the field of building-level energy manage-
ment with the development of a zone-level heating optimisation strategy.
This optimisation combines zone-level artificial neural networks, which
model the thermal characteristics of each zone, with a genetic algorithm
with the objective of minimising energy consumption or energy cost. The
methodology is perceptive of external influences such as weather condi-
tions, occupancy and energy tariffs.

2. At a district-level, a framework to optimise the heat generated within
a multi-vector district heating system is developed. Crucially, part-load
characteristics, prediction of energy demand, prediction of uncontrollable
energy supply, and an intermediate error management procedure is in-
cluded to form a realistic and challenging case study.

3. An optimisation strategy that predictively controlled both energy supply
and energy demand within a complex district energy system has been
provided. By considering both supply and demand as partially control-
lable, and approaching the energy management challenge from both
a building and district scale, significant cost and energy savings were
achieved.

Naturally, the described contributions have been assembled sequentially
over the course of the PhD programme. The main contribution described in
this thesis is therefore point 3 which effectively integrates the contributions of
point 1 and 2 to form the most substantive piece of work.
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2 Literature Review

This chapter aims to provide a comprehensive review of all aspects required in
the holistic management of a modern, complex, energy grid. Initially, this chap-
ter will focus on energy modelling at a building-level and then optimisation at
this scale. Literature focussing on a building-level tends to be more concerned
with control of building demand rather than explicitly including management of
energy supply. To achieve a more holistic energy management strategy, en-
ergy at a wider district-level must also be considered. Therefore, Section 2.3
and Section 2.4 consider modelling and optimisation of district-level compo-
nents and microgrids. As a result of reviewing the existing body of literature,
the research gap and motivation for the research questions addressed in this
thesis will be explored in Section 2.5.

2.1 Building Energy Modelling

Buildings need to be considered as integral and active parts of an urban energy
system and therefore need to be modelled accurately. Building loads (heating
and cooling, hot water and electricity consumption) depend on a number of
different factors e.g., weather conditions (solar radiation, dry-bulb air tempera-
ture, wind speed), thermal properties of building’s fabric, occupants’ behaviour,
the installed energy system, operational schedules, etc. These interdependen-
cies increase the complexity of the problem, and therefore accurate prediction
of building energy consumption can be a challenging task. However, several
different building modelling techniques currently exist with different advantages
and disadvantages. These modelling techniques can broadly be categorised
as white box, grey box, or data driven models [68].

2.1.1  White Box Modelling

White box or Engineering methods are based on using physical principles
to calculate thermal dynamics and energy behaviour of a building or system
[69]. Engineering models can be divided into the following categories; detailed
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methods and simplified methods [69]. Simplified methods can include degree-
day, bin methods, etc. and are steady-state methods. These methods are pre-
dominately useful when the building energy consumption is more dependent
on the building fabric. Detailed methods (e.g. TRNSYS, DOE-2, EnergyPlus)
often enable users to evaluate design with reduced uncertainties, because of
their multi-domain modelling capabilities [70]. Detailed simulation models can
produce accurate results; however, they require an extensive amount of build-
ing and environmental data for modelling a building and its systems. Modern
research efforts are targeting the use of 3D laser scanning and photogramme-
try techniques to quickly realise an accurate as-built representation of building
geometry on a district scale [71, 72]. However, digitisation and subsequent
generation of energy models remains a time-consuming task requiring signifi-
cant manual intervention [73].

Furthermore, these initial building energy models do not tend to perform
well in predicting energy consumption of occupied buildings as compared to
the design stage prediction [74]. Extensive calibration efforts are often re-
quired during the operational phase to adjust the model to reflect reality. This
requires widespread metering, categorised spatially and by end use at small
time intervals. However, once a calibrated energy model has been completed
it can output an exhaustive range of variables from building level total electric-
ity consumption down to the air flow rate of a single zone. Detailed simulation
models tend to be more computationally expensive and therefore, are generally
considered not suitable for near real-time optimisation problems.

Once a basic energy model has been constructed using the known geom-
etry, construction materials, energy systems and basic rule-of-thumb internal
gains estimates; significant efforts are required to calibrate a model. While no
agreed upon, universal, methodology has been achieved there are a number
of literature reviews on the subject [75—-77] and a number of proposed method-
ologies [78, 79]. However, many of these methods are still manual, iterative
and time consuming. They often involve identifying the most sensitive param-
eters that impact on energy consumption using probabilistic analysis such as
a Monte Carlo simulation [80]. From this the modeller can allocate most effort
to iteratively tuning these parameters [79]. Many of these methodologies aim
to estimate a level of uncertainty associated with the resulting building model
also [81]. A recent step has been made through the development of ‘Autotune’
for Energy Plus models [82]. This method uses an evolutionary algorithm to
tune selected important variables aiming to minimise the error between the En-
ergy Plus output and measured data. However, given the number of ‘tuneable’
parameters in a typical building and given that a population-based optimisation
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method is used; this led to a very large number of evaluations and hence sim-
ulations. To address this, the study used several high-performance computing
techniques and supercomputers, which made this method inaccessible to ordi-
nary practitioners. The resulting calibrated model, when applied to a complex
building, achieved an accuracy of CV(RMSE) = 11.82% and MBE = -1.27%,
equivalent to a manual calibration.

A calibration methodology was implemented in [83] and applied to two sim-
ulated building and one actual building. Influential modelling parameters were
first identified with best guess estimates inputted. This was followed by a
course and fine grid Monte Carlo simulation to refine and improve calibration
solutions. The resulting calibrated model achieved a CV(RMSE) value of 6-8%
when comparing simulated vs actual monthly electricity consumption. Monetti
et al. [84], used a particle swarm optimisation, PSO, to calibrate several param-
eters of an EnergyPlus building. The authors considered infiltration, equipment
power, ground temperature, material properties and thicknesses as variables.
Once calibrated, a CV(RMSE) of 0.19%-20.40% was reported for hourly heat-
ing energy consumption comparison of several zones. A two-stage, building
energy modelling procedure was carried out in [85]. The initial stage involved
detailed inspection of as-built building documentation and surveys of internal
loads. The second stage required a more thorough interrogation of key BMS
data and occupant surveys. The completed model complied with ASHRAE
Guideline 14 accuracy limits for modelling of heat pump electrical demands,
heat pump thermal output, building electrical consumption, natural gas con-
sumption, and indoor zone temperature.

2.1.2 Grey Box Modelling

Grey box models are hybrid models; they use simplified physical descriptions
to model building and/or building energy systems. The coefficients of the mod-
els are identified based on the operational data using parameter identification
methods. A simple example of this type of models is the Resistor-Capacitance
(RC) model; in which an electrical circuit analogy is used to model heat trans-
fer through a wall. This method simplifies the problem through a linearization
of the equation and hence reduces the computational time [86]. These mod-
els are mostly used as a good compromise between modelling accuracy and
computational time.

A methodology to develop the simplest, yet suitably accurate, RC model
for a single storey case study building in Denmark was explained in [87]. It
aimed to model the indoor temperature as a function of solar irradiance and
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heating input. The final model achieved errors less than + 0.1°C but from an
optimisation perspective, prediction of heat consumption as a function of set
point temperature and weather would be more useful. Ahmad et al. [88] [89],
developed an RC model for a two-room building. The model was used to out-
put the energy consumption of the building. The authors then developed an
MPC controller to save energy consumption while maintaining thermal com-
fort. Similarly, Berthou et al. [90] tested four different configurations of RC
models each increasing in complexity. The authors found the 6 resistors, 2 ca-
pacitance model to be the best compromise between accuracy and complexity.
TRNSYS data was used to tune the RC model parameters which used occu-
pancy, ventilation, temperature set point and solar gain as inputs to predict
indoor temperature and heating and cooling demand with resulting fit values of
88% and 89% respectively. Zhou et al. [91], developed not only a building load
prediction model but also weather modules to provide the inputs to the building
load RC model, hence developing an online, day-ahead, prediction service.
Grey dynamic models were used to predict outdoor temperature and relative
humidity which were then used to forecast the solar radiation. The predicted
solar radiation was then used as an input to forecast building cooling demand
with an eventual R? value of 0.91-0.93. However, the number of testing days
included was quite limited, and weather forecasting errors had an impact on
the eventual energy demand prediction.

Reynders et al. [92], derived several RC models to emulate a more com-
plex, white box Modelica model. First to fifth order RC models were tested
along with different training data sets, the addition of noisy data, and using al-
ternative, more easily measured, inputs. The study found that using solar irra-
diance on vertical planes could effectively take the place of solar gain data and
building electrical demand could be used as a proxy for internal gains data.
However, the resulting grey box model is only validated against a white box
model of a generic Belgian house rather than a real case study. A toolbox de-
sign for the streamlining and semi-automation of the development of RC mod-
els for model predictive control is outlined in [93]. The software aids the data
handling, model selection and parameter estimation, however, achieved poor
validation results in one case study due to inappropriate training data. A dy-
namic, thermal RC model was integrated with an existing stochastic, Markov-
Chain, electrical demand and occupancy model in [94]. Building demand, hot
water cylinder, gas boiler and heating control models were all integrated and
received active occupancy profiles based on a UK building use survey. How-
ever, this study was aimed at producing generalised, aggregated, probabilistic
thermal demand of several building rather than specifically for real-time optimi-
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sation like the other studies in this section.

Afram and Janabi-Sharifi [95], developed a detailed grey box model of a
residential HVAC system comprised of subcomponent models for an Energy
Recovery Ventilator (ERV), Air Handling Unit (AHU), buffer tank, radiant floor
panels, and a Ground Source Heat Pump (GSHP) based on energy balance
equations. Once the model parameters had been identified, only zone and
buffer tank set points as well as outdoor air temperature were required as in-
puts. The authors argued such a model would be prime for use in conjunction
with MPC.

2.1.3 Data Driven Modelling

Data driven models are input-output models based purely on historical data
with no representation of the underlying physical characteristics of a system.
These can include purely statistical regression models, Artificial Neural Net-
works (ANN), Support Vector Machines (SVM), Random Forest models in ad-
dition to others. Data driven models have been used extensively in the litera-
ture to predict or calculate a wide range of variables key to building optimisation
and control such as electricity demand, heating demand, indoor temperature,
and predicted mean vote (PMV - a measure of thermal comfort). Summaries of
these types of computational intelligence techniques can be found in [96, 97].
The above methods rely on a training period that uses extensive amounts of
data. This means that historical data needs to be logged for an extended pe-
riod or simulation models need to be used to produce substantial amounts of
realistic data.

Much of the literature based on creating ANN to accurately predict building
data emphasises the need to ensure the most appropriate inputs are used as
well as the optimal architecture and internal function are selected. Ferreira and
Ruano [98], uses a GA to find the optimal architecture of an ANN to predict the
climate of a greenhouse, the resulting model can then be used for optimisa-
tion processes. A complete example of selecting functions between each layer
can be found in [99]. The resulting model could predict electricity consump-
tion, thermal energy consumption and PMV in a sports facility. From this, the
HVAC system could be optimised using a model predictive control technique.
Predicted Mean Vote (PMV) is a measure of thermal comfort ranging from -
3 (very cold) to +3 (very hot) with 0 being the ideal average thermal comfort
for a group of occupants. It is normally a complicated parameter to calculate
requiring seven (often difficult to measure) variables to be used as inputs to
Fanger’s equation. Both [100, 101] produce ANN based solutions to calculate
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PMV without the need to solve Fanger’s equation.

Bagnasco et al. [102], uses an ANN to forecast the electricity demand of
a hospital in Turin. Considered inputs include the day of the week, time of
day, loads at the same timestep from the previous day and from seven days
ago, outdoor temperature, and whether or not it is a weekday. Similarly, [103],
forecasts day ahead electricity consumption at 15-minute intervals using an
ANN. It only considers five input variables, day type, time of day, operational
condition, outdoor temperature and outdoor relative humidity but achieves very
good prediction accuracy with CV(RMSE) in the order of 8-10%. A regression-
based, data analysis approach was used in [104] to find a correlation between
weather and occupancy variables to three electrical load types (appliance, ven-
tilation, and cooling). The authors found that work hours, occupancy and out-
door temperature were the most important variables in calculating the electri-
cal loads and using fewer predictor inputs resulted in lower errors. The use
of ANN and Random Forest algorithms was compared in [74] for the predic-
tion of HVAC electrical consumption of a hotel in Madrid. Considered inputs
included weather variables, date and time variables, the number of guests and
the number of rooms booked. The ANN was shown to marginally outperform
the Random Forest model however the authors argued that Random Forest
based methods are easier to tune. A comprehensive and systematic review of
electrical load forecasting in buildings, [105], concluded that black box models
such as ANN or SVM are well suited to the task.

An auto-regressive model with exogenous inputs (ARX) and a neural net-
work auto-regressive model with exogenous inputs (NNARX) were compared
for their suitability to model indoor temperature in [106]. The model aimed to
predict the indoor temperature of a building using previous indoor temperature,
outdoor temperature, solar radiation and heating power as inputs. The NNARX
model significantly outperformed the linear ARX model, and once pruned us-
ing the optimal brain surgery algorithm achieved an SSE of 0.906. Royer et al.
[107], used a second order state space model to predict the indoor temperature
of zones also using outdoor temperature, solar radiation and HVAC operation
as inputs. The model proved itself to be adaptable to different buildings but
achieved poor results in colder climates.

Deep learning techniques have been more widely applied to building energy
consumption than other components within the energy sector. Deep learning
methods are commonly based on extensions of a simpler, more shallow, ANN
and are well suited to complex tasks such as image processing. Both [108]
and [109] applied deep learning methods to the same dataset. The trialled
methods included Long Short-Term Memory (LSTM), Conditional Restricted
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Boltzmann Machines (CRBM) and Factored Conditional Restricted Boltzmann
Machines (FCRBM) with the aim of forecasting residential electricity consump-
tion over varying time horizons. In most scenarios the deep learning models
were able to outperform more traditional machine learning models. Fan et al.
[110], tested different feature extraction methods combined with several mod-
elling techniques ranging from multiple linear regression to machine learning
techniques to Deep Neural Networks (DNN) to predict building cooling energy
consumption. They found that application of a deep learning unsupervised
feature extraction technique could improve model performance compared to
more traditional methods. However, in this case study, it was concluded that a
truly ‘deep’ model was not optimal, and the cooling load was best predicted by
an Extreme Gradient Boosting (XGB) model. DNN were also used in [111] for
forecast the electricity consumption of 40 commercial buildings in South Korea.
The DNN were shown to consistently outperform shallow neural networks and
a double seasonal Holt-Winters (DSHW) model across different building use
categories.

2.1.4 Summary

A summary of the reviewed literature can be found in Table 2.1. This review is
in agreement with previous reviews that white box simulation models are not
suitable for sub-hourly, real-time optimisation. The computational time is too
great to be used as an evaluation engine, and they require an expert to create
and then calibrate the model using vast amounts of static and dynamic build-
ing data. Both grey box and data driven building models have been proven
to be effective in the reviewed literature for modelling a wide range of build-
ing variables. For use in conjunction with building or district optimisation, it is
assumed that building demand prediction and indoor temperature or thermal
comfort would be the most useful model outputs. From this, the simplified build-
ing models could be used as an evaluation engine in the optimisation algorithm
testing the building response to chosen control signals.

The methods by which these models are generated on a wide-scale and at
speed remains an outstanding question. If data driven and grey box models are
to be used, then the capture and long-term logging of sensor data from existing
buildings must be improved and should be envisaged during the design phase
as standard practice. However, if based solely on historical data, these models
cannot be used to provide predictions based on hypothetical changes made
to the building systems as no data would be recorded for such a scenario.
An alternative process to overcome this would be to first produce a white-box
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Table 2.1: Building modelling literature summary

Ref Method Input Parameters Output Parameters Model Accuracy Real Case Study
[82] EnergyPlus Building Geometry, Material Properties, Occupancy, Lighting, Electricity Consumption CV =11.82%, No
Autotune Equipment and HVAC Gains and Schedules MBE=-1.27%
[79] EnergyPlus Building Geometry, Material Properties, Occupancy, Lighting, Electrical and Gas Consumption GOF =5-7% Yes
Manual Tuning Equipment and HVAC Gains and Schedules
[84] EnergyPlus Material Properties, Lighting, Equipment and HVAC Gains, and  Heating Consumption CV=0.19-20.4%, Yes
Manual Tuning Ventilation MBE=-0.14-0.83%
[85] EnergyPlus Building Geometry, Material Properties, Occupancy, Lighting, HP Electricity Consumption, HP Heat Supply, In-  CV=7.3-25.1%, Yes
Manual Tuning Equipment and HVAC Gains and Schedules, Occupancy Survey  door Temp, Electrical and Gas Consumption CV=18.2-33.5%,
CV=12.4-28.7%,
CV=6.3-16.5%,
CV=4.5-14.1%
[87] RC Grey Box Solar Irradiance, Heating Input, Static Parameters Indoor Temperature Absolute Error Yes
<+ 0.1°C
[91] RC Grey Box Outdoor Temp, Humidity, Solar Radiation, Internal Gains Building Load R2 =0.91-0.93 Yes
[92] RC Grey Box Solar Irradiance, Electrical Consumption, Outdoor Temp, Set Heating Demand, Indoor Temp - No
Point Temp
[93] RC Grey Box Outdoor Temp, Horizontal Solar Irradiance, Heating Load Indoor Temp RMSE = 0.33K Yes
[95] RC Grey Box Buffer Tank and Zone Set Point, Outdoor Temp Ventilation & AHU Outlet Temp, Tank & Zone  R2=0.996-1.000, Yes
Temp, Radiant Floor and GSHP Return Temp CV=0.010-0.069
[99] ANN Minute, Hour, Day, Month, Occupancy, Humidity, Pool Temp, In-  Electrical and Thermal Energy Consumption, MSE =0.0015% Yes
door Temp, Outdoor Temp, Air Flow Rate and PMV
[100] ANN Air Temp, Web Bulb Temp, Globe Temp, Air Velocity, Clothing, PMV - Yes
Activity
[101] RBF ANN Air Temp, Relative Humidity, Globe Temp PMV Absolute Error Yes
<£0.0075
[102] ANN Previous Days Consumption, Previous Week Consumption, Day  Electricity Consumption Mean MAPE = 7% Yes
Type, Timestamp, Outdoor Temp
[103] ANN Operational Condition, Time, Day, Outdoor Temp and Humidity Electricity Consumption CV =7.97-11.06% Yes
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Table 2.1: Building modelling literature summary

Ref Method Input Parameters Output Parameters Model Accuracy Real Case Study
[104] Regression Outdoor Temp, Daylight, Work Hours, Radiation, Occupancy Appliance load, Ventilation Load, Cooling Load RMSE = 7.1-13% Yes
[106] ARX and NARX  Outdoor Temp, Solar Radiation, Heating Input Indoor Temperature SSE=0.9060 Yes
(NARX),
SSE=15.0379
(ARX)
[107] State Space Outdoor Temp, Solar Radiation, HVAC Operation Indoor Temperature Fit = 92-84% No
Model
[112] ANN Outdoor Temp, Time, HVAC Operation, Convective Transfer of  Indoor Temperature R2 =0.97, Yes
Windows RMSE = 1.11K
[113] NARX Day of the Week, Time, Outdoor Temp, Set Point Temp, AHU  Indoor Temperature and HVAC Consumption CV=0.007868, No
Supply Temp, AHU Flow Rate Cv=0.114
[114] ANN Outdoor Temp, Solar Irradiance, Humidity, Hour, Set Point Temp,  Energy Consumption, PPD, Indoor Temperature ~ R2 = 0.9888, No
Previous Indoor Temp 0.9982, 0.9985
[110] SVR, XGB, Time, Date, Outdoor temperature, Relative humidity Cooling energy consumption CV(RMSE): Yes
DNN SVR = 19.0%,
XGB = 17.8%,
DNN = 20.9%
[111] DNN Outdoor temperature, humidity, solar radiation, cloud cover, wind  Electricity Consumption Average MAPE = Yes

speed, date and time, previous consumption

8.85

Note - CV (Coefficient of Variation), MBE (Mean Bias Error), GOF (Goodness of Fit), HP (Heat Pump), RC (Resistor Capacitance), RMSE (Root Mean Squared Error), RBF (Radial Basis
Function), PMV (Predicted Mean Vote), GSHP (Ground Source Heat Pump), MAPE (Mean Absolute Percentage Error), NARX (Nonlinear Autoregressive Network with Exogenous Inputs, SSE
(Sum of Squared Error), SVR (Support Vector Regression), XGB (Extreme Gradient Boosting), DNN (Deep Neural Network).
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simulation model of the building in question, calibrate it based on recorded data
and building surveys, and run several hypothetical scenarios to form a broader
bank of training data from which a data driven model is produced. Currently,
this procedure would be highly time consuming and difficult to scale for several
buildings, however, there is increased emphasis and legislation requirements
around digitisation of buildings through Building Information Modelling (BIM)
and energy modelling at design stage.

2.2 Building-Level Energy Management

Most large complex buildings will be equipped with a Building Management
System (BMS). These sense conditions in building zones and are programmed
with internal logic to take action using various actuators depending on the con-
ditions they perceive and the time of day. However, traditional BMS follow fairly
static rules without the intelligence to try new, potentially more optimal, strate-
gies. For example instead of turning on the heating at 8am to have the building
at the appropriate temperature by 9am, could the building be pre-heated to
avoid a morning spike and possibly reduce overall daily energy consumption?
Can occupancy levels be better predicted and sensed to ensure that zones are
only heated when necessary? Is the optimal strategy dependant on the current
and forecast outdoor conditions? Can load be shifted to coincide favourably
with cheap energy periods or local energy generation? These are the typical
questions facing the development of more advanced BMS which are vital for
reducing energy consumption and improving comfort within buildings. Lee and
Cheng [115] reviewed the impact of BMS over 35 years and found that during
this period energy savings from BMS have increased from 11.39% to 16.22%.
However, a key challenge for the future BMS is the availability, cost and qual-
ity of sensors as well as the data management problems that arise from the
increased sensing [60]. An excellent review of BMS is provided by De Paola
et al. [34] in which the author sets out the ideal BMS and how close current
technologies are to that ideal. Figueiredo and da Costa [116], argues that an
intelligent, ‘interactive’ level could be placed above the SCADA-based BMS
to provide integrated control over all building systems including temperature
control, lighting, water and electricity.

2.2.1 Smart Home Energy Management Systems

Whilst most current BMS are installed in larger commercial buildings, smart
energy management in residential buildings is also very important and a grow-
ing area of research. We are already seeing ‘smart’ thermostats like Google’s
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Nest, which aim to learn users temperature preferences and patterns to save
energy. In-home smart assistants such as Amazon’s ‘Alexa’, can leverage
the growth in loT devices to allow smart home coordination of lighting, blind
control, heating and cooling, and even appliances such as cookers, vacuum
cleaners, and dishwashers. Whilst a user can control devices from a central
point there are currently no commercial systems that can centrally coordinate
these heterogeneous devices logically with the aim of minimising energy con-
sumption or cost. As commercial systems are relatively new and the literature
provides a number of suggestions for possible system architectures. Capone
et al. [117] presents the AIM gateway which proposes a communication ar-
chitecture for devices and sensors within the home. The authors suggest that
this could provide better monitoring and prediction for energy suppliers through
user profiling. A similar vision for a Home Energy Management System with a
series of devices connected to a smart meter or central controller in both [118]
and [119]. The authors argue that the management and scheduling of these
devices could be outsourced to a third party which would utilise intelligent ana-
lytics to save the consumer money. There is also emphasis that the scheduling
strategies need to consider demand response within their control logic.

An intelligent BMS is simulated in [120]. The BMS is assumed to con-
trol household appliances, the heating, local PV resources and sense outdoor
conditions. A grey box, resistor-capacitance, RC, thermal model of a small
house is created to simulate the indoor temperature depending on the heat-
ing strategy. By shifting the operation of controllable appliances, the smart
BMS made significant cost savings. Smart household scheduling is also ad-
dressed in [121]. This also controls the heating and controllable appliances but
uses a Model Predictive Control, MPC, technique and utilises electrical battery
storage which it theorises could come from a plug-in electrical vehicle. The
solution is simulated in several climates and is shown to save the user up to
20%. However, this strategy assumes perfect weather forecasting so the sav-
ing, in reality, is likely to be reduced. Yuce et al. [122] combined the use of an
Artificial Neural Network, ANN, and a Genetic Algorithm, GA, to schedule do-
mestic appliances to ensure maximum utilisation of local renewable resources.
The use case presented is based on a small holiday home in Southern Eng-
land which has on-site PV and wind production. When grid energy reductions
of 10%, 25%, and 40% are imposed on the building, the idle renewable gen-
eration is clearly reduced. Zucker et al. [123], outlined the architecture of a
cognitive building control system. Cognitive algorithms aim to mimic the way
the human mind thinks through storing historical experiences and selecting the
most appropriate decisions based on previous actions.
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A Home Energy Management System (HEMS) was developed in [124]. The
control scheme simulated 26 electrical appliances within a home with the aim
of controlling thermal comfort and minimising the electricity cost to the con-
sumer. When a solar PV system and battery storage is added to the home,
the control algorithm effectively shifts load off peak to lower price periods sav-
ing around 17% in cost. Huang et al. [125] introduced an adapted Particle
Swarm Optimisation (PSO) to control various devices within a HEMS including
energy storage, deferrable loads, thermal loads and interruptible loads within
a dynamic energy pricing structure. The PSO provided near-optimal solutions
which are checked for feasibility against a number of constraints. If the con-
straints are breached, an adaptation is made to optimisation procedure where
the constraints are repaired before continuing with the optimisation.

Mohsenian-Rad and Leon-Garcia [126] argued that dynamic energy pricing
tariffs often confuse average consumers. Therefore, the study aimed to de-
velop a simple and automatic optimisation procedure to predict energy prices
and schedule the operation of each household appliance based on linear pro-
gramming. The optimisation strategy must balance the minimisation of elec-
tricity cost and the waiting time of the consumer (and hence comfort). The
more flexible the user chooses to be, the higher the energy savings achieved.
Electricity pricing uncertainty while scheduling household appliances was also
considered in [127]. In this scenario the user could purchase electricity on the
day-ahead market or in real-time with fluctuating prices. The dual time hori-
zons required the problem to be decomposed into sub-problems and solved
using a stochastic gradient approach.

An approach which may be a natural fit to control the disbursed range of
smart home appliances is a Multi Agent Systems (MAS) approach. This ap-
proach would assign home appliances each with an intelligent agent. Each
agent is perceptive of it’s environment, able to communicate with other agents,
and programmed with a control logic to manage it's appliance effectively. These
agents must be coordinated by one or several management agents to ensure
cooperation and holistic control. The nature of the distributed approach makes
this strategy scalable and adaptable to new appliances, robust if single lines of
communication fail, and able to assimilate the inherent heterogeneity of smart
home devices.

A MAS architecture for home energy automation is proposed in [128]. Three
energy services are defined; end use by appliances, intermediate such as en-
ergy storage, and support which is energy supply. Each of these services
is further separated into permanent or temporary services which have differ-
ent constraints and attributes. An alternate MAS architecture was deployed in
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[129] for an eco-house with several renewable energy sources available and
the capacity to operate disconnected from the main grid. The operation of the
MAS control is demonstrated in a case study with several wind turbines, PV
panels and battery storage. The MAS control system effectively matches sup-
ply and demand, however, the output from the renewable generators and the
building demand is known accurately in advance. Zhao et al. [130] demon-
strated a MAS system with agents to manage a multi-energy vector thermal,
electrical and cooling system in a simulated commercial building. The study
shows significant cost savings when a Combined Cooling Heating and Power
(CCHP) unit is managed by the proposed control system.

2.2.2 Operational HVAC Optimisation

Several studies within the literature focus on control of HVAC components
given that this accounts for a significant proportion of energy demand in mod-
ern buildings. Often, this is achieved through control of heating and cooling set
points throughout the day to allow potential pre-cooling or pre-heating solu-
tions. Specifically, this sub-section will review studies that aim to control HVAC
parameters at a short-term, operational level, typically with control horizons
equal to, or less than, a day. This field has been revolutionised in recent years
through the application of advanced computational intelligence techniques in-
cluding meta-heuristic optimisation methods, machine learning prediction mod-
els, fuzzy logic and multi-agent approaches [131].

In [132], the authors’ coupled an EnergyPlus simulation with a MATLAB,
MPC procedure using the middleware software BCVTB (Building Controls Vir-
tual Test Bed) which is designed to facilitate data exchange between Energy-
Plus and other software such as MATLAB. The MPC scheme controlled the
extent of the pre-cooling with the objective of minimising energy cost. The var-
ious potential solutions were assessed in EnergyPlus and compared to typical
control strategies. However, the case study building was very simplistic due to
the simulation time that would be required to simulate complex, realistic build-
ings. A 24-hour scheduler utilising EnergyPlus was developed in [70] with the
aim of simultaneously controlling the thermal comfort, visual comfort and in-
door air quality whilst minimising the energy consumption. It used a Genetic
Algorithm (GA) which used an EnergyPlus model as the evaluation engine to
control window blinds, ventilation, and window opening operation for just a sin-
gle zone.

In both, [133] and [77], Ascione et al. developed a multi-objective GA op-
timisation procedure to control indoor set point temperatures using an Ener-
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gyPlus model to evaluate potential solutions. Both case studies have demon-
strated significant potential energy savings, however, the case study building
was relatively simple, containing just three zones. Using the EnergyPlus model
as an evaluation engine led to a computational time of 90 minutes to develop
an optimal schedule for the next 24-hours. Such a computational period would
inhibit the use of sliding-window, MPC, which would have to re-optimise every
hour.

In practice, using a detailed white box simulation in conjunction with an
advanced metaheuristic optimisation strategy, such as a GA, is not possible
in most scenarios targeting operational optimisation. This is due to the con-
siderable number of evaluations required per iteration and the computational
time required to complete an evaluation. The previously discussed works focus
on very simple building energy models or just a single zone. To apply these
methods to a realistically complex building would require significant compu-
tational power to reduce simulation times to acceptable limits (i.e. below 1
timestep). Thus, the focus must turn to creating surrogate, black or grey box,
models which can accurately replicate the output of a white box model but can
compute with minimal computation expense and time allowing their use in real
time.

MPC using grey box modelling techniques were applied to a Czech uni-
versity building in [134] and [135]. Blocks of the building were modelled us-
ing an RC model taking weather predictions as inputs. The optimisation was
set up as a linear quadratic programming problem and the objective was to
minimise energy consumption by controlling the supply water temperature set
point. This strategy was implemented on the real building for over 2 months
and was shown to reduce energy consumption by 15%-28%. Whilst this opti-
misation considers occupancy as a disturbance, it does not include predicted
occupancy as a model input. Furthermore, only block level supply water tem-
perature is controlled rather than the desired set point temperature in each
zone. Karlsson and Hagentoft [136] aimed to control the flow rate of an un-
derfloor heating system using an MPC strategy. The authors simultaneously
developed a complex numerical model alongside a simplified RC model and
found a good comparison between the two.

Oldewurtel et al. [137], adapted traditional MPC to Stochastic MPC. Es-
sentially, this means the MPC strategy took into consideration uncertainties in
forecasts when carrying out the optimisation. This resulted in a slightly more
cautious optimisation that did not go so close to the comfort boundaries whilst
still achieving good energy savings. Mahendra et al. [138], also aims to ad-
dress the problems that stem from forecasting uncertainties produced by a

28



2.2. BUILDING-LEVEL ENERGY MANAGEMENT

RC model. This solution runs a reactive algorithm in between the MPC time
steps that can take swift action if the forecasts are clearly incorrect due to an
unexpected spike in occupancy for example.

Molina et al. [139], produced an MPC strategy to control heating and cool-
ing in a residential building using a state space model as an evaluation engine
for a GA. However, this work considered unrealistically simplified ideal heating
and cooling and the control strategy only considers a 1-hour prediction hori-
zon which is not long enough to be able to effectively utilise pre-heating or
pre-cooling. State space representations of the indoor temperature, lighting,
humidity and CO. levels were used in [140] to develop improved system con-
trollers to maintain closer adherence to set point values whilst using minimal
energy consumption. The importance of considering occupancy and managing
energy at a zone level is demonstrated in [141]. An Auto-regressive with exoge-
nous input model (ARX) was used to model each zone. Disturbances including
occupancy and future predicted heating output from adjacent zones was also
included. A distributed MPC strategy was developed where each room has
an independent controller that considers these disturbances. The controller
produced a 13% reduction in energy consumption and a 36% improvement in
thermal comfort. Erickson and Cerpa [142], also developed a HVAC control
strategy based on occupancy. A Markov Chain occupancy model was devel-
oped to allow the building control strategy to take advantage of sporadically
occupied zones to save up to 20% on an EnergyPlus, simulation-based, case
study.

Use of black box building models is also common within the literature, for
example, Papantoniou et al. [112], optimised the operation of fan coil units in
a Greek hospital. An ANN predicted the outdoor temperature and the indoor
temperature also taking the HVAC operation as an input. A genetic algorithm
was used in conjunction with a fuzzy controller to minimise the cost of the en-
ergy consumption and ensure thermal comfort for the occupants. However, the
optimisation time horizon was limited to only 8 hours. Lee et al. [113], used an
ANN based MPC strategy to control a zone AHU. It aimed to calculate the opti-
mal AHU cooling operation over the next 24 hours to minimise the energy cost
and maintain thermal comfort using Mixed Integer Non-Linear Programming,
MINLP. The ANN accurately predicted indoor temperature and energy con-
sumption, but the application was limited to only a single zone within a build-
ing. An ANN based controller was also developed in [143]. The ANN predicted
the change in indoor conditions including temperature, relative humidity and
the PMV. These predictions are subsequently used to control heating, cool-
ing, humidifying and dehumidifying devices to minimise over or undershoots
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often found in non-predictive, conventional control. Whilst this approach pro-
vided better thermal comfort compared to conventional controllers, it did not
consider the minimisation of energy consumption as an objective in its control
scheme.

Afram et al. [144], developed a new algorithm for training ANN which was
applied to modelling several HVAC components. The ANN were integrated into
a MPC platform to control the ventilation rate, buffer tank set point temperature
and indoor set point temperature. The control scheme showed aptitude for
reducing the energy costs of the house by shifting the load to cheaper time
periods. However, the building only has one set point temperature rather than
zone level set points and occupancy was not considered in the MPC formula-
tion. An MPC strategy that controlled both humidity and indoor temperature to
maintain a PMV constraint was demonstrated in [145]. ANN predictive mod-
els were combined with a branch and bound optimisation to achieve energy
savings in the order of 30% compared to a baseline solution.

A multi-objective particle swarm optimisation (PSO) was developed in [146]
to minimise the electricity cost of the HVAC system whilst maintaining thermal
comfort for the occupants. The optimisation strategy considers a day ahead
electricity pricing tariffs and outdoor temperature forecasts. The cost was re-
duced by 18.7% through pre-cooling in low price periods, however, both the
thermal and comfort models used are overly simplistic. Namerikawa and lgari
[147] conducted an MPC approach to the management of an air conditioning
unit in a zone supplied by solar PV panels. The PV generation is predicted
through regression from which the MPC aims to minimise peak load and cost
to the consumer. These objectives were achieved somewhat, however, the
thermal constraints were lax given an upper bound temperature of 30°C .

An explicit MPC to manage HVAC systems was outlined in [148] with the
aim of controlling both indoor temperature and CO, levels. Using this method,
the controller stores a bank of previous actions and depending on the scenario
selects the best suited action. Whilst the authors argue this approach allows
on-line optimisation with limited computational burden, however, this approach
cannot think ‘outside the box’ to produce potentially more optimal solutions. An
intelligent, rule based, decision support system was created in [149] to control
indoor temperature, humidity, luminosity and air quality. It had a stored knowl-
edge base and a wide array of sensors allowing it to choose the best course
of action for the specific conditions. This led to a reduction in energy con-
sumption of around 10% in a real trial. Integrated control of HVAGC, lighting and
shading was also considered in [150] using a dynamic programming approach.
Due to the complexity of the problem and the coupling of separate systems, the
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problem was decomposed into several sub-problems to make the methodology
scalable and tractable.

2.2.3 Long-Term Building Optimisation

Whilst the studies in the previous section aimed to achieve relatively short-
term, operational optimisation of building HVAC systems, the papers cited in
this section use longer term approaches. This may be targeted at the design
phase, pre-retrofitting analysis or during the building operation. These sort
of studies tend to produce one-off results that should be implemented consis-
tently rather than being required to re-optimise every 24-hours. In many cases,
the solutions provided by the studies in this section could be carried out in con-
junction with the operational optimisation methodologies previously discussed
in Section 2.2.2.

Due to the longer time frames considered in this section, the use of white-
box simulation models in conjunction with meta-heuristic optimisation strate-
gies is more viable as solution time is less critical. Papadopoulos and Azar
[151] combined an EnergyPlus with a MATLAB multi-objective GA to minimise
annual energy consumption, thermal discomfort and productivity loss by set-
ting the heating and cooling set point temperature. However, the same set
point temperatures were used throughout the entire year, failing to adjust to
variable weather of occupancy conditions of each day.

Li et al. [152] addresses design stage optimisation in conjunction with an
EnergyPlus model. The decision variables included the buildings’ orientation,
window transmittance and width with multiple objectives including lifetime cost,
average PMV and CO, production. The study also trialled the use of a surro-
gate ANN model in the place of the EnergyPlus simulation model. This dramat-
ically decreased the solution time but led to a slightly less optimal solution due
to prediction errors. Further examples illustrating the use of surrogate mod-
els combined with optimisation can be found in both [153, 154]. A TRNSYS
model was run several times to produce a representative bank of data from
which an ANN was trained. The developed ANN accurately predicted annual
energy consumption and thermal comfort within the building based on retrofit
design decisions as inputs. The ANN was combined with a multi-objective GA
to minimise energy consumption, discomfort and retrofit costs. Both studies
showed the benefits of deploying an ANN as opposed to a white box simula-
tion model as the evaluation engine due to the dramatic decrease in reported
computational time. This type of scheme was further enhanced in [155] which
developed generic ANN that accurately replicated entire classes of buildings
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(e.g. an office built from 1920-70) rather than just a single building. Once
combined with an optimisation procedure, the methodology recommended the
most cost-effective building retrofit measures depending on budget. Magal-
hées et al. [156] developed an ANN to forecast the annual energy consumption
of a building based on readily available energy performance certificates, EPC,
and specific user defined characteristics such as the length of the heating pe-
riod and the percentage of area heated. The authors’ argued that providing
such information to occupants would allow more informed decisions in relation
to energy saving measures.

Several longer-term building energy optimisation methods are based around
studying historical data to learn unexpected trends. For example, the per-
formance gap between design stage and reality was addressed in [157]. By
effectively analysing the real-life occupancy patterns of an educational facil-
ity, some zones could be closed off for several additional hours to save an
estimated 20%. Assessment of existing HVAC schedules and rules was con-
ducted in both [158, 159] through creation of a validated simulation model. This
facilitated the trialling of several alternative HVAC rules with an assessment on
potential energy savings they may bring. This included determining the opti-
mal start-up and turn-off times from HVAC components and selecting heating
and cooling set-point temperatures to reduce energy demand. Similarly, [160]
and [161] trial several heating and cooling strategies based on internal sim-
plified models with the aim of finding the method which achieves the comfort
conditions at minimal cost. Both studies consider options such as pre-cooling /
pre-heating, cycling on/off during the day and turning off early to avoid high en-
ergy cost periods. However, this sort of study is limited as the optimal strategy
is found based on a sample day and is based on a set of pre-defined options.
It is unlikely that the optimal solution to the sample day is equally applicable to
different days and weather conditions throughout the year.

2.2.4 The Application of Semantics

An additional emerging trend within the literature is the use of semantic web
technologies. Essentially, semantic web technologies aim to ensure data inter-
operability, machine to machine communication, and to ascribe additional con-
textual information to data exchange. Several studies have been conducted to
apply semantic web technologies to the built environment. A state-of-the-art
review carried out by Abanda et al. [162] demonstrated that much of the exist-
ing work has aimed to develop ontologies relating built environment concepts
and objects with a specific focus on the utilisation of BIM. An ontology is a
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semantic web concept that aims to develop a common vocabulary to describe
concepts and objects through a unifying shared model [163]. Not only do they
describe objects, they also describe the relationship between objects including
rules and logic in order to build knowledge rather than just information [164].

At a building-level, the dominant form of digital BIM representation is through
the Industrial Foundation Class (IFC) schema developed and maintained by the
buildingSMART organisation'. Efforts continue to coalesce around a defini-
tive ontology for describing the data contained within an IFC model towards
an ifcOWL representation [165]. The semantic definition provided by ifcOWL,
via BIM, could provide the basis for much improved life cycle management of
buildings. It facilitates interoperability and the linking of data across domains
such as BIM, infrastructure, and energy [166]. The open and shared central
model can be supplemented by additional external data sources including loT
sensors, building management systems and energy networks mapped through
upper level ontologies. Having a single, unifying model of a building can signif-
icantly aid facility managers through the operational phase as only one model
will have to be updated and all other dependent modules will automatically un-
derstand the changed made. Curry et al. [167] agreed that BIM models can
“serve as an information backbone” for more intelligent management platforms.
The author went on to develop a cloud-based management platform by linking
an ifcOWL model with BMS sensor data to provide inciteful feedback to occu-
pants based on their energy consumption. Osello et al. [168] also utilised a BIM
model generated in Autodesk Revit as the central model from which thermal
and lighting specific modules could be produced in more specialist software (in
this case TRNSYS and Radiance respectively).

An example of the use of IFCs and semantics can be found in [169]. In this
study, a building ontology based on IFC was combined with a sensor ontology
using an upper level mapping ontology. This was combined with a sensor net-
work in an office zone measuring temperature, motion, and humidity. The pa-
per argues that the combination of the ontology, sensors and intelligent agents
can provide incitefull feedback to facility managers through inferences. The ex-
amples provided included the detection of periods when the zone was heated
and lighting was on, yet the room was unoccupied. In addition, it aimed to
determine occupant comfort preferences for finer control of heating and ven-
tilation. Corry et al. [170] aimed to address the performance gap between
building design and operation through a performance assessment ontology.
This ontology mapped three existing ontologies, ifcOWL to describe the build-
ing, SimModel which captures building energy simulation concepts, and SSN

'https://www.buildingsmart.org/
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which covers sensors and measurements. By linking actual measurements
with energy simulation, the authors argued that facility managers could detect
faults more easily and improve real building performance. A smart home man-
agement system deployed on a semantic base was envisaged in [171]. This
study provided a semantic extension of the UPnP communication protocol and
maps together several ontologies describing energy, context, the user, devices,
and services.

To provide a stable platform from which a MAS smart home can be pro-
duced, Kofler et al. [172], developed an OWL ontology to capture and seman-
tically link the core concepts within the smart home. These included aspects
of the building, user information, processes, exterior information, energy and
resource. Specifically, the authors focus on the source of the energy supply
so any control platform built on top of the ontology could make intelligent deci-
sions if the user wished to reduce their carbon footprint. Ruta et al. [173] also
produces a semantically linked MAS control procedure. Building devices are
represented by agents which are coordinated by a central agent. The control
procedure must juggle the constraints of varying importance and when posed
with an over-constrained problem, relax the least important constraint.

An example of utilising semantics for real-time building control and optimi-
sation was demonstrated in the KnoholEM project [174]. This project extended
an ontology based on IFCs to also include objects and concepts relating to
energy consumption, management and sensing. This underpinning ontology
enabled the system to interface with building energy management systems
regardless of the communication protocols they used [175]. It also allowed
connection to energy simulation models which could be run in near real-time
to aid in fault detection and determination of building performance. The ontol-
ogy ensured that objects such as zones, actuators and sensors modelled in the
BIM, the energy model, and recorded by the BMS share common descriptions
and are interpreted as representations of the same physical object by the sys-
tem. The semantic base aided the generation of energy saving rules through
surrogate ANN machine learning models based on energy simulation data and
rules based on data mining of recorded historical data [176]. A GA then pro-
duced a set of optimal rules based on the desired energy saving requested by
the facility manager. A fuzzy inference system selected the most appropriate
rule to be suggested to the facility manager through a simple user interface.
The semantic mapping enabled a 3D model of the building to be presented to
the facility manager with the capability to select individual zones to retrieve a
breakdown of performance in terms of energy consumption and comfort [177].

Whereas IFC is the leading modelling structure at a building level, CityGML
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Figure 2.1: Conceptualisation of district heating networks, taken from [182]

is becoming the common information model to represent information for city
scale modelling [178]. The Energy Atlas Berlin project used CityGML to se-
mantically describe a neighbourhood in Berlin. CityGML enables the semantic
decomposition of wall, ground and roof surfaces alongside additional contex-
tual information such as the year of construction, building function, and weather
information to be able to produce heating demand forecasting and solar PV
availability at a building-level on a city-scale [179]. The SEMANCO project
also developed an urban scale ontology which included similar building-level
information but also aimed to describe the energy infrastructure and systems,
mapping the energy end use to the energy sources and the energy carriers
[180]. The ontology was then deployed to enable an integrated platform allow-
ing city scale energy analysis to allow targetted interventions by urban plan-
ners. An effective link mapping between the building-level concepts provided
in IFC and the district or city-level concepts provided by CityGML is required
to manage energy in a more holistic manner [181]. One attempt to capture
district-level energy concepts in an ‘ee-district’ ontology is provided in [182].
The ontology is mapped and integrated with existing upper level ontologies to
build on accepted definitions of concepts and to allow interoperability at differ-
ent scales. This ontology was validated through an instantiation based on a
district heating case study in Ebbw Vale. The description and interconnection
of various district heating concepts are shown in Figure 2.1, taken from this ex-
ample. The author argues that knowledge captured in the ee-district ontology
plays a key role in the delivery of a multi-agent semantic district optimisation.

2.2.5 Summary

The literature reviewed in this section shows the diversity of building optimi-
sation strategies. There are several different objectives including minimisation
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of cost, energy consumption, peak load, and maximisation of thermal com-
fort. The decisions variables considered are also very broad; from household
electrical appliances such as washing machines and fridges to HVAC compo-
nents such as fans and air conditioning units, and beyond to control points such
as set point temperatures. However, there are some common themes within
the work reviewed in this section. These building-level studies overwhelmingly
consider the control and shifting of energy demand whilst rarely considering
the energy supply. Some studies do include some local renewable resources,
in the form of solar PV, as well as energy storage capacity but that is the extent
of energy supply consideration. A further theme in this section is the impor-
tance of dynamic or ToU tariffs [183]. With the deployment of smart meters,
these are likely to become more widespread and have a significant impact on
energy cost when included in many of the building control strategies discussed
in this section. Regular consumers cannot be expected to understand and alter
their demand patterns based on the forecast energy price each day. Therefore,
automated control methods that are perceptive of user preferences are essen-
tial.

Regarding the modelling of building energy demand, all the techniques out-
lined in Section 2.1 have been used successfully within optimisation strategies.
However, many of the grey box fail to consider external heat gain disturbances
such as occupancy or resulting from the equipment that they use. For the ef-
fective deployment of a zone-level HVAC controller, these disturbances play
a significant role and must be considered alongside real-time weather fore-
casts. The long term optimisation approaches reviewed in this section demon-
strate the importance of reviewing operational energy consumption data to de-
tect outdated or ill-conceived BMS rules. However, whilst these audits can
prove effective, they cannot compete with the short-term operational optimi-
sation strategies that take the exact conditions of each day and determine the
best solution for that specific instances. Any new rules generated after an audit
are highly unlikely to produce an optimal approach for all seasons and due to
the constantly changing functions of buildings are likely to be out of date in the
near future.

An additional factor that may feed into building energy optimisation is the
deployment of semantic web principles. The use of semantics and ontologies
help to overcome interoperability challenges often faced in older buildings. The
many components within a building often communicate using different com-
munication protocols. Several researchers have demonstrated that ontologies
based around BIM and specifically IFC can allow clear and consistent defini-
tion of building objects and concepts and provide the ability to link with external
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factors such as energy prices, weather forecasts, energy simulations, and BMS
data. ltits core, semantic web technologies add context to data and objects. By
making controllers more context-aware, they are able to make more informed
and beneficial decisions for the user.

2.3 Modelling of a District Energy System

Section 2.1 and Section 2.2 both focus specifically on energy management at
a building-level. Energy management at this level tends to focus on controlling
and optimising energy demand. However, given the decentralisation of energy
systems towards localised microgrids, it is imperative that district-level energy
systems are also considered to achieve truly holistic energy management in-
cluding the energy supply. Modelling and optimisation of entire district energy
systems has already been attempted in several academic publications and sci-
entific projects. The leading approach in the literature to achieve this is the
Energy Hub modelling concept [184]; which simplifies complex urban energy
systems to a series of input-output energy hubs. The inputs are in the form
of primary energy sources, and the outputs are the produced electricity, heat
and/or gas. The ‘Hub’ itself contains the mathematical modelling of the con-
version process and technologies (Figure 2.2). However, this type of modelling
often simplifies energy conversion units to simple constant efficiencies, failing
to take into account part load characteristics, warming up periods and other
energy losses.

The energy hub concept has been utilised in several papers studying the
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optimal layout and design of district energy systems [185—189]. This includes
selection and sizing of the energy production units and consideration of which
energy hubs should be connected. This work is aimed at the design stage or
future scenario evaluation and is based on steady-state analysis of known (or
assumed) peak demand. Therefore, the assessed temporal scale is years of
assumed behaviour rather than day to day optimisation at a sub-hourly resolu-
tion.

Operational optimisation of energy hubs can also be found in the litera-
ture, often using MPC, [190-192]. In [193], the energy demand was deter-
mined from EnergyPlus building simulation models; then the potential, uncon-
trollable, renewable supply was assumed forecast and finally the energy hub
then matched supply and demand in an optimal way using linear programming
techniques. A dynamic particle swarm optimisation study was carried out on a
Canadian case study in [194], using known hourly, heating, cooling, electricity
and transportation loads. Maroufmashat et al. [195] also built on the energy
hub concept to create a generic smart energy network model for operational
optimisation. This paper includes detailed modelling of energy storage, which
was included in the energy hub modelling.

Considering a network of energy hubs is shown in the literature to be an
effective way of optimising energy management at a district level. However,
all of the discussed studies made a number of simplifications. The buildings
are often simplified models or using design stage assumptions rather than
using accurately calibrated building energy models. The building energy de-
mand is also assumed perfectly forecast and inflexible with no consideration
of demand-side management or demand response measures. The efficiency
of the energy conversion units is often oversimplified. They assume a ther-
mal and/or electrical efficiency to be constant and therefore does not include
part load factors and warming up characteristics, which are vital for a realistic
day-ahead optimisation [196].

There is potential to improve upon the energy hub model with more detailed
component models in place of a conversion matrix with static efficiencies [197].
These models could be mathematically derived or could use machine learning
or artificial intelligence. The purpose of this section is to provide an overview
of existing modelling techniques of components within urban and district en-
ergy systems including the emerging technology of power to gas. This sec-
tion intends to provide a wider, holistic, summary of modelling a district energy
system specifically for operational optimisation. It will discuss not only the well-
known physics-based modelling software but also include newer computational
intelligence and machine learning techniques for modelling individual compo-
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nents. Indeed, this section will devote an increased focus on these approaches
as they are likely to be more suitable for real-time, operational optimisation but
are largely neglected in existing urban energy modelling reviews.

2.3.1 Combined Heat and Power

Combined heat and power, CHP, is becoming a favoured technology during
the transition from a fossil fuel energy infrastructure to a low carbon future.
While they still frequently use fossil fuels, namely natural gas, they can achieve
greatly improved efficiencies. This is as a result of utilising the heat by-product
from electricity generation in a local heating system and thus also reducing
transmission losses. Total efficiencies of around 80%-90% have been achieved
as opposed to the 30%-40% figure achieved in traditional, large-scale, fossil
fuel electrical power plants [198]. There is a range of CHP types based mainly
on the type of prime mover, typical examples include internal combustion, fuel
cell and Stirling engine. Furthermore, during summer the heat produced by the
CHP can be used to drive cooling cycles forming trigeneration cycles (heating,
cooling, and electricity). The main three cooling technologies driven by heat
are absorption, adsorption and ejector cycles. An ejector cooling cycle, in
particular, was modelled in [198], based on the heat from a CHP.

Best et al. [199], developed a district energy modelling tool with a modular
design. In particular, the authors focused on the mathematical modelling of
CHPs and chillers. The CHP model used manufacturers rated capacity and
adjusts this for altitude, outdoor temperature, and part load ratio using statis-
tical regression equations. The resulting model allowed the fuel consumption,
cost, and CO2 emissions to be calculated based on the energy demand. Wang
et al. [200], aimed to optimise the operation of several CHP units and thermal
energy storage for a district heating network. Their CHP model was based on
a convex, feasible operating region based on characteristic points. However,
for 2 of the 3 CHPs included in the case study, they only had two character-
istic points at maximum and minimum operation. The authors included ramp
rate constraints, which were modelled as a percentage the CHP output can
increase or decrease from one hour to the next. Maintenance periods were
also considered in this optimisation problem.

Detailed thermodynamic modelling of micro-CHP, residential scale devices
has been developed as part of an IEA project in [201] A grey box approach
to modelling sub-components of 4 types of CHP has been taken. The model
reflected partial physical processes but also required empirical constants to be
determined based on the measurements obtained from real units. Each sub-
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component within the device was modelled as a separate control volume to
which fundamental conservation laws can be applied. These models had been
integrated into four different modelling platforms, namely ESP-r, TRNSYS, En-
ergyPlus and IDA-ICE. Validation of these models was provided in [202], which
showed excellent agreement between simulation and measurement of a Solid
Oxide Fuel Cell (SOFC) CHP. Average errors of 1.2%, 8.3%, and 5.4% were
reported for electrical, thermal and total efficiencies. For more information on
the detail of the modelling techniques see [203] for internal combustion en-
gine and Stirling engine CHP’s and [204] for information on solid oxide fuel cell
CHP’s.

Savola and Keppo [205] aimed to generate multiple linear regression mod-
els to calculate the power production of several CHP at part loads. While
CHP power output at high loads is almost linear, as the part load decreases
the power decreases non-linearly due to a rapid decrease in turbine isentropic
efficiency. Therefore, this work proposed multiple linear regression models
depending on the part load factor of the CHP. These can be described mathe-
matically using the following equation:

PQ, Ty, T.)=a-Q+b- T, +c-T.+d (2.1)

Where P is power production (W), @ is the part load factor (-), T is the
outgoing fluid temperature (°C ), T is the incoming fluid temperature (°C ) and
a, b, c and d are regression coefficients. Using three separate regression lines
for different sections of the part load curve was shown to be accurate versus
a simulation model and yet remains a linear equation simple enough to be
included in optimisation strategies.

An analytical approach to assess the characteristics of a cogeneration gas
turbine unit was carried out in [206]. Using this approach, curves relating
several parameter ratios (such as thermal efficiency over design thermal ef-
ficiency) could be related to the part load ratio. This work amongst others,
is used in [207] to create best-fit curves to calculate part load thermal effi-
ciency and part load fuel consumption as a function of the part load percent-
age. These curves were compared to experimental data of three gas turbine
CHPs and showed excellent consistency. The equation for this curve is given
in (2.2).

TRPL_ _(.0000634(PL)? + 0.0137(PL) + 0.262 (2.2)

Nth,Nom

Where ny, p1, is the part load thermal efficiency, 1., nom IS the nominal ther-
mal efficiency, and PL is the part load percentage where all variables are di-
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mensionless.

Based on the reviewed literature, for wider district energy optimisation, mul-
tiple linear regression equations or non-linear regression curves are best suited
for real-time operational optimisation and management. They provide an accu-
rate representation of the behaviour of a CHP while requiring minimal computa-
tional effort to calculate due to their relative simplicity. This approach provides
more realistic modelling than the constant efficiencies used in the state-of-the-
art energy hub formulations.

2.3.2 Boilers

Typically, district heating plant rooms are comprised of multiple energy conver-
sion technologies. Due to the decrease in efficiency in part load conditions and
fluctuating electricity demand, CHPs are often sized to provide the baseload
and operate continuously where possible. Additional heating load flexibility will
be provided by more traditional boilers, which can more ably modulate their
output based on instantaneous demand. Typically, these boilers will have very
high thermal efficiencies and have a wider operating range than the more in-
flexible CHPs. The most commonly found fuel source for district-level boilers is
natural gas however biomass is becoming increasingly popular due to govern-
mental policy schemes.

A thermodynamically derived, mathematical model of a steam boiler was
presented in [208] The model included factors for various sources of energy
loss such as heat losses to the environment through each component and
combustion losses. This allowed each source of energy loss to be analysed
and potentially reduced. From the mathematical model, a part load efficiency
curve was produced consisting of three distinct zones. From 0-40% load, a hy-
perbolic relationship between load and efficiency existed, from 40-80% there
was a near linear relationship and above 80% resulted in near constant effi-
ciency. The model was verified through comparison with experimental mea-
surements. A similar method of model development was applied to domestic
condensing boilers in [209]. The resulting model calculated outlet water and
gas temperatures and thermal efficiency based on the inlet temperatures, flow
rates and static boiler parameters. Petrocelli and Lezzi [210] analytically mod-
elled a wood pellet boiler and analysed the effect of storage tank size and
control strategy on the boiler emissions. The authors found that increasing the
size of the storage tank decreased emissions due to less frequent startup and
shut down times.

A numerical Computational Fluid Dynamics (CFD), software, ANSYS Flu-
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ent, was used to provide a more complete analysis of boiler behaviour in [211].
The verified model allowed analysis of flow conditions and flame behaviour
as well as NO, output. As a result, NO, reduction strategies could be trialled
before implementation. However, this level of detail does come at the cost
of computational complexity as the model contains 6.8 million meshing cells
which leads to a significant computational time. Similar CFD analysis of a
biomass boiler was carried out in [212]. This study combined a detailed 1D
model of the fuel bed to provide inputs to a full 3D CFD simulation of the whole
boiler.

A simplified grey box model was derived in [213]. The authors aimed to
make a generic boiler model consisting of three phases; the combustion cham-
ber, heat exchanger and thermal storage. Where possible empirical relation-
ships were used to ensure the resulting model required as few input parame-
ters as possible, most of which can be found on standard boiler specification
sheets. A generic boiler simulation model was also developed in [214]. Sev-
eral different combustibles including oil, gas, pellet and wood chips were mod-
elled and several flue gas temperature modelling techniques were used. The
model was developed to be integrated into the TRNSYS simulation platform
and claims a thermal efficiency prediction accuracy of + 1%.

A combined, hybrid model for determining the behaviour of a large coal-
fired, steam boiler can be found in [215]. A neural network was used to provide
a simple calculation of flue gas temperature which was an input for an analyti-
cal model to calculate the thermal efficiency. The resulting model was therefore
computationally simple enough to be used for real-time control applications. A
simplified, non-linear, 3rd order state space model of a biomass boiler was
used in [216] for a model based control application. The model-based con-
trol contributed a significant reduction in CO and particulate emissions and
resulted in an improved thermal efficiency.

This section has shown several detailed, numerical modelling studies of the
behaviour of boilers under various conditions and using various combustibles.
However, for the purposes of real-time, operational control of a district, this
level of computational complexity and simulation time is infeasible and unnec-
essary. Many of the modelling procedures described in this section are based
on specific types of boilers. Therefore, in the authors’ opinion, appropriate
modelling of a boiler in a district configuration can be achieved through experi-
mentally finding the empirical relationship between fuel input or part load factor
and the heat power output similar to that found in Section 2.3.1. Efforts should
be made to account for start-up and shut-down periods which can display dis-
tinct behaviour and are likely to effect real-time optimisation strategies.
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Table 2.2: Summary of CHP and boiler modelling

Ref Method Input Parameters Output Parameters Model Accuracy Component

[199] Regression Ambient Temp, Altitude, Part Load Efficiency - CHP

[200] Convex Operat- Operating Point Power, Heat and Cost Output - CHP
ing Regions

[201, Grey Box Empirical Coefficients, Electrical, Thermal and Overall Efficiency 1.2%, 8.5%, 5.3% CHP

202] Modelling Operating Strategy Average Error

[203] Grey Box Empirical Coefficients, Fuel Flow Rate, Electrical Output, Heat Recov- R2 = 1, 0.993, CHP
Modelling Control Signal ery Rate, Outlet Temp 0.991, 0.991

[205] Multiple Linear Part Load, Output Temp Power Production <0.01 Squared Er- CHP
Regression ror

[207] Regression Part Load Relative Efficiency - CHP

[208] Thermodynamic  Boiler Static Data, Thermal Efficiency 0.35% Mean Error Gas Boiler
Principles Operating Strategy

[209] Thermodynamic  Boiler Static Data, Ambient Conditions, Fuel and Water Mass  Outlet Water and Gas Temp, Heat Output, Effi- 0.2-2.5% Relative = Gas Boiler
Principles Flow Rate, Water Temp ciency Error (Efficiency)

[211] CFD Geometry, Boundary Conditions, Operating Strategy NOyx Emissions, Boiler Temps, Flow Velocities <16% (NOy) Biogas Boiler

[213] Grey box Empirical Coefficients, Static Manufacturer Data, Operating Hot Water Supply Temp, Flue Gas Temp <1% to <8% Rela- Gas Boiler
Modelling Strategy tive Error

[215] ANN + Analyti- Feed Water Temp, Oxygen Content, Thermal Power, Heat Flux  Flue Gas Temp R2 = 95% Coal-Fired Steam
cal to Preheater, Air Temp, Fuel Lower Heat Value Boiler
Model

[216] State Space Biomass Flow Rate, Primary Air Mass Flow, Sum of Primary and  Residual Oxygen Content, Feed Temp - Biomass Boiler

Model

Secondary Air Mass
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2.3.3 Solar Energy

Power systems operation and planning is being performed according to the
smart grid vision [217]. With more renewable technologies being integrated
into existing and new energy supply infrastructure, especially the non pre-
dictable ones (wind and solar), it would be challenging to maintain balance
between supply and demand. A continuous balance always needs to be main-
tained between supply and demand at any moment by continuously controlling
demand and adjusting energy generation [218]. The stochastic nature of so-
lar energy generation introduces exigent issues for the optimal operation and
planning of smart grid. Predictive analytics will play a significant role towards
optimal real-time management, secure operation and maintaining a balance
between energy supply and demand. Solar energy generation is dependent
on several factors such as orientation, shading, cloud cover, air temperature
and solar irradiation. Therefore, prediction of solar energy output is often de-
pendent on the prediction or measurement of these parameters. Whilst the
field of solar energy systems is expanding to include building integrated solar
systems this review will only consider the most common and developed solar
energy technologies namely photovoltaic panels and solar thermal collectors.

2.3.3.1 Photovoltaics (PV)

The textbook approach to calculating the electrical power generated by a solar
cell is defined as:

P=1I-n A (2.3)

Where P is the power produced (W), I is the total solar radiation on the PV
surface (W/m?), n is the total system efficiency (-), and A is the area of the PV
panel (m?). However, making this calculation is dependent on knowledge of po-
tentially difficult to obtain parameters such as solar radiation, shading, ambient
temperature and solar cell efficiency which may not be constant. Durisch et al.
[219], emphasised the need for more detailed information than that provided by
a manufacturer datasheet at standard test conditions. It empirically modelled
PV efficiency as a function of solar cell temperature, global irradiation and rel-
ative air mass. From ambient temperature and global radiation forecasting the
cell temperature was determined through an empirical relationship. Then the
cell efficiency was calculated using a further empirical relationship and hence
cell power output could be produced using equation (2.3). The authors argued
that their PV efficiency model could aid planners when selecting the type of
PV cell to deploy in different regions based on typical ambient temperature
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and global irradiance. However, they did not foresee the model being used for
short term power prediction. The developed model has been further validated
in both [220, 221], where the model was adapted and applied to real test sites
in Algeria and Bulgaria respectively to assess the performance under different
operating conditions. Additional development and refinement of the Durisch
model was conducted in [222] by including wind speed as an input. This pro-
duced an alternate method of calculating PV cell temperature, as a function of
ambient temperature, global irradiance and wind speed, which then impacted
the resulting estimate of cell efficiency. A more simplified model was produced
in [223] which does not require a large number of input parameters. However,
due to its simplified nature, the model outputted the daily energy performance
of a PV solar cell which is not suitable for use in operational control.

PV panels can also be modelled using a simple electrical circuit composed
of a current generator wired in parallel with one or several diodes and resis-
tors. Ma et al. [224] reviewed the various configurations found in the literature.
Modelling an ideal solar PV cell consists of just a single diode although this
lacks accuracy due to its simplicity. Introducing the additional resistors and
diodes, shown in Figure 2.3, increases the accuracy of the PV model but also
increases the complexity and hence computation time. The most commonly
used model is the 5-parameter model with 1 diode and 2 resistors as shown
in Figure 2.3. However, this requires calibration procedures to determine the
5 parameters. Examples of procedures to determine the 5 parameters can be
found in [224—-226] along with validation of the models against measured per-
formance. The modelling of PV arrays under partial shading was presented in
[227]. The model’s inputs are the PV panel’s characteristics (maximum power,
current, and voltage at the maximum power point, short circuit current, open
circuit voltage) the shading patterns, solar insulation level, number of mod-
ules, working temperature and number of blocking diodes. The output of the
simulation was the |-V characteristic and the maximum power point for each
group of the PV panel. Despite the high accuracy of these models they still
require weather parameters to be measured or predicted as inputs which can
be difficult in practice.

Whilst solar cell equivalent circuits are the most common approach to mod-
elling solar PV power output, advances in artificial intelligence and machine
learning are beginning to emerge as contenders. A rural PV-Diesel hybrid
system was modelled and optimised using neural networks in [228]. An ANN
was developed to predict solar radiation based on more commonly available
weather data. This was then used as an input to another ANN to predict the
power output from a PV array. Using this information, optimal dispatch of solar
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Figure 2.3: Solar cell equivalent circuits. Source: Ma et al. [224]

power and diesel generator operation could be found. Kharb et al. [229] uses
an ANFIS model to improve the efficiency of a solar panel by maximum power
point tracking, MPPT. They use temperature and irradiance as inputs and from
this predict the MPP which allowed the controller to react quickly to changing
environmental conditions.

As equation (2.3) demonstrates, solar irradiance is directly proportional to
the power output of a PV cell. Therefore, prediction of solar irradiance and
solar power output are almost one and the same. Three different types of
ANN model were ftrialled in [230] to forecast ground level solar insulation and
ambient temperature which were then used to calculate PV panel power out-
put. The models were trained using the previous 16 days meteorological data.
The inputs to the model included the previous 24 hours insulation, tempera-
ture and atmospheric insulation as well as forecast atmospheric insulation and
relative humidity. There was a small difference between the three types of
ANN, each using different learning algorithms, and this was likely to be influ-
enced by the ANN parameter values. The mean absolute percentage error
comparing the model output and actual values was around 15-20% through-
out the year which translated to a similar accuracy in predicting the power
output. Similarly, [231], developed and ANN-based, 24 hour ahead, solar irra-
diance prediction method. Inputs to the model included mean irradiance value,
air temperature and day of the month and very good prediction accuracy was
achieved, particularly on sunny days. Day-ahead solar irradiance predictions
were then used to calculate predicted solar power output, and this was com-
pared to a real facility in Italy. An R? value of 0.9 and a mean absolute error of
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less than 5% was achieved. Deep learning techniques were applied to model
the power generation of 21 different solar farms in Germany in [232]. Tech-
niques trialled include Long Short-Term Memory (LSTM), Deep Belief Network
(DBN) and Auto-Encoder LSTM. These were compared to a physical modelling
approach as well as a ‘shallow’ Multi-Layer Perceptron (MLP) model. It was
shown that whilst all machine learning models significantly outperformed the
physical model, the deep learning methods only provided a small improvement
over the MLP.

2.3.3.2 Solar Thermal

Whilst PV technology uses solar energy to generate electricity; solar thermal
collectors aim to convert the same solar energy into useful heat often in com-
bination with a hot water storage tank. Theoretical solutions and standards for
calculating the efficiency and useful heat energy conversion of solar thermal
collectors are widely available and were well explained in [233]. The analyt-
ical modelling of solar thermal collectors has been adapted to be included in
building simulation platforms such as EnergyPlus and TRNSYS. However, this
requires knowledge of several solar collector parameters in addition to many
weather variables such as the solar irradiance, wind speed and ambient tem-
perature. Therefore, like the case of solar PV, simplified models are required
for wider scale, real-time, energy optimisation.

Several thermodynamically derived, mathematical modelling studies of so-
lar thermal collectors can be found in the literature. These tend to develop
models for improvements or alterations to the standard flat plate solar collec-
tor. For instance, [234] developed a model for a polymer air collector with an
aerogel insulation layer. A model to calculate the efficiency, output temperature
and component temperature of a novel counter flow v-groove solar collector
can be found in [235]. Luo et al. [236] modelled the effect of using nanofluids
to improve the system efficiencies of a solar thermal collector. Electrical cir-
cuit analogies can also be used for the modelling of solar thermal collectors
as demonstrated in [237, 238]. Electrical circuit models simplify the mathemat-
ics of modelling solar thermal systems but still retain some knowledge of the
physical components.

When sufficient amounts of data are available, it is possible to model solar
thermal collectors using machine learning techniques, similar to the case of
solar PV. For instance, the performance of a solar thermal system has been
modelled using both ANFIS and ANN in [239] with comparable results. The
model showed a mean relative error of 1% when predicting the stratification
temperature, and 9% for the solar fraction. The results show a high level of
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accuracy and reliability using artificial intelligence methods, with a significant
reduction in complexity compared to a full mathematical description of the sys-
tem. However, the amount of data required (panel’s characteristic, orientation,
tilt, and solar radiation every minute) can be difficult to collect in practice. Kalo-
girou et al. [240], also used an ANN to predict the output characteristics of
a large-scale solar thermal system. It predicted the energy output and the
storage tank temperature with accuracies of R? > 0.95. However, this study fo-
cussed on the total daily energy output rather than the finer timescales required
for operational optimisation.

2.3.3.3 Discussion

Section 2.3.3 has shown several mathematical and machine learning methods
for predicting solar energy output. In the case of solar PV, the more simplified
analytical models based on empirical relationships or equivalent electrical cir-
cuits may be suitable for use in operational control and optimisation due to their
short calculation time. The analytical approaches used for solar thermal mod-
elling are too complex for use in real-time optimisation. Accurate predictions of
solar PV or solar thermal output will undoubtedly require relevant weather vari-
ables as inputs. Therefore, to predict future solar energy generation, accurate
weather forecasts are required. In many cases, sufficiently accurate forecasts
of variables on an appropriate temporal scale such as ambient outdoor tem-
perature and relative humidity will be available from national meteorological
services. The forecasting of global solar radiation has a higher associated
uncertainty and is less commonly available publicly. Therefore, many of the
machine learning methods reviewed in this section first aimed to predict solar
irradiance and from that calculate the solar power output, offering a computa-
tionally efficient and simple approach. However, the common downsides as-
sociated with machine learning prediction models also apply for solar energy
modelling. These include the requirement for a large amount of historical or
simulated data and the inflexibility of the model to adapt to any changes made
to the system. Furthermore, machine learning approaches can be suscepti-
ble to problems of overfitting. This occurs during the training process if the
model fits too well to the training data set without learning the general trends.
Then when applied to an unseen testing data set, the model performs poorly.
Depending on the machine learning approach, different methods exits to pre-
vent this. These include ‘pruning’ the trained model to remove any unneces-
sary links or stopping training early based on the performance of a validation
dataset. Note that these drawbacks associated with machine learning are true
of every application rather than just the reviewed studies presented here.
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Table 2.3: Summary of solar energy modelling

Ref Method Input Parameters Output Parameters Model Accuracy Location

[219] Empirical Empirical constants, Global radiation, Cell temperature, Relative  Cell efficiency, Power output - Jordan
Modelling air mass

[223] Empirical Daily aggregate of module temperature, air mass, global radiation  Daily performance ratio 1.55-4.19% Relative RMSE ~ Switzerland
Modelling

[224] 5 Parameter Solar Radiation, Module Temp, Ambient Temp Output Current and Voltage <1.4% Relative Error Hong Kong
Model

[225] 5 Parameter Solar Radiation, Module Temp Output Current, Voltage and Power <10% Relative Error China
Model

[228] ANN Date / Time, Wind Speed, Rainfall, Ambient Temp, Humidity Solar Irradiation MSE =200 W/m? Australia

[229] ANFIS Solar Irradiance, Ambient Temp MPP - -

[230] ANN Previous Solar Insulation, Temp, Atmospheric Insulation, Fore-  Ground Level Solar Insulation MAPE = 15-20% Japan

cast Solar Insulation, and Relative Humidity
[231] ANN Ambient Temp and Solar Irradiance Solar Power r=98.5-99.2%, Italy
MBE = 3.1-5.4%

[234] Thermodynamic  Thermodynamic Parameters, Weather Conditions, Inlet Temp Solar Thermal Outlet Temp - UK
Principles

[235] Thermodynamic  Thermodynamic Parameters, Weather Conditions Component Temps, Air Temp, Efficiency = <7% Relative Error -
Principles

[237] 2D Finite Differ-  Thermodynamic Parameters, Weather Conditions Component Temp 5-10% Relative RMSE France
ence Thermal
Model

[239] ANFIS Ambient Temp, Solar Radiation, Previous Tank Temp Tank Temp, Heat Input, Solar Fraction 1-9% Relative Error Canada

[240] ANN Average Daily Temp, Total Daily Solar Radiation, Starting Tank  Daily Energy Output, Final Tank Temp r=95-96% -

Temp

Note - MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Squared Error), MSE (Mean Squared Error), ANFIS (Adaptive Neuro-Fuzzy Inference System), MPP (Max Power Point), MBE
(Mean Bias Error), MLP (Multi-Layer Perceptron), LSTM (Long Short-Term Memory), DBN (Deep Belief Network).
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2.3.4 Wind Power

Wind power generation relies on wind speed, which could be influenced by ob-
stacle, terrain and height. Wind power generation is stochastic in nature, and
therefore the reliability of wind power generation is not satisfactory as it cannot
produce and supply steady electricity to the electrical grid. The wind power
penetration influences the power system operation. To tackle this challenge,
the power system operators/decision makers must make a detailed schedule
plan and set a reserve capacity for it [241]. Wind power may not frequently be
considered a small-scale urban energy source as wind farms are often built on
a large scale and in more remote locations. However, it is feasible that a wind
farm may be first directly connected to an urban microgrid rather than the wider
national grid. Also, given that wind power is one of the largest renewable gen-
eration sources currently deployed the author believes that prediction of this
power generation is worthy of discussion. Two recent reviews [218, 241], state
that there are three broad methods for calculating wind speed or wind power
generation. These include physical-based, white box, numerical models, more
traditional statistical models such as ARIMA, and newer artificial intelligence-
based models such as ANN, fuzzy logic and Support Vector Machine, SVM.

Typically, the power generated by a wind turbine can be defined as a func-
tion of wind speed. However, a wind turbine will have four operational zones
which should be defined by the manufacturer of the turbine. Initially, at low wind
speeds the turbine will remain stationary and produce no power until a cut in
speed is reached. Then in the second zone, the output power is a cubic func-
tion of wind speed (shown in eq. (2.4)) until the rated wind speed and power
is reached. Where P, is the generated power (W), C,, is the dimensionless
power coefficient of the turbine, p, is the density of air (kg/m3), A is the swept
area of the turbine (m?) and U is the wind velocity (m/s).

1
P = Gy pAU? (2.4)

In the third zone, the power output will remain constant at the rated power
regardless of wind speed. Finally, if the wind speed becomes too high, the
turbine will shut down to prevent damaging loads. A typical wind power - wind
speed curve is shown in Figure 2.4. Therefore, the challenge of predicting
wind speed and wind power are almost one and the same. However, the cubic
relationship between wind speed and wind power exacerbates the error in wind
power forecasting.

Whilst the wind-power curve is typically provided by manufacturers, this re-
lationship does not factor in the specific context of each site (e.g. turbulence)
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Figure 2.4: Typical wind power curve

or the condition of the turbine (e.g. deterioration and wear) or the proximity to
additional turbines [242]. A common method found within the literature aims to
develop site specific wind-power curves to achieve greater accuracy. Jin and
Tian [243], proposed a probabilistic method to model wind power generation
by adding a term to equation (eq. (2.4)) to reflect the stochasticity of the wind
speed and power variation between wind turbines in the same wind farm. Lydia
et al. [244], applied a range of techniques to generate a more accurate wind-
power curve applied to 5 different datasets. These techniques included para-
metric modelling such as linearized segmented model, four and five parameter
logistic expressions as well as non-parametric modelling including neural net-
works, fuzzy clustering and data mining approaches. For the sake of brevity
only the results from the best model (5-parameter logistic function) and for
dataset 1 are included in Table 2.4. Wind-power curve techniques may be
necessary to understand more realistic site-specific conditions; however, the
resulting curve still requires forecast wind speed as an input to predict power
generation. Given that both recent reviews, [218, 241], state that for short-term
prediction (hourly to sub-hourly) artificial intelligence based models are most
effective, the rest of this section will focus on this area.

Five different machine learning techniques were applied to the prediction
of future wind speed and wind power generation in [245]. They considered
predictions using different time steps and prediction horizons. For very short-
term wind speed and power predictions, they found SVM models outperformed
other data mining techniques. This used the previous hours’ time series data
to predict up to an hour ahead in 10-minute intervals. The authors also consid-
ered a slightly longer timeframe for predicting wind power up to 4 hours ahead
using the previous 4 hours, mean power generation data. Multi-layer percep-
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tron, MLP, was the most accurate method for this timeframe prediction. An
ANN was used in [246] to make short-term forecasts of wind speed at a wind
farm site in Mexico. The ANN was trained based on time series data and used
the previous hours values of wind speed to predict the next hour. A method
combining wavelet transformation and neural networks to predict short-term
wind power generation at a national level in Portugal was developed in [247].
Adding the wavelet transformation to get a better representation of the input
data provided an increase in accuracy compared to using an ANN alone in all
four seasons.

Quan et al. [248], aimed to address the calculation of prediction uncertain-
ties. They produced an ANN that outputted the lower and upper bound of elec-
trical load and wind power generation rather than a specific prediction value. A
Particle Swarm Optimisation (PSO) procedure was used to minimise the width
between these bounds under the constraint of 90% prediction coverage. The
proposed procedure provided a significant improvement over more traditional
methods although the width between the bounds for wind power generation
remained high due to the randomness and intermittent nature of wind power.
Similarly, [249] developed an ensemble mixture density neural network method
to make a probabilistic forecast of wind speed and power. It provided not only
a prediction but also confidence bounds for the predicted time series. It was
found to outperform several other prediction methods regarding prediction ac-
curacy and quality of the confidence bounds. An ensemble approach combined
with wavelet transformation and a deep learning, Convolutional Neural Network
(CNN) was proposed in [250]. The model required only recorded, time-series
values of wind power as an input, from which it predicted wind power from
15 minutes to 8 hours ahead. The proposed methodology was compared to
a back-propagation and SVM approach and was shown to outperform these
models in every test. Welch et al. [251], developed three neural networks us-
ing different methods to predict short-term wind speeds. The authors found
that recurrent neural networks outperformed the multi-layer perceptron archi-
tecture. An alternative, Naive Bayes decision tree prediction model is used
in [252]. It aims to extract relationships between wind speed and additional
weather data. Support Vector Machine (SVM) prediction models have been
compared to ANN in [253] to predict mean daily wind speed. They find that the
SVM model compares favourably against the ANN.

In summary, from the assessed literature, machine learning methods have
the potential to provide the simplest and most accurate short-term prediction
(up to 24 hours ahead) of wind power generation. However, in comparison to
the other generation technologies considered in this section, wind power gen-
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Table 2.4: Wind modelling literature summary

Ref Method Input Parameters Output Parameters Model Accuracy Location
[244] Parametric Wind Speed Wind Power RMSE = 0.6408, Various
Modelling MBE = 0.4874
[245] SVM, MLP, De- Previous Wind Speeds Wind Speed and Power Relative Error = 15% and -
cision Tree 23%
[246] ANN Previous Wind Speeds Wind Speed MSE = 0.0016, Mexico
MAE=00399
[249] Ensemble MDN  Forecast Wind Speed Wind Speed and Power and Uncertainty = RMSE = 1.9688 and 174.38  Taiwan
[250] CNN Previous Wind Power Wind Power CRPS = 0.281-4.339 China
[251] MLP, RNN,  Current Wind speed, Air Temp, Humidity Wind Speed Relative Error: USA
SRN MLP=0.5038,
RNN=0.4354,
SRN=0.4544
[252] Decision trees Time, Atmospheric Pressure, Sea-Level Pressure, Temp, Humid- ~ Wind speed Classification Error Rate = Japan
ity, Wind Speed and Direction, Insulation 17.54- 22.61
[253] SVM and ANN Previous Hours Wind Speed Wind speed MSE=0.0090 (ANN), Saudi Arabia

MSE=0.0078 (SVM)

Note - MLP (Multi-Layer Perceptron), RNN (Recurrent Neural Network), SRN (Simultaneous Recurrent Neural Network), MDN (Mixture Density Network), MSE (Mean Squared Error),
MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), CNN (Convolutional Neural Network), CRPS (Continuous Ranking Probability Score)
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eration forecasting appears to be the most difficult. This is due to the almost
complete randomness in the wind speed profile. In comparison to solar energy
prediction, which is also weather dependent, the daily, or seasonal patterns
are very limited. This is reflected in the wide uncertainties reported from the
reviewed literature.

2.3.5 Power to Gas

The use of Power-to-Gas (P2G) (hydrogen or methane) technology is a rela-
tively new concept for national energy systems. Due to plans for large expan-
sions in stochastic renewable power generation, a technology is required to be
able to effectively store or convert excess electricity at times when it cannot be
dispatched. The P2G technology can convert excess electricity into hydrogen,
and subsequently, methane for later use. These gases could be integrated
with other sectors such as the chemical industry or transportation if hydrogen
powered vehicles have significant take-up. Alternatively, methane (or synthetic
natural gas) could be directly injected into the existing gas network with some
researchers also suggesting that pure hydrogen could be injected to the same
network up to a defined threshold with minimal negative consequences. If ap-
propriate economic and technological conditions prevail, P2G could become
a significant technology in the context of multi-vector energy systems as they
have consequences for electricity, gas and heat as shown in Figure 2.5.

Both [254, 255] provide a technical overview of the systems and economic
analysis. Initially, hydrogen is produced using water electrolysis requiring elec-
tricity as an input using one of three current methods; alkaline water electrol-
ysis, proton exchange membrane electrolysis or high-temperature water elec-
trolysis. Then a methanation stage converts the hydrogen to methane requir-
ing a carbon source which could come from carbon capture at fossil fuel power
plants, anaerobic digestion of biomass, or from the air. Whilst the technology
is still largely at a pilot testing stage there is some concern at the high capital
costs and relatively low conversion efficiencies of the technology.

Several national-level investigations into the economic feasibility of P2G
have been carried out. Studies by [256, 257] modelled the integration of hy-
drogen electrolysers and P2G at a national level based on UK gas and electric-
ity networks. For a future scenario with high wind power generation capacity,
the authors found that allowing hydrogen to be directly injected into the gas
network could reduce costs and emissions due to the greater capture of wind
resource. A similar national scale, energy storage study in a Dutch context
was considered in [258]. A comparison of pumped hydro, compressed air, and
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Figure 2.5: Schematic overview of the energy vector pathways of power-to-gas

power to gas energy storage was provided with varying capacity and different
scenarios of wind power production. The study finds P2G to be the least cost-
effective energy storage option due to relatively low cycle efficiencies. A future
German scenario with 85% renewable energy was studied in [259]. This work
aimed to consider the optimal amount of P2G capacity to deploy but also where
to deploy it. In this scenario, P2G could lead to significant cost reductions, in-
creased renewable share, and a reduction in CO, emissions. Guandalini et al.
[260], analysed the effect of adding hydrogen electrolysers and gas turbines to
large wind farms to provide balancing services. Including these units allowed
a more ‘aggressive’ declaration of production to the transmission system oper-
ator as inaccurate predictions could be mitigated. An economic analysis of the
use of P2G was applied in a German context in [261]. This work found that for
the current and near future energy landscape, P2G is not a profitable method
of providing balancing services to the national grid. This is due to high capital
costs and relatively low gas prices in relation to electricity prices.

All previously discussed studies model the electrolysers or power to gas
systems as a constant efficiency and were interested in long-term economic
effects over a large geographic scale. Thermodynamic analysis of electrol-
ysers and power to gas plants was conducted in [262, 263]. These studies
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assessed the energy demand for producing hydrogen at different pressures
using different electrolysis pathways. However, these models were highly com-
plex and would be problematic to integrate into real-time, operational, district
optimisation. Despite their aims to account for thermodynamic irreversibility,
these models have yet to be validated against real experimental data. Due to
the fact that P2G technology is relatively new and still in an R&D phase, op-
erational data is not widely available. This means that short-term, simplified,
modelling of part load efficiencies is not covered in the state of the art literature
and represents a significant research gap.

2.3.6 Heat Pumps

Heat pumps have long been identified as a future clean energy source for
meeting building heat demand providing they can utilise renewable electricity.
They can be categorised as ground source or air source heat pumps and have
the advantage that they can also provide cooling in warmer seasons. They
have high energy efficiencies with a typical coefficient of performances (COP)
of around 3 to 4, meaning for one unit of electrical energy input you get 3 to
4 units of useful heating energy. Studies that consider heat pumps using the
typical energy hub modelling procedure would model this COP as constant
when in fact it is dependent on a number of factors including the part load per-
centage, outdoor air temperature, and ground temperature. Therefore, more
realistic models must be developed to allow true optimal control of heat pumps
within a multi-vector district energy system.

Several modelling approaches can be found in the literature. A thermody-
namically derived, a dimensionless number relating borehole wall temperature
to heat gain per unit length can be calculated. Commercial, numerical, heat
transfer software can be used to model heat pumps with great accuracy. Ar-
tificial Neural Networks, ANN, have also been utilised as well as state space
models [264]. Of these approaches, only ANN and state space models are
simple enough to be utilised for real-time operational control, and thus only
studies using these methods will be discussed in this section.

An Adaptive Neuro-Fuzzy Inference System, ANFIS, approach was used to
calculate the COP of a ground source heat pump in [265]. Compressor inlet
and outlet temperature, as well as the ground temperature were used as inputs
to the model. A number of different membership functions were trialled and
the best of which achieved an accuracy with a maximum error of 0.25%. Gang
and Wang [266] used an ANN to predict the output water temperature of a
ground heat exchanger which allowed better control of a hybrid ground source
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heat pump with a cooling tower. An ANN was used in [267] to predict heating
capacity and compressor work done (and hence calculated COP) of a direct
expansion geothermal heat pump. Inputs to the model were the temperature
and pressure of the evaporator at the inlet and outlet, condenser inlet cooling
water temperature, and the discharge pressure. A formal method of varying
heat pump parameter set points was utilised to allow generation of a complete
training data set in a relatively short period.

Zhang et al. [268] used a Radial Basis Function Neural Network, RBFNN,
to model the performance of a ground source heat pump. The model was then
used in conjunction with a particle swarm optimisation, PSO, to minimise oper-
ational energy consumption of the heat pump given a known building demand.
ANN and ANFIS models were compared in [269] for calculating the COP of a
ground source heat pump. The inputs to the two types of model were the same;
namely, the evaporator inlet and outlet temperature, condenser inlet and outlet
temperature, and the load side inlet and outlet temperature. Good accuracy
between experimental results and model predicted COP were reported with
slightly better results from the ANFIS model. However, these models only al-
lowed retrospective COP calculation as the temperature inputs needed to be
measured first meaning this cannot be used for model predictive control appli-
cations.

Both a nonlinear autoregressive exogenous, NARX, model and a reduced
order state space model were used in [270] for prediction of mean ground loop
fluid temperature. These were then utilised in a dynamic programming opti-
misation and nonlinear MPC optimisation respectively. Both models achieved
excellent prediction and allowed calculation of heat pump COP to minimise the
cost of energy consumption for a hybrid ground source heat pump system. Ah-
mad et al. [88] [89] used a quadratic equation to model COP of a heat pump.
The developed model was then used to develop nonlinear model predictive
control for a solar thermal system combined with a heat pump. In [271], heat
transfer and power of a heat pump was modelled using quadratic regression
curves based on simulated data. Similarly, models of the pump, fan coil units,
piping network, heat storage and building space temperature were created.
Whilst several heat pump variables were accurately predicted the authors did
not envisage the potential to use this model for a building set point temperature
optimisation aiming to minimise the energy consumption from the heat pump.

In summary, simplified models for calculating heat pump parameters do
exist within the literature. These are most commonly based on neural networks,
state space models or regression curves. However, many of the examples
discussed use very specific parameters as inputs that would not necessarily
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Table 2.5: Heat pump literature summary

Ref Method Input Parameters Output Parameters Model Accuracy
[265] ANFIS Compressor Inlet and Outlet Temp, Ground Temp COP CV =0.136,
Relative Error < 0.25%
[266] ANN Heat Exchanger Inlet Temp, Pipe Surface Temp, Backfill Wall Heat Exchanger Outlet Temp RMSE = 0.034 - 0.062
Temp
[267] ANN Inlet and Outlet Evaporator Temp and Pressure, Inlet Cooling Wa-  Heat Energy Output, Compressor Power  CV =2.45 and 3.41%
ter Temp, Discharge Pressure Consumption
[268] RBFNN Building Load, Water Loop Mass Flow Rate, Ground Loop Inlet COP and Water Supply Temp MRE = 4.53%
Temp
[269] ANFIS and ANN Evaporator Inlet and Outlet Temp, Condenser Inlet and Outlet COP RMSE = 0.06475
Temp, Load Side Inlet and Outlet Temp (ANN),
RMSE =  0.05524
(ANFIS)
[270] NARX and State Space Model Model Regressors Mean Circulating Fluid Temp Fit-NRMSE = 98.63%
[271] Quadratic Regression Curve Fit-  Compressor Speed, Circulation Pump Speed, Ground Loop Heating, Cooling and Power Relative Error = 13.8%,

ting

Temp, Building Circuit Temp

5%, 2.4%

Note - ANFIS (Adaptive Neuro-Fuzzy Inference System), COP (Coefficient of Performance), CV (Coefficient of Variation), RMSE (Root Mean Squared Error), RBFNN (Radial Basis
Function Neural Networks), MRE (Mean Relative Error), NARX (Nonlinear Autoregressive Network with Exogenous Inputs), NRMSE (Normalised Root Mean Squared Error)
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be metered or easily forecasted for the next 24 hours. In an ideal case, for
a holistic district energy model, the COP would be calculated based on the
predicted energy demand, forecasted weather conditions and heat network
temperatures.

2.3.7 Summary

Section 2.3 has reviewed the broad topic of energy modelling for district energy
systems. Due to the interdependencies and connectivity between previously
distinct energy vectors, a more holistic energy management strategy and mod-
elling approach must be provided. Several approaches can be found within the
literature; however, conversion technologies are often modelled simplistically.
They often assume constant conversion efficiencies and no warm up or cool
down periods which could lead to overall infeasible or sub-optimal solutions.
Therefore, this section has reviewed modelling approaches for common en-
ergy generation and conversion technologies including CHP, boilers, solar PV,
solar thermal, wind power, power-to-gas, and heat pumps.

The scope of this section was to determine suitable modelling for use in
real-time optimisation and therefore with short computational periods. For
CHPs and boilers, this can be achieved using relatively simple polynomial re-
gression curves relating the part load factor to the efficiency, or through using
multiple linear regression equations. This either requires manufacturer data or
a small amount of experimental data. Solar energy prediction (both PV and
thermal) is highly dependent on the prediction of solar irradiance. Currently,
leading methods in the literature use machine learning models to forecast this
variable. Then either a further machine learning model or solar equivalent
circuits can be used to calculate PV output. In the case of solar thermal, ma-
chine learning models are recommended. However, as is often the case with
machine learning models, a significant amount of historical data is required.

Short-term, wind power forecasting remains a significant challenge within
the literature. This is due to the inherent stochasticity in wind speed and the
lack of a consistent daily profile in comparison to solar power. The modelling
of P2G systems is relatively unexplored within the current body of literature
due to their status as an emerging technology still in an R&D phase. There-
fore, no recommendation can be made on the suitability of different modelling
approaches. It is expected that when operational data becomes available, lin-
ear or polynomial regression curves relating expected gas output to electricity
input will be appropriate. Heat pumps are generally modelled by a COP or
seasonal performance ratio; however, this is far from constant in reality. Many
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factors including part load, outdoor air temperature, and ground temperature
can influence the conversion efficiency of a heat pump. From the reviewed lit-
erature, machine learning methods such as ANFIS or ANN could prove useful
in modelling this behaviour.

2.4 District-Level Energy Management

The growth and requirement for increased energy decentralisation has been
well established in the opening sections of this thesis. However, with the intro-
duction of multiple energy generation sources, energy storage, flexible demand
and variable energy prices, a significant control and optimisation problem has
been formed. Simply put, which generation source should be scheduled for
use at which time of the day? How can the energy storage capacity be utilised
to provide maximum gain to the owner? Can buildings in a district work coop-
eratively to minimise their collective energy bill through a combination of load
management and micro-generation? The literature reviewed in this section all
propose methods to answer one or more of these key questions.

2.4.1 Microgrid Control

Model Predictive Control (MPC) is commonly applied to microgrid control prob-
lems as well as building optimisation strategies. An example of MPC utilised
in this field is [272] which used a Mixed-Integer Linear Programming (MILP)
optimisation procedure. The study aims to schedule renewable supply, battery
storage, and a CHP. Case study results showed that operating as MPC rather
than day-ahead control made better use of the energy storage device providing
the consumer significant savings. Silvente et al. [273] also developed a rolling
horizon MPC optimisation using MILP. The study aimed to maximise consumer
profit whilst controlling PV and wind turbine generation, control of battery stor-
age, and interaction with the power grid. Furthermore, the authors demon-
strated that if the optimisation had control over some electrical appliances and
able to delay their start times, the profit could be increased by 20%. How-
ever, the discomfort faced by consumers for the appliance delays is modelled
arbitrarily and generation and demand is not predicted but known perfectly be-
forehand. Ma et al. [274] produced an MPC-based microgrid central controller
to manage distributed generation and energy storage. Whilst the controller ef-
fectively shifts some load away from peak pricing periods, the control horizon
is only one hour and the demand profile is perfectly predicted. A MILP-MPC
strategy for managing the heat and electrical supply to a group of residential
buildings in a microgrid setting was developed in [275]. Shared energy gener-
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ation and storage are best utilised to flatten peak loads and hence reduce the
cost of energy for the district as a whole.

MPC is used for a different purpose in [276]. Whilst many studies aim
to schedule devises for the minimisation of cost, this controllers’ objective is
to maintain power quality within the microgrid despite the variable renewable
supply. Electric vehicles were specifically considered within a microgrid set-
ting in [277]. This study developed an aggregation and optimisation model for
the inclusion of vehicle to grid battery storage in a local microgrid. Whilst one
electric vehicle could only provide a small storage capacity, if aggregated the
flexibility could become substantial. However, it is questionable as to whether
users would accept their vehicle batteries being used like this and some form
of financial incentive would be necessary. Clastres et al. [278] aimed to op-
timise a solar PV and battery system using MILP in a de-regulated electricity
market where small-scale prosumers could bid to provide ancillary services to
the grid. With perfect forecasting the optimisation produced a profit of €1.22,
however, when prediction uncertainties were introduced this profit fell signifi-
cantly to €0.50. This demonstrates the importance of including and managing
prediction uncertainty in an optimisation study of this type. A potential solution
to managing prediction uncertainty was proposed in [279]. The MILP optimisa-
tion method proposed a two stage optimisation, one with a horizon of 24 hours
and timestep of 1 hour, and a short-term optimisation with a horizon of an hour
and timestep of 5 minutes. The strategy was successfully deployed to a hotel-
based microgrid case study with solar PV, a diesel generator, grid connection
and battery storage.

A Mixed-Integer Non-Linear Programming (MINLP) optimisation strategy
was experimentally validated used a microgrid testbed in [280]. The authors
theorised a local electricity market for an ‘islanded’ microgrid. The optimisa-
tion controlled local generation devices within the context of the day ahead
electricity market to minimise the cost of energy. The operation of a CHP
combined with battery storage to meet thermal and electrical demand was op-
timised in [281]. This study uses a Colonial Competitive Algorithm, which is a
meta-heuristic algorithm similar to a GA or PSO. However, this operates as a
day-ahead optimisation and cannot consider or react to prediction errors and
therefore assumes a perfectly predicted energy demand. Barbato et al. [282]
used linear programming to schedule household appliances but also consid-
ered the effect PV panels and battery storage could have in this optimisation.
Both single house optimisation and a group of houses working cooperatively
was considered. Significant cost savings were achieved by consumers if they
were more flexible with their device usage and have PV and battery storage.
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Furthermore, if the district worked cooperatively it achieved significant reduc-
tions in the peak load and peak to average ratio which considerably decreased
stress on the energy supply network.

2.4.2 District Heating and Cooling Control

Alongside the growth in literature aiming to better control local microgrid sys-
tems, many researchers have also developed methodologies to manage ther-
mal energy generation components and systems. The thermal equivalent of
a microgrid is a localised district heating (and cooling) network, which con-
nects an often centralised energy centre to the consumers via hot (or cool)
water pipes. An analytical optimisation using a multi-objective GA was applied
to control the heat generation units of a district heating system in [283]. The
dual objectives of increasing the profit to the energy centre and reducing CO,
emissions were achieved. However, the demand was assumed to be perfectly
predicted and the heat generation units were modelled simplistically with con-
stant conversion efficiencies.

The coordination of a series of centralised heat pumps supplying buildings
in a district is addressed in [284]. The authors display a cooperative opti-
misation strategy that exploits the flexibility provided by sharing centralised
resources. The larger building in the district is able to achieve cost savings
of 15% however the smaller buildings receive a small rise in cost raising is-
sues of fairness. Furthermore, the buildings’ thermal dynamics are modelled
using fairly simplistic state space models that does not take into account in-
ternal equipment gains or occupancy. Razmara et al. [285] developed a bi-
level optimisation that aimed to control building thermal energy demand and
then checks the given solutions to ensure they do not breach district-level con-
straints. If these constraints are breached a second, district-level, optimisation
strategy is carried out which feeds back results to the building-level optimisa-
tion. A case study based on a university campus with a ground source heat
pump demonstrates a 25% reduction in cost without breaching grid constraints.
Three different methods of controlling a residential thermal system containing
solar PV, thermal storage and a heat pump were detailed in [286]. The ob-
jective was to balance the thermal comfort of the occupants with a desire to
reduce peak load. The authors argued that a quadratic objective function pro-
duced the best balance between the two competing objectives.

A MAS approach to managing a multi-vector energy system with a CHP,
heat pump, local resources and flexible appliances is detailed in [287]. The
authors formulate their optimisation to minimise the use of grid electricity and
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heat from a centralised CHP and therefore maximise self consumption. How-
ever, the dual scales (building and district) lead to local minima as agents at
a building level are not aware of additional flexibility elsewhere. Guan et al.
[288], also aimed to develop a comprehensive optimisation strategy that satis-
fied both thermal and electrical demand including energy storage, renewable
generation and ToU tariffs. The optimisation strategy effectively shifts cooling
load by pre-cooling and utilising electrical energy storage to avoid purchasing
electricity from the grid at high cost periods. Whilst the study does factor in
small uncertainties in the solar PV power generation profile, the thermal and
electrical demand profiles are considered completely accurate. In addition,
the problem was linearised to allow the use of a MILP optimisation procedure,
meaning that the part-load characteristics of the CHP were not captured. Jin
and Ghosh [289] also aimed to optimise a system containing a CHP. The study
showed that an MPC based approach could achieve significant energy savings
and the larger the battery capacity, the greater the potential savings. However,
once again detail on the building in the case study is lacking.

The control of a centralised campus cooling system was optimised using
MPC in [290]. Every component of the system was modelled and validated
using simplified analytical models. The objective of the control procedure was
to maximise the COP of the system and minimise the electricity cost whilst
meeting the cooling demand. When applied to the real site over a short time
period the plant COP was increased by 19.1%. Hu et al. [291] also addressed
the optimisation of a centralised cooling plant. In this paper, a decentralised
memetic algorithm was deployed with the aim of reducing cost to a cluster
of buildings. The decentralised approach was shown to be more cost effec-
tive than ‘greedy’ strategies where one building determines the solution for the
whole district. A decentralised optimisation strategy was also favoured in [292].
The strategy aimed to control a centralised chiller and thermal energy store at
a high level but also manage the lower level HVYAC components. The authors
argued that the problem would be too complex and time consuming if solved
in a centralised manner. Therefore the problem was split into several smaller
sub-problems. This solution was applied to a relatively simplistic case study
building with only three zones.

2.4.3 Distributed and Market-Based Coordination

Due to increasing grid decentralisation, some authors have developed busi-
ness models for inter-district energy trading and bidding. This moves beyond
time-of-use tariffs, which set relatively regular pricing conditions each day, to a
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Figure 2.6: The USEF model of interactions between energy network stake-
holders [293]

more real-time energy market. Many of the solutions outlined in the previous
sections are based on centralised control and optimisation which may not be
acceptable from a privacy or user comfort point of view in a multiple stakeholder
district. The studies reviewed in this section deploy a decentralised optimisa-
tion strategy for which each individual consumer retains more control of their
own energy management but operated within a wider market-based system.
The most developed standard on an integrated energy market is given in the
Universal Smart Energy Framework by the USEF Foundation, [293]. It clearly
defines several stakeholders including the prosumer, the balance responsible
party (BRP), the distribution system operator (DSO) and the transmission sys-
tem operator (TSO). It outlines the interactions the stakeholders’ have with
each other and the key role an energy aggregator can play to provide flexibility
in the system, Figure 2.6. The grid can request flexibility at specific times from
a series of aggregators which in turn manage a portfolio of prosumers from
which it can leverage and negotiate flexibility. Once agreement is reached
and the decisions have been actuated, the grid must financially compensate
the prosumer for their flexibility service according to pre-agreed conditions.
Zhou et al. [294] developed a two-level control strategy for an aggregator or
the BRP. Using day ahead forecasting for demand and generation, the optimi-
sation strategy aims the minimise the cost of intra-day energy trading required
due to unforeseen circumstances or poor predictions.
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Fanti et al. [295], developed a district energy management system based
on day-ahead pricing schemes and real-time power monitoring. In this model,
buildings are required to submit day ahead energy consumption predictions.
Then the actual consumption of the buildings is monitored and compared to
the estimations to determine rewards or penalties. A demand response (DR)
aggregator for a group of residential buildings is presented in [296]. The con-
troller bids for energy based on real-time pricing fluctuations set by the DSO.
This allows empowered consumers to shift their load, avoiding peak prices,
to achieve cost savings. This is also greatly beneficial to the DSO as overall
peak demands on the system will be reduced. In [297], a community con-
troller acts as a virtual DSO to implement real time price variation to a group of
smart homes. Domestic appliances operation times are shifted to reduce the
peak energy demand. However, in this case study some residences receive
increased costs even though the overall cost for the district is reduced. This
raises crucial issues of potential unfairness that could arise.

2.4.3.1 Multi-Agent Systems Approaches

Agent-based controllers in the context of real-time price variation can also be
found in the literature. Multi-Agent Systems (MAS) have the advantages of a
completely scalable computing architecture, resilient to failures in communica-
tion, and potentially increased security as no agent will have access to every
piece of information. The PowerMatcher software, a MAS market-based in-
frastructure, is detailed in [298]. PowerMatcher was utilised in [299]. In this
study the author proposed that consuming and producing appliances are rep-
resented by intelligent agents. These agents submit the price that they are
willing to pay or receive for their energy. Once all bids are assembled, the
market clearing price is calculated. If this price is higher than the consumer
agent is willing to pay, then it does not consume energy and waits for the next
round. In a case study, the rate of over or underproduction from a wind farm
is reduced by 50% and peak load is reduced. PowerMatcher was also used in
[300]. It found that if the percentage of intelligent loads within a large district
was increased, there is an almost linear decrease in peak power by up to 20%.
PowerMatcher was enhanced in [301] to consider both electricity and heat in
an integrated way which is important considering the increasing electrification
of heat through devices like heat pumps.

Lagorse et al. [302], applied MAS to a hybrid renewable system. Each
device had internal control logic and a ‘token’ is passed between devices to
indicate which agent is in control of the overall DC voltage. The token is re-
quested and passed between devices depending on their internal conditions.
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Wide-scale MAS control of domestic appliances was simulated in [303]. An
agent was based in the smart meter of each home representing the aggrega-
tion of several controllable and uncontrollable household appliances. A con-
nected system of 5000 homes was theorised and in a simulated case study,
energy peaks were decreased by up to 17%. The GRENAD, MAS framework
was outlined in [304]. This framework aimed to provide a generic, modular and
flexible platform to simulate and control smart power grids using MAS. A novel,
semantic web ontology based on existing standards and the USEF framework
was developed in [305]. The ontology aimed to provide a data infrastructure
on which a MAS energy management platform could be deployed.

2.4.3.2 Game Theory Approaches

More traditional optimisation methods focussed at a district-level could lead to
overall system optimal e.g. minimum total cost of district energy but could lead
to cost rises for specific individuals within the district. These issues of unfair-
ness could potentially be resolved by instead using a game theory approach
to solving district energy management problems. Game theory approaches
can more fairly model individual ‘players’ rational desire to minimise their own
energy costs. Saad et al. [36] provides an excellent review of the game theory
applications in a smart grid environment. The autonomous, distributed, and
heterogeneous nature of the smart grid make game theory well suited to smart
grid problems. The review argues that interactions and energy trading between
microgrids and the wider network can be modelled as well as interactions be-
tween the consumer and utility company regarding demand side management
and load shifting.

A two-level demand side management game is developed in [306]. The
lower level evolutionary game composes of a population of residential, house-
hold consumers choosing how much energy to purchase at specific hours from
different utility companies based on their prices. The upper game is a non-
cooperative game between the utility companies where they determine their
generation amount and future energy price. Both games are proven to con-
verge quickly, the method is shown to be scalable and results in a lower aver-
age price for the consumers and a lower peak to average ratio. Gkatzikis et al.
[307] investigates the role an aggregator can play in a future smart grid setting.
A three-level scenario involving 10000 households, several aggregators and
a single utility is investigated. A day ahead, the utility advertises a demand
shifting target and a price they are willing to pay for this. The aggregator then
bids a certain level of demand shifting on behalf of their portfolio of households
whom they compensate for their flexibility. The system is shown to be highly

66



2.4. DISTRICT-LEVEL ENERGY MANAGEMENT

dependent on the reward the utility is likely to offer and the level of flexibility
shown by the residential consumer. However, the study did show potential for
a 15% reduction in operating costs where all three parties gain compared to a
baseline, flat price scenario. A combined MILP and game theoretical approach
is used in [308] to optimise the scheduling of controllable appliance to minimise
the cost to a group of residential consumers working cooperatively. Wu et al.
[309] uses game theory to optimally control household appliances of several
residential consumers in an islanded microgrid with wind and gas generation.
Using this method reduces the community energy bill by 38% even with imper-
fect, Markov chain, wind generation forecasts. If the forecasts are improved a
further 21% saving could be achieved.

Rather than considering appliance scheduling, [310] and [311] use a game
theoretical approach to optimise a smart grid in which a small percentage of
users have dispatchable electricity generation and / or storage capacity. It as-
sumes day ahead knowledge of user demands from which a pricing tariff is
set. The active users then use their flexibility to minimise their own electric-
ity bills which results in a flatter demand profile and hence lower prices. The
users with greater flexibility (generation and storage) achieve very high savings
around 80% but even the passive users see a reduction in cost around 15%
simply due to the reduction in peak prices. Mohsenian-Rad et al. [312] sug-
gests that dynamic pricing set by the utility encourages each individual user
reduce their energy cost by reducing their peak to average ratio. However, the
author argues that this is not necessary providing a district works cooperatively
to ensure their collective peak to average ratio is small. To achieve this the au-
thors’ develop a distributed, game theoretical approach to minimise a collective
district energy bill by scheduling their appliances iteratively and broadcasting
their forecast energy consumption to their neighbours. This results in a 17%
reduction in peak to average ratio and 18% reduction in cost.

2.4.4 Summary

This section demonstrates that when at a district level, the majority of opti-
misation studies aim to optimise the supply side of the energy infrastructure.
This largely involves scheduling controllable energy generation devices and
energy storage capacity around stochastic renewable energy supply fluctuat-
ing energy tariffs. In general, the demand-side is modelled simplistically, often
assuming a fixed demand profile viewed as a constraint to be met within the
optimisation. The demand profile is often considered to be perfectly forecast
with no errors, which is unrealistic when deployed in real case studies. This
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means that many of the reported energy or cost savings would be reduced and
user comfort constraints may be impinged. It is likely that an intermediate error
management step would be required to adjust the schedule provided by the
optimisation to fit with updated, observed constraints.

Despite the influence of non-linear part-load characteristics as discussed
in Section 2.3.1, energy generation models are often simplified to ensure an
entirely linear problem to allow the use of linear programming techniques such
as MILP. Effort should be made to include part-load characteristics as well as
minimum operational loads, ramp up rates and cool down periods to ensure
feasible optimised solutions. There is a conflict between centralised and de-
centralised optimisation strategies within the literature. Decentralised solutions
claim to be rapidly scalable, more secure, and more considerate of individual
users preferences. Centralised optimisation strategies are more likely to find
a global optimal. The literature has demonstrated that this can lead to poten-
tial issues of unfairness with some buildings scheduled to consume at higher
pricing periods for the greater good of district as a whole.

2.5 Discussion and Research Gap

Evidenced by a thorough review of the existing body of literature, a significant
research gap remains towards producing a truly holistic, integrated, building
and district energy management platform. State of the art building energy
management is required to be more active, context aware, and predictive in
nature. Factors such as external weather conditions, occupancy, energy prices
and local renewable supply must be integrated into control logic of building
energy management systems which should target control at a zone-level rather
than a building-level.

With an energy infrastructure becoming more decentralised and uncontrol-
lable, the flexibility contained within building demand must be utilised fully to
reduce cost to consumers and utilities simultaneously. Building demand should
no longer be considered a constraint that must be met by supply-side optimi-
sation, but as an active, controllable component of a modern, decentralised,
multi-vector energy system. Studies that do consider the flexibility provided
by buildings, model this in a very simplified way that may not fully capture the
thermal dynamics within a building and therefore the impact on occupant com-
fort. Much of the recent research fails to consider that demand-side control
can have a direct impact on cost of energy generation from the supply side.
For example, if energy generation is localised at a microgrid level, peak load
shifting could have a direct consequence on energy supply cost, as expensive
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backup generation units may not be turned on.

Therefore, a principle gap in the literature is the simultaneous control of both
energy supply and energy demand. This demands a multi-scale approach, as
demand will be largely controlled at a building-level, whilst energy supply is
largely controlled at a district-level. To achieve a holistic, multi-scale, energy
management solution, requires the merger of a supply-aware demand-side
optimisation and a demand-aware supply-side optimisation. This could allow
greater benefits through exploiting the combined flexibility on both sides of the
problem.

To manage and control a modern, complex district, information and char-
acteristics from various heterogeneous, multi domain, data sources must be
linked via a robust communication infrastructure [313]. One such method to
achieve this is based on developing a semantic representation of a district en-
ergy system which allows machine interpretable descriptions of the district to
be defined. This can allow domains which have been considered in isolation to
each other to be connected and integrated [314]. Leveraging semantic mod-
elling could provide a district management platform a method to enable the ex-
change of data between different data models and software which may not use
the same communication protocols to allow truly holistic energy management
approaches. A semantic model of a district energy system can provide the
foundations on which wider data analytics of optimisation techniques can be
applied. Furthermore, utilising semantic web technology and ontologies allows
a scalable and flexible approach to district modelling as additional concepts
can be simply added and distinct domain ontologies can be mapped together.

Future research in semantic-based modelling could provide the link be-
tween the currently available Building Information Modelling, BIM, models and
real time, operational data collected by sensors embedded within the building
[167]. A unifying ontology that has knowledge of the buildings physical com-
ponents and characteristics as well as access to BEMS sensory information
would allow truly powerful and useful data analytics for a facility manager. This
can provide the platform to allow prediction of future energy consumption, be-
haviour patterns and occupancy. Smart control algorithms could also be built
on top of the ontology allowing resulting schedules and instructions to be sent
for the BEMS to action. The base provided by the semantic modelling of a
district could lead to a 3D visualisation of the district for facility managers, lo-
cal authorities, or urban planners. The link with the sensory information of the
district could allow relevant data, depending on the user, to be displayed in a
more dynamic, clear and useful manner compared to current BEMS interfaces.

Given the rise in implementation of smart metering devices, time of use or
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real time energy pricing tariffs are likely to become more available and popu-
lar with consumers. These tariffs will allow engaged and empowered users to
gain substantial cost savings over fixed rate energy tariffs by intelligently shift-
ing their consumption to advantageous times. However, we cannot expect the
average consumer to constantly monitor or understand energy price fluctua-
tions and manually reset many of their devices to consume or stop consuming
energy. This leads to opportunities for so called Energy Service Companies,
ESCo’s [315]. Consumers could effectively outsource their energy manage-
ment and relevant data to 3rd party companies which would aim to provide
energy cost reductions for the consumer and in return take a proportion of
that saving. ESCo’s would have to gain access to large amounts of user data
and could provide virtual, cloud-based energy management. The recent intro-
duction of commercially available, on demand, high performance computing,
HPC, from cloud services companies such as IBM, Google, Amazon and Pen-
guin could revolutionise what is achievable in building energy management. It
could allow greater levels of data analytics, improved prediction models or even
the use of more computationally intensive modelling techniques. Depending on
the specific stakeholders involved in each district and their privacy and security
requirements, several different business models for ESCo’s could be explored:

¢ Internal Energy Markets - An internal energy market between the ESCo’s
clients could be formed. Users with complimentary load profiles or ex-
cess renewable generation could combine to form virtual energy sharing
partnerships facilitated by the central grid and the ESCo. These con-
sumers could be in different geographic locations and provide mutual
savings for all parties and achieve greater prices for excess energy rather
than selling back to the grid.

e Centralised Control - This control architecture would be more applicable
for, natural, self-contained, districts with a single owner and a single util-
ity bill such as University campuses, industrial estates or public sector
buildings. In this situation, advanced MPC could be applied utilising the
existing SCADA based system for data collection and actuation. The in-
telligence and decision making would be held in a control layer above the
SCADA system.

¢ Intelligence Update - A more passive approach that ensures the user
feels in control of their systems. The ESCo could carry out semi auto-
mated data analytics resulting in the feedback of simple suggestions to
the user based on the data available. These could be slight adjustments
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to the current rules, for example to turn off the HVAC system an hour
earlier. The user would then decide whether to implement this.

e Demand Response Coordinator - This architecture is much closer to the
USEF framework. Initially each BMS would locally optimise their own day
ahead demand. This would be fed to a district level controller to build a
district demand profile. Using this knowledge and predictions of genera-
tion capacity, it could make decisions on how to flatten the overall demand
profile. An iterative, negotiation based arrangement would take place to
lead to a more optimal district demand profile for which consumers would
be rewarded financially.

2.6 Conclusion

This Chapter has aimed to answer the first research question outlined in Chap-
ter 1 which is re-stated here as:

How can the components found within a district energy system be modelled
for the purposes of operational optimisation?

The literature reviewed throughout this Chapter clearly demonstrates that mod-
ern machine learning methods have been widely used throughout the state-of-
the-art research. They have the capability to model not only building energy
consumption but also energy conversion technologies including solar PV, solar
thermal, wind turbines and heat pumps. The key criteria in assessing the ap-
plicability of modelling methods for operational optimisation was the ability to
make predictions within a short computational period. Once trained, machine
learning models can make predictions in near real-time. In addition to machine
learning methods, simpler regression relationships could be used for energy
conversion technologies such as boilers, CHP and heat pumps. If solar radia-
tion is well predicted then solar equivalent circuits could provide an appropriate
method for modelling solar PV generation. The state-of-the-art literature review
and conclusions drawn from it was originally published in Reynolds et al. [316]
and was reformatted for inclusion in this thesis.

In addition to answering research question one, the thorough literature re-
view carried out in this Chapter has directly led to the remaining research ques-
tions and hence the contributions resulting from answering these questions.
Chapter 3 will provide the approach to undertaking this research and explain
the methods by which it was conducted and validated.
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3 Research Methodology

This Chapter will introduce the general methodology through which this re-
search was carried out. It will outline the various stages that led to the research
provided in this thesis as well as principles and approaches used. Following
this, a more detailed explanation for each research question will be provided
including the specific approach that was used to answer each question and
provide validation for the proposed contribution. Finally, the core theory behind
the main techniques used throughout this thesis will be provided. These tech-
niques are Artificial Neural Networks, Genetic Algorithms and Model Predictive
Control.

3.1 Research Methodologies

In order to explain the research methodology applied in this thesis, the core
epistemological approaches will first be broadly summarised from Saunders
et al. [317]. To illustrate the available research paradigms the ‘Research Onion’
model is presented in Figure 3.1 which should be read from the outer layers
which inform the inner layers.

Positivism is a philosophical theory based on empiricism. It aims to pro-
duce generalisations based on observable phenomena. Similar to that of the
scientific method, it proposes clear research hypotheses which can be tested,
verified or refuted through credible, quantifiable and factual data. The goal is to
describe relationships that facilitate the verifiable predictions of different sce-
narios. Realism is a similar philosophical stance largely based on the scientific
method. However, rather than aiming to model and predict phenomena, real-
ism aims to explain and comprehend the actual reality which is independent of
the way the mind perceives it to be. The positivist and realist approaches are
in contrast to the interpretivist philosophical stance. This paradigm does not
believe in a universal, objective truth and instead focusses on the way in which
social actors perceive the world. Hence, this approach lends itself to a more
qualitative, subjective research. The final research philosophy is pragmatism.
This philosophy rejects the rigid nature of the previous research philosophies.

73



CHAPTER 3. RESEARCH METHODOLOGY

Philosophies

Experiment

Approaches
Mono method PP

Cross-sectional
Strategies

Data
collection
and data
analysis

Mixed
methods

Action
research

Choices

Longitudinal

Time

Multi-method horizons

Archival research
Technigues and

procedures

Figure 3.1: The ‘Research Onion’ [317]

Actual research projects rarely fall neatly within a single methodology, therefore
pragmatism argues that one should combine any research methods required
which best suit the specific problem, hypothesis or research question.

Whilst the research carried out in this thesis contains large elements of
positivism, through development of case studies and the testing of hypothe-
ses, the pragmatist research philosophy has been followed throughout this re-
search project. Taking the pragmatic approach enables flexibility throughout
the construction of the thesis. Largely quantitative methods have been used
verify the performance of energy management strategies developed during this
research. However, a significant proportion of the research period was spent
carrying out action research, integrated within ongoing, collaborative research
projects. The lessons learned from interactions with stakeholders and experts
helped to mould and define the research methods deployed in this thesis.

3.2 Research Approach

The research methodology was broken down into three distinct phases. Firstly,
background research into the existing field of research and current applications
was explored through a literature review. Secondly, the research goals and
questions were refined and confirmed through participation and contribution to
larger research projects. Finally, the iterative learning and research procedure
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carried out throughout stage two built the foundations for the most significant
contribution detailed in Chapter 6.

3.2.1 Stage 1

Initially, a more theoretical analysis of the existing research gaps was con-
ducted through a thorough literature review as provided in Chapter 2. This
process aimed to synthesize the existing body of work, highlight the strengths
and weaknesses, and crucially pinpoint the research gaps. This stage of the
research methodology largely framed the development of the central hypothe-
sis and research questions. It then follows that answering the hypothesis and
research questions formed the main basis for the remainder of work described
in this thesis. The literature review identified the existing energy management
challenges faced at both a building and district-level. Specifically, the require-
ment for a zone-level, predictive building heating controller and an intelligent
district energy generation optimiser that factors in stochastic renewable energy
generation and energy storage. Crucially, these independent processes should
be integrated to allow simultaneous control of supply and demand which is a
topic that is largely neglected within the existing literature.

3.2.2 Stage 2

Once the research gaps were identified, the research approach moved into
a second phase of participatory support to larger, Horizon 2020, research
projects namely PERFORMER', THERMOSS? and PENTAGONS3. Naturally,
the support provided to these projects started as relatively minor and even-
tually built to more significant contributions towards the latter stages of this
research. Active integration with a diverse range of stakeholders and challeng-
ing case studies was viewed as a pivotal learning experience which directly
fed into the work of this thesis. Furthermore, by engaging with, and pitching
solutions to, pilot site facility managers, crucial feedback was provided to en-
sure all future work accurately addressed the real life constraints faced in these
scenarios.

The PERFORMER project focussed specifically on building energy con-
sumption and the performance gap that is often found between predicted en-
ergy consumption of buildings and the actual energy consumption recorded
during the operational phase. The project deployed hardware within pilot sites

'http://performerproject.eu/
2https://thermoss.eu/
Shttp://www.pentagon-project.eu/
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to extract and assimilate BMS sensor data into a cloud-based data warehouse.
Intelligent data analytics were then applied to the stored data to automatically
detect faults, anomalies and provide new intelligent rules to reduce energy con-
sumption. Within the context of this research, the PERFORMER project pro-
vided valuable insight and experience on detailed energy performance mod-
elling of buildings, machine learning based prediction models, and the real
demand for a more intelligent, interventionist and predictive building energy
management system than the existing static, rule-based BMS currently used.
Therefore, the knowledge gained from participation in this project reinforced
the importance of research question 2 and informed the development of the
dynamic, predictive, zone-level controller described and implemented in Chap-
ter 4.

Both THERMOSS and PENTAGON aim to intelligently manage energy at a
district scale. THERMOSS specifically targets the next generation of low tem-
perature district heating and cooling systems and the retrofitting requirements
to adapt existing buildings for connection to these networks. The PENTAGON
project aims to develop a holistic, integrated platform to manage a multi-vector
energy system and to explore the potential of power-to-gas technology at a
district level. These two projects have aided the development of scenarios in
which district energy optimisation is required. Furthermore, through the in-
teraction with facility managers and pilot sites, the operational constraints they
face have been communicated and implemented in this research. For example,
a CHP is typically inflexible within a district energy centre. Practitioners were
eager to emphasise their relatively small operational range and the mainte-
nance required if cycled too frequently. Working within these research projects
emphasised the demand for a robust district energy management system that
appreciated generation unit constraints and modelled part load characteristics.
In addition, they illustrated the requirement for predictive control systems to
utilise energy storage to minimise generation cost as developed and imple-
mented in Chapter 5.

3.2.3 Stage 3

The final stage of the research approach was to take the knowledge gained
through the iterative, participatory learning in Stage 2 and apply it to a larger
problem culminating in the most significant contribution of this thesis. The
literature review and research projects have demonstrated that building and
district energy management are largely considered as separate entities. Given
the close interdependence between the two fields it seems natural to attempt
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to close this gap. Whilst researchers in the past have aimed to control both en-
ergy supply and demand simultaneously, they often lack the detailed modelling
in one or both of the aspects. Therefore, the approach provided in Chapter 6
aims to directly control both building energy demand as well as district energy
generation and energy storage to achieve a holistic, district-wide solution. Ef-
fectively, this is achieved by taking on board the learnings found during stage
2 and combining the contributions of both Chapter 4 and Chapter 5.

3.3 Case Study Design and Validation

The previous section outlined the general approach used across the PhD study
to build towards a significant contribution to the body of knowledge. This sec-
tion will detail the process by which each research question was answered and
how the outcomes were validated. In the case of research questions 2, 3 and
4, different optimisation and control methodologies have been developed and
applied to the relevant field. To demonstrate the methodologies’ effectiveness,
and hence provide evidence for the answers to each research question, the
individual methodologies were applied to specific case studies. These case
studies are all simulation-based to allow full control of factors such as weather
and occupancy, reproducibility of results across different scenarios, and to pro-
vide direct comparison between the optimised scenario and baseline strategy.
Every effort has been made to make these case studies as realistic as pos-
sible by feeding in learnings from the projects and through interactions with
specialists and practitioners.

3.3.1 Building-Level Control

Chapter 4 aims to address research question 2; Can predictive control of build-
ing energy demand with consideration of external factors lead to reductions in
energy cost and improve demand-side flexibility? The case study was based
around a simulation model of the authors’ office building in Cardiff. This was
chosen as the building was relatively small with only 6 conditioned zones al-
lowing detailed modelling. It is @ multi-purpose building with different types of
zones including office spaces, a meeting room, reception and kitchen providing
a more interesting and complex example with a requirement for zone-level con-
trol as opposed to a more homogeneous building. Furthermore, access to the
building was unproblematic, allowing easy measurement of building geometry
and equipment as well as surveying of occupants to build realistic schedules.
To validate the performance of the proposed building control methodology, the
results were compared to a standard, baseline scenario. This baseline sce-
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nario applies the same heating schedule to the entire building which is the
case in reality. It follows a pre-determined heating set point schedule of 12°C
when unoccupied, and 21°C when during occupied hours. As the simulation
models in the optimised and baseline case are absolutely identical apart from
the decision variable in the optimisation methodology, comparison can provide
assessment of potential optimisation savings. Furthermore, the difference be-
tween setting a building-wide heating set point temperature and a zone-level
set point temperature will be analysed.

3.3.2 District-Level Control

The case study outlined in Chapter 5 aims to address research question 3; Can
taking an optimisation-based approach to the control of district heat generation
improve upon existing rule-based priority order strategies? To develop this, an
entirely simulated district energy system including the supply and demand is
designed. The design of both the supply and demand was greatly influenced
by the research projects outlined in Stage 2 of the research approach.

To model a realistic energy demand, reference building EnergyPlus models
from the US Department of Energy were used. As demonstrated via the PEN-
TAGON project, it is important for the buildings connected to a district heating
network to have some level of constant, year-round base load. In the case
of “The Works’ in Ebbw Vale (a PENTAGON pilot site), the base thermal load
is largely provided by swimming pools in a sports centre. In the case study
developed for this research, it is provided by a hospital and hotel. In total five
different buildings were selected to provide the demand profile for the case
study district. Following analysis of the district heating demand, standard de-
sign procedures could be used to size the energy generation units which is
outlined in greater detail in Chapter 5.

The chosen energy supply configuration is inspired largely by the scenarios
used in the PENTAGON project. The aim was to create a multi-vector energy
centre combining gas, electricity and heat networks in a single case study. To
achieve this aim, generation and conversion units from different case-studies
were merged to provide a complex, modern district energy system. To validate
the performance of the optimisation methodology outlined in Chapter 5, it was
compared to a static rule-based operation which formed the baseline scenario.
The baseline scenario is a typical priority order strategy depending on the cur-
rent demand. This is the current strategy deployed at “The Works’ pilot site and
is therefore a fair representation of reality to benchmark against.
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3.3.3 Combined District and Building Control

The combined building and district energy management strategy provided in
Chapter 6 uses the same district utilised in Chapter 5. It aims to use this case
study to tackle research question 4; Can integrated, holistic control of both en-
ergy supply and energy demand lead to greater economic and environmental
benefits than independent control? The same logic and assumptions behind
the creation of the case study still hold true. The crucial difference between
Chapter 5 and Chapter 6 is that the demand of one of the buildings within the
district is now controllable through adjustment of the heating set point temper-
ature in a similar manner that proposed in Chapter 4. Only direct control of
the office building is available in this case study. The aim here was to limit the
amount of decision variables for the optimisation, and yet provide a proof of
concept for this kind of combined supply and demand control. In particular, the
office building was selected as this type of building would be the most likely to
acquiesce to the removal of direct control over their heating systems in com-
parison to a hospital, hotel or residential apartments where comfort is king. In
terms of validation for this case study, the optimisation outcomes can be com-
pared to the same baseline scenario as the district level control outlined above.
In addition, comparisons can also be drawn to the optimised results from Chap-
ter 5 to illustrate the potential improvements in terms of cost of energy that can
be achieved by allowing direct control of supply and demand.

3.4 Techniques

This section aims to briefly introduce the background theory behind the core
techniques utilised throughout the remainder of this thesis. As these tech-
niques are used in several of the following Chapters they will be discussed
here in a generalised way to avoid duplication of this theory elsewhere. Each
technique discussed in this section is well established within the field and the
motivation for using each method will be discussed. These subsections do not
aim to convey a comprehensive detailing of each method but a generalised
knowledge to allow the reader to understand their application to the specific
case studies throughout this thesis. Where relevant, more detailed sources
will be referenced should interested readers require more information.

3.4.1 Artificial Neural Networks

The ‘Perceptron’, the foundation of modern Artificial Neural Networks, (ANN),
and machine learning, was developed and published in 1958 by Frank Rosen-
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blatt [318]. This seminal work provided a mathematical model of a synapse
within the human brain with the hope of developing a machine capable of learn-
ing. Whilst this was a significant breakthrough, initial application of the percep-
tron was limited due to it’s fairly primitive structure and ability to output either
1 or 0. It took until the 1980’s for the potential of perceptrons to re-emerge in
the form of ANN which are effectively layers of interlinked perceptrons. Due
to the relatively simplistic building blocks of these multi-layer networks, the in-
ternal weights of the network could be adjusted with respect to the prediction
error through the method of backpropagation [319]. These discoveries led to
increased development and interest in ANN and machine learning leading to
alternative ANN configurations such as recurrent neural networks, deep neural
networks, Boltzmann machines and radial basis networks. These have been
successfully applied to a wide range of modern problems such as image recog-
nition, natural language processing and time series prediction [320] in several
fields such as engineering, medicine, economics and psychology [321].

Chapter 2 demonstrated that ANN have been used extensively to effec-
tively model various components within an integrated energy system. As well
as an established pedigree within the field, ANN are simple to generate, de-
ploy and integrate with additional procedures due to existing libraries and tool-
boxes. Therefore, throughout this thesis feed-forward backpropagation neural
network with two hidden layers have been used to model several parameters
such as building energy consumption, indoor temperature and solar energy
generation. In all cases, these models were trained and implemented via the
MATLAB Neural Network Toolbox. Whilst a wide range of ANN are available in
the literature, from this point onwards all use of the term ANN will specifically
refer to a feed-forward backpropagation neural network and the remainder of
this section provides a brief introduction to operation of these networks.

In order to understand the operation of an ANN, a schematic representa-
tion has been provided in Figure 3.2 including a magnified section detailing
the mathematical procedure at each neuron within the network. As shown in
this example, three normalised inputs, I, are provided. Each of these inputs
is multiplied by a specific set of weights, w, which are associated with each
connection. Each neuron also has a specific bias term, b, associated with it.
At each neuron, the sum of the inputs multiplied by the weights plus the bias
term is calculated. The neuron output is then passed through a transfer func-
tion, common methods include tansig (shown in Figure 3.2), logsig and linear.
The resulting number after being passed through the transfer function then be-
comes an input to the following layer. This procedure is completed for each
neuron until the output layer is reached and the overall network output(s) are
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with n Neurons H Output Layer

Input Layer

Figure 3.2: Diagram of a generic feedforward artificial neural network with two
hidden layers

calculated.

Explaining the mathematical operation of a neural network doesn’t neces-
sarily explain how they can produce predictions so effectively. The intelligence
of an artificial neural network hinges on the effectiveness of the training al-
gorithm applied to it which sets the weights and bias of each connection and
neuron. Several training algorithms exist so the description included here will
aim to give a generic overview of the procedure. To effectively train an artificial
neural network a substantial training data set is required. During the training
period, both inputs and outputs are known to the algorithm. Based on these
values, the algorithm iteratively adjusts the weights and biases in an optimi-
sation procedure to minimise the sum of the error or mean squared error of
the entire training dataset. Once the training procedure has been completed,
the weights and biases are fixed; and once new inputs are given, an output
prediction is produced.

Often a validation dataset is also required during the training procedure
to prevent the phenomena of overfitting. Overfitting is essentially the network
learning the specific training data that it is provided rather than learning the
general trends and relationships between inputs and outputs. Thus when
trialled, on an unseen dataset, the prediction performance becomes much
poorer. During each iteration (or epoch), unseen validation inputs are pro-
vided to the network and the sum of error between targets and predictions is
calculated. If the sum of the error on the validation dataset starts to grow rela-
tive to the error found when using the training dataset, this is a signal that the
network has started to overfit to the training dataset. In this case the training
procedure is forced to terminate early.
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3.4.2 Genetic Algorithms

Initial research in trying to develop a computational model of the biological
process of evolutions was conducted in the 1950’s and 1960’s. However it
took until the 1970’s for genetic algorithms (GA’s) to be popularised through
John Holland’s Adaptation in Natural and Atrtificial Systems [322]. Inspired
by Darwinian evolution, GA’s are a branch of evolutionary algorithms which
itself is a branch of metaheuristics. GA’s have several advantages over tradi-
tional optimisation techniques such as calculus-based methods. Firstly, GA’s
simultaneously search many points across the whole solution space which is
useful for problems with several local optima. GA’s can also be applied to non-
smooth objective functions where it is not possible to find the derivative. This
is useful in cases where exact, deterministic, mathematical modelling of the
objective with respect to the decision variables is not possible (such as the use
of black-box models) and for non-continuous decision variables [323]. These
advantages are also true for other metaheuristic algorithms such as particle
swarm optimisation or ant colony optimisation. However, GA’s have been cho-
sen for use throughout this thesis as the optimisation methodology. This has
been informed by the literature review in Chapter 2 which found GA’s were
well established in previous work as well as two recent review papers which
stated that GA’s are one of the most popular optimisation techniques applied
within the field of building and energy optimisation [324, 325]. The remainder
of this section will give a generic guide to the inner mechanisms and processes
found within a GA which will be contextualised in later chapters with specific
problems.

Genetic algorithms have a number of internal procedures which they iterate
through in order to trend towards a more optimal solution. Namely, these are
initialisation, fithess determination, selection, crossover and mutation. Many
different adaptations of GA’s can be found in the literature with their own pro-
cedures and functions but the optimisation process described in this section
will relate to the GA method from the MATLAB global optimisation toolbox. A
flowchart of the procedure is given in Figure 3.3.

During the initialisation procedure, a population of randomly generated fea-
sible solutions is produced. Each solution within the population is called an
‘individual’ and the decision variables are encoded to each individual as a vec-
tor of ‘chromosomes’, with each chromosome representing one decision vari-
able. If desired, the initial population does not need to be random. If the user
can produce some sensible starting solutions through heuristics these can be
provided to the GA and potentially speed up the optimisation convergence.
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Figure 3.3: Flowchart showing the procedure of MATLAB’s Genetic Algorithm

Once the population of solutions has been generated, each solution is eval-
uated for fithness against a pre-determined fitness function which relates the
decision variables to the optimisation objective. The fitness function can range
in complexity depending on the defined problem. It can be as simple as one
equation or use these decision variables as inputs into a distinct simulation
model. Assuming a relationship between input decision variables and output
objective, a GA is capable of handling a variety of optimisation problems.

Following the fitness evaluation, individuals are ranked based on their fit-
ness from best to worst. This ranking is used by the selection function to deter-
mine the likeliness that each solution will proceed as ‘parents’ to the crossover
and mutation stage. Several methods exist to select select individuals from
the previous population. The aim of these methods is to ensure that quality
solutions proceed to the next generation yet diversity is maintained within the
population hence the reason why the x best solutions are not automatically se-
lected. One such method is ‘Roulette’ where each individual receives a section
of a wheel proportional to their fithess rank. The wheel is ‘spun’ by generating
a random number which corresponds to the selected individual. An alternative
methodology is ‘Tournament’ selection whereby a set amount of individuals
(usually 3-5) are chosen at random and the individual with the highest fitness
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[0111001010]

Figure 3.4: An example of the Scattered crossover function with parents on the
left recombined according to a binary crossover vector to form child solutions
on the right

is chosen to proceed as a parent. Both of the described selection functions
find a balance between a bias towards the better solutions and the possibility
to retain a diverse range of solutions.

Once the selection function has determined a set of parents they are split
between crossover and mutation. The splitting fraction is determined by the
user although it is common that a greater proportion of parents continue to
crossover rather than mutation (around 80% is typical). During the crossover
procedure, parents are paired and ‘mate’ to produce ‘child’ solutions. The
broad aim of crossover is to recombine two existing solutions in a semi-random
way to generate new solutions. Once again, several methods are available
within the literature to achieve crossover. An example is the ‘Scattered’ method
where a binary vector with length equal to the number of decision variables is
generated. The position of the 1’s indicate where the child’s chromosome is
inherited from the first parent and the 0’s indicate a chromosome inherited from
the second parent. A second child can be generated from the inverse of this,
i.e. 1 indicated inheritance from the second parent and vice versa. An example
is shown in Figure 3.4.

Parents that are not sent through the crossover procedure pass through
a mutation function. The sole purpose of the mutation function is to ensure
‘genetic diversity’ within the population of solutions in order to avoid getting
stuck in local optima. If crossover was used in isolation, there is a possibility
that some of the solution space will never be searched if a value is missing in
the random initialisation. Mutation works by randomly changing chromosomes
within an individual. One method of mutation is the ‘Uniform’ function where
a binary vector equal to the length of an individual is generated. Each value
within this vector has a set chance of being a 1 (usually relatively low, around
5-10%). If the value is a 1 the corresponding chromosome in the parent is
discarded and a new value is produced. This may be random or generated via
an alternative method. An illustrating example is also provided in Figure 3.5.

In additional to crossover and mutation, some GA procedures will use the

84



3.4. TECHNIQUES
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Figure 3.5: An example of the Uniform mutation function with the original par-
ent on the left and the resulting mutated child on the right

concept of ‘elitism’. If used, this takes a few of the best solutions in the popu-
lation and directly copies them into the following generation to preserve these
solutions. In the MATLAB GA procedure, the elite individuals are removed and
then the remaining parents are split into crossover and mutation. However, the
use of elitism and the order of operation between crossover and mutation can
vary depending on the specific type of GA that is used.

Once the children produced by the elitism, crossover and mutation function
have been collated, this forms the next generation of individuals. This iterative
procedure of producing successive generations of solutions will continue until
a pre-defined stopping criteria has been met. The stopping criteria can relate
to a several different parameters. It can be based on a maximum allowable
number of generations, maximum time limit or the rate of change in optimal
solutions over generations.

3.4.3 Model Predictive Control

Model Predictive Control (MPC) is a form of direct digital control with capa-
bilities to handle systems with multiple inputs and multiple constraints. Fur-
thermore, it has the advantage of being able to assess an entire schedule of
future actions rather than just a single action at the current time. This en-
sures that the controller does not just make ‘greedy’ decisions for maximum
short-term gain but considers a longer-term, more predictive approach. MPC
controllers normally sit a layer above more traditional control mechanisms such
as proportional, integral and derivative (PID) controllers to overcome their lack
of foresight and stability issues [326]. Recent reviews concluded that MPC is
both a popular and effective approach in the literature to manage energy use
within buildings [324, 327]. The advantages of MPC include it’s ability to factor
in variation in external factors such as occupancy, weather and pricing signals,
it can exploit a building’s thermal mass, and it can shift load from energy peaks.

Broadly the MPC procedure works as follows. The control problem will have
both a prediction horizon 7' made up of N discrete control steps of size t. The
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control procedure will aim to optimise one or several input signals or schedules
over the entire control horizon T'. This is achieved through an internal model
which can accurately predict the output signal as a function of the inputs sig-
nals (amongst other variables). This model is integrated with an optimisation
procedure which can find the optimal or near-optimal input signal to minimise
or maximise the selected objective. However, it will only implement the in-
put signal over the first control step ¢ before re-optimising and going through
the entire MPC procedure again. This ‘sliding window’ approach ensures that
the control procedure has the foresight to make intelligent long-term decisions
whilst also remaining agile enough to react to changes in circumstances such
as disturbances or forecast errors.

For greater clarity on the MPC procedure a generic diagram showing three
consecutive timesteps is given in Figure 3.6. Note how the future input signal
from t, to t; is implemented in the following timestep but the remainder of the
future input signal is free to change to react to updated forecasts or errors
in previous predictions. This also has a direct consequence on the future,
predicted output signal. A final point to notice is the distance between t, and
T is identical in the case of all three timesteps, it has simply been translated to
the right by a time of ¢, as this time has been allowed to pass after the initial
control procedure was started.

3.5 Conclusion

This Chapter has aimed to outline the core methodology used to conduct this
research project. The Chapter began by providing a brief introduction to the
available research methodologies and justification for the methodology chosen
in this case. It detailed the research approach which was made up of three
stages; a thorough literature review, iterative learning through participation in
research projects, and finally application of the gained knowledge to extend the
state-of-the-art. To tackle the research question provided in Chapter 1, a se-
ries of case studies were developed. This Chapter describes the case studies
and illustrates how they were formed through interaction with real pilot sites.
Finally, a brief introduction to three core techniques was provided. Namely,
these are artificial neural networks, genetic algorithms, and model predictive
control. These techniques re-occur throughout the thesis so are best explained
at this stage.
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Figure 3.6: Model predictive control procedure - a) Timestep 1, b) Timestep 2,
c) Timestep 3
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4 Building-Level Energy
Management

As demonstrated in the literature review provided in Chapter 2, the optimisa-
tion of building energy demand is an active research field with several pro-
posed methodologies. This chapter will outline the modelling and optimisation
methodology behind a novel zone-level building heating controller. The per-
formance of this solution will be compared to a static, baseline scenario to
demonstrate the effectiveness of a more context aware, predictive controller.

4.1 Revisiting the Research Question

Specifically, this chapter aims to address research question 2, restated here
as:

Can predictive control of building energy demand with consideration of ex-

ternal factors lead to reductions in energy cost and improve demand-side flex-
ibility ?
To provide validation of the proposed method, the optimisation will be applied
to a case study building and will be compared to a baseline scenario which
uses traditional thermal controls. Additional comparisons will also be made
against a controller that uses a similar methodology but applied at a building-
level rather than a zone-level. All controllers will be operated as day ahead
controllers, meaning they optimise once at the beginning of the day, and as
MPC where they optimise every hour. This range of operating modes will allow
a wider evaluation of the importance of zone-level control vs building-level and
MPC vs Non-MPC. To assess the flexibility of building demand control, the
optimisation methodology will be able to minimise energy consumption or the
cost of energy subject to a ToU energy tariff. The ability to shift energy demand
subject to external energy costs will be increasingly important in the following
chapters.

The optimisation methodology described in this Chapter was originally pub-
lished in Reynolds et al. [328] and reformatted and expanded for this thesis.
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This work built upon the initial, proof of concept investigations conducted in
Reynolds et al. [114].

4.2 Modelling Methodology

The case study building that was modelled and simulated to demonstrate the
optimisation process was the authors office building in Cardiff, UK. This is a rel-
atively small office building with six main thermal zones; three separate office
zones, a kitchen, a reception area and a meeting room. The building has an
approximate footprint of 185m? and typically the builing is occupied by around
20 people during weekdays. The building was chosen as it was easy to access
(given it was the authors place of work), had zones with different functions
and had relatively few conditioned zones to maintain a tractable optimisation
problem. The process of modelling this building took several steps; initially the
building geometry was captured using a 3D laser scanner, from this the se-
mantics were captured through a Revit BIM model, this was converted into an
energy model in DesignBuilder, which was used to generate training data for a
surrogate ANN model.

4.2.1 Capturing the As-Built Geometry

As the building is relatively old, digitised floor plans were not available. Hence,
an as-built representation of the building needed to be captured. To achieve
this a FARO Focus X Series 3D laser scanner was used. The scanner casts
a laser on the surrounding objects and detects the level of energy deflected
back to the scanner to build a series of points with x, y and z coordinates. The
combination of these series of points forms what is known as a point cloud.
Images taken by traditional cameras can then be overlaid on the point cloud
to achieve a photo-realistic 3D representation of the scene. Typically, multiple
scans will need to be taken from several angles or, in the case of a building,
in several rooms. Two scans are ‘chained’ to each other semi-automatically
through the definition of common points between successive scans. This is
typically achieved using fixed reference points such as chequerboard posters.
The point cloud representation of the case study building is shown in Figure 4.1
with surfaces coloured based on their orientation.

4.2.2 Conversion to BIM

The point cloud itself does not hold much useful information beyond the dis-
tances between surfaces and objects. To capture the real semantics associ-
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Figure 4.1: Point cloud representation of the case study building

Raw Point Cloud BIM Wall + Point Cloud

Figure 4.2: Process of generating a BIM model from a point cloud; left - original
point cloud, right - point cloud with a BIM wall object

ated with the building a BIM model was produced using Autodesk Revit. Revit
has the capacity to import point clouds to the workspace which is then es-
sentially used as a guide to produce the BIM geometry. lllustrations of the
modelling of walls are shown in Figure 4.2. By slicing the point cloud on hor-
izontal planes, the position and shape of walls are clearly identifiable. Similar
processes can be used to position the levels of the building, the roof struc-
ture, and the window sizing and positioning. This process concluded in the
BIM model shown in Figure 4.3. Once represented as a BIM model, additional
semantic information can be added to the model, including the thermal zones,
construction materials, and material thickness.

4.2.3 Energy Modelling

Whilst BIM software, such as Revit, is beginning to integrate building energy
analysis and simulation, third party software tools such as IES, TRNSYS and
EnergyPlus are more detailed, customisable and trusted by both industry and
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Figure 4.3: Revit model of the case study building

academia. Interoperability between BIM and energy simulation is currently a
challenge, with many approaches that claim to transfer between software. In
practice, these processes are unsatisfactory unless the BIM model is extremely
simple and ‘clean’. Therefore, for this case study a separate energy model was
created in the DesignBuilder software, which uses EnergyPlus as a simulation
engine. The various floor plans and elevations were exported from Revit which
allowed a simple and quick model creation in DesignBuilder. A 3D representa-
tion of the building geometry modelled in DesignBuilder is shown in Figure 4.4.

In addition to the raw geometry, a building energy model requires significant
additional, contextual, semantic information. This included construction mate-
rial properties such as thickness and thermal conductivity, occupancy profiles
of each zone, lighting and electronic equipment sizes and operational sched-
ules. This information was gathered through a combination of a building survey
and questioning the building occupants. The building is naturally ventilated and
cooled, and for the purposes of this experiment, an electrical heating system
was modelled with separate zone thermostat controls assumed. In this study,
day by day occupancy prediction has not been considered. Instead, the same
occupancy patterns have been modelled for each working day based on av-
erage building use. Whilst the occupancy patterns do not change from day to
day, different zones were modelled with different occupancy patterns based on
their use criteria. It was assumed that the 3 office zones and the reception
area is occupied from 08:00 until 19:00. The kitchen is occupied from 12:00
until 14:00 and the meeting room from 10:00 to 11:00. If deployed in reality, the
meeting room occupancy patterns could be retrieved from the electronic book-
ing system used for this zone. Due to a lack of real building data, particularly in
relation to the energy consumption of the building as a whole and each individ-
ual room, the generated energy model could not be validated. Throughout the
rest of this section the DesignBuilder model of the office building is assumed
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Figure 4.4: Design Builder model of the case study building

to be representative of the building and will provide the baseline against which
the optimal control strategy will be compared.

4.2.4 Modelling Using an Artificial Neural Network

For the optimisation utilised in this chapter, it was necessary to be able to
predict the heating energy consumption and the indoor temperature of each
conditioned zone, at each hour of the day for the entire 24-hour time horizon.
This calculation needed to be completed quickly and efficiently to be combined
with a GA optimisation strategy. Therefore, the full energy simulation could
not be used as an evaluation engine. Hence, an ANN surrogate model for
each zone was trained using the simulation data produced by the previously
described energy model so it could accurately replicate it during the real-time
optimisation.

4.2.4.1 Data Generation

To generate the training dataset for the ANN, the model was run several times
with varying set point schedules to generate a large training dataset. It is not
possible to cover every combination of heating set point schedules due to the
fact there are 24 decision variables each with a range of 12°C . Therefore, the
aim was to produce a training dataset which adequately covered the possible
solution space to allow the ANN models to generalise the relationship between
inputs and outputs. To achieve this, a different heating set point schedule was
used for each zone, each month, during each separate simulation. The model
was run from the 1! of January to the 315! of March to cover the heating period
in which the optimisation will be tested. So, for a single 3-month simulation of
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Figure 4.5: Probability distribution of heating set point temperatures during
unoccupied hours

the case study building with 6 zones, 18 unique heating set point schedules
were used.

To make the creation of these training simulations reproducible and rela-
tively automated, a procedural methodology was used to generate the entire
dataset. The methodology to generate the random heating set point schedules
was based on an assumption that during the unoccupied period the heating set
point could take any value from 12°C to 24°C , and during occupied periods
any value between 19°C and 24°C . However, the selection of the set point
values within this range was not set entirely randomly. The training set point
schedules were generated in such a way that different temperatures would
have a different likelihood of being chosen. During the unoccupied period, the
majority of the values would fall in a more ‘typical’ low range whilst a small
probability would remain that high set point temperatures could be selected.
The chosen probability distribution is shown in Figure 4.5, for example there is
a 30% chance that the heating set point temperature at any unoccupied hour
will be between 14°C and 16°C , whilst there is only a 5% chance that a value
between 22°C and 24°C would be chosen.

This generation of set point schedules aims to strike a balance between
coverage of the entire solution space yet an increased coverage density over
more ‘sensible’ set point values that the optimisation is expected to choose
more frequently. During occupied hours, the possible temperature range is
much reduced and therefore there was an equal chance of any temperature
between 19°C and 24°C being selected. To illustrate this procedure, Fig-
ure 4.6, shows ten, 24-hour, heating temperature set points generated using
this method.

The simulations were carried out for the three months of January through
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Figure 4.6: A sample of ten heating set point temperature profiles generated
using the described methodology

to March. This period is expected to have high heating demand and should
give a representative heating profiles throughout the winter period which will
be the only period considered in this optimisation case study. Note that the
ANN prediction models would need to be retrained if they were required for
use in other seasons. In total, ten, three-month simulations were carried out to
produce the training dataset. Therefore, each zone has 30 unique heating set
point schedules.

The testing dataset, by which the ANN’s performance will be assessed,
is produced using the same method of generating diverse heating set point
schedules. However, to provide a more meaningful test, the simulations will be
carried out over the same months but using a weather file from the following
year. This allows a more thorough assessment of the generalisation capability
of the prediction models. The total size of the dataset provided from training
and validation is 21830 hourly samples whilst the testing dataset is comprised
of 4318 hourly samples.

4.2.4.2 ANN Configuration

The aim of the ANN is to accurately replicate the calculation of zone-level en-
ergy consumption and indoor temperature over the next 24-hours. A range of
potential variables were considered as inputs to these ANN with the criteria that
they must be known 24-hours in advance to allow prediction over the whole op-
timisation horizon. The possible variables considered as potential inputs to the
ANN included the weather variables of outdoor dry-bulb temperature, relative
humidity and solar radiation. It is theorised that these variables could reason-
ably be retrieved from local weather services with high forecasting accuracy.
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Figure 4.7: The process of predicting temperature using previous hourly tem-
perature as inputs at different timesteps

Additional variables were related to time and date such as the month, the day
of the month, the hour of the day and the day type (1 to 7 representing the days
of the week, 1 is Sunday). The occupancy of the zone was represented as a
binary variable, 1 for occupied, 0 for unoccupied. Finally, given that the thermal
inertia of a building is a considerable factor, the indoor temperature from the
previous timestep was also considered as an input. However, as the require-
ment is to predict for the next 24 hours, the prediction of indoor temperature at
time ¢ is used as the input to predict at time ¢ + 1. These predictions are rolled
over until the full 24-hour time horizon has been completed. For example, the
prediction of the indoor temperature at timestep one would use the measured
indoor temperature from the previous hour. Once predicted, the value of indoor
temperature from timestep one would be used as the input to predict timestep
two. This procedure is represented for different timesteps in Figure 4.7.

All ANN described in this section and throughout this thesis were trained us-
ing the Matlab Neural Network Toolbox (now named the Deep Learning Tool-
box). As explained in Section 3.4.1, the term ANN encompasses a growing
range of distinct machine learning models. For clarity, when the term ANN
is used here, it is referring to a backpropagation neural network. There are
several controllable parameters to consider when training an ANN. These in-
clude the training function, input variables, number of hidden neurons, and
transfer functions. In this work, a stepwise searching method was used to find
the optimal configuration of the ANN for each zone to predict the indoor tem-
perature and the energy consumption every hour depending on the heating
set point temperature and the other uncontrollable variables described above.
From the authors experience and evidenced by MATLAB’s ANN toolbox recom-
mendations, the Levenberg-Marquardt training algorithm was the only training
algorithm considered in this study. All considered ANN contain two layers of
hidden neurons which can contain 5, 10, 15, or 20 neurons in each layer. The
transfer function between in the input layer and the first hidden layer as well as
the transfer function between the first and second hidden layer could be the hy-
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Table 4.1: Energy prediction performance of the Researcher Office ANN with

varying configurations

ANN Inputs Selected Hidden Neurons Transfer Function R? Results
Number 3 4 5 6 7 8 9 10 Layer1 Layer2 Layer1 Layer2 Train Test
1 v v v v v v v v vV / 15 15 tansig tansig 0.9885 0.9725
2 X v v v v v v v Vv / 15 15 tansig tansig 0.9858  0.9726
3 X X v v v v v v v / 15 15 tansig tansig 0.9833  0.9747
4 v v v v v v X v v / 15 15 tansig tansig 0.9806 0.8981
5 v v v v X v v v v 15 15 tansig tansig 0.9907  0.9709
6 v v v v v X v v v / 15 15 tansig tansig 0.9910  0.9717
7 v v v v v v v X v / 15 15 tansig tansig 0.9898 0.9698
8 v v v v v v v vV vV X 15 15 tansig tansig 0.9608  0.9326
9 X X v v X v v v v / 15 15 tansig tansig 0.9806  0.9770
10 X X v v X v v v Vv V/ 5 5 tansig tansig 0.9641 0.9601
11 X x v v x v v v Vv / 10 10 tansig tansig 0.9778  0.9767
12 X X v v X v v v v / 10 15 tansig tansig 0.9789  0.9768
13 X X v v X v v v Vv V/ 15 10 tansig tansig 0.9798 0.9761
14 X x v v x v v v Vv / 10 20 tansig tansig 0.9793  0.9759
15 X X v v X v v v v / 20 10 tansig tansig 0.9814  0.9758
16 X X v v X v v v Vv V/ 20 20 tansig tansig 0.9826 0.9755
17 X x v v x v v v Vv / 15 15 tansig logsig 0.9802  0.9768
18 X X v v X v v v v / 15 15 logsig tansig 0.9810  0.9766
19 X X v v X v v v Vv V/ 15 15 logsig logsig 0.9801 0.9765

Note - Input numbers represent: 1-Month, 2-Day of the month, 3-Hour of day, 4-Outdoor temperature, 5-Relative humidity,
6-Solar radiation, 7-Day type, 8-Occupancy, 9-Set point temperature, 10-Indoor temperature at previous hour

perbolic tangent sigmoid transfer function (‘tansig’) or the Log-sigmoid transfer

function (‘logsig’).

For the sake of both clarity and brevity the procedure to determine the con-

figuration of just a single ANN, relating to a single zone, will be discussed
here. The ANN in question aims to predict the energy consumption of the Re-
searcher’s Office in the case study building. This should illustrate the general
procedure used to determine the ANN architecture and the same principles
have been used to produce every other ANN, the results of which will be sum-
marised at the end of this section. In all cases the determining objective by
which ANN quality will be judged is the coefficient of determination (R?) be-
tween the target EnergyPlus output and the ANN model prediction based on
the testing dataset. For discussion purposes the R? value measured based on
the training data is also provided. For each ANN configuration, the model was
trained 5 times independently. Each time the model is trained the network is
initialised with random weights and biases, this leads to slightly different ANN
performance each time. The results of each configuration given in Table 4.1,
show the results of the best of the 5 ANN training runs.

The first 9 entries of Table 4.1 aim to find the optimal combination of inputs
that produce the best results for predicting energy consumption on the testing
dataset. Initially, the model was generated using all possible inputs and then
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different inputs were removed sequentially to assess their importance. During
this stage, the other ANN parameters such as transfer function and number
of neurons in each hidden layer remained constant. It was found that remov-
ing month and day of the month (ANN 2 and 3) as inputs improved prediction
performance. The removal of relative humidity and solar radiation (ANN 5 and
6) had little impact on the prediction performance. The removal of occupancy,
previous temperature and in particular day type (ANN 7, 8 and 4) significantly
worsened ANN prediction accuracy. Finally, the performance of ANN 9, which
removed the month, day of the month and relative humidity provided the best
prediction performance of the input combinations tested. From this point on-
wards, the ANN inputs remained constant and focus turned to refining the re-
maining ANN parameters.

Next, the number of neurons in each hidden layer was altered ranging from
as low as 5 neurons to as high as 20 neurons. ANN 10 to 16 show that re-
ducing the number of neurons in the hidden layers generally reduces the gap
between the training performance and the testing performance. This is pos-
sible evidence that the higher numbers of neurons lead to a higher degree
of overfitting. Overfitting occurs when the ANN too closely learns the train-
ing dataset without generalising the relationships between inputs and outputs.
Then, when applied to a new dataset, a significant drop in performance is ob-
served. Providing the number of neurons is above 5, prediction accuracy on
the testing dataset remained consistent. However, in this case, the best testing
results were achieved by ANN 9 with 15 neurons in each hidden layer. Finally,
the transfer function between the input layer and the first hidden layer, and the
transfer function between the two hidden layers was assessed. With the inputs
and number of neurons remaining constant, altering the transfer functions be-
tween tansig and logsig resulted in very little change in prediction performance.
The best R? value when applied to the testing dataset was achieved with two
tansig transfer functions, hence the final ANN architecture was chosen to be
that of ANN 9.

After following the procedure described above, the final configurations of all
zones energy prediction ANN as well as the ANN that predicts the whole build-
ing energy consumption is shown in Table 4.2. A similar table that displays the
performance of the temperature prediction ANN is found in Table 4.3. Regard-
ing the energy consumption ANN, a small drop in performance is noticeable
from training to testing. In each case the drop in performance ranges from
0.01 to 0.02. The modest size of this performance deterioration indicates that
the ANN have been able to generalise the relationship between inputs and out-
puts with little sign of overfitting. The temperature prediction ANN demonstrate
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Table 4.2: Final configuration and performance of the energy prediction ANN

Zone Inputs Selected Hidden Neurons Transfer Function R2 Results
1 2 3 4 5 6 7 8 9 10 Layer 1 Layer2 Layer 1 Layer 2 Train Test
1 X x v v X v v v v V/ 20 10 tansig tansig 0.9514 0.9365
2 X v v v X v v v v / 15 10 tansig tansig 0.9919 0.9767
3 X X v v X v v v v / 15 15 logsig tansig 0.9731 0.9667
4 X Xx v v X v v v v V/ 10 10 tansig tansig 0.9804 0.9739
5 X x v v v v v v v / 10 15 tansig tansig 0.9769 0.9523
6 X X v v X v v v v / 15 15 tansig tansig 0.9806  0.9770
All X x v v X v v v vV V/ 10 15 tansig tansig 0.9683 0.9561

Note - Input numbers represent: 1-Month, 2-Day of the month, 3-Hour of day, 4-Outdoor temperature, 5-Relative humidity,
6-Solar radiation, 7-Day type, 8-Occupancy, 9-Set point temperature, 10-Indoor temperature at previous hour

Table 4.3: Final configuration and performance of the indoor temperature pre-

diction ANN
Zone Inputs Selected Hidden Neurons Transfer Function R2 Results
1 2 3 4 5 6 7 8 9 10 Layer1 Layer2 Layer1 Layer2 Train Test
1 X X v v X v v v v / 10 15 tansig tansig 0.9911 0.9859
2 X v v v X v v v v V/ 10 15 tansig tansig 0.9971 0.9960
3 X X v v X v v v v / 10 10 tansig tansig 0.9968  0.9961
4 X X v v X v v v v / 20 10 tansig tansig 0.9982  0.9970
5 X X v v v v v v v / 10 10 tansig tansig 0.9968  0.9945
6 X X v v X v v v v / 10 15 tansig logsig 0.9966  0.9961
All X X v v X v v v v / 10 15 tansig logsig 0.9966  0.9961

Note - Input numbers represent: 1-Month, 2-Day of the month, 3-Hour of day, 4-Outdoor temperature, 5-Relative humidity,
6-Solar radiation, 7-Day type, 8-Occupancy, 9-Set point temperature, 10-Indoor temperature at previous hour
Zone Numbers: 1-Downstairs Office, 2-Kitchen, 3-Reception, 4-Meeting Room, 5-PhD Office, 6-Researchers Office
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an even smaller drop in prediction accuracy than the energy ANN. Across all
zones (and the whole building ANN), the optimal combination of inputs is rea-
sonably consistent with 5 out of the 7 having an identical set of inputs. The
indoor temperature prediction performance is consistently higher than their en-
ergy prediction counterparts. However, the poorer statistical performance of
the energy prediction ANN is partly due to the nature of the data. Heating en-
ergy consumption is much more ‘spiky’ in nature with a few, large peaks but
an overall low mean. This is significantly harder to predict than the gradual
evolution of indoor temperature. Furthermore, during the testing procedure,
the inputs assume a perfectly predicted indoor temperature from the previous
hour. In reality, this value will be iterated over several times causing a prop-
agation in error. It is expected this will have a greater impact on the indoor
temperature prediction as it has a greater correlation with the previous indoor
temperature than energy consumption. To demonstrate the accuracy of the
ANN in a more visual way, the ANN prediction of energy consumption and in-
door temperature by the statistically worst zone (zone 1) has been plot over a
sample test week in Figure 4.8.

4.3 Optimisation Strategy

As mentioned in the previous section, a GA is used to optimise each zone’s set
point temperature for the next 24 hours. This section will provide finer detail of
the optimisation process. The general GA theory and procedure is provided in
Section 3.4.2 and will not be repeated in full here. Only the implementation of
the GA in the context of this optimisation problem will be discussed. In this sce-
nario the each individual within the GA population has 24 chromosomes which
represent the set point temperature of a zone at each hour of the day. These
decision variables have a lower bound of 12°C and an upper bound of 24°C .
The exact parameters of the GA used in this case study is shown in Table 4.4.
Note that the maximum number of generations is set to the MATLAB default
of 100 multiplied by the number of decision variables which in this instance is
relatively high. This allows the GA to exit in all cases by reaching the function
tolerance which ensures that the GA has fully converged rather than forced to
exit prematurely.

4.3.1 Objective Function and Fitness Evaluation

The objective of this optimisation strategy is to minimise the energy consump-
tion whilst maintaining thermal comfort by selecting the optimal temperature
set point schedule, each hour, for each zone. The set point is free to vary
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Table 4.4: Genetic algorithm parameter settings

GA Parameter Value
Number of Variables 24
Population Size 200
Creation Function Uniform
Selection Function Tournament
Crossover Function Scattered
Crossover Fraction 80%
Mutation Function Uniform
Mutation Rate 0.1

Elite Count 5%

Maximum Number of Generations 2400
Function Tolerance 1x10°°

between 12°C and 24°C during unoccupied periods and 20°C to 24°C dur-
ing occupied times as these were the temperature bounds requested by the
occupants to maintain thermal comfort. Whilst the setting of these bounds
forms a large part of ensuring thermal comfort is met a further internal penalty
function is included. If the indoor temperature predicted by the ANN is be-
low 20°C or greater than 24°C when the zone is occupied, then the energy
consumption during that timestep is set at 100kWh. This very harsh penalty
effectively excludes that solution from being competitive in the fitness evalu-
ation and hence the solution which breaches comfort constraints will not be
selected. This penalty function is mainly necessary during the first occupied
hour of the day where it is conceivable that the zone set point temperature
would be above the lower bound of 20°C but the indoor temperature would
remain lower than this during the first hour as the zone warms up.

The fitness evaluation procedure developed in this Section is displayed in
Figure 4.9. The relevant input variables for each zone are retrieved and com-
bined into one matrix with the appropriate structure to be provided as an input
to the ANN. These include the outdoor temperature, solar irradiance, hour of
the day, occupancy, temperature set point and previous indoor temperature.
Once the inputs are collated, they are fed to the zone ANN which predicts en-
ergy consumption and indoor temperature for that timestep. Then follows the
thermal comfort check to ensure that during occupied hours the indoor tem-
perature is predicted to be above 20°C and below 24°C . If this is not the case
the energy consumption for that time step is changed to 100kWh. Unless all
24 hours have been calculated, the process loops around to repeat the calcu-
lation for the next timestep using the internal temperature prediction from the
previous hour as an input. Once all 24 hours have been completed, the energy
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Figure 4.9: Flowchart of the fitness evaluation procedure for a single zone (t-
Timestep, To-Outdoor Temperature, Irr-Solar Irradiation, Occ-Occupancy, Tsp-
Set Point Temperature, Ti- Indoor Temperature, Ec-Energy Consumption)

consumption is summed over the 24 hours and the resulting number is the
solutions fitness. A GA using the described procedure is completed for all 6
conditioned zones. This procedure can be accomplished in parallel to reduce
optimisation time as each zone optimisation is independent and not reliant on
inputs from other zones. For the case of the whole building optimisation, the
procedure is identical but instead of 6 parallel optimisations for each zone,
only one building-level optimisation is required and the decision variable is the
building set point temperature.

4.3.2 MPC Adaptations

The optimisation procedure described in the previous sub-section can be run
once at midnight and produce a schedule for the following day provided it has
24-hour weather and occupancy predictions and the initial zone temperatures.
In this study, the effect of implementing this strategy as MPC will also be as-
sessed. When implemented 24-hours ahead without MPC, errors in temper-
ature prediction at earlier timesteps can lead to compound errors later in the
day. Once set, the entire heating set point schedule would be enacted regard-
less of any unforeseen changes in circumstances. However, if implemented
as MPC, the optimisation would be run every hour, still with a 24-hour time
horizon. This would allow feedback of the internal temperatures from the build-
ing control system, allowing the controller to react to any prediction errors or
receive a more up-to-date weather forecast. Running as MPC means the 24-
hour set point schedule is updated and changed every hour but only the first
hour of each optimisation is ever enacted.

As this is a simulation based case study, the ‘real’ building is replicated by
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an EnergyPlus simulation model, thus a method of automatically linking the
EnergyPlus model and the MATLAB optimisation procedure was required. The
Building Controls Virtual Test Bed, BCVTB [37], middleware software was used
to achieve this. The BCVTB model has two main ‘actors’, namely these are the
MATLAB simulator and the EnergyPlus building simulator. The BCVTB inter-
face is shown in Figure 4.10. Each variable is represented by a line between
the actors, in addition BCVTB can produce a collection of timeseries plots for
the users’ benefit. In this case the indoor temperature alongside the set point
temperature of each zone is plotted in addition to the overall electricity con-
sumption. The data interchange, facilitated by BCVTB, was configured to allow
retrieval of each zone’s indoor temperature every 10 minutes. On the hour, the
average indoor temperature of each zone was calculated. This provided the
starting point for the optimisation to run. Using these initial values, the optimi-
sation procedure could generate a 24-hour set point schedule for each zone.
The first value of the optimal set point schedules was returned to BCVTB to
be implemented within the EnergyPlus model for the following hour. Once this
hour was complete the temperature was again recorded by BCVTB, passed to
MATLAB and the optimisation is run again with the updated, ‘real’, tempera-
tures from the building. Note that the optimisation procedure that takes place
each hour is identical to that described in Section 4.3.1, however it occurs 24
times a day rather than just once at the beginning of each day. If deployed
in reality, instead of using the EnergyPlus simulation model, you would sim-
ply record the measured indoor temperature in each zone before carrying out
the optimisation. In the case of the whole building optimisation, the interaction
with BCVTB is identical, however only one set point value is provided and it is
implemented in all zones. The general procedure is displayed in the diagram
shown in Figure 4.11.

4.4 Results

In this section the GA-ANN, zone level, heating set point scheduler will be
applied during a test week in February using actual, 2016, weather data from
a nearby weather station in Cardiff which was converted to an epw file for use
in EnergyPlus. To provide a comparison, a baseline scenario has also been
developed. This uses a typical heating set point strategy which is 21°C during
the occupied hours (08:00 to 19:00) and 12°C during unoccupied hours in all
6 conditioned zones. The optimisation will be run as day ahead scheduling
and then as MPC with a 1-hour timestep and 24-hour control horizon. Note
that in both cases the schedules resulting from the optimisation will be put
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back into EnergyPlus to validate the results. This allows fair comparison with
the baseline scenario as all simulation models are identical (including weather
conditions) apart from the heating set point schedule of the zones. This also
removes any influence ANN prediction errors may have to allow true evaluation
of the effect of the optimised set point strategy.

Initially, a comparison will be made between zone-level control against whole
building control. In the whole building control case, the optimisation will be run
as described previously using the ANN that model the whole building energy
consumption and the weighted average building temperature. This optimisa-
tion produces a heating set point schedule that is applied to all building zones.
Note that the optimisation will be run in day-ahead mode and using a flat en-
ergy pricing tariff during this comparison. Once an assessment of zone-level
vs building level optimisation has been made, a second scenario using a ToU
tariff will be introduced. In the initial scenario, minimisation of energy con-
sumption also minimises energy cost as there is a constant electricity price.
In the second scenario, the TIDE tariff from Green Energy UK [329], shown in
Figure 4.12 is used. Energy is cheapest, £0.0499/kWh, from 23:00 to 06:00
and has peak prices of £0.2499/kWh between 16:00 and 19:00, all other hours
are an intermediate price of £0.1199/kWh. In this scenario the optimisation is
adjusted to minimise the energy cost incurred to maintain a comfortable build-
ing. This is achieved very simply by altering the fitness function to multiply the
energy consumed by the tariff price at each hour and the fitness is the sum of
the energy costs over the 24 hour period. In both pricing scenarios, the op-
timisation will run as both day ahead optimisation and MPC. In all cases the
optimisation is run over the week of the 15th to the 19th of February 2016 (note
that the optimisation is not run on weekends).

4.4.1 Building-Level vs Zone-Level Control

The energy consumption of each zone in addition to the sum total for the
baseline scenario, building-level optimisation and the zone-level optimisation is
shown in Figure 4.13. In this case the optimisation was run as day-ahead and
using a flat energy tariff. The building-level optimisation achieves a 10% reduc-
tion in energy consumption compared to the baseline strategy whilst the zone-
level optimisation achieves an 18% reduction in energy consumption. The sig-
nificant gains made by the zone-level optimiser compared to the building-level
optimiser are found in zones 2 and 4. These zones are the kitchen and the
meeting room respectively and are only occupied for a couple of hours per
day. Clearly, the zone-level optimisation can take advantage of this situation
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Figure 4.13: Energy consumption of each zone and the sum total when using
the baseline, building-level and zone-level strategies.
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Figure 4.14: Result of the building level optimisation over 3 sample days com-
pared to the baseline scenario: a) Energy consumption, b) Indoor temperature

and only needs to maintain these zone temperatures during their occupied pe-
riods. The building-level optimisation cannot make these decisions as it can
only set one heating set point schedule for the entire building. Also of note, the
zone-level optimisation actually results in an increase in energy consumption
for zones 3 and 6 compared to the baseline and building-level optimisation.
These zones, the reception and researchers office, are directly adjacent to the
meeting room. So the minor increase in energy consumption is not a failure of
the optimisation, rather a reflection of the heat losses from these zones to the
comparatively colder meeting room.

To assess how the building-level optimisation has achieved energy sav-
ings, the energy consumption, indoor temperature and set point temperature
during the optimised and baseline scenario have been plot in Figure 4.14. To
strike a compromise between illustrating as much of the results as possible
and ensuring legibility, three of the optimised days will are shown throughout
this Chapter. Whilst the optimisation strategy does make a small effort to more
gradually pre-heat the building during the mornings, the majority of the energy
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savings come by simply lowering the set point temperature to the lower bound
of 20°C . This rather blunt method of reducing energy consumption is due to
the optimisation having to balance the requirements of each zone within just a
single building-level set point. It does not have the fine level of granularity to
make more bespoke decisions for the control of indoor temperature. It is not
possible to provide a fair comparable graph of the zone-level optimisation per-
formance here, as the unoccupied zones lower the weighted average building
temperature. lllustration of the performance of the zone-level optimisation will
continue in the following sections.

4.4.2 Standard Energy Tariff

Having demonstrated the potential benefits of zone-level temperature control
over building-level optimisation, this section will explore the decisions made
by the zone-level controller and provide comparison between the optimisation
running as day ahead optimisation or as MPC. Throughout this subsection, the
standard energy tariff is used in which the cost of electricity is constant. The
energy consumption of each zone resulting from the day ahead optimisation
and the MPC optimisation is shown in Figure 4.15. There is a very minor dif-
ference between the day ahead optimisation and the MPC across all zones.
In fact, the day ahead optimisation slightly outperforms the MPC. Both optimi-
sations show the potential for around 18% energy savings over the course of
this test week. As previously discussed, a major source of the energy savings
come from the kitchen and the meeting room which are sporadically occupied
but are currently heated all day reflected in the baseline scenario. However,
there are also energy savings from some of the office zones despite having
the same 08:00-19:00 occupied period.

To understand these savings, Figure 4.16 shows the set point schedule,
indoor temperature and energy consumption of Zone 1 (the downstairs office)
during the day ahead optimisation. Once again, it is evident that the optimi-
sation chooses a more gradual warming up period than the baseline scenario
with some pre-heating before 8am. In contrast to the building-level optimisa-
tion, the optimisation chooses to increase the zone temperature in the after-
noon to coincide with the increased solar gain to this zone. The combination
of these measures reduce the early morning and late afternoon energy peaks.
Whilst the average occupied temperature is below that of the baseline average
temperatures, the optimised solution does remain within the comfort bound-
aries requested by users and maintains a higher average temperature than the
building-level optimisation. In summary, both optimisation modes (day-ahead
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Figure 4.15: Energy consumption of each zone and the total using the base-
line, day ahead optimisation and MPC strategies with a standard energy tariff.
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Figure 4.16: Result of the zone-level optimisation on Zone 1 over 3 days com-
pared to the baseline scenario: a) Energy consumption, b) Indoor temperature

and MPC) have shown significant energy savings can be made by allowing a
smart scheduler to have the freedom to vary set point temperatures between
pre-defined bounds and by actively considering occupancy and weather con-
ditions. However, it has not demonstrated the value of MPC over day ahead
scheduling in this scenario.

4.4.3 Time of Use Tariff

To assess the flexibility of the proposed energy management procedure, both
the day ahead optimisation and the MPC optimisation were run again using the
the TIDE ToU tariff outlined earlier in this section. The same week was studied
using identical weather conditions. The same baseline scenario is used which
cannot make any attempt to adjust to the new pricing regime as it is static.
When optimising using the ToU tariff, the optimisation objective is altered to
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cost. Hence, Figure 4.17 shows the cost of heating energy incurred by each
zone and the building as a whole for both optimisation modes and the baseline
scenario. When optimising for cost, the percentage change compared to the
baseline strategy grows to around 23.5% for both the day ahead and the MPC
optimisation strategies. Once again there is very little to differentiate between
the two optimisation modes with the day ahead optimisation marginally out-
performing the MPC. Whilst minimisation of the energy consumption was not
the objective in this scenario it is interesting to illustrate the energy consump-
tion as shown in Figure 4.18. In comparison to the energy savings found in
Section 4.4.2, the energy savings have decreased from around 18% to 15.5%.
This shows that under a ToU tariff the minimisation of energy cost and energy
consumption are not mutual.

To understand the new decisions that the optimisation makes when oper-
ating with a ToU tariff Figure 4.19 has been included. This figure illustrates
the load shifting the optimisation attempts in order to shift energy consumption
from the high price periods. The effort to pre-heat is much more pronounced
with new peaks between 05:00 and 06:00 which is the last time period where
the electricity price is at its lowest. Furthermore, there is some effort to in-
crease the temperature during the late afternoon period to reduce the energy
consumption during the on peak price period of 16:00-19:00 which it success-
fully achieves when compared to the baseline strategy. During the test week,
both optimisation strategies were able to produce a saving of around £13 from
the original baseline total of £54.40. Once again there was no clear difference
between the day ahead optimisation and the MPC strategy.

4.5 Discussion

The results shown in Section 4.4.2 and Section 4.4.3 clearly indicate that im-
plementing a smarter, more context aware building controller can lead to im-
provements over traditional static control. The consideration of additional se-
mantic information such as predicted outdoor temperature, solar radiation and
occupancy can give controllers greater scope to develop more bespoke strate-
gies leading to reduced energy consumption and cost. This is evidenced by
the 18% reduction in energy consumption with the standard energy tariff and a
23% reduction in cost with the ToU tariff. This Chapter has demonstrated that
optimising at a zone-level rather than setting a building-level strategy can lead
to additional savings in energy consumption. In this case study the zone-level
optimisation made an additional 8% saving in energy consumption. The optimi-
sation strategy was also proven to flexible to a changing energy environment. It
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was simply adapted to take into account a ToU tariff and minimise energy cost
rather than energy consumption. Further adjustments could simply be made
to factor in local renewable resources or demand response events as part of
a district heating network potentially benefitting the energy provider as well as
the consumer.

The practical deployment of this solution to a real building would require
a reasonably small amount of additional hardware. The optimisation proce-
dure would require zone level temperature sensors and direct control of heat-
ing units. Currently, there is a significant surge in interest and availability of
smart home devices controlled by a central Al coordinator using the paradigm
of IoT. It is therefore feasible and indeed probable that most future (and some
current) buildings, both commercial and residential, will have the capability to
control individual room set points and devices through an integrated system.
The proposed optimisation procedure would sit above these physical systems
requesting and sending relevant information (set points and indoor tempera-
tures) taking advantage of existing physical and network infrastructure. It is
envisaged that this control scheme would be more applicable to commercial
buildings initially. This is due to occupancy patterns being more clearly de-
fined and predictable within office buildings and the fact that occupants do not
necessarily expect to have direct control over the heating systems.

This particular case study has focussed on a single winter week to illustrate
the performance of the proposed methodology. This week was specifically cho-
sen to best demonstrate the actions of the controller as heat demand was high.
However, the core concepts underpinning this controller could be applied to a
wide range of building energy scenarios. In summer, it could control the cool-
ing set point temperature to minimise cooling energy consumption. Also, the
methodology could be adjusted to manage additional building comfort criteria
such as ventilation and lighting. Provided an internal model can be produced
that relates the decision variable to the objective and comfort constraints, this
methodology can apply.

The ANN surrogate models developed in this paper have been proven to be
accurate enough to replicate the simulation model in this case study. However,
the most significant challenge in the application of this control strategy remains
the development of the surrogate models for the prediction of energy consump-
tion and indoor temperature. The approach used in this study was to train an
ANN based on large amounts of simulated data. However, accurate simulation
models are not widely available for most buildings. It is theorised that building
simulation models are likely to become more available in the future, driven by
government legislation aiming at reducing energy consumption from buildings
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and improving retrofitting procedures.

This is leading to increased prevalence of Building Information Modelling,
BIM, which are increasingly including energy analysis modules. Researchers
are working on methods to capture existing building information, convert to a
digital representation, from which generate a building energy simulation model
and calibrate the model based on existing historical data. Alternatively, if the
case study in question has developed a significant log of historical energy con-
sumption and temperature data, machine learning models could be directly
generated from this. To model at an hourly or sub hourly temporal scale the au-
thors’ believe that specific ANN would be required for each building as generic
ANN based on broader building categories would not be able to capture the
intricacies if an individual building. Future work should aim to apply the mod-
elling methods to a real case study building to validate the performance of
this methodology. In addition the entire control strategy should also be imple-
mented on a real building to demonstrate the true effectiveness of the method-
ology defined in this Chapter.

Throughout both tariff scenarios, the results show negligible difference be-
tween the day ahead optimisation and the MPC optimisation. This contradicts
results published in many other state of the art building control papers. How-
ever, this may be due to the lack of uncertainty in the testing scenarios pre-
sented in this Chapter. Both occupancy and weather conditions are assumed
known in advance and these forecasts are assumed 100% accurate which
would not be true in practice. Therefore, future work should introduce forecast-
ing uncertainty and assess the impact on the two optimisation scenarios. The
hypothesis being that the MPC optimisation will adjust to these uncertainties
better than the day ahead optimisation as updated, more accurate weather
forecasts become available.

An additional point of future work will aim to create a mechanism by which
each zones optimisation can influence adjacent zones. In this study, each
zone is optimised separately. This was a conscious decision to allow each
zone optimisation to run in parallel, hence reducing the total optimisation time
to the order of 10 minutes. Despite the lack of interaction between the zone
optimisations the proposed procedure was able to achieve significant energy
savings with no loss to thermal comfort. This was likely due to the set point
schedules not deviating significantly from day-to-day, the optimisation altered
set points only marginally from the baseline. Therefore, the heat transfer from
zone to zone did not vary to a degree that caused a significant enough impact
to prevent the optimisation from working. Future work should aim to pre-screen
case study buildings in order to assess closely coupled zones and develop a
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method by which decisions made in one zone are transmitted to the second.

4.6 Conclusion

This Chapter primarily aimed to answer research question 2:

Can predictive control of building energy demand with consideration of ex-

ternal factors lead to reductions in energy cost and improve demand-side flex-
ibility?
The case study results clearly indicate that the outlined zone-level, building
optimisation methodology significantly outperforms traditional rule-based, re-
active control. The predictive and context-aware nature of the optimisation
methodology led to clear energy savings and improvements over the base-
line scenario. In addition to providing energy savings, this chapter has also
demonstrated there is a degree of flexibility within building energy demand.
The optimisation was altered to take into account an additional external factor,
namely the ToU tariff. With this extra information, the optimisation successfully
adjusted the building demand profile to best take advantage of the new sce-
nario. This factor is a key foundation on which the remainder of the thesis will
be built.

The original contributions resulting from the chapter are a combination of
the following points:

e Zone level ANN have been developed to accurately forecast the indoor
temperature and energy consumption by considering variable weather,
occupancy and temperature set points.

e This is combined with a genetic algorithm to optimise the temperature
set point to minimise either energy consumption or energy cost within a
computationally short period.

e The effect of deploying the optimisation as day ahead optimisation or
hourly, sliding window MPC was assessed.

e The control scheme was demonstrated to be adaptable to time varying
energy prices.

e The zone-level optimisation reduced energy consumption by 18% and
energy cost by 23.5% compared to the static baseline control scheme.
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S District-Level Energy
Management

The optimisation carried out in Chapter 4 focussed on a single building that
was considered largely in isolation of any external energy networks (excluding
pricing). However, as explored in Chapter 1 and Chapter 2, the energy sector
is becoming increasingly devolved to local energy microgrids. Therefore, the
next layer of research carried out in this thesis, focusses on the optimisation of
the energy generation of a proposed district heating network. At its core, this
chapter is driven by the following questions. In a multi-vector district energy
system with several energy conversion technologies, how can the optimal op-
eration of these technologies be determined? How can the resulting optimal
schedule be adjusted to account for prediction uncertainties?

5.1 Revisiting the Research Question

This chapter aims to address research question 3, restated here as:

Can taking an optimisation-based approach to the control of district heat
generation improve upon existing rule-based priority order strategies?

To tackle this question, a realistic, virtual eco-district has been developed.
The optimisation strategy outlined in this chapter will aim to control the heat
generation supply units and the thermal storage flexibility to maximise the op-
erational profit to the district energy centre. To provide an appraisal of the op-
timisation performance, the results will be compared to a rule-based, priority
order, baseline scenario similar to that used in existing pilot sites.

The methodology described in this chapter was originally published in the
journal article, Reynolds et al. [330] and reformatted and expanded for this the-
sis. This work built upon the initial, proof of concept investigations conducted
in Reynolds et al. [331].
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Figure 5.1: ‘The Works’ pilot site in Ebbw Vale [182]

5.2 Case Study District Description

The analysis carried out in this study is based on a virtual, simulated, eco-
district containing mixed-use buildings alongside an energy centre producing
heat, delivered by a district heating network. The district is designed to be
based in the city of Cardiff, UK, with real historical weather files used as in-
puts to simulation models. This district has been inspired by the authors’ in-
volvement with real eco-districts, including "The Works" district in Ebbw Vale,
Wales (UK) [283] through the RESILIENT and PENTAGON projects. Through-
out these projects, significant modelling efforts have been undertaken when
studying this pilot site illustrated in Figure 5.1. The entire district was scanned
using a Faro 3D laser scanner in a similar process to that carried out in Sec-
tion 4.2.1. Over the course of these projects the district was converted from
simple point cloud representations to BIM models to allow a semantic repre-
sentation of the site. Initial energy models of each building within the district
were also created by the author and members of the authors’ institute.
However, a fully simulated, virtual district has been used for a number of
reasons. It allows freedom with respect to scenario generation such as the
type of buildings and generation technologies included. ‘The Works’ site con-
tains a gas CHP, biomass boilers and gas boilers, hence, does not provide the
multi-vector energy network envisaged by the author for the district optimisa-
tion case study. Furthermore, throughout this research, retrieving data from
the pilot site has proven to be extremely challenging. The lack of original data
with sufficient accuracy, precision and granularity meant the energy models
developed for the case study could not be calibrated. Thus, any energy mod-
els produced throughout these projects are subject to the perception and best
guesses of the modellers. Utilising a virtual, simulated district also has the
benefit of allowing like-for-like comparison using different strategies but main-
taining the same user behaviour and weather conditions. At all stages, the
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author has endeavoured to make the virtual eco-district as realistic as possi-
ble using a combination of detailed simulation models and environmental data
from real pilot sites to model the case study district.

5.2.1 Demand-Side Design

District energy demand is modelled at a building level using the detailed build-
ing energy simulation tool, EnergyPlus [332]. In order to make the demand-
side simulation as realistic as possible, Commercial Reference Building Mod-
els have been directly downloaded from the US Department of Energy’s web-
site [333]. Using these models ensures a rigorously verified, realistic model
of a modern, energy efficient building without arbitrary parameters introduced
based on a particular modellers perception. One of the explicit intended uses
of these reference buildings is to "analyze advanced controls" [334]. It also has
the added benefit of allowing this work to be open, reproducible and directly
comparable to any future energy optimisation platform. Specifically, the build-
ings chosen to be represented in the virtual eco-district are the Large Office,
Secondary School, Hospital, Large Hotel, and High-Rise Apartment. Both the
hospital and hotel provide a considerable and steady baseload with the school
and office generating daily peaks forming and interesting scheduling challenge
for facility manager. The overall district heating consumption over a typical
winter week is shown in Figure 5.2.

5.2.2 Supply-Side Design

To increase the resilience, flexibility and efficiency, and given the nature of the
demand presented in Section 5.2.1, the district energy supplied from the en-
ergy centre will come from multiple sources and multiple generation units. The
relatively large and consistent baseload makes a Combined Heat and Power
(CHP) unit highly attractive as they achieve very high combined efficiency pro-
vided they can maintain operation for long periods. In this case, the CHP has
been sized to allow it to be operational for 5000-6000 hours per annum in line
with current standards [335]. By plotting the annual demand frequency, it was
found that a CHP size of around 200-225kW, fulfilled this specification and
therefore the CHP was modelled on a Power Box 138SNG with a nominal ther-
mal and electrical capacity of 207kWy, and 138kW,, respectively.

In addition to the CHP providing a base load, a Heat Pump (HP) has been
included to provide additional, more flexible, low-carbon, heat output. The HP
has been sized relative the CHP to allow the maximum CHP electrical output
to be similar to the maximum electrical input of the HP. In reality, a HP of this
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Figure 5.2: A Sample Week of Heating Demand in Winter

size is likely to be a water-source HP and due to the relatively high district
heating supply temperature of 80°C the HP coefficient of performance (COP)
is likely to be a relatively low 3.0 [336]. Therefore, in this case study a HP with
a nominal output thermal capacity of 400kW is included meaning an electrical
input of 133kW.

To provide crucial flexibility and resilience, a series of gas boilers are in-
cluded to provide the peak load capacity. The total gas boiler capacity has
been sized to meet the maximum possible demand of 2400kW. This has been
split into four separate units of 600kW gas boilers modelled on the Rehema
gas 310 eco pro 650. Whilst natural gas remains a polluting, non-renewable,
fossil fuel, it is currently viewed as the least worst option during the transition to
a clean, renewable future [337] and is therefore used in this case study. How-
ever, it is likely that in the near future natural gas boilers and CHP could be
modified or replaced to utilise biomass, synthetic natural gas or biogas. The
optimisation strategy and modelling procedure outlined in this study is equally
applicable in such a scenario.

Renewable energy generation in the form of solar photovoltaic (PV) panels
are included in the simulated eco-district. The modelling of solar PV genera-
tion will be based on the historical data of a real pilot site, namely ‘St Teilo’s
School’ in Cardiff [338]. The modelled solar PV generation was scaled up from
a building to district scale leading to a total capacity of 250kW,. Finally, a
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Figure 5.3: Schematic Representation of Virtual Eco-District Case Study

thermal storage tank has been included to increase the generation flexibility
and providing the opportunity for an intelligent management system to capi-
talise on this. Note that this storage tank goes beyond the traditional buffer or
mixing tanks which are commonplace in a district heating system with multi-
ple generation sources. The thermal storage tank considered in this study is
actively controlled and can be ‘charged’ by increasing the water temperature
above that of the district supply temperature. A schematic representation of
the virtual eco-district considered in this work is presented in Figure 5.3.

Note that in this study, the district heating network has not been explicitly
modelled and it is expected that for a modern network, the heat loss during dis-
tribution will be small (around 1-2% during normal operating conditions [339]).
However, it is proposed that if this control strategy was deployed in reality,
the heating network characteristics such as heat losses, thermal lag and re-
turn temperatures would need to be modelled. Based on the observed district
heating characteristics, the heat demand of each building relative to the energy
centre would need to be adjusted. It is expected that the predicted building de-
mand would need to be increased due to account for the distribution losses
and the demand from the perspective of the energy centre would need to be
brought forward to account for the propagation time.

The proposed methodology is flexible to incorporate almost any form of dis-
trict heating model providing the computational time was short enough to com-
plete within a fraction of the optimisation period. Traditional linear or gradient-
based methods will always require simplified models and are hence more re-
stricted. District heating distribution modelling will be addressed in future work
and calibrated once sufficient data has been collected from pilot sites.
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5.3 District Modelling

The complete district model is made up of several sub-components including
controllable generation units (CHP, HP and gas boilers), a thermal storage
hot water tank, uncontrollable energy generation from solar PV panels, and
demand from the selected buildings. This section will outline how each of
these components is modelled for use in the optimisation strategy.

5.3.1 Controllable Generation Units

The heat energy generated by the production units is simply calculated by
multiplying their percentage load (an optimisation decision variable) and the
nominal thermal capacity of the production unit.

QY = LY xCyp, (5.1)

Where @V is the heat generated by production unit U at time ¢ due to the load
percentage L and the nominal thermal capacity C}; .

The electricity produced by the CHP is calculated in a similar manner in
eq. (5.2).

I L O (5.2)

Where ECHP represents the electrical load produced at time ¢ by a CHP with a
nominal electrical capacity of CG#”.

The raw fuel consumption of each generation unit is calculated based on
the percentage load, nominal efficiency and part load factor. Crucially, this
optimisation has the capacity to include non-linear part load functions which
would need to be calculated experimentally or from data provided by man-
ufacturers. These non-linearities are often ignored by common optimisation
methods found in the literature such as MILP. In this study we have considered
a polynomial regression equation relating relative efficiency and load percent-
age eq. (5.3) similar to that found in [340] and [341]. However, this optimisation
methodology would be flexible to include a variety of part load efficiency com-
putations such as relationships with outdoor temperature, atmospheric pres-
sure or calculation via a black box model.

Reln? =a - (LY)* +b- (LY) + ¢ (5.3)

Where Reln! is the relative efficiency of generation unit U at time ¢ and a, b
and c are regression coefficients.
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Finally the raw fuel consumption is calculated in eq. (5.4).

FU _ Qfﬁ]

=t 5.4
" 9V x Reln? (5.4)

Where FVU is the fuel consumption (e.g. gas or electricity) of generation unit
U at time t and 7V is the nominal thermal efficiency of the generation unit and
RelnY is the relative thermal efficiency due to part load characteristics. Note
that in the case of a HP, the coefficient of performance (COP) will be used in
the place of the nominal thermal efficiency. Due to the size of the HP simulated
in this case study, it is assumed to be modular. Therefore, it is assumed that
part-load factors are not applicable in the case of the HP as modules will either
operate on or off, and to vary the output of the HP the number of operating
modules will vary [287].

The cost of the generation, V; is simply the multiplication of the fuel con-
sumed at time, ¢, and the energy tariff at that hour, P;, as shown in eq. (5.5)

V,=F/xP (5.5)

As well as cost, the district can receive income, I, through government subsi-
dies such as the Renewable Heat Incentive (RHI) and feed-in tariff (FIT). RHI
income is related to the energy provided from sources such as biomass, heat
pumps and solar thermal systems. The feed-in tariff is the price at which elec-
tricity can be sold back to the national grid. They are calculated as shown in
eg. (5.6) and eq. (5.7) respectively.

IR = QU x P (5.6)

™" = B x PFT (5.7)

The final objective function to be minimised, f, is the total cost of generation
minus the income from RHI and the feed-in tariff calculated using eq. (5.8).

24 24
f=YV->"I (5.8)
t=1 t=1

Despite not being an explicit objective of the optimisation, the CO, emis-
sions resulting from each control strategy will be calculated to provide addi-
tional comparison. This was calculated using eq. (5.9), which multiplies the
raw fuel consumption by their respective CO, emission factors, X.The emis-
sion factors have been taken from UK government statistics [342]. The elec-
tricity factor in particular would vary from country to country and year to year
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Table 5.1: Summary of optimisation constants

Symbol Parameter Description Unit Value
cgHr CHP Thermal Capacity kW 207
cqgEP CHP Electrical Capacity kW 138
cHP HP Thermal Capacity kW 400
CcSE Gas Boiler Thermal Capacity kW 2400
Cf’h Heat Storage Thermal Capacity kWh 500
nGHP CHP Nominal Thermal Efficiency % 52.8
nGHP CHP Nominal Electrical Efficiency % 35.2
nHP HP COP - 3
nGB Gas Boiler Nominal Thermal Efficiency % 95.75
nfh Thermal Storage Charging Efficiency % 95
pPFIT PV Feed-in Tariff p/kWh 1.82
PRHI HP RHI Tariff p/kWh 417
pGas Gas Tariff p/kWh 1.837
X Gas Gas CO, Conversion Ratio kgCO,/kWh  0.18396
X Bl Electricity CO, Conversion Ratio kgCO»/kWh  0.28307

depending on the make-up of electricity generation in each specific case.
COY = FV x XV (5.9)

For reference a complete list of the constant parameters is included in Ta-
ble 5.1. A time of use electricity tariff has been used with data retrieved from
the ‘Octopus Energy Agile Tariff’ [343] with varying half-hourly prices linked to
the wholesale electricity market. Note that a static heat pump RHI value has
been given in Table 5.1. This is a necessary simplification due to the method
by which this is legislated for in the UK. Heat pump RHI has two pricing tiers,
receiving 9.36 p/kWh for the first 1,314 hours of the year and 2.79 p/kWh for
any remaining operation. Clearly, it would not be reasonable to claim the tier 1
rate within the optimisation because it is early in the year. Instead, a weighted
average value has been determined based on the number of expected hours
of operation over the whole year based on the thermal demand profile.

5.3.2 Thermal Storage

A thermal hot water storage tank is modelled relatively simply in this study as
a percentage of its maximum energy capacity. The maximum thermal capacity
of the storage tank is assumed calculated via eq. (5.10).

ch =m-c,- (T3, — TP (5.10)

max
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Where (3 is the maximum energy available in the storage tank, m is the mass
of water, ¢, is the specific heat capacity of water, 7). is the maximum temper-
ature of the storage tank and T?# is the district heating supply temperature,
assumed to be a constant 80°C in this work. Therefore it is evident that the only
variable in determining the ‘charge’ of the storage tank is the tank temperature
(assuming a constant c,).

The net heat energy taken from, or supplied to, the storage tank, Q?, is
determined in eq. (5.11) by computing the difference between current and pre-
vious tank storage percentage, S; multiplied by the maximum capacity of the

storage tank, C;; and the charging and discharging efficiency »°.
Q7 = (S —Si1)-n°- Cy, (5.11)

Note that modelling the thermal storage in this way assumes a uniform tank
temperature and constant district heating temperature. It also lumps ambient
heat losses from the storage tank with losses due to discharging and charging
and is held constant in this study. However, it is likely that the ambient heat
losses from the thermal storage would be related to the storage tank temper-
ature, so eq. (5.11) could be adapted with an additional term to include this if
the effect could be quantified through experimental data.

5.3.3 Uncontrollable Generation

As discussed in Section 5.2, a solar PV field of 250kWe, capacity is consid-
ered in the described case study district. The PV generation modelling will
be scaled up based on data from a real installation based in Cardiff with half-
hourly recorded data over a period of two years from 2015-2016. The available
length of data makes this scenario prime for the use of machine learning mod-
els to predict the next 24-hours of PV power output. Consistent with the rest of
this thesis, back-propagation Artificial Neural Networks (ANN) will be trained to
predict several key variables using MATLAB’s ‘Neural Network Toolbox’. Their
effectiveness in the building and energy domain has been well demonstrated in
the literature. They have been shown to achieve high accuracy, computation-
ally efficient, and require no knowledge of the physical relationships between
inputs and outputs. The theory behind ANN has already been provided in Sec-
tion 3.4.1 and will not be discussed in detail in this chapter.

In the case of the solar PV model, the possible inputs were as follows;
forecast outdoor dry-bulb temperature, relative humidity, solar radiation, wind
speed, atmospheric pressure, the hour of the day, the day of the year, the
month and the PV output at the same time on the previous day. The ANN
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Figure 5.4: Test data comparing solar PV generation a) ANN prediction vs
actual data, b) Absolute error between the two

output was hourly PV electricity generation in kWh. The complete dataset was
split randomly, 70% for training, 15% for validation and 15% for testing. An
identical procedure to that described in Section 4.2.4.2 was used here to find
the optimal combination of inputs and ANN architecture to predict PV power
output. Following the offline tuning of the ANN architecture, several inputs were
found to be redundant and hence not used in the final PV ANN architecture.
The resulting model uses only outdoor temperature, relative humidity, solar
radiation, hour, day, month and the output 24-hours ago. It contains two hidden
layers with 15 neurons in each, uses the ‘tansig’ transfer function and is trained
using the Levenberg-Marquardt training algorithm. The training and testing R?
values were 0.9489 and 0.9412 respectively. The prediction performance is
displayed graphically for a sample week in Figure 5.4.

5.3.4 Building Demand Modelling

ANN were also used to predict the energy consumption for the next 24-hours
of each building within the district. The EnergyPlus models described in Sec-
tion 5.2 were run with real Cardiff weather data over two years over 2015-2016.
15% of the dataset, spread throughout all seasons, was removed to form the
testing dataset. The validation dataset comprised another 15% leaving 70%
of the original dataset as training data. Weather, time, date, occupancy, and
previous energy consumption values were tested as inputs, and the heating
energy consumption was the output. Independent ANN were created for each
building to capture the particular characteristics of each energy demand pro-
file. Once again, several possible inputs reduced the prediction performance of
the ANN (e.g. wind speed) and hence were removed as ANN inputs. The re-
sulting models used only the following variables as inputs; the hour of the day,
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Figure 5.6: Test data comparing aggregated building demand a) ANN predic-
tion vs target, b) Absolute error between the two

outdoor temperature, relative humidity, day of the week, energy consumption
at the same timestep the previous day, and energy consumption at the same
timestep the previous week. The output of each model was the hourly heating
energy consumption of each building. The resulting ANN architecture is shown
in Figure 5.5. For the sake of brevity and given that the aggregated total heat
demand is the input to the optimisation; only a comparison between the ag-
gregated predicted and actual demand has been shown for two test weeks in
Figure 5.6. The figure demonstrates excellent agreement between prediction
and target reinforced by R? values of 0.9745 and 0.9660 for training and testing
respectively.

5.4 Supply-Side Optimisation Methodology

This section will outline the methods used to optimise the energy generation
set point schedule for the proposed eco-district. The objective of the optimisa-
tion is to maximise the operational profit (note this excludes maintenance and
capital costs) to the district energy hub, while meeting the thermal demands of
the district. This case study will use a genetic algorithm (GA) in Model Predic-
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tive Control (MPC) format to complete this optimisation.

5.4.1 Fitness Calculation

As described in Section 3.4.2, the fitness of each individual solution within each
population of the GA needs to be computed to eventually find the optimal solu-
tion. An overview of the fithess calculation procedure is shown in Algorithm 1.
This procedure starts by retrieving the predicted heat demand, renewable gen-
eration, energy price tariffs and decision variables for the following 24 hours in
1 hour timesteps. The decision variables in this case are the percentage load
output of the CHP and HP as well as the percentage charge of the thermal
storage tank at each hour of the day giving a total of 72 decision variables.
From this, the output energy of each unit is calculated as well as the primary
energy input. Following this, the difference between the predicted heat de-
mand and the heat produced from the CHP, HP and storage is calculated. Any
hour in which the production does not meet the demand is automatically met
by the gas boilers which provide the flexible reserve. The fitness function is
modelled in this way for a number of reasons. It allows a reduction in the num-
ber of required decision variables by 24 as the gas boilers are not explicitly
modelled as decision variables but implicitly controlled as their consumption
will still have a significant impact on the fitness of each solution. It removes
the requirement for constraint handling and penalisation of solutions which fail
to meet the demand [344]. In this fitness formulation, the predicted demand
is always met and this constraint cannot be breached. Note that oversupply is
not explicitly punished in the fitness calculation and it is assumed that excess
heat can be dumped, it is presumed that oversupply will naturally be curtailed
by the optimisation as it is not economical.

Finally, the cost of primary input energy including natural gas and electric-
ity is calculated by multiplying consumption by the relevant tariff. The income
provided by the Renewable Heat Incentive (RHI) associated with the HP is
calculated, along with the income received through selling excess electricity
to the grid. Note that only delivered heat is eligible for RHI income, which is
a government subsidy aimed at encouraging low carbon heating. Any heat
that is dumped is deducted from heat eligible to gain RHI income, preventing
any ‘gaming’ of the system by the optimisation. In addition, any unnecessary
charging and discharging of the thermal storage incurs a reduction in the heat
eligible for RHI income. This prevents the optimisation from charging the ther-
mal storage at one hour, gaining RHI income for that hour, and then dumping
the heat from the storage during the following hour. The optimisation objective

126



5.4. SUPPLY-SIDE OPTIMISATION METHODOLOGY

Algorithm 1: Procedure to calculate the fitness of each individual

Input = L5, LY os, Siovrass B o5 QT Pyt 93, Si-1
Output: f
for All Individuals do
for t =t to t+23 do
Calculate Q¢HF, QHF Q7 ; // Using eqs. (5.1) and (5.11)
if QTotl — QCHP _ QHP _ 5 5 0 then
| Set QFF to cover underproduction ;

end
Calculate F°** and net F*' ;  // Using eqs. (5.2) to (5.4)
Calculate V; and [, ; // Using eqs. (5.5) to (5.7)
end
Calculate final fitness, f ; // Using eq. (5.8)

end

(and final fitness) is to minimise is the total cost of primary energy consumption
minus the income from RHI and selling excess electricity to the grid. Note this
is the same as maximising the profit received by the district operator.

5.4.2 Constraint Handling, Bounds and GA Settings

Due to the nature of the decision variables used in this study some adapta-
tions were required to ensure all decision variables remained within bounds.
Due to technical constraints, the CHP was modelled as having a lower operat-
ing bound of 70%. Therefore, the only valid values for the decision variable to
take would be 0 (off) or 70% to 100%. This discontinuity could not be modelled
within MATLAB's pre-existing GA functions and custom creation and mutation
functions were required. During the creation function, individuals are randomly
generated. For the 24 decision variables relating to the CHP, the function pro-
duces a random integer between 69 and 100 representing the load percent-
age of the CHP. Then any of these decision variables with a value of 69 was
changed to 0. The remaining 48 decision variables relating to the HP and the
thermal storage could take any value between 0 and 100.

The crossover function used is MATLAB'’s ‘crossoverscattered’ function as
this recombines two parent solutions, mixing the existing decision variables
and hence ensuring all solutions remain feasible with respect to the operat-
ing constraints. A custom mutation function was required for the same reason
as the custom creation function. In the mutation function, each decision vari-
able within the individual has a constant 5% probability of mutating. If the
variable does mutate then it follows the same procedure outlined for the cre-
ation function. If the decision variable relates to the CHP a random integer
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between 69 and 100 is generated, and then, if the value is 69, it is changed
to 0. These custom functions ensure that every individual remains a feasible
solution throughout the optimisation procedure. Ensuring that every individual
remains a feasible solution throughout the optimisation procedure mitigates
the intrinsic discontinuity of the search space brought by the CHP’s technical
specificity and consequently makes the GA less likely to get stuck in a local
optimum. The remainder of the GA parameter settings include an elite count
of 5% of the population, a tournament selection function, a crossover fraction
of 80%, a population size of 200, and a function tolerance of 1e — 7. Note that
for all results discussed throughout this work, the GA exited each optimisation
due to the function tolerance rather than the maximum number of generations
or time limits, this ensured that the optimisation was well converged.

5.4.3 Real-time Control Adaptation

This optimisation will run as MPC meaning it will re-optimise every hour with
updated information such as weather conditions, building demand prediction,
generation unit failures etc. Operating as MPC contributes significantly towards
managing the errors between predictions and reality as the most up to date in-
formation is always used. It also allows the optimisation to adapt to unforeseen
circumstances and change course within a relatively short period of time.

However, despite operating as MPC, small errors between prediction and
reality are to be expected and must be handled between each hourly optimisa-
tion step. To tackle this, a rule-based schedule adapter has been developed to
adjust the optimal set points to meet the actual demand. Firstly, this algorithm
calculates if there is an energy deficit or surplus between the net predicted heat
demand and actual net demand. If there is an energy deficit, i.e. observed de-
mand is higher than that predicted, the algorithm enacts the following steps
until the deficit becomes zero:

1. Increase the supply percentage from the lead heat supplier (the CHP or
HP depending on which has a higher percentage load)

2. Increase the supply from the secondary supplier
3. Increase the supply from the gas boilers

Alternatively, if there is an energy surplus, which is the case when the predicted
demand is higher than the actual demand, the following steps are taken until
the remaining energy surplus is zero:

1. Reduce the energy supply from the gas boiler
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Figure 5.7: The TOU electricity tariff used for the optimisation test week taken
from historical data published by Octopus Energy

2. Increase the energy stored within the thermal storage tank

3. Reduce the secondary supplier (the CHP or HP depending on which has
a lower percentage load)

4. Reduce the heat production from the lead supplier

The philosophy behind this adjustment algorithm is to make limited changes
to the optimal set point schedule provided by the GA. Whilst it may not achieve
the absolute optimal result, it is intended as a quick, simple and heuristic
method to be implemented between each optimisation timestep.

5.5 Results

The optimisation methodology described in this chapter was applied to the
case study district over the simulated test week of 8th to the 13th of February
2016 using recorded weather data from the city of Cardiff. This week has been
chosen as a representative winter week in the heating season. The relatively
high heating demand during this week provides the best showcase for the op-
timisation decision making rather than a period with low heat demand in which
only a small fraction of the energy centre’s capacity is utilised.

To provide a comparison for the optimisation strategy a baseline, reactive,
rule-based, control strategy has been developed. This strategy will not actively
control the thermal storage. Instead, it will follow a priority order generation
strategy. Firstly, the CHP will be used to provide the base load as it is the least
flexible generator. If demand is greater than the CHP capacity then the HP
will be used. If the heat load exceeds this, then the gas boilers will be utilised
to meet these peak loads. The electricity pricing tariff, taken from historical
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Figure 5.8: Heat generation schedule for three sample test days showing: a)
Baseline Solution, b) Supply-side optimisation

prices published by Octopus Energy, over this test week is shown in Figure 5.7.
The electricity price fluctuates between lows of around 9p/kWh during off-peak
hours and highs of around 25-30 p/kWh during the evening peak. There is also
a smaller peak in the morning, at around 8-10am.

The behaviour of the supply-side optimisation in comparison to the baseline
solution is shown in Figure 5.8. For clarity, only a sample 3 days of results are
shown and discussed, but the optimisation makes similar decisions on all case
study days. These results demonstrate a consistent pattern, the optimisation
chooses to charge the thermal storage during the early hours, during the sad-
dle point in the middle of the day, and during the evening. The thermal storage
energy is generally used to displace the gas boiler generation as this the most
costly form of heat generation for the district. The result of the decisions taken
by the optimisation leads to an overall reduction in CHP and gas boiler output,
by 3.1% and 5.4% respectively, offset by a 6.3% increase in HP output.

These changes have a number of financial implications to the district. In the
baseline scenario, the district buys no electricity from the national grid. How-
ever, in the optimised scenario, a modest total of 254 kWh is required over
the week. The average price of the electricity during this scenario 9.10 p/kWh,
demonstrating that the optimisation only purchased electricity during the off-
peak periods when the tariff prices were lowest. The optimised scenario also
sells less electricity back to the national grid, suggesting the optimisation bal-
ances the CHP electricity output and HP electricity input as it is economically
advantageous to utilise electricity locally rather than sell to the national grid at
relatively low prices. This point is illustrated in Figure 5.9 where generally the
dips in CHP electricity output coincide with reduction in HP demand. However,
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Figure 5.9: Electrical generation from the CHP and electrical consumption of
the HP for: a) Baseline solution, b) Supply-side optimisation

the baseline solution maintains it's priority order strategy and over-produces
electricity during low demand periods. The increased electricity costs in the
optimised scenario is outweighed by a significant increase in the income from
the government RHI incentive for the HP. Over the test week, the profit gener-
ated whilst fulfilling the heat demands of the district is increased from £362.25
during the baseline scenario to £524.85 by optimising the energy supply.

As well as achieving an economic benefit, the optimisation has also resulted
in an environmental benefit in terms of a 3.75% reduction in CO, emissions.
These results show that in this scenario the objective of minimising cost and re-
ducing CO, emissions are mutual in this case as both objectives are achieved
through reducing the gas boiler usage with thermal energy storage scheduling.
The average time to complete an optimisation was 143 seconds per timestep
using a 4-core, Intel i7-6700 2.60GHz, 16GB RAM PC.

5.6 Discussion

The results provided in Section 5.5 demonstrate that an optimisation based
approach to controlling the energy generation of a district energy centre can
provide significant gains when compared to a static control system. The optimi-
sation methodology presented in this Chapter was able to increase the profit to
the energy centre by almost 45% over the test week. As opposed to the base-
line scenario, which followed a simple priority order strategy, the optimisation
strategy was free to trial more experimental and unintuitive solutions. Primarily
the optimisation achieved its benefits by utilising the flexibility of the thermal
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storage tank. The optimisation elected to charge the storage tank during the
early mornings, saddle period during the middle of the day, and evenings where
the demand dipped below the combined capacity of the CHP and HP. Effec-
tively, this allowed the displacement of some gas boiler generation which is the
most costly form of heat generation in this scenario.

As well as utilising the thermal storage tank, the optimisation seems to
consistently choose to balance the CHP and HP load rather than favour one
generation technology. This appears to be an attempt to minimise the amount
of excess electricity generation provided by the CHP which would simply be
sold to the national electricity grid for a relatively low price. It is unlikely that
this level of finesse could be incorporated into a rule-based, reactive strategy
such as that used in the baseline scenario. However, maintenance costs have
been excluded from this work as it is difficult to relate decisions made on an
hourly basis to the impact on maintenance cost which is more commonly esti-
mated at an annual scale. If the increased modulation of the generation units
(in particular the CHP) caused a significant increase in annual maintenance
costs then some effort should be made to reflect this in the optimisation fitness
function, likely through a form of penalty function.

The optimisation methodology was equipped with an error management
stage based on simple heuristics to make small adjustments to the optimal
solution to reflect real-time discrepancies between prediction and reality. This
kind of step is essential for a methodology of this sort to be applicable to real
pilot sites. The error management stage appears to have performed well in
this case study evidenced by the large increase in profit and the reduction in
emissions. However, it is difficult to quantify the effect of the error management
stage entirely. A remaining task would be to develop a method by which this
could be implemented throughout the optimised hour. Currently, the strategy
receives the actual energy consumption data at the end of the hour and retro-
spectively amends the optimal solution for the previous hour. In reality, it would
need to continually amend the solution during the optimised hour using lower-
level controllers within the energy centre. This could be partially resolved by
improving the timestep granularity from 1 hour to 15 or 30 minutes.

The case study results reflect the optimisation performance within the spe-
cific context of this case study district. It is not possible to extrapolate the
performance of the optimisation to districts with a different energy configu-
ration. However, in the authors’ opinion, an optimisation-based approach is
significantly more flexible than static rules implemented by a facility manager.
Whereas it may take a human expert several months to adjust to new pricing
tariffs or the addition of new equipment, the optimisation can adjust immedi-

132



5.7. CONCLUSION

ately if appropriately programmed. Furthermore, the optimisation is free to
assess the feasibility of unintuitive solutions, for example the displayed results
show an increase in electricity purchased from the grid actually led to an overall
increase in profit.

This case study was based on optimising the delivery of heat energy within
a district heating network, however, the principles of this optimisation method-
ology could easily be translated to different control variables. This could include
the delivery of cooling in warmer climates via a cooling network, or the supply
of electricity within a microgrid system. To demonstrate this level of flexibility,
future work should aim to implement the control methodology on a wider range
of scenarios with different gas and electricity prices as well as additional energy
conversion technologies such as biomass, solar thermal, and power-to-gas.

5.7 Conclusion

This Chapter primarily aimed to answer research question 3:

Can taking an optimisation-based approach to the control of district heat
generation improve upon existing rule-based priority order strategies?

In the authors opinion, the case study result clearly show that the developed
optimisation methodology can outperform the static and reactive rules that
would be implemented by a facility manager. When applied over the test week
the optimisation achieved a 45% increase in profit and a 3.75% reduction in
CO, emissions. This demonstrates that increased load flexibility within a dis-
trict energy network and the adaptability this methodology provides could bring
widescale advantages. This, combined with the findings of Chapter 4 will be
instrumental in the remainder of this thesis.

The original contributions resulting from the chapter are a combination of
the following points:

e The operational optimisation of the energy supply of a complex multi-
vector energy system including natural gas, electricity, and heat.

o Utilisation of multiple ANN to predict variables such as building energy
consumption, indoor temperature and PV generation.

e An intermediate, real-time control adaptation is included to adjust the
optimal solution to account for prediction errors that ensures a feasible
solution.

e The optimisation methodology led to a 45% increase in profitand a 3.75%
reduction in CO, emissions.
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6 Building and District-Level
Energy Management

Chapter 4 demonstrated that an adaptive, optimisation-based method for the
control of building demand could be flexible to external factors such as a ToU
energy tariff. Chapter 5 demonstrated that an optimisation-based approach to
managing district energy supply could find the less intuitive solutions to im-
prove upon a reactive, priority order solution. It also showed that including
flexibility from a thermal storage tank helped to increase the profit generated
by the district energy centre. This Chapter will effectively build upon the con-
clusions drawn from the initial investigations posed in Chapter 4 and Chapter 5
to provide an energy management solution that simultaneously controls both
energy supply and demand at building and district-level.

6.1 Revisiting the Research Question

Specifically, this Chapter aims to answer research question 4:

Can integrated, holistic control of both energy supply and energy demand
lead to greater economic and environmental benefits than independent con-
trol?

To provide an answer to this question, the virtual, simulated, eco-district
set out in Chapter 5 will also be used in this Chapter. However, the complex-
ity of the case study will be increased by including the indoor temperature set
point of the office building to be directly controlled alongside the district energy
generation. It is hypothesised that the flexibility provided by actively adapting
the demand profile of the buildings within a district will lead to increased eco-
nomic and energetic savings in comparison to just optimising at a district-level.
The inclusion of building temperature control may give the optimisation some
scope to shift some of the heating demand (through pre-heating) away from
hours where the production of that heat generation is more expensive. The of-
fice building alone has been chosen as it is expected to have the most thermal
flexibility in comparison to a hospital, hotel, school and apartment block.
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On face value, this Chapter may seem small in relation to Chapters 4 and 5.
This is due to the iterative nature of the research carried out in this thesis and
the way it builds to the largest contribution in this Chapter. This thesis aims
to continually add layers of increasing complexity, thus, it is natural that this
Chapter builds on top of the content provided in previous Chapters. So while
the number of pages in this Chapter is less than previous Chapters, it assumes
that knowledge and information from those Chapters is brought forward to the
specific case study and research question addressed in this Chapter. For ex-
ample, the configuration of ANN architectures is completed in this Chapter as
it is in Section 4.2.4.2, yet it no longer requires the same detailed description.
In addition, the district case study is brought forward from Chapter 5 to allow
comparisons to be made to an energy supply only optimisation. It is assumed
in this Chapter that the reader has retained knowledge of the case study district
modelling set out in Section 5.2.

The methodology described in this chapter was originally published in the
journal article Reynolds et al. [330] and reformatted and expanded for this
thesis.

6.2 Controllable Building Modelling

To model the controllable office building, additional modelling efforts must be
made. Note that while the EnergyPlus model of the office building is identical
to that used in Chapter 5, the office specific surrogate ANN models are not
the same as the office energy consumption ANN developed in Section 5.3.4.
In the previous Chapter, office energy consumption was simply modelled as
a function of weather, day and occupancy. Instead, the office ANN model
developed in this Chapter must take the decision variable (heating temperature
set point) as an input.

To ensure the office remains comfortable to the occupants, it is also neces-
sary to produce a prediction model of the average indoor temperature. Other
measures of indoor comfort, such as Predicted Mean Vote (PMV) or Predicted
Percentage Dissatisfied (PPD) are available, but here the volume weighted av-
erage indoor temperature has been chosen as a proxy measurement of ther-
mal comfort as it is cheaper and more simple to measure within a building.
The building-level ANN models used for the controllable office building uses
the same principles as used within the building-level optimisation methodology
provided in Chapter 4.

The office building model was run using weather data recorded in Cardiff in
2016. However, due to the relatively high insulation and the large amount of in-
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Figure 6.1: Overview of the ANN architecture for predicting office heating en-
ergy consumption or indoor temperature

ternal gains, many of the zones such as the cores, data centres and the lower-
level zones are cooling dominated and do not require heating. As no heating
system is simulated in these zones, they are not controlled by the optimisa-
tion and their temperatures have been excluded from the average temperature
calculation.

To generate the training data, the EnergyPlus model was run ten times
each with a different heating set point schedule. These set point schedules
were generated by adding random numbers from a normalised distribution to
the original, baseline heating set point temperature schedule. This is an al-
ternative method of generating a range of heating set point schedules than
that used in Section 4.2.4. However, this approach maintains the same core
principles, namely to adequately cover the potential search space with a bias
towards more sensible solutions. In addition, this method requires little manual
intervention and is transferable to a wide range of building models to develop
future case studies. Note that a full comparison between ANN performance re-
sulting from the different data generation methods is not possible in this case
due to the incompatible scales of the office building in this Chapter and the
office building in Chapter 4. Furthermore, it is expected that the behaviour of a
building of this scale will be easier to predict and model compared to a single
zone within a building. A separate simulation using 2017 weather data and
a different set point schedule was carried out to produce the testing data by
which the ANN prediction performance could be measured.

The inputs and ANN architecture were selected using the same methods
described in Section 4.2.4.2 and will not be repeated here for the sake of
brevity. The resulting models receive the predicted outdoor temperature, solar
irradiance, hour, day type, occupancy, the temperature set point and the indoor
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Figure 6.2: A two-week sample of ANN prediction of a) energy consumption
and b) indoor temperature compared to target values

temperature at the previous hour as inputs. Each ANN has 2 hidden layers with
15 neurons in each layer, the training function is Levenberg-Marquardt and the
transfer function between each layer is the ‘tansig’ function, this is illustrated in
Figure 6.1.

One ANN outputs the predicted hourly energy consumption, the other pre-
dicts the hourly average indoor temperature. All of these variables, except the
previous hour indoor temperature, are retrieved for the next 24 hours. In the
case of the previous indoor temperature input, the first value can be retrieved
from the building BMS system. The first hour inputs are passed to the ANN
which predicts the indoor temperature at time ¢. This predicted value of indoor
temperature is then used as the input to predict the indoor temperature at time
t + 1 and so on until the complete 24-hour profile has been predicted. This

full range of inputs is then used to predict the 24-hour profile of the energy
consumption.

The ANN developed using this method and implemented through the rest
of this chapter have a high accuracy to predict office energy consumption and
average indoor temperature. For energy consumption, an R? value of 0.9712
and 0.9561 is achieved for training and testing data respectively. For temper-
ature prediction, an R? of 0.9805 and 0.9679 has been achieved for training
and testing data respectively. The relatively modest fall between training and
testing shows no obvious signs of overfitting. A two-week sample of the ANN
prediction compared to the target values is shown in Figure 6.2. This figure
demonstrates the ANN has effectively learned the trends within the training
data and can effectively model the building characteristics.
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Algorithm 2: Procedure to integrate building and district-level optimi-
sation

Input : Weather, t, Day, Tariffs, S;_1, T},

Output: LEHP LHFP [&B TP

fort=ttot.,, do
for t =t to t+23 do

Predict: Q;/°, @5, Q;"*", QF*!, EFV'; // Using ANN Models
in Section 5.3.4

end
Run GA;
while GA state = Running do
for All Individuals do
Predict: Q“/*“ and T ; // Using ANN Models in
Section 6.2
Sum predicted demand Q77! ;
Calculate Fitness, f; // Using Algorithm 1
end
end

Input 7;** to BCVTB to calculate actual Q%7 & T¢ ;
if Predicted Q7' + Actual QT°"' then
Run Error Manager Algorithm ; // As Described in
Section 5.4.3

end
t=t+1
end

6.3 Optimisation Methodology

To include building-level demand control alongside district-level supply optimi-
sation a number of adaptations need to be made to the GA procedure outlined
in Chapter 5. The complete optimisation procedure is shown in Algorithm 2.
The decision variable matrix now contains 96 values, 24 relating to the percent-
age load of the CHP, HP and the thermal storage, as well as 24 related to the
heating set point temperature of the office (i.e. the same decision variables as
Chapter 5 plus decision variables relating to the office set point temperature).
The procedure requires an additional step compared to the supply side optimi-
sation. Firstly, the additional variables such as the forecast weather conditions,
time, date, occupancy and energy tariffs are retrieved. Then the day-long,
hourly load predictions of the solar panels and the heat demand of the four
non-directly controlled buildings are made using the various ANN described in
Section 5.3.4. The static GA control parameters are provided, and the GA is
initialised.
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6.3.1 Fitness Function

Within the fitness function, the initial stage retrieves the individual’s heating set
point schedule, 7%?, and from this determines the 24-hour indoor temperature,
T', and energy consumption profile Q%//ic. To ensure occupant comfort is met,
any solution which leads to an hour where the indoor temperature is below
19.5°C or above 24°C is discouraged. This is done through penalising the
individual by overriding that hour’s energy consumption to 10,000 kWh. This
penalty is very harsh and is intended to ensure that all solutions that breach the
comfort bounds are discarded through the GA process. Note that the comfort
bounds of 19.5°C and 24°C could be altered depending on user preference
and the specific building in question. Once the adjusted energy consumption
profile has been calculated it is added to the predicted demand of the other four
buildings and the remainder of the fitness function is identical to that explained
in Section 5.4.1 and shown in Algorithm 1.

6.3.2 Constraint Handling, Bounds, and GA Settings

When optimising both building demand and district supply, the GA parameter
settings have remained the same as that described in Section 5.4. The creation
and mutation of the CHP, HP and thermal storage variables is also identical.
The set point temperature upper bound is held constant at 24°C whereas the
lower bound is 19.5°C for the occupied hours (between 6 am and 10 pm) and
12°C during the hours outside this.

To speed up the optimisation, an additional measure has been taken. Dur-
ing the MPC process, a 24-h schedule of heating set point temperatures and
generation load percentages is generated, yet only the first hour values are
used. Rather than discarding the remaining 23 hours worth of set points, they
are inserted as an individual in the initial population of the subsequent hours
optimisation (the first hour values are dropped, all solutions translated by one
hour, and the final value for each unit / set point is a duplicate of the 23rd hour
to ensure correct matrix length). This provides the optimisation with a strong
initial candidate to aid the convergence of the GA once the first hour has been
complete. Note that the GA procedure continues in the same way, with full
freedom to develop new solutions and ignore that initial solution if it performs
poorly for the new situation. The benefits of this optimisation ‘bootstrapping’ is
demonstrated by comparing Figures 6.3 and 6.4. When the optimisation was
run with an entirely random initial population, Figure 6.3, the optimisation took
just over 1000 generations to converge to the function tolerance. However,
when the optimal solution from the previous timestep is placed in the initial
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Figure 6.3: The GA convergence to an optimal solution with random initialisa-
tion
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Figure 6.4: The GA convergence to an optimal solution with the previous opti-
mal schedule included in the initial population

population, Figure 6.4, the optimisation only required around 100 generations
and the final optimal solution is very close to the initial solution.

6.3.3 Real-Time Control Adaptations

To demonstrate how the optimisation procedure would operate in real-time, this
study is using the Building Controls Virtual Test Bed (BCVTB) [345]. Similar to
its use in Chapter 4, BCVTB allows the coupling between the simulation soft-
ware, EnergyPlus, and external optimisation algorithm based in MATLAB. An
illustrattion of the BCVTB set up in this case study is provided in Figure 6.5.
Each timestep of the optimisation is simulated to run on the hour, every hour
of the day. The optimisation is expected to complete within 10 minutes. Once
the optimisation is complete, the optimal set point temperature at that timestep
is passed, via BCVTB, to be implemented in the EnergyPlus simulation model
of the office building. The simulation model is run for the remainder of that
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Figure 6.5: The connection of the office EnergyPlus model with the MATLAB
optimisation via BCVTB

hour with the optimal set point temperature until the next optimisation starts
at the beginning of the next hour. During this time, the EnergyPlus simula-
tion model has been recording the weighted average indoor temperature of
the office building. The hourly average temperature is passed to MATLAB to
be utilised in the next optimisation timestep. As well as the average indoor
temperature, the sum of the energy consumption over that hour is also sent to
MATLAB and combined with the actual energy consumption of the other four
buildings. This information is used by the same error management algorithm
described in Section 5.4.3. BCVTB is used to recreate as close to real-world
conditions as possible, but if deployed on a real case study it would not be re-
quired. Instead, an intermediary connection between the optimisation and the
BMS would be used as the BMS has the actuation and measurement capabili-
ties required by the proposed optimisation strategy. The complete optimisation
strategy including the management of energy supply and energy demand via
the controllable office building is illustrated in Figure 6.6.

6.4 Results

The combined, supply and demand optimisation strategy described in this
chapter was run for the same test week as that described in Chapter 5. The
results of this optimisation will be compared against both the supply only opti-
misation and the baseline scenario. To understand the solution generated by
this optimisation strategy, the energy consumption and indoor temperature of
the controlled office building is compared with the baseline heating strategy in
Figure 6.7. The baseline heating set point schedule uses the same schedule
every day, maintaining a temperature of 21°C during occupied hours. The re-
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Figure 6.7: Baseline vs optimised results for the office building for three sample
test days showing: a) Energy consumption, b) Indoor temperature

sults demonstrate an attempt to pre-heat in the early hours of the morning to
reduce the morning peak load. It maintains a lower setpoint temperature be-
tween 7 and 10 am and then raises the temperature during the midday period
where district demand is lower. This is a cheaper time for the district to provide
heat and also reduces the afternoon energy peak.

Despite consuming similar amounts of energy during the displayed day, the
inclusion of the demand-side control has provided additional flexibility to the
optimisation. The optimisation decisions for the energy generation are shown
over three days in Figure 6.8. The decisions made on the generation side
are very similar to those made during the supply-only optimisation but with a
slightly modified demand profile. The thermal storage is mainly charged during
the morning, evening and midday saddle period and discharged during peak
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Figure 6.8: Heat generation schedule for three sample test days showing: a)
Baseline solution, b) Combined supply and demand optimisation

periods to displace some gas boiler generation. Once again, the optimisation
aims to balance the electricity input of the heat pump with the electricity output
of the CHP rather than simply favour a lead heat producer as is the case with
the baseline solution as shown in Figure 6.9.

A detailed breakdown of the three scenarios is given in Table 6.1. The
statistics contained in this table show the average load from the three gener-
ation technologies over the course of the week. In addition it shows the total
costs of buying electricity and gas over the test week and the income received
from selling electricity to the grid and the RHI from the heat pump. Evident
from the results in the table, both the supply only and supply and demand op-
timisations reduce the amount of electricity sold to the grid and increase the
amount of electricity bought with respect to the baseline scenario. This is re-
flected in the lower average CHP loads but offset by an increased heat pump
load. The use of the thermal storage allows a reduction in the reliance on the
gas boilers hence a reduction in total gas cost. The increase in heat pump RHI
income and the reduction in gas cost more than offsets the loss of income from
selling electricity to the grid at relatively low prices. The differences between
the supply only and the supply and demand optimisation is a further decrease
in gas boiler usage, reduced electricity costs and greater electricity income.
This is achieved through the intelligent load shifting of the office building heat-
ing consumption and the additional flexibility provided by directly controlling the
office.

A macro-level comparison of the overall net profit and the CO, emissions
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Figure 6.9: Electrical generation from the CHP and electrical consumption of
the HP for: a) Baseline solution, b) Combined supply and demand optimisation

Table 6.1: Detailed breakdown of scenario results for the test week

Scenario Average Load / kW Electricity Electricity Gas RHI
CHP HP GB Income / £ Cost/ £ Cost/ £ Income / £
Baseline 207.00 371.01 299.58 75.38 0 1940.96 2227.83
Supply Only 200.56 394.22 283.52 8.42 22.87 1861.12 2361.12
Supply and 204.14 397.31 278.09 48.87 7.54 1861.13 2375.03
Demand

associated with each scenario is shown in Table 6.2. Over the course of the
entire week, the additional flexibility provided by controlling the combined sup-
ply and demand optimisation achieves a 52.92% increase in profit compared
to the baseline control strategy which is 8% higher than optimising just the en-
ergy supply. As well as an increase in profit compared to the baseline and the
supply only optimisation, this strategy also results in the lowest CO, emissions
of the three scenarios. Once again the reduction in CO, emissions is largely
as a result of reduced gas boiler consumption. The average time to complete
an optimisation was 145 seconds per timestep using a 4-core, Intel i7-6700
2.60GHz, 16GB RAM PC which is well below the foreseen 10 minute limit.

6.5 Discussion

In addition to the points discussed in Section 5.6, which remain valid here, this
Chapter has generated additional points of interest. Primarily, the outcomes
shown in Section 6.4 demonstrate that including building level, demand-side
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Table 6.2: Summary of results for the test week

Scenario Profit (£)  Change in Profit (%) CO, Production (kg) Change in CO5 (%)
Baseline 362.25 - 19437.05
Supply Only 524.85 44.88 18708.67 -3.75
Supply and Demand ~ 553.96 52.92 18660.55 -3.99

flexibility at a district level, energy supply optimisation problem can lead to in-
creased benefits to the district both financially and environmentally. The com-
bined supply and demand optimisation outperforms the supply only optimisa-
tion by an additional 8% despite only being able to control a proportion of one
out of five buildings in the district. In this scenario, the building not only shifts
load based around energy prices but directly impacts the cost of energy for
the entire district network. In theory, the savings achieved through the building
load shifting could not only be passed on to the office building but could also
provide savings for all consumers within the network.

The methodology presented in this Chapter has aimed to predict the key
variables such as building demand and PV generation without assuming known
loads beforehand at 100% accuracy. This is a required vital step for a strategy
such as this to be implemented in reality. However, the input weather fore-
casts have been assumed to be completely accurate and known in advance.
This was due to a lack of historical record of weather forecasts alongside the
actual measured weather data that was available. The accuracy of short-term
weather predictions is generally very high and accessible from modern weather
services companies, therefore, an assessment of how weather forecasting er-
rors effect ANN prediction was considered beyond the scope of this study but
the impact should be assessed in future studies.

In addition to incorporating weather forecasts, this methodology should also
endeavour to include an accurate district heating model in the future. It was
not possible in this work due to a lack of original data to be able to charac-
terise the heat loses within the distribution network and the time lags from heat
production at the energy centre and delivery to the buildings. In the authors
opinion, this should not significantly impact the performance of the proposed
optimisation methodology as it will just modify the demand profile. As long as
the demand profile is modelled accurately the optimisation will be able to find a
reasonable solution. Nevertheless, the distribution network will have an impact
on the demand profile with respect to the energy centre so would be required
for real-time deployment.

The case study district optimised in this study is a centralised district where
it is assumed the heat energy required by each building is produced and dis-
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tributed from a central energy centre where the buildings have no alternate
means of producing energy. It also assumes the controller of the energy centre
would have direct control over the buildings within the district which may be the
case for a single owner business park, university or municipal centre. This has
led to a centralised optimisation approach that is not necessarily adaptable to
districts with different ownership structures and also poses issues of scalability
if there are additional controllable generation sources or more directly control-
lable buildings. Therefore, future work should aim to develop and compare
the performance of a more decentralised optimisation framework where local
building-level optimisation would interact iteratively with a district level supply
optimisation.

This work poses serious questions on the suitability of our energy markets.
The implementation of this kind of energy management solution requires sig-
nificant modernisation of existing regulation and for the consumer to play an
increasingly active role. Previously, the consumer has been viewed as a con-
straint on the energy networks with a simple relationship with the energy sup-
plier. The consumer simply requests energy, it is provided by the supplier and
the consumer is billed for the energy they use. This model requires an overhaul
in an environment where energy generation is becoming increasingly decen-
tralised and managed locally. The relationship must become bi-directional in
that energy will be traded both to and from the energy grid to the end user.
Not only will prosumers have the capability to sell energy back to the grid,
they could also provide ancillary services to the grid in terms of load balancing
through use of local energy storage devices.

If the energy grid follows the vision of the smart grid, which will consist
of many interconnected microgrids, there is potential that collectives of small
consumers could participate in demand response events represented by a
microgrid-level agent or aggregator. To achieve this, a microgrid (or district-
level) optimisation, similar to that discussed in this Chapter, would have a vital
role to play in ensuring end users could simultaneously reap financial benefits
whilst providing a service to the energy networks.

The example provided in Figure 6.10 demonstrates a multi-use, multi-vector,
district energy system with various energy generation technologies and multi-
ple owners. In the smart grid vision this district could be viewed as one node
within the wider national grid with an aggregated, net energy exchange. The
district could consist of multiple energy conversion and generation technolo-
gies including the more traditional, fossil fuel generators, alongside renewable
technologies and power to gas. As well as multiple conversion technologies,
energy could be generated and stored at both building and district-level. A
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market-based energy controller would sit in the centre of this dynamic, multi-
vector, district energy system. This actor would be responsible for trying to
match energy supply with energy demand within the district. Due to the mul-
tiple stakeholders involved, it is likely that this service would have to be coor-
dinated by a 3rd party ESCo (Energy Service Company) by means of bidding
and resolving fair prices. In the background, the central coordinator would also
be connected to the national scale networks and have access to their energy
tariffs and demand response requests which it could pass on to consumers.
For this vision of a future energy market to become reality, a significant
educational push will be required for consumers. Consumers have become
comfortable with using energy at any period of the day for the same price.
Many consumers may feel aggrieved if energy prices become higher during
their higher consumption periods and they may feel as though they are un-
able to shift their energy consumption due to working patterns. To overcome
this, end-users need to become incentivised to purchase components such as
home battery systems. The benefits of these systems need to be translated
into clear financial gain to the consumer. With technology such as home bat-
tery systems, vehicle-to-grid electric vehicles, and renewable energy systems,
the consumer will largely be free to consume energy as they normally would,
yet still achieve cost savings in a new energy environment. Of course, one
cannot expect the individual to be managing these devices manually, it is un-
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reasonable to expect the average consumer to wake up and charge all of their
devices in the early hours because that is when prices are cheapest. An in-
telligent, automated agent, should manage these devices on behalf of the end
user. The consumers preferences should be input through comfort constraints
rather than in terms of energy. For example, this could be setting tempera-
ture bounds through the day or a minimum electric vehicle battery range in
the morning. It would be the role of the intelligent agent to work around these
constraints whilst analysing the district energy market to save the consumer
money. The work carried out in this thesis goes some way to illustrating what
these controllers could achieve when managing the thermal aspect of a build-
ing.

An additional consumer concern could be raised around security and pri-
vacy. Within the district energy market, minimal information should be ex-
changed between individual consumers and the central coordinator. Within
the home, many consumers are growing accustomed to digital assistants of-
fered by large companies such as Google, Amazon and Apple. Therefore, it is
expected that consumer attitudes should remain relaxed towards smart energy
management controllers. However, security improvements remain imperative
within the 10T sector generally. These are arguably more critical when it comes
to the security of energy supply in comparison to the security of entertainment
devices. The emergence and development of blockchain technology could
provide a secure, transparent and indisputable method to facilitate energy ex-
change and foster trust in consumers. All energy exchanges from peer-to-peer
and for consumer to the central coordinator would be indisputably logged within
a distributed ledger. Blockchain could override the requirement for several in-
termediary companies to facilitate such financial and energy-based transac-
tions and reduce the barrier to entry for typical consumers within such a mar-
ketplace.

6.6 Conclusion

This Chapter primarily aimed to answer research question 4:

Can integrated, holistic control of both energy supply and energy demand
lead to greater economic and environmental benefits than independent con-
trol?

This question has been addressed by comparing the optimisation carried out
in Chapter 5, which only optimised the energy supply, with an adapted optimi-
sation methodology that optimised building demand alongside energy supply.
Whilst the case study presented in this Chapter only controlled the heating set
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point temperature of a single building within the district, it achieved an addi-
tional 8% increase in profit for the energy centre compared to optimising sup-
ply alone. In total, the combined supply and demand optimisation achieved a
52.92% increase in profit compared to the baseline solution and also led to the
lowest CO, emissions of all scenarios.

The original contributions resulting from the chapter are a combination of
the following points:

e A simultaneous optimisation of energy supply and demand through con-
trolling a building heating set point temperature in conjunction with district
heat generation.

e A direct comparison with a baseline solution and supply only optimisation
demonstrates the value in utilising building thermal flexibility.

e This also encompasses the contributions from Chapter 5, namely the op-
timisation of a multi-vector energy system, the prediction of key variables
and the real-time control adaptations.

e Simultaneously controlling energy supply and demand a 53% increase in
profit to the energy centre compared to the baseline scenario.
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7 Semantics: Interoperability
and Scalability

Chapters 4 to 6 have developed novel energy management solutions and ap-
plied them to bespoke case studies to demonstrate their effectiveness. This
Chapter will aim to explore the ways in which the energy management strate-
gies could be deployed on a wider scale using a more standardised approach.
Furthermore, this Chapter will aim to provide the vision of how the work car-
ried out in this thesis relates to wider trends and challenges within the field. By
demonstrating additional research trends, this Chapter will show the relevance
of this research and how these techniques can converge to produce a new
generation of building and district energy management controllers.

7.1 Revisiting the Research Question

This Chapter specifically aims to address research question 5; restated here
as:

Can a semantic web approach ease the deployment of advanced energy
management strategies on a wider scale and aid integration with additional
domains?

This Chapter will address the above research question in a different way com-
pared to Chapters 4 to 6. This research question requires an analysis of
wider research trends to provide a forward looking, discussion-based approach
rather than the case study approach of the preceding Chapters. This Chapter
will make the case for the use of semantic web innovations as the founda-
tion to provide a robust basis from which the energy management strategies
developed in this thesis could be deployed.

7.2 The Role of Semantics

The title of this PhD thesis is "Real-Time and Semantic Energy Management
Across Buildings in a District Configuration”. The semantic aspect of this
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work derives from the contextual nature of the optimisation methodologies de-
veloped in Chapters 4-6. These methodologies extract meaning from wider
metadata including weather forecasts, occupancy, renewable energy genera-
tion and energy demand. All of the relevant data is linked to provide a more
holistic energy management approach, exploring the context of the specific sit-
uation. However, in this thesis, the labelling and linking of data is achieved
in an ad-hoc fashion without the use of formalised ontologies and semantics.
This decision was made in light of two recent PhD studies completed within the
author’s institute that developed upper-level ontologies within the smart water,
building and energy domains [164, 346]. Both of these PhD projects hypothe-
sised that their developed ontologies could aid the intelligent management of
smart building and city infrastructure. Therefore, throughout this thesis, repli-
cation of similar ontologies was deemed beyond the scope of this thesis and
unnecessary. Instead, this thesis is focussed on demonstrating the benefits of
increased, contextualised data in energy management.

Nevertheless, having been involved with several research projects that aim
to utilise and exploit semantic web technologies, the scope and application of
semantics to the built environment can be detailed here, including how they
relate to the energy management strategies developed in this thesis. This sec-
tion will present samples of objects and concepts in an ontological fashion at
building and district-levels to demonstrate how the energy management data
sources could be semantically linked and retrieved from central models. Whilst
the use of ontologies was deemed unnecessary in the initial proof of concept
energy management strategies laid out in this thesis; it argues that for scala-
bility and replicability to additional pilot sites, formalised ontologies should be
utilised.

To demonstrate the potential for semantic linking at a building-level, Fig-
ure 7.1 has been provided. This figure aims to provide just a small sample of
the concepts and objects that are modelled via BIM or building energy models
and how they interconnect, it is not intended to be exhaustive. Concepts en-
capsulated by ovals are utilised within the optimisation case study developed
in Chapter 4. Note that most of these concepts are already captured in existing
energy models and / or in the BMS. Many of the physical properties of a build-
ing are duplicated in both the BIM and energy model although they may not
use the same naming conventions. Note that this is not an ontology created
by the author, it is simply a hypothesised data structure provided to illustrate
the kind of data integration envisaged by the author to achieve a semantic vi-
sion. Similar mapping of energy, control and physical building properties has
already been conducted through the KnoHolEM project [174]. It is postulated
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Figure 7.1: An illustration of building-level objects and concepts, the relation-
ships between them, and where they can be retrieved from

that the KnoHolEM ontology (or other similar work) could be used to deploy
the building-level optimisation developed in this thesis with little requirement
for extension.

A similar district-level data structure is presented in Figure 7.2. This im-
age takes a sample of the concepts included in the data structure used in the
PENTAGON project. Users input the required information to instantiate a dis-
trict scenario. The centralised district model (The PENTAGON model) is then
queried by project partners to carry out their individual prediction, optimisation
and simulation functions. Once again, many of the concepts semantically cap-
tured within Figure 7.2 are utilised within the optimisation case studies demon-
strated in Chapters 5 and 6. The purpose of this section is to demonstrate that
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Figure 7.2: An illustration of district-level objects and concepts and the rela-
tionships between them. Oval indicates that it is used in Chapters 5 and 6,
rectangle indicates an additional concept.

whilst formalised semantics have not been used in the energy management
strategies presented in this thesis, there are many projects and researchers
that have formally defined the required concepts within ontologies. This would
allow a more scalable, extensible, and interoperable foundation from which
the optimisation methodologies demonstrated in this thesis could be deployed.
Existing, generic ontologies such as the Semantic Sensor Network (SSN) can
then be re-used and linked with the more bespoke domain-level energy mod-
els.

7.3 A Semantically Enabled Platform

The semantisation of building and district-level energy concepts and objects
through linking on domain-level and meta-ontologies has been discussed in
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Figure 7.3: An integrated, smart energy management platform underpinned by
semantic interoperability

Section 7.2. Much of the required information could come through linking BIM,
energy models and BMS. The domain-level ontologies achieved in European
projects such as RESILIENT and KnoHolEM alongside recent PhD projects,
show promise to facilitate more integrated, holistic management of energy and
smart cities. This can aid management across different domains such as water,
energy and transport which are traditionally considered in isolation. Common
semantic descriptions can help to link data that has previously been siloed
within just a single domain. Essentially, the ontology can serve as the central,
coordinating brain to link the heterogeneous data, technologies and descrip-
tions across domains to provide a more comprehensive view of the complete
system. This can be exploited to build a holistic platform for smart energy
management and beyond.

Specifically in the context of the work carried out in this thesis, Figure 7.3
shows the potential structure of the platform required to integrate the hetero-
geneous data resulting from several distinct modules. This is inspired and
informed by the authors literature review, original work detailed in this thesis,
and experience working on multi-disciplinary research projects. Here the role
of each module will be discussed and the benefit of a platform based on a
shared semantic model will be outlined.

e The weather services module would utilise existing API to access local
weather forecasts for the following 24 hours and beyond. Whilst pre-
diction of outdoor temperature, pressure and relative humidity is com-
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monplace from modern weather services, some interpolation and data
manipulation may be required in addition. Weather forecasting services
rarely provide predictions with a 15 minute granularity and are likely to
relate to a specific weather station. In particular, the prediction of solar
radiation is challenging and not commonly provided by weather services.
Solar radiation may have to be predicted utilising alternate variables such
as forecast cloud cover and outdoor temperature.

Prediction through machine learning techniques has been integral in
the methodologies developed throughout this thesis. Due to the exten-
sive amount of data that could be retrieved and stored in a database
due to semantic interoperability, advanced machine learning techniques
are highly applicable. The forecasting of energy demand and solar PV
generation have been deployed in this thesis but could be extended to
cover additional renewable energy sources such as wind power and so-
lar thermal. In addition to providing forecasts of energy demand and
supply, the prediction module could also be used to identify component
failure. If expected predicted values consistently deviate from measured
outcomes, this could indicate necessary maintenance far earlier than the
issue would otherwise have been discovered.

In addition to forecasting energy demand and generation, it may be nec-
essary to carry out some level of energy network simulation. For heat-
ing, this would come via the form of a district heating model. It is neces-
sary that the optimisation is aware of the thermal lag and losses within
the distribution network as well as the constraints on the amount of heat
that can be delivered at any one time. Similarly for the electricity net-
work, there are clear grid constraints enforced by the TSO such as peak
capacities at each electrical bus and substation. Although not normally a
feature in typical energy configurations, the gas network may need to be
modelled if bi-directional gas exchange becomes permissible and power-
to-gas technology becomes prevalent.

To allow the proposed energy management platform to implement de-
cisions and assess the result of their actions, an effective link must be
in place with building management systems and energy generation
controllers. It would be expected to utilise existing sensors to read fea-
tures such as indoor temperature or the status of specific devices. The
connection should also be bi-directional to send optimisation decisions
made within the platform to be implemented by the physical actuators
and controllers managed by these existing systems.
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e As energy networks become more decentralised, a semantic connection
to the energy markets will take much greater significance. It is expected
that energy markets will become increasingly deregulated and more com-
petitive, with new entrants offering more dynamic ToU tariffs due to the
roll-out of smart meters. In the near future, there may be additional op-
portunities for local, inter-district, energy trading based on local energy
surpluses. To inform the optimisation decisions, real-time energy prices
will be essential.

e By semantically linking the wealth of information from the previously dis-
cussed modules, a more complete vision of the contextual circumstances
is achieved. This would allow an optimisation module to make more in-
formed decisions to be applied to specific energy system. The optimisa-
tion module itself could use any appropriate methodology and solver for
each case study. This should be made simpler by the solid foundation
provided by the underpinning semantic model of the systems.

e The entire purpose of the proposed platform should be to make the job of
a facility manager simpler. Therefore a clear, interactive and visual user
interface should be provided and built on top of the semantic platform.
Several, simple, KPI's should be defined to see the benefit of optimisation
decisions in regards to energy, cost, emissions and user comfort. It may
also be beneficial to develop a 3D visualisation of the case study district
in situ on a wider map of the area. The semantic descriptions of critical
components within the district could allow location prompts if the data
demonstrates a component failure. Alerts such as this can allow facility
managers to more quickly identify and resolve system failures.

7.4 Digitisation of the Built Environment

An additional factor that feeds into the capability of the semantic platform de-
scribed in Section 7.3, is the increased digitisation of the built environment.
This comes from several different angles. At a building-level there is legislatory
pressure to produce BIM representations of new or retrofit buildings. Ideally,
these models will contain a very high level of detail down to descriptions of
individual components and devices. This would require a paradigm shift to not
only develop BIM at the design stage but also maintain the models during the
operational phase of the building life cycle. This high level of detail could then
be utilised by a semantic platform when systems fail or when equipment is
upgraded.

157



CHAPTER 7. SEMANTICS: INTEROPERABILITY AND SCALABILITY

Whilst BIM models are largely available for new builds, a major challenge
exists to generate BIM models for older existing buildings. Within Chapter 4, a
3D laser scanner was used to generate an as-built representation of an existing
building. The 3D scanners produce an output in the form of a point cloud which,
in of itself, has little meaning. The point cloud must be utilised and converted to
a digitised BIM representation of the building. Currently, this process is highly
manual and time consuming. However, this challenge has formed an active
and growing research field targeting the direct, automatic, generation of BIM
models from a point cloud. If a viable solution to this problem can be found, it
is feasible to expect increased digitisation of existing buildings at a much wider
scale.

Development of accurate energy models is, if anything, a more pertinent
task than the creation of BIM models for the control methodologies outlined in
this thesis. The most significant challenge standing in the way of the deploy-
ment of the proposed control methods is the generation of surrogate energy
models. Throughout this thesis, a building energy simulation model was devel-
oped and used to generate training data from which a machine learning model
could accurately replicate the behaviour of the case study building. It is the
authors hope that building energy models become more widely available in the
future.

Currently, there is limited provision for the exporting of BIM models to build-
ing energy simulation packages. Often an entirely new model for energy analy-
sis needs to be developed in parallel to the BIM model and both models would
require updating throughout the life cycle to ensure consistency. The ultimate
solution to BIM and building energy simulation interoperability, is the devel-
opment of a single software package that contains modules for both types of
modelling based on a single, central model. This is beginning to happen with
the inclusion of energy analysis packages within one of the most popular BIM
software, Autodesk Revit. However, this solution has some way to travel before
acceptance as the norm within the industry.

In addition to building-scale modelling efforts, some researchers are de-
veloping methods to generate city-scale, 3D models. In order to enable dis-
trict, or city-scale energy management, key characteristics and locations of
important components should be captured. Modelling efforts found in exist-
ing research range in their detail and rendering from block shaped details
to visually accurate recreations. However, there is a requirement to develop
something beyond a 3D Google maps for the urban model to be relevant in
energy management. A true urban energy model must have additional in-
formation semantically linked to the 3D visual representation of the building.
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Figure 7.4: The SEMANCO interface demonstrating and urban model of
Copenhagen with a heating demand layer [347]

Several research projects and data structures have aimed to tackle this chal-
lenge including SEMANCQ', OPTIMUS?, and CityGML3. Energy consumption
and generation can be linked to individual buildings to efficiently generate use-
ful information for urban planners. An example developed in the SEMANCO
project is shown in Figure 7.4. A similar interactive view could form the basis
of the user interface of the semantic platform described in Section 7.3.

7.5 The Rise of Artificial Intelligence

The proposed semantically enriched platform could provide the ideal basis on
which artificial intelligence applications could be built. Throughout this thesis,
relatively simple, back-propagation ANN were used to carry out all predictions.
This technique was chosen as it has been used extensively in the literature, is
relatively well understood for these applications, and has been shown to per-
form well for the category of tasks required in this thesis. However, artificial
intelligence and machine learning has a significant research field of its own
that is constantly refining and developing new methods. A complete appraisal
of machine learning methods was beyond the scope of this research, but it
is expected that more advanced methods such as deep learning, random for-
est and ensemble learning techniques could provide slightly better prediction
performance in the near future.

Thttp://www.semanco-project.eu/
2http://www.optimus-smartcity.eu/
Shttps://www.citygml.org/
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An alternative method of energy modelling that could overcome the chal-
lenges of model development outlined in Section 7.4 could also come from
developments in artificial intelligence. An extensive store of labelled and well-
defined data that could be provided by a semantic platform could aid the de-
ployment of unsupervised machine learning applications. As opposed to the
supervised machine learning deployed in this thesis, unsupervised machine
learning methods are unguided. They are not given specific inputs to trial, in-
stead they are free to draw inferences from all available data. This could lead
to a more ‘plug and play’ approach where applications are simply given access
to the collected data relating to a building, district or city and would require no
further manual intervention beyond validation.

An unsupervised approach would require some time to learn the appropri-
ate relationships and refine its performance but would significantly reduce the
human effort of modelling, which as discussed in Section 7.4, is a significant
limiting factor. An additional advantage to unsupervised approaches would be
their ‘always learning’ nature. They should be constantly re-assessing data and
aiming to continually improve. This partially overcomes one of the traditional
drawbacks of data-driven, black-box, modelling; the problem of modelling a
system that changes over time with the addition of new components or varying
user behaviour.

With the increased growth in loT devices throughout consumers homes, it
is reasonable to expect that the near future will present near-unbounded op-
portunities for additional Al applications. loT controlled lighting, blinds, appli-
ances, heating and cooling are already available commercially. It will therefore
be possible to disaggregate building energy consumption to specific zones and
devices to potentially allow a much finer control. In the context of this thesis,
the zone-level heating controller presented in Chapter 4 could be enabled by a
smart home loT platform which links data from several sensors an heating de-
vice. The optimisation strategy could then be deployed on top of this platform,
retrieving all the required semantic information from it.

As the number of interconnected energy consuming devices grows the
number of potential innovations and opportunities will also grow alongside it.
Example applications stem from the deployment of loT smart meters, these
will allow the implementation of more dynamic ToU tariffs that could allow
savvy consumers to reduce their costs and aid the balancing of the grid. IoT
could also be deployed to enable ‘Vehicle-to-grid’ technology where the car
battery could effectively be rented by the DSO for load balancing services
when plugged in. The diversity of potential application could lead to greater
interoperability, allowing simultaneous, holistic control of several domains.
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7.6 Summary

This Chapter has primarily aimed to answer research question 5:

Can a semantic web approach ease the deployment of advanced energy
management strategies on a wider scale and aid integration with additional
domains?

This Chapter has drawn from previous and ongoing research that the author
has been exposed to. Through discussion of these ideas, and providing exam-
ple ontological structures of building and district energy components, it aims to
demonstrate the role that semantic web technologies can play. In the authors
opinion, the energy management strategies demonstrated in this these should
be underpinned by a comprehensive common ontology similar to that already
developed in projects such as KnoHolEM. From this base, a semantically-
enabled energy management platform could be constructed that incorporates
a wide range of modular services. By its very nature, this would provide a more
scalable and holistic solution, that could be adapted and improved over time
to incorporate additional domains. Any future management platform must be
context-aware by considering factors such as real-time energy tariffs, stochas-
tic energy generation, occupant comfort and weather conditions. Whilst the
optimisation methods developed throughout this thesis may not be the finished
article, they go some way to achieving these characteristics and demonstrate
the clear added value of a more holistic and context-aware approach to energy
management.

This chapter has also aimed to outline wider areas of research and trends
that combine and build upon the work carried out in this thesis. By outlin-
ing these evolving research fields, the relevance of the energy management
methodologies developed in this research should become more relevant to
practitioners. Alongside the evolving energy landscape, there is significant
growth in the power and usage of Al techniques. New algorithms could en-
able significant improvements in prediction performance and limit the require-
ment for expert users to select pre-defined predictors through unsupervised
learning. Increased requirements for digital representations of buildings and
the wider scale modelling of cities for smart city projects have the potential to
provide vital information to dovetail with the proposed semantic platform. The
greatest potential source of innovation lies with the growth of 10T devices within
homes and beyond. The benefits of integrating these data sources could rev-
olutionise the way energy is managed. It is expected that this new wealth of
data could provide an active source for the development of new and existing Al
applications.
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8 Conclusion

This Chapter will re-visit the research questions provided in Chapter 1 and
summarise the work done to answer them. The exploration of each research
question will combine together to be able to address the main hypothesis at
the centre of this research. Following this, a summary of the key contributions
to the body of knowledge will be provided. The limitations of this work will be
identified and discussed. Building on this discussion, future areas of research
that can build on the work carried out in this thesis are outlined.

8.1 Main Research Findings

This section aims to answer the central research hypothesis which was outlined
in Chapter 1. In order to test this hypothesis, four, more specific, research
questions were developed. Therefore each research question will be re-stated
and addressed consecutively in specific sections. This will be followed by a
final discussion on the research hypothesis.

8.1.1 Modelling for Operational Optimisation

The first research question was:

How can the components found within a district energy system be modelled
for the purposes of operational optimisation?

This research question was largely the target of Stage 1 of the research method-
ology. A thorough review of building and district-level optimisation strategies
led to the conclusion that for real-time, operational optimisation, accurate yet
computationally simple prediction models needed to be used. Therefore, the
key criterion when assessing the modelling methods outlined in the literature
was their applicability for use in real-time control. This largely ruled out any
complex, white-box modelling techniques as they take too long to solve and
often require a high-level of expertise to develop.

The alternative to white-box modelling methods comes from purely data-
driven, black-box models which have no understanding of the physical systems
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they aim to replicate, or from grey-box modelling techniques which often con-
tain simplified physical models with several parameters that need to be tuned
using a small amount of training data. Throughout the literature review car-
ried out in Chapter 2, it was shown that machine learning models have been
extensively applied to various components within the energy sector and have
achieved a high accuracy. Therefore, the literature review concluded that ma-
chine learning models could be used to model solar PV, solar thermal, build-
ing energy demand (electrical and thermal), wind power generation and heat
pumps. It is likely that boilers and CHP could be modelled well by polynomial
regression curves to capture part load factors often overlooked in optimisa-
tion studies. If solar radiation is well predicted then simplified, solar equivalent
circuits could also provide a robust modelling method as an alternative to ma-
chine learning models. Given that power-to-gas technology is a relatively new
and emerging technology, very few modelling methods have been produced in
the literature. Studies that do consider power-to-gas tend to provide feasibil-
ity studies over a long period of time rather than operational optimisation and
hence the modelling is highly simplified as a constant conversion efficiency be-
tween input power and output gas. The extensive review carried out in Stage 1
has informed the choice of modelling methods throughout the remainder of this
research and provide the foundation for the optimisation and control method-
ologies developed in Chapters 4 to 6.

8.1.2 Optimisation of Building Energy Demand

The second research question was:

Can predictive control of building energy demand with consideration of ex-
ternal factors lead to reductions in energy cost and improve demand-side flex-
ibility ?

Following the research gaps identified in Stage 1 of the research methodol-
ogy, the next stage of research targetted the development of an intelligent
building controller. Building on experience gained during participation with the
PERFORMER project, a case study building was modelled in detail using the
building energy simulation software Design Builder (which uses EnergyPlus
as a simulation engine). The ethos behind the optimisation methodology was
to create a ‘thinking’ and adaptive controller that does not simply follow the
same pre-defined rules every day regardless of context. The baseline sce-
nario models a typical thermal energy control strategy, setting the heating set
point temperature as 21°C during occupied periods and 12°C during unoccu-
pied periods. Furthermore, this is managed by a central thermostat and ap-
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plies this strategy across all zones within the building regardless of zone-level
occupancy patterns.

In contrast, the control strategy developed in Chapter 4 optimises build-
ing set points at a zone-level. It considers the predicted weather and occu-
pancy details over the following 24-h and develops a bespoke heating set point
schedule for that specific zone under those specific conditions. It achieves this
through a genetic algorithm-based optimisation with an internal model of build-
ing behaviour using an ANN. The GA trials thousands of potential solutions,
utilising the ANN to predict the energy consumption and indoor temperature
resulting from each solution, to gradually converge towards a (near) optimal
solution. The optimisation is applied to each zone in parallel to reduce the
computational time to less than 10 minutes. The control methodology has
been shown to be flexible to operate as day-ahead optimisation or MPC, and
to minimise energy consumption or energy cost under a ToU tariff.

The optimisation results provided in Chapter 4, clearly demonstrate the
benefits of a predictive, adaptive, and context-aware building controller over the
static, reactive, rule-based controller used in the baseline scenario. Through a
combination of gradual pre-heating, exploiting afternoon solar gains, and only
heating zones when required, the optimisation was able to reduce energy con-
sumption by around 18% without breaching the thermal comfort constraints.
When operating under a ToU tariff, the optimisation demonstrated an ability
to consider the energy prices and shift heating demand to cheaper consump-
tion periods. This led to an increase in energy consumption compared to the
energy minimisation, but managed to produce greater cost savings of around
23%. From this evidence, it can be concluded that by providing a wider vi-
sion to a building controller it can achieve greater flexibility and benefits to the
consumer, hence answering research question 2.

8.1.3 Optimisation of District Energy Supply

The third research question was:

Can taking an optimisation-based approach to the control of district heat
generation improve upon existing rule-based priority order strategies?

Having demonstrated the potential flexibility and savings that could be achieved
by developing a more intelligent building-level controller, focus then turned to
district-level energy management. In a decentralised energy system, there
may be several energy conversion technologies available to produce the en-
ergy required by end users. So the core question facing a facility manager
is which conversion technology should be used at what time? During Stage
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2 of the research methodology, the energy management decisions of facility
managers applied to decentralised energy systems has been evaluated. Tra-
ditionally facility managers have conducted static calculations to determine the
cost of each technology alongside technical constraints to produce a priority
order strategy. In the case study outlined in Chapter 5, a simulated district en-
ergy system was developed containing a CHP, heat pump, gas boilers, thermal
storage, solar PV and 5 buildings of different use types. The baseline control
strategy was to use the CHP first, then if the heat demand was greater than
the CHP heat output, use the heat pump, and finally use the gas boilers.

Whilst the baseline control method provides a simple and relatively effective
solution, static calculations of the cost of generation have a several fatal flaws.
In a multi-vector district energy system, the determination of static costs be-
comes much more complex. For example when computing the cost effective-
ness of the CHP, one must determine the value associated with the electrical
component of its output. The electricity has variable prices when sold to the
grid, sold to local consumers or provided as an input to a heat pump. This is
both highly contextual and dynamic. In a district energy system with stochastic
renewable resources such as solar thermal or solar PV, the dynamism and vari-
ability within the district becomes increasingly pronounced. Furthermore, static
methods fail to utilise the flexibility contained within thermal storage tanks and
the possibility to shift load from one period to another to minimise cost to the
energy centre. Therefore, the control strategy developed in Chapter 5 uses an
optimisation-based approach to select the schedules of the available energy
conversion technologies at each hour of the day depending on the demand at
that instance and the available renewable supply. Once again, the optimisa-
tion strategy uses the combination of a GA and ANN to predict district energy
demand and renewable energy supply.

The performance of the optimisation-based approach gives a significant
improvement over the baseline control strategy. By allowing a controller to de-
viate from static, priority order rules, the optimised solution aims to balance
the electrical output of the CHP with the electrical input to the heat pump. This
results in less electricity sold to the national grid at a relatively low price and
instead utilises it locally to produce the required heat energy for the district.
The optimisation also fully utilises the thermal storage tank by charging during
the early mornings, midday demand trough, and the evening. It then deploys
the stored energy during peak periods to displace gas boiler usage which is
the costliest producer. The district supply-side optimisation leads to a 45% in-
crease in profit to the district energy centre whilst also reducing CO, emissions
by 3.75%. This provides clear evidence that a predictive, optimisation-based
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approach can provide significant benefits to a facility manager compared to a
traditional rule-based approach, hence providing a positive answer to research
question 3.

8.1.4 Combined Supply and Demand Energy Management

The fourth research question was:

Can integrated, holistic control of both energy supply and energy demand
lead to greater economic and environmental benefits than independent con-
trol?

The work completed in Chapters 4 and 5 demonstrated that building and dis-
trict energy management can react and adjust to external conditions and both
benefit from increased flexibility. The final research question is tackled in Chap-
ter 6 using the same district case study that was outlined in Chapter 5. To
answer this question the supply-side optimisation was expanded to not only
control the CHP, heat pump, gas boilers and thermal storage but also manage
the energy demand via the heating set point schedule of the office building.
The management of building thermal demand is much the same as that de-
veloped in Chapter 4, however, the set point is applied at a building-level in
this scenario to reduce the number of optimisation variables. The office build-
ing alone is selected as a building of this usage is likely to be most flexible to
external temperature control in comparison to a hospital, hotel, or residential
buildings.

The optimisation operates in much the same way as the previous Chap-
ters, but the hypothesis being tested in this scenario is whether including the
flexibility of the building demand can aid the optimisation of the energy supply
and reduce the costs (or increase the profit) to the district as a whole. A full
and fair comparison can be made, having run the optimisation strategy over
the same test week under the same conditions as the supply-side only optimi-
sation. The optimisation shows a consistent pattern of trying to shift building
load from the morning and afternoon peaks to the middle of the day where
district energy consumption as a whole is lower and hence cheaper. This ef-
fort in conjunction with the optimisation of energy supply and thermal storage
usage led to a 53% increase in profit compared to the baseline scenario. This
is an 8% increase compared to optimisation of the supply-side alone and pro-
vides the lowest CO, emissions of all scenarios, 4% lower than the baseline.
Despite the office building consuming a similar amount of energy compared
to the baseline scenario, the flexibility it was able to provide in terms of load
shifting in coordination with the district energy supply gave clear benefits to
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the district. The multi-scale, supply and demand control adopted in Chapter 6
clearly demonstrates the potential benefits of a more integrated and holistic en-
ergy management approach, providing positive confirmation towards research
question 4.

8.1.5 Scalability and Interoperability Through Semantics

The final research question was:

Can a semantic web approach ease the deployment of advanced energy
management strategies on a wider scale and aid integration with additional
domains?

To address this research question, a discussion-based approach was used
in Chapter 7 to assess trends in additional research fields. It aimed to anal-
yse how the energy management solutions proposed in this research could be
implemented more widely. This Chapter demonstrated the how semantic web
technologies could be applied to capture and model the information required to
implement the proposed optimisation strategies. It presents the relationships
between different concepts and demonstrates that many of these are already
captured in by BIM. It therefore stands, that if the availability and quality of BIM
models continues to grow, that these could provide the semantic foundation
on which a more scalable and interoperable semantic platform could be built.
The semantic platform proposed in Section 7.3 is a more modular arrangement
largely based on the optimisation methodologies described throughout the the-
sis with some additions. This approach is inherently more scalable and adapt-
able and is facilitated by the semantic base which ensures developers share
a common description of components within a complex energy system. As
other domains become increasingly linked to building and district energy sys-
tems (such as transport), the platform has scope to incorporate these changes
through the mapping of domain ontologies and the addition of modules.

8.1.6 Reuvisiting the Hypothesis

The discussion surrounding the four research questions has laid the basis for
a final evaluation of the main research hypothesis which is re-stated here as:

"Simultaneous control of building and district energy systems can achieve
greater energy savings and environmental benefits by operating cooperatively
and increasing their awareness of external, contextual building information
such as weather conditions, occupancy, energy generation, or energy prices."
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At each stage in this research, the complexity of each case study has been
gradually increased. Initially, the building optimisation methodology just has
access to weather forecasts and produced an optimal heating set point sched-
ule based on that information. Then, occupancy at a zone-level was introduced
to produce bespoke zone-level heating strategies. Following that, the optimisa-
tion was adapted to minimise energy cost under a ToU tariff. At each stage, the
greater the number of variables provided to the optimisation, the greater the
performance gain compared to the baseline. This demonstrates that as you
increase an adaptive controllers awareness of its surroundings, it can make
more informed decisions, and hence produce greater benefits. By optimising
based on the individual context of a specific circumstance, performance can
be improved significantly compared to rule-based controllers.

The next evolution of the research, targetted district-level, supply-side con-
trol. Once again, it started from a position that better solutions were available
that the generic, rule-based, priority order strategy that is used by facility man-
agers. The developed, optimisation-based approach using predictive manage-
ment, was able to significantly increase the operational profit achieved by the
energy centre through exploration of less intuitive solutions such as purchasing
more electricity from the grid, and reducing the amount of electricity sold. The
controller was made aware of external factors such as the weather and energy
tariffs. It used the weather forecasts to produce predictions of renewable en-
ergy generation and district heat demand which aided the optimisation when
making its generation and storage decisions. The case study results produced
in Chapters 4 and 5 clearly demonstrate that providing addition of contextual
information can greatly improve the performance of an energy management
solution.

The culmination of this research effectively combined the building-level op-
timisation carried out in Chapter 4 with the district-level optimisation conducted
in Chapter 5 to simultaneously manage both energy supply and demand. The
case study results produced by this holistic optimisation approach, demon-
strated that by working cooperatively, significant cost and environmental sav-
ings can be achieved. By allowing the controlled building to work in conjunction
with the district energy centre to shift loads away from high demand periods,
a significant reduction in gas boiler usage was achieved. The consequence of
this load shifting could have wide-scale benefits to the entire district, as district
demand can be fulfilled at lower costs. The combination of the results demon-
strated throughout this thesis, clearly confirm the central research hypothesis
to be true.

169



CHAPTER 8. CONCLUSION

8.2 Contribution to the Body of Knowledge

The contributions resulting from this thesis relate to the development of a
building-level and district-level energy management controller discussed in Chap-
ters 4 and 5 and culminate in the contribution resulting from their summation
in Chapter 6. The contributions from each Chapter were provided in each of
these Chapters respectively. However, they will be re-stated here to illustrate
the contribution from this thesis as a whole.

At a building-level:

e A predictive, zone-level, thermal building controller was developed taking
into account weather forecasts, occupancy and energy tariffs.

e This was achieved through combining a genetic algorithm with internal,
ANN prediction models to estimate indoor temperature and energy con-
sumption.

e The optimisation strategy was flexible enough to operate as day-ahead
optimisation or MPC, and to minimise energy consumption or energy
cost.

e The zone-level optimisation reduced energy consumption by 18% and
energy cost by 23.5% compared to the static baseline control scheme.
At a district-level:

e A district-level, heat load generation controller was developed to max-
imise profit to the central energy centre whilst fulfilling district heating
demand.

e All key variables such as renewable energy generation and district heat
demand were predicted in real-time using ANN.

e The methodology was able to incorporate non-linear, part-load charac-
teristics associated with CHP’s and gas boilers.

e A real-time, error management, adjustment algorithm was introduced to
allow the controller to react to forecasting errors.

e The optimisation methodology led to a 45% increase in profit and a 3.75%
reduction in CO, emissions.

Combined at a building and district-level:

e A combined methodology to simultaneously control both building energy
demand and district energy supply was developed.
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e This optimisation is capable of operating at multiple scales simultane-
ously, i.e. at building and district-level.

e A clear and direct comparison against a supply-side only optimisation il-
lustrates the benefits of utilising building as a source of demand flexibility.

e This methodology led to a 53% increase in profit to the energy centre
compared to the baseline scenario.

8.3 Limitations and Future Work

Despite the contributions made during this research, the developed energy
management solutions have a number of limitations and should be considered
in future work. Many of the limitations are related to the modelling assumptions
made throughout the thesis. A number of simplifying assumptions are to be
expected when formulating an optimisation problem to allow it to be solved.
Where possible, effort was made to include part-load characteristics of heat
generation technologies, however, the simple input-output relationships would
need to be verified against actual performance.

The thermal storage tank was modelled to have a constant energy loss of
5% when charging or discharging. In reality, it is likely that the losses from
the tank would vary depending on tank temperature and external temperature.
The distribution network was not explicitly modelled due to a lack of original
data. The inclusion of distribution losses and propagation time could only be
modelled with indefensible arbitrary values. Hence, they were not included in
this work and investigation of these factors was considered beyond the scope
of this thesis.

It is proposed that these modelling limitations can be overcome in future
work with integration of the optimisation methodologies with the semantic plat-
form discussed in Chapter 7. The modular nature and use of a shared ontology
fosters interoperability between different simulation and prediction packages.
Therefore, when data becomes available from pilot site partners, more detailed
simulation models can be developed and utilised by the optimisation strategies
developed in this thesis. The optimisation algorithm (GA) used throughout the
energy management strategies is completely flexible to incorporate any exter-
nal models as it requires no knowledge of the mathematical operations being
conducted within the model itself. The optimisation simply requires the numer-
ical output of any simulation model. As a specific example, this could include a
detailed model of a district heating network modelled within software such as
TRNSYS or Simulink. Naturally, this level of advance modelling requires data
from a real pilot site for calibration purposes and to provide validation. Com-
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plete validation of the energy management strategies proposed in this thesis
can only be achieved through deployment at real pilot sites.

This thesis does not aim to investigate the performance of different machine
learning algorithms or optimisation algorithms. A GA and an ANN was chosen
due to their frequent use throughout the studied literature. However, within
their fields, these algorithms are relatively old. Future work could trial different,
more modern, machine learning techniques such as deep neural networks or
random forests. In terms of optimisation, algorithms such as particle swarm,
ant colony, or memetic algorithms could be tested. The discovery of improved
algorithms would enhance the energy management strategies provided in this
thesis. An additional point of future work is to make an assessment of the effect
of weather forecasting errors. Throughout this thesis the weather forecast was
assumed to be completely accurate. In reality, this will contain some small
error. The impact of these errors on the machine learning prediction should be
quantified to provide greater stability within the energy management strategies.
It is expected that when weather forecasting errors are considered the benefits
of an MPC approach will become more clear.

Finally, it will be important to develop a decentralised version of the en-
ergy management strategies given in this research. ldeally, the decentralised
optimisation would be benchmarked against the centralised approach for the
same case study district. If comparable performance is found, then a decen-
tralised optimisation is likely to be more applicable in the future. It would be
fully scalable to include as many consumers and generators as required with
no limitation on decision variables. It would also give end-users greater control
on their own systems and appliances compared to a centralised approach.

8.4 Final Remarks

The common theme throughout this research was to demonstrate that improve-
ments can be made upon static, rule-based controllers. Whilst these rules may
perform well in most circumstances throughout most conditions, they cannot
provide the best solution in all scenarios. To overcome this, adaptable, context-
aware and ‘thinking’ controllers have been developed and applied to the chal-
lenges of building energy management, district energy management and finally
a combined building and district optimisation. This thesis has demonstrated
that a holistic, cooperative, optimisation-based approach is superior in terms
of both energy cost and environmental emissions. In the future energy land-
scape in which energy is increasingly dynamic and decentralised, innovative
energy management solutions will become increasingly important.
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