21 research outputs found

    TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information

    Get PDF
    Transporters mediate the movement of compounds across the membranes that separate the cell from its environment and across the inner membranes surrounding cellular compartments. It is estimated that one third of a proteome consists of membrane proteins, and many of these are transport proteins. Given the increase in the number of genomes being sequenced, there is a need for computational tools that predict the substrates that are transported by the transmembrane transport proteins. In this paper, we present TranCEP, a predictor of the type of substrate transported by a transmembrane transport protein. TranCEP combines the traditional use of the amino acid composition of the protein, with evolutionary information captured in a multiple sequence alignment (MSA), and restriction to important positions of the alignment that play a role in determining the specificity of the protein. Our experimental results show that TranCEP significantly outperforms the state-of-the-art predictors. The results quantify the contribution made by each type of information used

    Bioinformatics Tools for Data Processing and Prediction of Protein Function

    Get PDF
    Bioinformatika semakin populer karena kemampuannya untuk menganalisis dan memproses data biologis dengan cepat dan efektif. Bagian penting dari bioinformatika adalah untuk mengidentifikasi fungsi dan karakteristik protein dengan membangun metode prediksi menggunakan algoritma pembelajaran mesin. Ini termasuk bagaimana pembelajaran mesin dapat digunakan untuk menganalisis dan mengklasifikasikan fungsi protein yang cocok untuk digunakan sebagai deteksi penyakit, merancang perawatan medis yang tepat untuk pasien, dan mengembangkan obat untuk beberapa penyakit. Permintaan untuk pembuatan predictive tools dalam menentukan model protein-ligand dan fungsi protein meningkat untuk mempromosikan penelitian biologi dalam lingkungan desain obat yang inovatif. Namun, dibutuhkan banyak waktu dan upaya untuk mengembangkan alat prediksi yang dapat diterapkan pada protein. Dalam penelitian ini kami mengembangkan tools bioinformatika yang dapat secara otomatis mengembalikan data protein dalam bentuk komposisi asam amino (AAC), komposisi pasangan dipeptida (DPC), dan matriks penentuan spesifikasi posisi (PSSM). Data protein, telah kita ambil dari database uniprot yang berisi file fasta. Penelitian ini, kami membuat alat untuk memfasilitasi ilmuwan dalam memproses atau menganalisis data protein dan juga dapat memprediksi fungsi protein menggunakan algoritma pembelajaran mesin seperti Neural Network dan Random Forest.   Kata Kunci—Bionformatika, AAC, DPC, PSS

    Predicting Transporter Proteins and Their Substrate Specificity

    Get PDF
    The publication of numerous genome projects has resulted in an abundance of protein sequences, a significant number of which are still unannotated. Membrane proteins such as transporters, receptors, and enzymes are among the least characterized proteins due to their hydrophobic surfaces and lack of conformational stability. This research aims to build a proteome-wide system to determine transporter substrate specificity, which involves three phases: 1) distinguishing membrane proteins, 2) differentiating transporters from other functional types of membrane proteins, and 3) detecting the substrate specificity of the transporters. To distinguish membrane from non-membrane proteins, we propose a novel tool, TooT-M, that combines the predictions from transmembrane topology prediction tools and a selective set of classifiers where protein samples are represented by pseudo position-specific scoring matrix (Pse-PSSM) vectors. The results suggest that the proposed tool outperforms all state-of-the-art methods in terms of the overall accuracy and Matthews correlation coefficient (MCC). To distinguish transporters from other proteins, we propose an ensemble classifier, TooT-T, that is trained to optimally combine the predictions from homology annotation transfer and machine learning methods. The homology annotation transfer components detect transporters by searching against the transporter classification database (TCDB) using different thresholds. The machine learning methods include three models wherein the protein sequences are encoded using a novel encoding psi-composition. The results show that TooT-T outperforms all state-of-the-art de novo transporter predictors in terms of the overall accuracy and MCC. To detect the substrate specificity of a transporter, we propose a novel tool, TooT-SC, that combines compositional, evolutionary, and positional information to represent protein samples. TooT-SC can efficiently classify transport proteins into eleven classes according to their transported substrate, which is the highest number of predicted substrates offered by any de novo prediction tool. Our results indicate that TooT-SC significantly outperforms all of the state-of-the-art methods. Further analysis of the locations of the informative positions reveals that there are more statistically significant informative positions in the transmembrane segments (TMSs) than the non-TMSs, and there are more statistically significant informative positions that occur close to the TMSs compared to regions far from them

    JPPRED: Prediction of Types of J-Proteins from Imbalanced Data Using an Ensemble Learning Method

    Get PDF

    Harnessing the evolutionary information on oxygen binding proteins through Support Vector Machines based modules

    Get PDF
    © The Author(s) 2018 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Abstract Objectives The arrival of free oxygen on the globe, aerobic life is becoming possible. However, it has become very clear that the oxygen binding proteins are widespread in the biosphere and are found in all groups of organisms, including prokaryotes, eukaryotes as well as in fungi, plants, and animals. The exponential growth and availability of fresh annotated protein sequences in the databases motivated us to develop an improved version of “Oxypred” for identifying oxygen-binding proteins. Results In this study, we have proposed a method for identifying oxy-proteins with two different sequence similarity cutoffs 50 and 90%. A different amino acid composition based Support Vector Machines models was developed, including the evolutionary profiles in the form position-specific scoring matrix (PSSM). The fivefold cross-validation techniques were applied to evaluate the prediction performance. Also, we compared with existing methods, which shows nearly 97% recognition, but, our newly developed models were able to recognize almost 99.99 and 100% in both oxy-50 and 90% similarity models respectively. Our result shows that our approaches are faster and achieve a better prediction performance over the existing methods. The web-server Oxypred2 was developed for an alternative method for identifying oxy-proteins with more additional modules including PSSM, available at http://bioinfo.imtech.res.in/servers/muthu/oxypred2/home.html

    PRETICTIVE BIOINFORMATIC METHODS FOR ANALYZING GENES AND PROTEINS

    Get PDF
    Since large amounts of biological data are generated using various high-throughput technologies, efficient computational methods are important for understanding the biological meanings behind the complex data. Machine learning is particularly appealing for biological knowledge discovery. Tissue-specific gene expression and protein sumoylation play essential roles in the cell and are implicated in many human diseases. Protein destabilization is a common mechanism by which mutations cause human diseases. In this study, machine learning approaches were developed for predicting human tissue-specific genes, protein sumoylation sites and protein stability changes upon single amino acid substitutions. Relevant biological features were selected for input vector encoding, and machine learning algorithms, including Random Forests and Support Vector Machines, were used for classifier construction. The results suggest that the approaches give rise to more accurate predictions than previous studies and can provide valuable information for further experimental studies. Moreover, seeSUMO and MuStab web servers were developed to make the classifiers accessible to the biological research community. Structure-based methods can be used to predict the effects of amino acid substitutions on protein function and stability. The nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) located at the protein binding interface have dramatic effects on protein-protein interactions. To model the effects, the nsSNPs at the interfaces of 264 protein-protein complexes were mapped on the protein structures using homology-based methods. The results suggest that disease-causing nsSNPs tend to destabilize the electrostatic component of the binding energy and nsSNPs at conserved positions have significant effects on binding energy changes. The structure-based approach was developed to quantitatively assess the effects of amino acid substitutions on protein stability and protein-protein interaction. It was shown that the structure-based analysis could help elucidate the mechanisms by which mutations cause human genetic disorders. These new bioinformatic methods can be used to analyze some interesting genes and proteins for human genetic research and improve our understanding of their molecular mechanisms underlying human diseases
    corecore