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Abstract

Predicting transporter proteins and their substrate specificity

Munira Alballa, Ph.D.

Concordia University, 2020

The publication of numerous genome projects has resulted in an abundance of protein

sequences, a significant number of which are still unannotated. Membrane proteins such

as transporters, receptors, and enzymes are among the least characterized proteins due to

their hydrophobic surfaces and lack of conformational stability. This research aims to build

a proteome-wide system to determine transporter substrate specificity, which involves three

phases: 1) distinguishing membrane proteins, 2) differentiating transporters from other

functional types of membrane proteins, and 3) detecting the substrate specificity of the

transporters.

To distinguish membrane from non-membrane proteins, we propose a novel tool,

TooT-M, that combines the predictions from transmembrane topology prediction tools and

a selective set of classifiers where protein samples are represented by pseudo position-specific

scoring matrix (Pse-PSSM) vectors. The results suggest that the proposed tool outperforms

all state-of-the-art methods in terms of the overall accuracy and Matthews correlation

coefficient (MCC).

To distinguish transporters from other proteins, we propose an ensemble classifier,

TooT-T, that is trained to optimally combine the predictions from homology annotation

transfer and machine learning methods. The homology annotation transfer components

detect transporters by searching against the transporter classification database (TCDB)

using different thresholds. The machine learning methods include three models wherein the

protein sequences are encoded using a novel encoding psi-composition. The results show

that TooT-T outperforms all state-of-the-art de novo transporter predictors in terms of the

overall accuracy and MCC.

To detect the substrate specificity of a transporter, we propose a novel tool, TooT-SC,

that combines compositional, evolutionary, and positional information to represent protein

samples. TooT-SC can efficiently classify transport proteins into eleven classes according to

their transported substrate, which is the highest number of predicted substrates offered by

any de novo prediction tool. Our results indicate that TooT-SC significantly outperforms
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all of the state-of-the-art methods. Further analysis of the locations of the informative

positions reveals that there are more statistically significant informative positions in the

transmembrane segments (TMSs) than the non-TMSs, and there are more statistically

significant informative positions that occur close to the TMSs compared to regions far from

them.
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Glossary

Cell membrane Biological membrane that surrounds the cytoplasm of living cells,
physically separating the intracellular components from the extracellular environment.

ChEBI Chemical Entities of Biological Interest, database and ontology of molecular
entities [HOD+15].

DS-M Benchmark dataset of membrane proteins. Collected from the Swiss-Prot database
by this research.

DS-SC Benchmark dataset of eleven substrate classes. Collected from the Swiss-Prot
database by this research.

DS-T Benchmark dataset of transporter proteins. Collected from the Swiss-Prot database
by this research.

Fasttrans Tool developed to predict seven classes of substrate-specific transporter as well
as transporter/non-transporter [HPO+19].

GO Gene Ontology, set of three controlled vocabularies (MF, BP, CC) to describe the role
of a gene product [ABB+00]

HMMTOP Tool to predict the topology of transmembrane α-helical segments [TS01].
Available online: http://www.enzim.hu/hmmtop/html/adv_submit.html

Homoeostasis Property of a system in which variables are regulated so that internal
conditions remain stable and relatively constant.

Homologous The existence of shared ancestry between a pair of structures, or genes, in
different species.

Hydrophilic Interacting effectively with water.

Hydrophobic Not interacting effectively with water; in general, poorly soluble or insoluble
in water.

iMem-2LSAAC Tool to predict membrane proteins [AHJ18].

MemType-2L Tool to predict membrane proteins [CS07].
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Nonpolar A molecule or structure that lacks any net electric charge or asymmetric
distribution of positive and negative charges. Nonpolar molecules generally are
insoluble in water.

Ontoclass Tool developed by this research to assign a substrate class label to any given
transporter using existing databases and ontologies.

Polar A Molecule or structure with a net electric charge or asymmetric distribution of
positive and negative charges. Polar molecules are usually soluble in water.

PRED-TMBB2 Tool to predict the topology of transmembrane β-barrel segments
[TEB16]. Available online: http://www.compgen.org/tools/PRED-TMBB2.

Protein sequence The unique sequence of amino acids that characterizes a given protein.

psiAAC Method of encoding a protein sequence into a numerical vector, proposed by this
research. It combines amino acid composition with evolutionary information obtained
from PSI-BLAST.

psiPAAC Method of encoding a protein sequence into a numerical vector, proposed by
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Chapter 1

Introduction

1 Biological background

Due to their biological significance, cell membranes are the only cellular structures

found in all cells of all organisms on earth. Membranes maintain the integrity of the

cell by separating the critical chemicals and structures necessary to protect the cell

from the surrounding environment. They serve as gatekeepers, regulating the flow of

molecules, energy, and information into and out of the cell. Eukaryotic cells also have

internal membranes that enclose their organelles and control the exchange of essential cell

components [LBZ+00].

Cell membranes consist of two main components: lipids and proteins (see Figure 1).

Each component has clearly defined functions; for example, lipids form the universally

conserved bilayer structure, which has basic barrier properties that determine membrane

flexibility and how membrane proteins bind to the lipid bilayer. Membrane proteins enable

the membrane to perform distinctive activities with a vast diversity of cell membrane

functions.

The lipid bilayer consists of two layers of phospholipid molecules whose fatty tails form

the hydrophobic interior, and their hydrophilic (polar) heads line both the inside and outside

of the cell surface. Membrane proteins are embedded within, or interact with, the lipid

bilayer; they adopt different forms based on the cell type and their location.

Some membrane proteins bind only to the membrane surface, others span the entire
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Figure 1: The structure of the cell membrane

This figure illustrates the two main components of the cell membrane: the lipid bilayer and
membrane proteins. Membrane proteins can be either surface-bound (e.g., peripheral) or
integral.

lipid bilayer and are exposed to water-soluble domains on both sides of the membrane (see

Figure 2). The proteins buried within the lipid bilayer are integral membrane proteins

(IMPs) (also called “transmembrane proteins”). They have one or more transmembrane

segments (TMSs) embedded in the lipid bilayer in addition to extramembranous hydrophilic

segments extending into the water-soluble domains on each side of the lipid bilayer.

The embedded segments are distinguishable since they contain residues with hydrophobic

properties that interact with the hydrophobic (nonpolar) tails inside the membrane

phospholipids.

The TMSs in membrane proteins take two general structural forms: α-helix or β-sheet.

Integral proteins of the α-helix TMSs are formed by the connection of helices with

extramembranous loops, the extramembranous domains could contain both α-helix and

β-sheet structures. Integral proteins of the β-sheet TMSs are composed of transmembrane

β-strands that stretch across the lipid bilayer and align in an antiparallel fashion into

large, self-enclosed β-sheets with extramembranous loops connecting adjacent β-strands.

The extramembranous loops generally lack a secondary structure (random coils), but some
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longer loops may contain exceptionally small α-helical regions [Bue15].

Unlike membrane proteins with α-helix TMSs, which are found in abundance in

all cellular membranes [vH99], membrane proteins with β-barrel TMSs are found

experimentally only in the outer membranes of gram-negative bacteria. However, some

weak similarities at the sequence level indicate that β-barrel membrane proteins may be

present in the outer membrane of mitochondria and chloroplasts [Sch03].

Conversely, surface-bound proteins do not expand into the hydrophobic interior of the

lipid bilayer; they are typically bound to lipid head groups at the membrane surface or

indirectly by attaching to other IMPs. Surface-bound proteins such as peripheral and

lipid-anchored proteins do not have the hydrophobic properties of the IMPs; they are

therefore more difficult to distinguish than the IMPs.

Figure 2: Schematic representation of transmembrane proteins

IMPs (transmembrane proteins) have one or more segments embedded within the lipid
bilayer (TMSs) connected by extramembranous loops.

Protein structures are described in four distinct levels of hierarchical organization:

primary, secondary, tertiary and quaternary structures. These levels denote the amino

acid sequence of the protein, the local regular substructures (e.g., α-helices and β-strands),
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the 3D structure of a single polypeptide, and the aggregation of two or more individual

polypeptide chains that comprise the protein complex, respectively. This research

specifically examines the primary and secondary structures of proteins.

1.1 Membrane protein functional classes

Membrane proteins control nearly all functions of the membrane, aside from the basic

barrier property of the lipid bilayer. The categorization of membrane proteins based on

their function was applied long before high-resolution structural methods became available

[Bue15]. This makes sense conceptually, because the underlying structure of such proteins

can only be identified once their functionality is determined [Bue15]. Membrane proteins

can be classified into four different functional groups [Bue15] (Figure 3).

Figure 3: Membrane protein functional classes

This figure shows the four main functional classes of membrane proteins. Transporters
allow certain molecules to enter or leave the cell. Receptors can bind an extracellular
molecule, which activates an intracellular process. Enzymes can transform a molecule into
another form; they perform this function in the cytoplasmic side of the membrane. Anchor
proteins physically link intracellular structures with extracellular structures. The figure is
from [OAF10].

• Transporters are responsible for selective permeability. They are highly selective,

allowing only certain substrates to enter or leave the cell. Channels and carriers are

two major types of transporters.

• Receptors are responsible for the binding of extracellular signaling molecules and

the generation of various intracellular signals on the opposite side of the plasma

membrane.
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• Enzymes are responsible for various chemical reactions in the interior surface of the

plasma membrane.

• Anchor proteins are responsible for cell adhesion and contain cell surface identity

markers.

2 Motivation

Membrane proteins are key gatekeepers that control various vital cellular functions,

including cell signaling, trafficking, metabolism, and energy production. It is estimated

that one in every three proteins found in a cell of an average organism is a membrane

protein. Human genome analysis, for example, predicts that 20% to 30% of all open

reading frames (ORFs) encode membrane proteins [WvH98]. Transporters are membrane

proteins that control the flow of molecules into and out of the cell; they play critical roles

in cellular homeostasis and are attractive targets for the pharmaceutical industry [G+06].

For example, neurotransmitter transporters are the targets of drugs used in the treatment

of neuropsychiatric disorders [IKY02], and serotonin transporters are the targets of a

major class of antidepressants, serotonin selective reuptake inhibitors [G+06]. In addition,

alterations to the function and/or expression of Na+-dependent glutamate transporters

have been implicated in a range of psychiatric and neurological disorders, such as epilepsy,

Alzheimer’s disease, Huntington’s disease, HIV-associated dementia, amyotrophic lateral

sclerosis (ALS) and malignant gliomas [SSS04].

As a result of numerous recent genome projects, the sequences of many membrane

proteins are now known; however, their structure and function remain poorly characterized

and understood because of the immense effort required to characterize them. Generally

(for all proteins), experimentally identifying the function of a protein is not a trivial task

because the function may be related specifically to the native environment in which a

particular organism lives, and such an environment is difficult to simulate in a laboratory.

In particular, membrane proteins have a hydrophobic surface, which requires the use

of detergents to extract them from the cell membrane. Additionally, their flexibility

and instability create challenges at many levels, including crystallization, expression, and
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structure solution [CBCI08].

The Protein Data Bank (PDB) is an example of how membrane proteins are less

represented than other types of soluble proteins; the PDB is the only worldwide repository

of data on the 3D structures of large biological molecules, such as proteins and nucleic

acids. As of March 2020, less than 4% of the PDB is membrane proteins, of which 2.9% are

α-helical structures and 0.6% are β-barrel structures.

Therefore, the detection of membrane proteins and the knowledge of transporters and

transport mechanisms are fundamental to the advancement of functional and structural

genomics. It is thus extremely desirable to make use of membrane protein sequences, along

with the available experimental data in computational tools, to detect membrane proteins

and determine their function. Such tools can serve as a guide to diminish the search space

for researchers when determining the function of novel proteins. Current state-of-the-art

methods remain far from delivering a solution, but initial attempts have been made that

require further improvements.

3 Problem definition

Regarding predicting transporters and their functions, not only is finding a solution

difficult but so is asking the right question. This is difficult mainly because the concepts

related to membrane transport proteins are poorly defined and there is no single coherent

problem for predicting a transport protein that all methods agree upon. Rather, there are

different perspectives on different levels of prediction.

Even gold standard databases are not consistent. The Transporter Classification

Database (TCDB) [LBUZ09], which offers the gold standard classification for membrane

transporters on the basis of the transporter classification (TC) scheme, and the Swiss

Protein (Swiss-Prot) [ABW+04] database do not contain the same transporters. As

demonstrated in Figure 4, less than 40% of the entries in the TCDB are in the Swiss-Prot

database. Of those, only 50% are annotated with the Gene Ontology (GO) molecular

function (MF) transporter activity annotation. Likewise, entries with the same GO

annotation in the Swiss-Prot database do not necessarily belong to the same TCDB
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family. Such inconsistencies complicate the identification of transporters and the prediction

of their functions.

Figure 4: Inconsistencies among the gold standard databases

This figure highlights the inconsistencies among the annotations in the gold standard
transporter databases TCDB and Swiss-Prot. As of February 2020, the TCDB contains
19,498 entries, but fewer than 40% of these (7,223 entries) are in the Swiss-Prot database.
Of those, only 50% (3,618 entries) are annotated with the Gene Ontology (GO) molecular
function (MF) transporter activity annotation.

Generally, there are two methods for predicting transporters: (1) those based on the

TC family and (2) those based on the substrate transported across the membrane. The

prediction based on the TC family attributes a given protein to a TC functional family.

The assignment into a TC family can provide an indication of the transport mechanism but

not the substrate specificity of the protein, since proteins belonging to the same TC family

transport different substrates and proteins belonging to different families can transport the

same substrate.

Predicting the function of a given transporter and getting to the level of substrate

specificity for a transporter is challenging, as it is dependent on a very small number of

sites in the protein sequence, and those sites are not known beforehand. For example,
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the crystal structure and the transport mechanism of Escherichia coli ’s uracil transporter

UraA, (UniProt-ID P0AGM7) was published in 2011 [LLJ+11]. It contains 14 TMSs and is

429 amino acids long. A short pair of antiparallel β-strands, located in TMS3 and TMS10,

provide a shelter for substrate binding and have an important role in structural organization

and substrate recognition. The uracil binding sites are identified at positions 73, 241, 289,

and 290 of the amino acid string, as illustrated in Figure 5. These binding sites are far

from each other in the primary sequence but close to each other in the 3D structure of

the proteins; thus, identifying them based merely on the primary structure is extremely

challenging. This explains why traditional sequence similarity methods do not perform well

in identifying the substrate specificity of a transporter [MCCD13] [BH13] [COLG11].

Figure 5: Uracil binding sites on UraA

Top: Overall structure of UraA with 14 TMSs; two perpendicular views, one from the
periplasm and one from the side. Bottom: Uracil is coordinated by polar contacts. The
uracil molecule is shown in yellow in ball-and-stick form. In addition, two Glu residues, Glu
241 and Glu 290, anchor uracil by each making two hydrogen bonds with it. Replacement
of either Glu residue by Ala completely abrogated uracil binding [...]. In addition, the two
oxygen atoms of uracil form hydrogen bonds with the amide nitrogen atoms of Phe 73 and
Gly 289.” [LLJ+11]. This figure is reprinted by permission from Springer Nature [LLJ+11].
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This thesis focuses on the de novo prediction of the substrate specificity of a transporter.

The de novo prediction provides insights into the function of novel unannotated proteins.

Substrate specificity is essential for determining the role of a transporter, as it provides

important information on the annotation of proteins and is a key element in transport

reactions during network modeling. In the research on identifying the substrate specificity

of transporters, there is no universally defined standard dataset. Researchers use their own

defined subset of substrate classes, where the assignment of a substrate to substrate classes

is not explained or defined, making the actual problems addressed by each predictor diverse,

and thus, the expansion of datasets to encapsulate more substrates is almost impossible.

To this end, one of the major objectives of this research is to standardize the collection of

transporter substrate data so that it is traceable and reproducible. In addition, there are

three main questions to be answered regarding a protein of interest:

Q1: Given protein sequence X, is it a membrane protein?

Q2: Given membrane protein sequence X, is it a transporter protein?

Q3: Given transporter protein sequence X, what type of substrates does it transport across

the membrane?

Each question needs to be addressed independently because methods for answering one

question may not be optimal for the other questions. Therefore, we established a three-layer

structure; each layer offers a tailored solution to each question. This design allows for

assigning a substrate to a query protein without any prior knowledge, enables obtaining

information at the level of interest, and provides the flexibility to skip levels if certain

information about the query protein is already known.

4 Objectives

The objectives of this thesis are summarized below:

O1: To improve the computational approaches for detecting de novo membrane proteins,

relying only on the protein primary sequence.

O2: To improve the computational approaches for detecting de novo transporter proteins,

relying only on the protein primary sequence.
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O3: To facilitate the data collection process for the substrate specificity of transporters in

a traceable and reproducible manner.

O4: To broaden the scope of the state-of-the-art for substrate class prediction while

maintaining credible predictive performance.

5 Outline

This thesis is organized as follows:

Chapter 2 summarizes the related literature. Section 1 examines the state-of-the-art

tools in predicting membrane proteins: Section 1.1 presents the tools for transmembrane

topology prediction, and Section 1.2 describes the tools for membrane structural type

prediction. Section 2 reviews the efforts to detect transporter proteins, and Section 3

reviews the efforts to predict the substrate specificity of transporters.

Chapter 3 presents important background for this research. Section 1 describes

common ways to encode a protein sequence into a numerical vector. Section 2 and

Section 3 list important protein databases and ontologies, respectively. Section 4 explains

the substitution matrices central to protein comparisons. Section 5 describes the similarity

search using the Basic Local Alignment Search Tool (BLAST). Finally, Section 6 presents

different multiple sequence alignment (MSA) algorithms.

Chapter 4 explores the best techniques for predicting membrane proteins. Section 1

offers an introduction to the problem and points out the main contributions we make in

the chapter. Section 2 introduces a new membrane dataset (DS-M ) and lists the materials

and methods utilized in the experiments. Section 3 delineates the experimental design,

and Section 4 presents the results and reveals that an integrative approach, which we call

TooT-M , outperforms all of the other methods. Section 4.5 compares the results obtained by

TooT-M with those obtained by the state-of-the-art membrane predictors. The contents of

this chapter have been submitted for publication in BioMed Central (BMC) Bioinformatics.

Chapter 5 focuses on distinguishing transporter proteins from other membrane

proteins. Section 1 provides an introduction to the work and highlights the main

contributions we make in the chapter. Section 2 provides an overview of the proposed tool
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(TooT-T ). Section 3 lists the materials and methods utilized in TooT-T and introduces a

new method of encoding a protein sequence, psi-composition, which combines the traditional

compositions with evolutionary information obtained by a PSI-BLAST search. Section 4

presents and discusses the results, and Section 4.4 compares the results attained by TooT-T

with those obtained using the state-of-the-art tools. Finally, Section 5 concludes the chapter.

The main components of this chapter have been published in BMC Bioinformatics [AB20].

The main difference is that the experiments in the accepted manuscript were performed

using the TrSSP benchmark dataset, while in this chapter, the experiments were conducted

with a newly constructed benchmark dataset that has the same membrane data as those in

DS-M from Chapter 4. The results are consistent across both datasets.

Chapter 6 addresses the data collection process for substrate-specific transport

proteins. Section 1 introduces the chapter. Section 2 delineates the challenges faced when

building a substrate-specific transport protein dataset and highlights the inconsistencies

among the gold standard databases. Section 3 elucidates the proposed ontology-based

tool, Ontoclass. Section 4 presents two case studies; the first case study (Section 4.1)

compares Ontoclass annotation with a manually curated dataset, and the second case study

(Section 4.2) reflects the number of annotated transporters and their substrates in the

Swiss-Prot database. Section 5 discusses the findings. The contents of this chapter were

presented at the 2019 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM) [AB19].

Chapter 7 describes transporter substrate specificity prediction. Section 1 provides

an introduction to transporter substrate prediction. Section 2 describes the materials and

methods utilized to build the proposed tool, TooT-SC. Section 3 presents and analyzes the

results, and Section 3.2 compares the performance of TooT-SC with the state-of-the-art

methods. Finally, Section 4 concludes the chapter. Some contents of the chapter have

been published in PLoS ONE [AAB20]. The main difference is that the published article

proposes TranCEP, which utilizes the same approach as TooT-SC (TMC-TCS-PAAC) but

is trained using the TrSSP dataset to predict seven substrate classes. By contrast, TooT-SC

is trained using a new dataset, DS-SC, with eleven substrate classes. DS-SC contains the

transporter entries from Chapter 5 annotated using Ontoclass.
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Finally, Chapter 8 concludes the thesis, highlights the main contributions, and provides

insights into future directions.
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Chapter 2

Literature review

This chapter reviews the literature related to this research. Section 1 reviews the efforts

to predict membrane proteins. Section 2 reviews the efforts to detect transporter proteins,

and Section 3 reviews the efforts to predict the substrate specificity of transporters.

1 Identifying membrane proteins

1.1 Transmembrane topology prediction

Transmembrane topology prediction methods predict the number of TMSs and their

respective positions in the primary protein sequence. Transmembrane proteins are IMPs

that span the lipid bilayer and have exposed portions on both sides of the membrane.

It is expected that the portions that span the membrane contain hydrophobic (nonpolar)

amino acids, while the portions that are on either side of the membrane consist mostly of

hydrophilic (polar) amino acids. The TMSs can have either α-helical or β-barrel structures,

so prediction methods are classified into α-helix prediction methods and β-barrel prediction

methods.

Previous prediction methods depended solely on simple measurements such as the

hydrophobicity of the amino acids [KD82]. Major improvements were made after

the “positive-inside rule” [vH92] was introduced by Von Heijne, which came from the

observation that positively charged amino acids, such as arginine and lysine, tend to appear

on the cytoplasmic side of the lipid bilayer. Current methods combine hydrophobicity
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analysis and the positive-inside rule together with machine learning techniques and

evolutionary information.

For example, the membrane protein structure and topology support vector machine

MEMSATSVM method [NJ09], introduced in 2009, uses four support vector machines

(SVMs) to predict transmembrane helices, inside and outside loops, re-entrant helices and

signal peptides. In addition, it includes evolutionary information on many homologous

protein sequences in the form of a sequence profile. This method outputs predicted

topologies ranked by the overall likelihood and incorporates signal peptide and re-entrant

helix prediction. The reported accuracy is 89% for the correct topology and location of

TM helices and 95% for correct number of TM helices. However, recent studies using

experimental data report that MEMSATSVM does not perform as well when evaluated on

different datasets [THKE12] [TPS+15].

State-of-the-art methods use consensus algorithms that combine the outputs from

different predictors. The consensus prediction of membrane protein topology (TOPCONS2)

method [TPS+15] achieved the highest reported prediction accuracy based on benchmark

datasets [TGB+18]. It successfully distinguishes between globular and transmembrane

proteins and between transmembrane regions and signal peptides. In addition, it is

highly efficient, making it ideal for proteome-wide analyses. The TOPCONS2 method

combines the outputs from different predictors that can also predict signal peptides (namely,

Philius [RKR+08], PolyPhobius [KKS05], OCTOPUS [VE08], signal peptide OCTOPUS

(SPOCTOPUS) [VBSE08], and SCAMPI [BVF+08]) into a topology profile where each

residue is represented by one of four values: the signal peptide (S), a membrane region (M),

the inside membrane (I), or outside membrane (O). Then, a hidden Markov model is used

to process the resulting profile and predict the final topology with the highest-scoring state

path.

Regarding β-barrel membrane protein prediction, a variety of methods have been

introduced, such as methods that combine statistical propensities [BFJE04], k-nearest

neighbor (KNN) methods [HY08], neural networks [JMF+01] [OGCS08], hidden Markov

models [BLSH04] [SGW+11] [HE12] [TEB16], SVMs [OCG10], and amino acid compositions

(AACs) [GAW05] [Lin08]. Approaches based on hidden Markov models have been found
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to achieve statistically significant performance when compared to other types of machine

learning techniques [BLH05]. Major methods for detecting β-barrel outer membrane

proteins are HHomp [RLLS09], β-barrel protein OCTOPUS (BOCTOPUS) [HE12], and

PRED-TMBB2 [TEB16], with reported MCCs of 0.98, 0.93, and 0.92, respectively, when

applied to the same dataset. The BOCTOPUS and HHomp techniques are much slower

than PRED-TMBB2 [TEB16].

1.2 Prediction of the membrane protein structural type

Methods for predicting membrane type can predict up to eight different membrane

protein structural subtypes categorized as single-pass types I, II, III, and IV; multipass

transmembrane; glycophosphatidylinositol (GPI)-anchored; lipid-anchored; and peripheral

membrane proteins (Figure 6). A comprehensive review by Butt et al. [BRK17] elucidates

these methods in detail. Generally, prediction is performed in two stages: the first stage

identifies the protein sequence as membrane or nonmembrane, while the second stage

differentiates among specific membrane protein subtypes. This research focuses on detecting

all membrane proteins, regardless of their type (the first stage). The state-of-the-art

predictors that have achieved the highest overall performance are MemType-2L [CS07]

and iMem-2LSAAC [AHJ18].

The MemType-2L [CS07] predictor was introduced in 2007 by Chou and Shen. It is a

two-layer predictor that uses the first layer to identify a query protein as a membrane

or nonmembrane protein. Then, if the protein is predicted as a membrane protein,

the second layer identifies the structural type from among the eight categories. The

MemType-2L predictor incorporates evolutionary information by representing the protein

samples with pseudo position-specific scoring matrix (Pse-PSSM) vectors and combining the

results obtained by individual optimized evidence-theoretic KNN (OET-KNN) classifiers.

It achieved an overall accuracy of 92.7% in the membrane detection layer. The reported

performance in the first layer is obtained by applying the jackknife test on the provided

dataset.

Butt et al. [BKJ+16] introduced a tool that predicts all types of membrane proteins;

it uses statistical moments to extract features from the protein samples and then trains a
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multilayer neural network with backpropagation to predict the membrane proteins. This

tool achieved an overall accuracy of 91.23% when applying the jackknife test on the dataset

from Chou and Shen [CS07], which was a slightly lower performance than the MemType-2L

predictor.

The iMem-2LSAAC was introduced in 2017 by Arif et al. [AHJ18]. iMem-2LSAAC is a

two-layer predictor that uses the first layer to predict whether a query protein is a membrane

protein. Then, in the case of membrane proteins, it continues to the second layer to identify

the structural category. It utilizes the split amino acid composition (SAAC) to extract

the features from the protein samples and then applies an SVM to train the predictor.

iMem-2LSAAC achieved an overall accuracy of 94.61% in the first layer when applying the

jackknife estimator on their dataset.
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Figure 6: Eight different membrane types

This figure shows the eight types of membrane proteins: (a) single-pass type I: spanning
the membrane once, with its N-terminus on the extracellular side of the membrane and
its signal sequence removed, (b) single-pass type II: spanning the membrane once, with
its N-terminus on the cytoplasmic side of the membrane. The transmembrane domain
is located close to the N-terminus, and it functions as an anchor, (c) single-pass type
III: spanning the membrane once, with its N-terminus on the extracellular side of the
membrane and no signal sequence, (d) single-pass type IV: spanning the membrane once,
with its N-terminus on the cytoplasmic side of the membrane. The transmembrane
domain is located close to the C-terminus, and it functions as an anchor, (e) multipass:
spanning the membrane more than once, (f) lipid-anchored: bound to the lipid bilayer of
a membrane through a posttranslational modification by the attachment of at least one
lipid or fatty acid, (g) GPI-anchored: bound to the lipid bilayer of a membrane through
a GPI-anchor (glycosylphosphatidylinositol anchor), a complex oligoglycan linked to a
phosphatidylinositol group, resulting in the attachment of the C-terminus of the protein
to the membrane, and (h) peripheral membrane proteins: physically associated with a
membrane via interactions with lipid headgroups at the membrane surface or with another
membrane protein. This figure is from [BRK17]; definitions are from UniProtKB subcellular
location ontology.



2 Identifying transporter proteins

Earlier efforts in transporter detection applied homology searches of experimentally

characterized databases to detect novel transporters, and homology searches are still

commonly used by many tools. For example, transporters via annotation transfer by

homology (TransATH) [AB17] is a system that automates Saier’s protocol [YSJ12,GNY+13,

PVL+14] based on sequence similarities. TransATH includes the computation of subcellular

localization and improves the computation of TMSs. The parameters of TransATH

are chosen for optimal performance based on a gold standard set of transporters and

non-transporters from Saccharomyces cerevisiae. TransATH achieved an overall accuracy

of 71.0%. In addition, Barghash et al. [BH13] annotated transporters at the family and

substrate levels from three organisms using sequence similarity and sequence motifs.

A major limitation of homology-based methods, however, is that they can generate

false assignments because homologous sequences do not always have significant sequence

similarities. Likewise, proteins with high sequence similarities do not always share the

same function [WL03]. More advanced methods attempt to overcome the limitations of

homology-based methods by utilizing features from the protein sequences that better reflect

the relation between the sequences and the target function. For example, TrSSP [MCZ14]

is a web server for predicting membrane transport proteins and their substrate category.

The TrSSP tool applies an SVM in combination with the amino acid index (AAindex) and

a position-specific scoring matrix (PSSM) to predict top-level transporters. It achieved

transporter prediction accuracies of 78.99% and 80.00% and MCCs of 0.58 and 0.57 during

cross-validation and independent testing, respectively.

The scoring card method (SCM) for membrane transport proteins (SCMMTP)

[LVY+15] tool uses a novel SCM that utilizes dipeptide compositions to identify putative

membrane transport proteins. The SCMMTP method first builds an initial matrix of 400

dipeptides and uses the difference between positive and negative compositions as the initial

dipeptide scoring matrix. This matrix is then optimized using a genetic algorithm. The

SCMMTP tool achieved overall accuracies of 81.12% and 76.11% and MCCs of 0.62 and

0.47 in cross-validation and independent testing, respectively.
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Li et al. [LLX+16] trained an SVM to predict substrate classes of transmembrane

transport proteins by integrating features from PSSM, AAC, biochemical, and GO terms.

They achieved an overall accuracy of 98.33% and an MCC of 0.97 on an independent

dataset. Their method incorporates GO annotation as a feature, which is likely missing in

unannotated sequences.

Ho et al. [HPO+19] applied a word-embedding approach from the field of natural

language processing (NLP) to the protein sequences of transporters. The protein sequences

are defined using both the word embeddings and the frequencies of biological words. They

report an outstanding performance in substrate specificity detection for transporters but

not in transporter detection. The accuracy for transporter detection reached only 83.94%

during cross-validation and 85.00% with independent datasets.

3 Predicting the substrate specificity of transporters

The studies that classify transporter proteins according to the substrates they transport

are quite limited. Additionally, for most tools, there is no available software or source code;

therefore, it is difficult to compare the results of different tools.

Schaadt et al. [SCH10] used AAC, pair AAC (PAAC), and pseudo-AAC methods

(PseAAC), in addition to amino acid conservation with homologous sequences, called

MSA-AAC, to detect different substrate specificities. The MSA-AAC method uses a full

MSA of each protein in the dataset built by ClustalW. For this step, a BLAST search

on the nonredundant database nr was conducted to retrieve homologous sequences; then,

sequences with an identity below 25% were removed. The occurrence of every amino acid

in all sequences of the alignment was normalized to the number of included amino acids,

and a resulting vector of size 20 was considered. The investigations were performed on

Arabidopsis thaliana transmembrane proteins, and they considered four different substrate

classes, amino acids, oligopeptides, phosphates and hexoses, with a total of 61 transporters

in the positive dataset. This method relies on the Euclidean distance between the query

protein sequence composition and the mean composition of protein sequences of each

substrate class to compute a score for each query sequence against each substrate class.
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Their approach reached an accuracy of approximately 90%, compared to 60% on randomized

data. Although the performance is promising, the dataset used by Schaadt et al. contains

limited transporters of only one organism.

Chen et al. [COLG11] utilized AAC, PAAC, and biochemical properties using the

AAindex database [KPP+07] along with some evolutionary information in the form of PSSM

to classify a transporter into four substrate classes: electrons, proteins/mRNAs, ions and

others. Their dataset is not tailored to a specific organism and contains a total of 651

transporters. A neural network was employed to construct the classifier, which achieved an

accuracy of approximately 80%.

Schaadt et al. [SH12] found that separating TMSs and non-TMSs when calculating AACs

yields an improved accuracy of 80% compared to 76% when the composition is computed for

the whole sequence. This method also used Arabidopsis thaliana transmembrane proteins

and considered the same four substrate classes, amino acids, oligopeptides, phosphates and

hexoses, with a total of 61 transporters.

Barghash et al. [BH13] applied three different approaches: BLAST [AMS+97], which

generates alignments that optimize a measure of local similarity; HMMER [FCE11], which

searches sequence databases for sequence homologs using probabilistic methods; and MEME

[BE+94], which discovers motifs in protein sequences using expectation maximization.

These methods, under different thresholds, were used to evaluate whether annotations

of transporter substrates could be transferred from one organism to the other. Four

substrate classes were considered: metal ions, phosphate, sugar, and amino acid transporters

from Escherichia coli (72 transporters), Saccharomyces cerevisiae (79 transporters), and

Arabidopsis thaliana (95 transporters). They found that in the use of these methods,

sequences tended to match those from their TC families rather than sequences in the same

substrate family. Their reported performance was low for substrate-level classification with

an F-measure of approximately 40-75%.

Mishra et al. [MCZ14] developed a web server, TrSSP, for predicting the substrate

specificity of transporters. Protein sequence features such as AAC, PAAC, the

physicochemical composition, the biochemical composition, and PSSM were used to predict

the substrate specificity of seven transporter classes: amino acids, anions, cations, electrons,
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proteins/mRNAs, sugars, and other transporters. A set of 49 selected physical, chemical,

energetic, and conformational properties were used to define the biochemical composition of

each protein sequence. The 49 values were selected from the AAindex database [KK00] and

have been successfully applied in many areas of bioinformatics, such as protein folding and

transporter classification [COLG11]. The normalized values for the 49 amino acid properties

were used. The SVM model that was trained using a combination of the biochemical

composition and PSSM achieved the highest performance, with an average MCC of 0.41.

Li et al. [LLX+16] used an SVM to predict substrate classes of transmembrane transport

proteins by integrating features from PSSM, AAC, biochemical properties, and GO terms.

They achieved an overall accuracy of 80.00% on the testing set of the dataset from Mishra et

al. [MCZ14]. Their method incorporates GO annotation as a feature, which is likely missing

in unannotated sequences.

Ho et al. [HPO+19] applied a word-embedding technique to represent protein sequences

of transporters. Their work was the first to use word-embedding representations to classify

transporters according to their substrate specificity; however, the concept of using word

embeddings to represent a protein sequence has been applied in many studies, such

as in [AM15] and [YWBA18]. The idea is motivated by recent advances in natural

language processing, where word embeddings, or word vectors, efficiently represent words

as low-dimensional floating point vectors in a way that captures their meaning [MCCD13].

In the word-embedding representation of a protein, the amino acid sequence is treated as a

sentence of length n, where n is the number of fixed-length words (k-mers) in that sequence.

The k-mer words are derived from dividing the sequence into overlapping or nonoverlapping

words of length k. Ou et al. divided the protein sequences into overlapping words with a

length of 3 (3-mers). Then, the fastText skip-gram model [BGJM17] was trained to learn

the individual word vectors for which the dimensionality of the vector was set to 1. The

protein sample was then represented by a z fixed-length vector, where z is the number of

unique biological words that appear in the corpus. The ith element of this vector represents

the 1D word vector representation of the ith word in the corpus multiplied by its frequency

in the protein sample. They report an impressive substrate specificity accuracy of 95.25%

for an SVM model trained on the TrSSP [MCZ14] training set and tested on its testing set.
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Chapter 3

Background

This chapter presents the bioinformatics background related to this research. Section 1

describes common ways to encode a protein sequence into a numerical vector. Section 2

and Section 3 list important protein databases and ontologies, respectively. Section 4

explains substitution matrices that are central to protein comparison. Section 5 describes

the similarity search using BLAST. Finally, Section 6 presents different MSA algorithms.

1 Protein composition

Machine learning models generally require their input to be vectors. The conversion

from a protein sequence into a numerical vector that encapsulates the protein function is

one of the greatest challenges in computational biology. In this section, we describe the

baseline features/encodings that are commonly applied in the literature and have been

shown to be useful.

The idea of classifying proteins using their AAC was first introduced in 1983 by

Nishikawa et al. [NKT83], who found that there is a significant correlation between a

protein’s AAC and its location, such as inside the cell or outside the cell, as well as its

functional properties, such as whether the protein is an enzyme or not. Since then, AACs

and their different variations have been used to classify proteins according to many different

properties, such as protein structure [NNT86] [TS98] [CZ95], subcellular localization

[CAPPQ97], whether a transmembrane protein acts as a channel/pore, electrochemical
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potential-driven transporters, or primary active transporters [GY08]. Formal definitions of

different variations are presented below.

1.1 Amino acid composition (AAC)

The AAC is the normalized occurrence frequency of each amino acid. The fractions of

all 20 natural amino acids are calculated by:

ci =
Fi

L
i = (1, 2, 3, ...20) (1)

where Fi is the frequency of the ith amino acid and L is the length of the sequence. Each

protein’s AAC is represented as a vector of size 20 as follows:

AAC(P ) = [c1, c2, c3, ..., c20] (2)

where ci is the composition of the ith amino acid.

1.2 Pair amino acid composition (PAAC)

The PAAC has an advantage over the AAC because it encapsulates information about

the fraction of the amino acids as well as their order. It is used to quantify the preference

of amino acid residue pairs in a sequence. The PAAC is calculated by:

di,j =
Fi,j

L− 1
i, j = (1, 2, 3, ...20) (3)

where Fi,j is the frequency of the ith and jth amino acids of a pair (dipeptide) and L is the

length of the sequence. Similar to the AAC, the PAAC is represented as a vector of size

400 as follows:

PAAC(P ) = [d1,1, d1,2, d1,3, ..., d20,20] (4)
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where di,j is the dipeptide composition of the ith and jth amino acids.

1.3 Pseudo-amino acid composition (PseAAC)

The PseAAC was proposed in 2001 by Chou [Cho01] and showed a remarkable

improvement in the prediction quality when compared to the conventional AAC. PseAAC

is a combination of the 20 components of the conventional AAC and a set of sequence-order

correlation factors that incorporate some biochemical properties. Given a protein sequence

of length L,

R1R2R3R4...RL (5)

a set of descriptors called sequence-order-correlated factors are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 =
1

L− 1

L−1∑
i=1

Θ(Ri, Ri+1)

θ2 =
1

L− 2

L−2∑
i=1

Θ(Ri, Ri+2)

θ3 =
1

L− 3

L−3∑
i=1

Θ(Ri, Ri+3)

.

.

.

θλ =
1

L− λ

L−λ∑
i=1

Θ(Ri, Ri+λ)

(6)

The parameter λ is chosen such that (λ < L). The correlation function is given by:

Θ(Ri, Rj) =
1

3

{
[H1(Rj)−H1(Ri)]

2 + [H2(Rj)−H2(Ri)]
2

+[M(Rj)−M(Ri)]
2
} (7)

where H1(Ri) is the hydrophobicity value, H2(Ri) is the hydrophilicity value, and M(Ri)

is the side-chain mass of the amino acid Ri. These quantities were converted from the

original hydrophobicity value, the original hydrophilicity value and the original side-chain

24



mass by a standard conversion formula as follows:

H1(Ri) =

H◦
1 (Ri)− 1

20

20∑
k=1

H◦
1 (Rk)

√√√√√√
20∑
y=1

[
H◦

1 (Ry)− 1

20

20∑
k=1

H◦
1 (Rk)

]2

20

(8)

where H◦
1 (Ri) is the original hydrophobicity value for amino acid Ri and can be taken from

the work of Tanford [Tan62]; H◦
2 (Ri) and M◦(Ri) are converted to H2(Ri) and M(Ri),

respectively, in the same way. The original hydrophilicity value H◦
2 (Ri) for amino acid Ri

can be obtained from Hopp and Woods [HW81]. The mass M◦(Ri) of the Ri amino acid

side chain can be obtained from any biochemistry textbook. PseAAC is represented as a

vector of size (20 + λ) as follows:

PseAAC(P ) = [s1, ..., s20, s21, ..., s20+λ] (9)

where si is the pseudo-AAC as follows:

si =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fi∑20
r=1 fr + ω

∑λ
j=1 θj

1 ≤ i ≤ 20

ωθi−20∑20
r=1 fr + ω

∑λ
j=1 θj

20 < i ≤ 20 + λ

(10)

where fi is the normalized occurrence frequency of the ith amino acid in the protein

sequence, θj is the jth sequence-order-correlated factor calculated from Equation 6, and

ω is a weight factor for the sequence-order effect. The weight factor ω puts weight on the

additional PseAAC components with respect to the conventional AAC components. The

user can select any value from 0.05 to 0.7 for the weight factor. The default value given by

Chou [Cho01] is 0.05.
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2 Databases

2.1 Transporter classification database (TCDB)

The TCDB [SJTB06] uses a classification system approved by the International Union

of Biochemistry and Molecular Biology (IUBMB) for membrane transport proteins; it is

known as the TC system. The TCDB is a curated database of accurate and experimentally

characterized information collected from over 10,000 published references. As of March

2020, it contains more than 19,500 unique protein sequences classified into more than

1,448 transporter families. Each entry in the database has a TC identifier (TCID) that

consists of five components, V.W.X.Y.Z., where V is a number from 1 to 9 that corresponds

to the transporter class (e.g., channels, carrier, pumps (active transport)), W refers to a

transporter subclass, X is a number that refers to the transporter family, Y is a number

that corresponds to the transporter subfamily, and Z refers to the substrate or range of

substrates transported. Figure 7 shows an example TCDB entry. The transporter class

Figure 7: TCDB entry example

The TCID consists of five components: V.W.X.Y.Z. V is a number from 1-9 that corresponds to the

transporter class (e.g., channels, carrier, pumps (active transport)), W is a letter that refers to the transporter

subclass, X is a number that refers to the transporter family, Y is also a number that corresponds to the

transporter subfamily, and Z refers to the substrate or range of substrates.

TC.9 contains all of the uncharacterized transporters and has approximately 3,266 entries.
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2.2 Universal Protein Resource Knowledgebase (UniProtKB)

The UniProtKB [ABW+04] is the primary worldwide database of protein sequences

and highly annotated functional information. UniProtKB employs GO annotation, which

associates GO terms (see Section 3.2) with UniProtKB records. This association is

accompanied by the reference from which the evidence is derived, in addition to the evidence

code that indicates the degree to which the annotation is supported. The evidence codes

are commonly encoded as three-letter “GO evidence codes”. However, they are now being

replaced by Evidence and Conclusion Ontology (ECO) (see Section 3.3) terms that provide

the ability to capture more in-depth evidence information than traditional GO evidence

codes. Furthermore, each protein record contains a list of keywords that summarizes the

content of a UniProtKB entry and facilitates the search for proteins of interest. The

keywords are controlled vocabulary with a hierarchical structure that are added during the

manual annotation process. Generally, UniProtKB consists of two sections: Swiss-Prot

and TrEMBL.

Swiss-Prot contains well-annotated, nonredundant proteins that have been manually

inspected. The annotation includes the protein and gene name, keyword assignment,

function, subcellular location, peer-reviewed references, secondary structure elements,

cross-references to other biological databases and information about their function. Most

GO annotations in the Swiss-Prot database are supported by ECO manual curation terms.

TrEMBL contains unrevised and automatically annotated protein sequences. All of the

GO terms are associated with ECO terms based on automatic assertion. In addition, TrEMBL

entries generally contain fewer keywords than Swiss-Prot entries, and the keywords are

assigned automatically according to specific annotation rules.

As of March 2020, Swiss-Prot contains 561,611 sequence entries, and TrEMBL

contains 177,754,527 sequence entries.
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3 Ontologies

3.1 Chemical entities of biological interest (ChEBI)

ChEBI [HOD+15] is a database and ontology that contains information about chemical

entities. Each entry in the database is classified within the ontology. ChEBI serves as an

annotation source of unique and reliable identifiers for chemicals. It is commonly used

in many bioinformatics databases and as a chemistry component of several ontologies,

including GO [HAB+13]. The ChEBI ontology contains three subontologies:

• A chemical ontology in which entities are classified based on their structural features

and properties (e.g., monosaccharide, carboxylic acid, or anion);

• A role ontology in which the entities are classified based on their activities in chemical

or biological systems (e.g., vitamin, drug, or enzyme);

• A subatomic particle ontology in which particles smaller than atoms are classified

(e.g., photons or nucleons).

ChEBI uses nomenclature, symbolism, and terminology endorsed by the International Union

of Pure and Applied Chemistry (IUPAC) and the Nomenclature Committee of the IUBMB

(NC-IUBMB). The primary ontology relationships are “is a” relationship, which is for

classification, “has part of” relationship, which links composite entities to their component

parts, and “has a role” relationship, which links a chemical entity to a role in the role

ontology. Figure 8 displays a graph view of a hexose (CHEBI:18133).
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Figure 8: Example of a ChEBI ontology graph view.

This figure illustrates a full graph view of a hexose (CHEBI:18133) in the ChEBI ontology.
All of the presented relationships in this case are “is a” relationships between the ontologies.
By clicking on ontology terms within the view, one can see a definition for that specific term.



3.2 Gene Ontology (GO)

The GO Project [ABB+00] is the largest resource available that provides an ontology of

defined terms representing gene product properties. The GO Project describes functions with

respect to three domains: molecular function (MF), biological process (BP) and cellular

component (CC). The MF concerns the activities of a gene product at the molecular

level. The BP term includes the larger processes accomplished by multiple molecular

activities. CC encompasses the locations relative to cellular structures in which a gene

product performs its function. The ontology is structured as a directed acyclic graph in

which each term has a specific relationship to one or more other terms in the same domain.

The GO terms that refer to chemical entities have fully defined semantic relationships

with corresponding chemical terms in ChEBI. This correspondence is intended to facilitate

an accurate and consistent, system-wide chemical view of the biological representation

[HAB+13].

Transporter-related terms include the GO MF term GO:0005215 transporter

activity, which is defined as “the function that enables the directed movement of

substances (such as macromolecules, small molecules, ions) into, out of, or within a cell, or

between cells” and the GO BP term GO:0006810 transport.

3.3 Evidence and Conclusion Ontology (ECO)

ECO is a structured, controlled vocabulary for capturing evidence in biological research.

This ontology is used to document evidence-based conclusions derived from investigations

[CMB+14]. The current version of ECO contains more than 600 terms arranged in a

hierarchy with two high-level classes, namely, evidence (ECO:000000) and assertion method

(ECO:0000217). Evidence is defined as a “type of information that is used to support

an assertion”. The majority of evidence is either experimental (e.g., expression pattern

evidence) or computational (e.g., sequence similarity evidence); other types include author

statements (with or without traceable reference) and curator inferences. In addition to

the evidence, ECO describes the mechanism by which an assertion is made (e.g., manually

by a curator or electronically). The assertion method is defined as “a means by which a
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statement is made about an entity”. For example, if an algorithm was used to assign a

predicted function to a protein without any curator judgment, ECO expresses this situation

as an automatic assertion. Similarly, if a curator creates the annotation after reading a

result reported in a paper, ECO captures that as a manual curation.

4 Substitution matrix

The amino acid similarity can be thought of in terms of chemical similarity [KYB03].

That is, amino acids that share similar chemical properties are more related than those

with different properties. Figure 9 delineates a rough qualitative representation of the

chemical relationships of amino acids. From an evolutionary point of view, one would

expect mutations that completely change the chemical properties of an amino acid to be

less common, as they may alter the protein’s 3D structure; while changes between similar

amino acids happen more frequently [KYB03].

Figure 9: Chemical relationships among amino acids [KYB03]

The scoring matrix contains a quantitative measure of amino acid similarity.

Establishing a scoring matrix based on the general chemical properties of amino acids is

possible; however, it does not account for substitutions that are more likely to happen from

an evolutionary standpoint. Thus, most of the widely used scoring matrices are based on the

observed conservation of amino acids over time, such as point accepted mutations (PAM)
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and blocks substitution matrices (BLOSUMs). Since these matrices represent relative rates

of evolutionary substitutions, they are also called substitution matrices. An example of

a BLOSUM substitution scoring matrix is shown in Figure 10. The scores in the matrix

represent the log odds ratio of the observed probability of a substitution of a pair of amino

acids divided by the probability expected purely due to chance, calculated as follows:

Si,j =
1

λ
log

qi,j
pipj

(11)

where qi,j is the probability of amino acids i and j replacing each other in a homologous

sequence and pi and pj are individual probabilities of amino acids i and j, respectively;

λ is a scaling factor, set such that the matrix contains easily computable integer values.

Substitution matrices are key in protein comparison, identifying homologs, and scoring in

Figure 10: BLOSUM62 substitution matrix

BLOSUM62 indicates a BLOSUM computed by choosing blocks that are more than 62%
identical.

any sequence alignment algorithm.
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5 Basic Local Alignment Search Tool (BLAST)

BLAST [AMS+97] is one of the most popular sequence search programs in

bioinformatics. It is used to compare primary sequence information and find regions of

local similarity between sequences. BLAST uses a heuristic method to identify homologous

sequences by searching for short similarity regions and expanding the hits in both directions.

Given a query protein Q, BLAST first compiles a list of overlapping words of length

w and finds neighborhood words whose scores are greater than a threshold t. The default

setting for w is 11 for DNA alignment and 3 for protein alignment. Next, the database

is scanned for exact matching words with the compiled list of words. The matches are

extended in both the left and right directions until the score drops below a predetermined

threshold x. The alignment that has a score above the threshold is called the highest-scoring

pair (HSP). The scores are determined according to a substitution matrix, and the default

is BLOSUM62. Finally, BLAST calculates the statistical significance of the HSP as the

expected value (e-value) and sorts the results according to it. The e-value describes the

likelihood that a given score would occur by chance and is calculated as follows:

e-value = KmneλS (12)

where S is the alignment score of the HSP; m and n are the query length and the length

of the database, respectively; λ is a parameter that scales the scoring system; and K is a

scaling factor. λ and K are based on the Karlin-Altschul theory, thus, they are often called

Karlin-Altschul statistics.

The e-value in Equation 12 decreases exponentially as the alignment score increases. In

addition, the relationship between the e-value and the search space (mn) is linear; that is,

if the search space is doubled, the e-value is also doubled.
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6 Multiple sequence alignment (MSA)

MSAs are fundamental tools for protein structure, function prediction, phylogenetic

analysis, and other bioinformatics and molecular evolutionary applications. An MSA is a

collection of more than two protein sequences that are partially or completely aligned into

a rectangular array. The goal of an MSA is to align the sequences in such a way that the

residues in a given column are homologous in an evolutionary sense (driven from the same

residue of the shared ancestry), homologous in a structural sense (occupying same positions

in the 3D structure) or have a common function. In closely related sequences (40% amino

acid identity or more), these three principles are essentially the same. On the other hand,

if the protein sequences show some divergence over evolutionary time, those principles may

result in considerably different alignments, and the MSA becomes extremely difficult to

solve [EB06] [Pev09]. MSA development is an active area of research; over the past decade,

dozens of algorithms have been introduced. The most popular MSA algorithms are reviewed

here.

The exact methods use dynamic programming to find the global optimal alignment with

time complexity, O(LN ), where L is the average sequence length and N is the number of

aligned sequences. Since time grows exponentially as N increases, these methods are not

feasible for use unless N is very small [KT08].

ClustalW [THG94], one of the most popular MSA heuristic algorithms, uses a

progressive method. First, the algorithm performs a pairwise alignment of all the sequences

in the alignment in a matrix that shows the similarity of each pair of sequences. The

similarity scores are usually converted into distance scores. Second, the algorithm uses the

distance score matrix to construct a rough phylogenetic tree called a guide tree. Finally,

ClustalW progressively aligns the sequences by following the branching order of the guide

tree. Progressive methods are very efficient, and hundreds of sequences can be aligned

rapidly with these methods. However, when an error is introduced in the early stages of

the alignment, it cannot be corrected, which may increase the likelihood of misalignment

due to incorrect conservation signals [Pev09] [DOS13].

Clustal Omega [SWD+11], the latest algorithm from the Clustal family, is highly efficient
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and more accurate than ClustalW. Clustal Omega is capable of aligning more than 190,000

sequences on a single processor in a few hours [SWD+11]. Like ClustalW, Clustal Omega

first performs a pairwise alignment. Then, to reduce the number of distance calculations

required to build the guide tree, Clustal Omega uses a modified version of mBed [BSS+10],

which involves embedding the sequences in a space where the similarities within a set of

sequences can be approximated without the need to compute all the pairwise distances.

The sequences can then be clustered extremely quickly to produce the guide tree. Finally,

progressive alignments are computed using the HHalign package [Söd05], which aligns the

sequences with two hidden Markov model profiles.

Iterative methods overcome the inherited limitation of the progressive method (i.e.,

the error cannot be removed once introduced). The multiple alignment using fast Fourier

transform (MAFFT) algorithm [KMKM02] is an iterative method that uses two-cycle

heuristics. Initially, it aligns the sequences using progressive methods and then refines the

alignment by calculating and optimizing the sum-of-pairs score. The MAFFT algorithm also

identifies homologous regions by a fast Fourier transform, where the amino acid sequence

is converted to a sequence with volume and polarity values for each amino acid residue.

The idea behind consistency-based methods is that for sequences x, y and z, if residue

xi aligns with residue yj and residue yj aligns with residue zk, then residue xi aligns with

residue zk. The consistency of each pair of residues with residue pairs from all of the other

alignments is examined and weighted so it reflects the degree to which those residues align

consistently with other residues. The tree-based consistency objective function for alignment

evaluation (T-Coffee) algorithm [NHH00], a consistency-based method, is considered one of

the most accurate programs available based on benchmarking studies. T-Coffee takes into

account both global and local pairwise alignments. Local similarity is used to reveal when

two proteins share part of the sequence, e.g., a domain or motif.

All of the abovementioned algorithms are general-purpose algorithms that can be used

to align any related protein sequences. In other words, they use general scoring schemes

tailored for sequences of soluble proteins. Because the regions of transmembrane proteins

that are inserted into the cell membrane have a profoundly different hydrophobicity pattern

compared with soluble proteins, these algorithms may not produce the optimal alignment
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for transmembrane proteins [PFH08].

Few packages have been published to address the problem of aligning transmembrane

proteins, such as PROLIN-TM [PFH08], TM-Coffee [CDTTN12] and the simple

transmembrane alignment method (STAM) [SG04]. Most of these algorithms use a

homology extension technique. In homology extension methods, database searches are used

to replace each sequence with the profile of closely related homologs. Consequently, each

sequence position becomes a column in the multiple alignments that reveals the pattern

of acceptable mutations. TM-Coffee is the most accurate method based on benchmarking

studies performed by Notredame et al. [CDTTN12]. The TM-Coffee algorithm can be

summarized as follows: for each sequence in need of alignment, a homology search is

performed using BLAST [AMS+97], and the hits with an identity between 50% and 90%

and a coverage of more than 70% are retained. Then, the BLAST output is transformed

into a profile where all columns corresponding to unaligned positions (i.e., gaps) in the

query are removed, and the query positions unmatched by BLAST are filled with gaps.

Finally, a T-Coffee library is produced by aligning every pair of profiles. TM-Coffee shows

a 10% improvement over MSAProbs [LSM10], which is the next best method that uses

homology extension. Although homology extension-based methods achieve much more

accurate alignments than standalone methods, performing an alignment takes several orders

of magnitude longer [EB06].

The assessment of MSA has been the subject of research in recent years. Particularly,

efforts have been devoted to answering two main questions: how to obtain alignments

associated with the optimal score and how to evaluate the “goodness” of an alignment. A

reliable way to evaluate the alignment is to compare the alignment result with known 3D

structures established by X-ray crystallography. Because it has been demonstrated that

even proteins with low sequence identity (less than 40%) can share similar 3D structures, a

comparison of the 3D structures makes it possible to align distantly related proteins with

low sequence similarity on the basis of their structural equivalence [Kri07] [Got96].

Several benchmark datasets have been created as reference sets in which alignments are

created from proteins with known structures. In this way, one can evaluate the result of

a proposed MSA algorithm on the basis of studied proteins that are experimentally and
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structurally homologous. Many studies devoted to comparing different MSA algorithms on

tests against benchmark databases are currently available [EB06] [TLLP11] [PdROC14].

They can serve as a guide for researchers to choose the appropriate algorithm for a given

dataset. The general conclusion is that there is a trade-off between the computational cost

and the accuracy; the accuracy can vary greatly if the sequences under study are highly

divergent. In addition, there is no available MSA program that outperforms the others in

all test cases [PdROC14].
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Chapter 4

Identifying membrane proteins

This chapter addresses the first research objective:

O1: To improve the computational approaches for detecting de novo membrane proteins,

relying only on the protein primary sequence.

Some of the contents in this chapter were presented at the 2019 Network Tools and

Applications in Biology (NETTAB) international conference in Italy and have been

submitted for publication in BMC Bioinformatics: M. Alballa, G. Butler, Integrative

approach for detecting membrane proteins, BMC Bioinformatics (under review).

The chapter is organized as follows: Section 1 gives an introduction to the problem

and points out the main contributions we make in the chapter. Section 2 introduces

a new membrane dataset (DS-M ) and lists the materials and methods utilized in the

experiments, Section 3 delineates the experimental design, Section 4 presents the results

and finds that an integrative approach, which we call TooT-M , outperforms all the other

methods, and Section 4.5 compares the results obtained by TooT-M with those obtained

by the state-of-the-art membrane predictors. Finally, Section 5 concludes the chapter.

1 Introduction

A major class of membrane proteins are transmembrane proteins (Figure 6 (a)–(e)).

These proteins have one or more TMSs embedded in the lipid bilayer in addition to

extramembranous hydrophilic segments that extend into the water-soluble domains on each
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side of the lipid bilayer. The embedded segments are distinguishable because they contain

residues with hydrophobic properties that interact with the hydrophobic (nonpolar) tails

of the membrane phospholipids. Other classes of membrane proteins include surface-bound

proteins that do not extend into the hydrophobic interior of the lipid bilayer; they are

typically bound to the lipid head groups at the membrane surface or attach to other IMPs

(Figure 6 (f), (g), and (h)). Unlike transmembrane proteins, surface-bound proteins such as

peripheral and lipid-anchored proteins do not have TMSs; they are therefore more difficult

to distinguish from other globular proteins.

Two distinct approaches, namely, transmembrane topology prediction and membrane

structure type prediction, are primarily used to detect membrane proteins. While

transmembrane topology tools predict only a subset of membrane proteins (transmembrane

proteins), they are applied more often than membrane structure type prediction tools due to

the vast number of tools available and because transmembrane proteins constitute a major

class of membrane proteins. However, by overlooking other classes of membrane proteins,

essential information is lost. By contrast, membrane structure type predictions can be used

to detect all classes of membrane proteins. A comprehensive review by Butt et al. [BRK17]

discussed these methods in detail. Generally, there are two stages of prediction: the first

stage identifies the protein sequence as that of a membrane or nonmembrane protein, while

the second stage differentiates specific subtypes of membrane proteins. In this work, we

focus on detecting membrane proteins of all types, i.e., the first stage. That is, given a

protein sequence Q, is it a membrane protein?

The state-of-the-art tools that have achieved the highest overall performance in

predicting all types of membrane proteins are MemType-2L [CS07] and iMem-2LSAAC

[AHJ18]. While MemType-2L [CS07] has been in use for over a decade, it has maintained

its popularity due to its simple yet effective methodology. MemType-2L incorporates

evolutionary information by representing protein samples with Pse-PSSM vectors and

combining the results obtained from individual OET-KNN classifiers. By contrast,

iMem-2LSAAC uses the split AAC to extract features from protein samples and then SVMs

to train the predictor.

MemType-2L is the only accessible tool for the prediction of all types of membrane
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proteins. When we tested it on a new set of membrane proteins, the accuracy reached only

80%. This could be because it was trained on the available protein sequences from 2006;

however, the protein sequence landscape has drastically changed. As presented in Figure 11,

a large surge in protein sequence entries has been recorded since 2006, and the tool may

have missed patterns present in more recent data. It is therefore essential to build a new

accessible tool that accommodates all membrane data.

Figure 11: Number of entries in the Swiss-Prot database over time. This figure is from
the official statistics page on the UniProt website

The main contributions of this work can be summarized as follows:

• We establish a new benchmark dataset for membrane proteins (DS-M ).

• We evaluate the performances of traditional transmembrane topology prediction tools

on DS-M to predict all types of membrane proteins.

• We compare the performances of various machine learning techniques to detect

membrane proteins; this comparison involved applying different feature extraction

techniques to encode protein sequences and choosing the proper machine learning

algorithm to build a model on the extracted vectors.

• We introduce a novel method, TooT-M, which integrates different techniques

that achieves superior performance compared to all other methods, including the

state-of-the-art methods.
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2 Materials and methods

2.1 Dataset

The latest publicly available benchmark dataset that contains both membrane and

nonmembrane proteins was constructed by Chou and Shen [CS07] and was used to construct

the MemType-2L predictor. Their dataset was collected from the Swiss-Prot database

version 51.0, released on October 6, 2006. Furthermore, they eliminated proteins with 80%

or more similarity in their sequences to reduce homology bias. Chou and Shen’s dataset

contains a total of 15,547 proteins, of which 7,582 are membrane proteins and 7,965 are

nonmembrane proteins.

Because of the rapidly increasing sizes of biological databases, we built a new updated

dataset, DS-M. This dataset was collected from the June 2018 release of the Swiss-Prot

database. The annotated membrane proteins were retrieved by extracting all of the proteins

that are located in the membrane, using the following search query:

locations:(location:membrane) AND reviewed:yes

The remainder of the Swiss-Prot entries were designated as nonmembrane proteins.

The sequences in both classes were filtered by adhering to the following criteria:

• Step 1: Protein sequences that have evidence “inferred from homology” for the

existence of a protein were removed.

• Step 2: Protein sequences less than 50 amino acids long were removed, as they could

be fragments.

• Step 3: Protein sequences that have no GO MF annotation or annotation based only

on computational evidence (inferred from electronic annotation, IEA) were excluded.

• Step 4: Protein sequences with more than 60% pairwise sequence identity were

removed via a CD-HIT [LG06] program to avoid any homology bias.

All sequences from the membrane class and randomly selected sequences from the

nonmembrane class were used to form the benchmark dataset. The data were randomly
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Figure 12: Membrane functional types Figure 13: Membrane structural types

divided (stratified by class) into the training (90%) and testing (10%) sets, as illustrated in

Table 1. Since the testing set was kept aside until the final testing phase, and was not used

during the training or model selection, we refer to it as independent testing set.

Class Training Testing Total

Membrane 7,945 883 8,828

Nonmembrane 8,157 907 9,064

Total 16,102 1,790 17,892

Table 1: Membrane dataset DS-M

The dataset contains samples from different species, with the most sequences

coming from Homo sapiens (18%), Arabidopsis thaliana (14%), Mus musculus (11%),

Saccharomyces cerevisiae (8%), and Saccharomyces pombe (6%). Enzymes, transporters,

receptors, and those annotated with other annotations account for 33%, 25%, 13%, and

29%, respectively, of the membrane data collected, as presented in Figure 12.

Approximately 84% of the membrane data collected have a structural type annotation.

Figure 13 indicates that of the annotated proteins, approximately 75% are transmembrane

proteins (single or multipass), while the remainder are peripheral, lipid-anchored, or

GPI-anchored proteins.

2.2 Topology prediction tools

A protein is regarded as a membrane protein if at least one TMS is detected. With

respect to α-helical transmembrane proteins, three tools were applied. TOPCONS2
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[TPS+15] is considered the state-of-the-art method and known for its ability to distinguish

signal peptides from transmembrane regions. TOPCONS2 results were obtained through

its available web server. The second tool is HMMTOP [TS01], which is a highly efficient

tool commonly used in the literature. HMMTOP results were also obtained through its web

server. The third tool is the transmembrane hidden Markov model (TMHMM) [KLvHS01],

which is also commonly applied in the literature, and its results were obtained from its web

server.

Regarding β-barrel transmembrane proteins, we applied PRED-TMBB2 [TEB16], which

shows comparable performance to the state-of-the-art β-barrel predictors but is much more

efficient in terms of the runtime [TEB16]. We used the PRED-TMBB2 web server to obtain

the results.

2.3 Protein sequence encoding

After establishing the dataset, it is necessary to find the best representation of the

protein sequences and use it to train the prediction engine. Generally, there are two

options in representing a protein sequence: sequential or discrete representations [CS07].

In sequential representations, a sample protein is represented by its amino acid sequence

and then used in a similarity search-based tool such as BLAST [AMS+97], where the top

hits give indication about the function of the query protein. A major drawback of relying

on the similarity is that it fails when proteins with the same function share a low sequence

similarity. In discrete representations, a sample protein is represented by a set of discrete

numbers that are usually the result of feature engineering. In this study, we encoded the

protein sequences using the AAC, PAAC, and PseAAC baseline compositions. In addition,

we applied the Pse-PSSM and SAAC as described below.

2.3.1 Pseudo position-specific scoring matrix (Pse-PSSM)

We adopted the Chou and Shen [CS07] protein-encoding strategy, Pse-PSSM. The

Pse-PSSM is built by first performing a Position-Specific Iterative BLAST (PSI-BLAST)

[AMS+97] search on a protein sequence P using the Swiss-Prot database (3 iterations,
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e-value cutoff of 0.001) and retrieving the PSSM profile:

PPSSM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1→1 E1→2 E1→3 . . . E1→20

...
...

...
...

Ei→1 Ei→2 Ei→3 . . . Ei→20

...
...

...
...

EL→1 EL→2 EL→3 . . . EL→20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

PPSSM has L rows (a row for each position in protein sequence P) and 20 columns (one

for each amino acid). Each element Ei→j represents the score for the substitution of the

amino acid in the ith position of the protein sequence to the amino acid of type j in the

evolution process. Since the number of columns in the PSSM depends on the length of the

protein sequence P, the Pse-PSSM first standardizes the PSSM scores so that they have a

mean value of zero over the 20 amino acids and then uses the following uniform size vector

to represent protein sequence P:

P λ
Pse−PSSM = [E1, E2, . . . , E20, G

λ
1 , G

λ
2 , . . . , G

λ
20] (14)

where Ej and Gλ
j are defined as follows:

Ej =
1

L

L∑
i=1

Ei→j (j = 1, 2, . . . 20) (15)

Gλ
j =

1

L− λ

L−λ∑
i=1

[Ei→j − E(i+λ)→j ]
2 (j = 1, 2, . . . 20) (16)

λ is chosen such that (λ < L). Since the shortest protein in our dataset is 50 amino acids

long, we considered all λ ∈ (0, . . . , 49), and the performance of each encoding was evaluated

separately.

2.3.2 Split amino acid composition (SAAC)

The concept of SAAC was first reported by Hayat et al. [Hay12]. The motivation behind

this concept is that sometimes the most important information is concealed in fragments,
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and when calculating the AAC for the whole sequence, such information may be masked by

noisy, irrelevant information. The SAAC is the sequence encoding used by iMem-2LSAAC,

a state-of-the-art predictor of membrane proteins [AHJ18].

In SAAC, a protein sequence is divided into segments, and the AAC is computed for each

segment separately. Here, we followed the same partitioning described for iMem-2LSAAC

[AHJ18]: the sequence is divided into three sections, namely, the first 25 amino acids of

the N-terminus, the last 25 amino acids of the C-terminus, and the region between these

sections. Each protein is then represented by a vector of size 60, as follows:

SAAC(P ) =
[
cN1 , cN2 , . . . cN20, c1, c2, . . . c20, c

C
1 , c

C
2 , . . . c

C
20

]
(17)

where cNi , ci, and cCi are the normalized occurrence frequencies of the ith amino acid in the

N-terminus, between the two termini, and C-terminus segments, respectively.

2.4 Machine learning algorithms

2.4.1 K-nearest neighbor (KNN)

The KNN classification algorithm is simple and effective. It is a type of instance-based

learning, where all computations are deferred until prediction time. The KNN algorithm

assigns a class to an unclassified object X based on the class represented by the majority

of its KNNs in the training set vectors. If K = 1, the class of object X will be the class of

its nearest neighbor. The choice of K is key to the quality of the KNN prediction engine;

we found that the performance started to deteriorate when K > 10. We also found that

fusing the results of 10 individual classifiers, where K ∈ (1, . . . , 10) through majority voting,

achieved the highest accuracy and was adopted for the KNN models. We applied the KNN

algorithm as implemented by the class library in R (version 7.3-15).

2.4.2 Optimized evidence-theoretic k-nearest neighbor (OET-KNN)

The OET-KNN algorithm is a modification of the traditional KNN algorithm and has

been shown to be highly powerful in statistical prediction [Den95]. It has been used by

one of the most powerful membrane predictors, MemType-2L. The OET-KNN algorithm is
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based on the Dempster-Shafer theory of belief functions [Den95], wherein each neighbor in a

pattern to be classified is regarded as evidence supporting certain hypotheses concerning the

class membership of that object. As with the KNN algorithm, any constructed OET-KNN

model is an ensemble of multiple OET-KNN classifiers, each with different values of

K ∈ (1, . . . , 10). The final class was determined through majority voting. We used the

OET-KNN algorithm as implemented in R by the evclass library (version 1.1.1).

2.4.3 Support vector machine (SVM)

SVMs are a powerful machine learning tool used in many biological prediction

tools, such as in [MCZ14] and [AHJ18]. SVMs aim at solving classification problems

by finding appropriate decision boundaries between different classes. In relation to

nonlinearly separable data, the kernel trick can be used to transform nonlinear data

into a higher-dimensional space where optimal boundaries can be found in an efficient,

less computationally expensive process compared to the explicit computations of the

coordinates. We used an SVM with a radial basis function (RBF) kernel as implemented

by the R e1071 library (version 1.6-8). The best combination of the C and γ parameters

was determined by utilizing a grid search approach.

2.4.4 Gradient-boosting machine (GBM)

GBMs are a machine learning technique that produces a strong model by assembling

weak prediction models, usually decision trees. They use gradient boosting by iteratively

training new models based on the weak points of the previous models. While not

commonly applied in biological predictions, GBMs have been demonstrated to be one of

the most powerful techniques on the popular machine learning competition website Kaggle

(kaggle.com). Here, we used the xgboost library (version 0.81.0.1), which is a fast and

efficient implementation of the gradient-boosting framework in R.
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2.5 Ensemble classifier

2.5.1 All voting

Let CML
i be a classifier built using the machine learning algorithm ML ∈ {KNN,

OET-KNN, SVM, GBM}, in which the protein samples are represented by Pse-PSSM,

with λ = i and i ∈ (0, . . . , 49); each classifier is constructed as described in Section 2.4. In

addition,

let CML
i,k be a classifier built using the machine learning algorithm ML ∈ {KNN, OET-KNN}

in which the protein samples are represented by Pse-PSSM, with λ = i and i ∈ (0, . . . , 49);

and the parameter K that refers to number of neighbors equals k and k ∈ (1, . . . , 10).

In all voting, we evaluated the following six different ensembles:

SVM-based ensemble: obtains the results from 50 SVM-based classifiers (CSVM
0 , CSVM

1

. . . CSVM
49 ) and combines them through a voting mechanism, where the class that receives

the most votes is chosen by the ensemble classifier.

GBM-based ensemble: obtains the results from 50 GBM-based classifiers (CGBM
0 , CGBM

1

. . . CGBM
49 ) and combines them through the same voting mechanism as above.

KNN V50-based ensemble: obtains the results from 50 KNN-based ensemble classifiers

(CKNN
0 , CKNN

1 . . . CKNN
49 ) and combines them through the same voting mechanism.

KNN V500-based ensemble: obtains the results from 500 KNN-based classifiers (50 for

different values of λ multiplied by 10 for different values of K; CKNN
0,1 , CKNN

0,2 . . . CKNN
49,10 )

and combines them through the same voting mechanism.

OET-KNN V50-based ensemble: obtains the results from 50 OET-KNN-based

ensemble classifiers (COET−KNN
0 , COET−KNN

1 . . . COET−KNN
49 ) and combines them through

the same voting mechanism.

OET-KNN V500-based ensemble: obtains the results from 500 OET-KNN-based

classifiers (50 for different values of λ multiplied by 10 for different values of K;

COET−KNN
0,1 , COET−KNN

0,2 . . . COET−KNN
49,10 ) and combines them through the same voting

mechanism; this is the MemType-2L approach [CS07].
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2.5.2 Selective voting

For each ensemble in all voting, rather than fusing the predictions from all of the

individual predictors, here, the optimal subset of predictions (i.e., the output of the

constituent classifiers) is selected so that they have minimal redundancy and maximal

relevance with the target class. To accomplish this task, we first ranked the features using

the minimum redundancy maximum relevance (mRMR) algorithm [PLD05], as implemented

by the R mRMRe library (version 2.1.0), and then utilized incremental feature selection

[HSW+10] to choose the optimal subset.

To quantify both the relevance and redundancy, mRMRe uses a linear approximation

based on correlation such that mutual information (MI) between two variables ci, cj is

estimated as:

MI(ci, cj) = −1

2
ln(1− ρ(ci, cj)

2) (18)

ρ is the Cramer’s V coefficient between ci and cj .

Let y be the target class and X = (c1, c2, . . . , cn) be the set of n input features, i.e., the

set of constituent classifiers output in all voting. The mRMR method ranks the features

in X by maximizing the MI with y (maximum relevance) and minimizing the average MI

with all the previously selected variables (minimum redundancy). A list of selected features,

denoted by S, is initialized with ci, the feature with highest MI with the target variable

such that:

ci = argmax
ci∈X

MI(ci, y) (19)

Next, another feature, cj , is added to S by choosing the feature that has the highest relevance

with the output variable and the lowest redundancy with the previously selected features,

utilizing the mutual information difference (MID) scheme:

cj = max
cj∈ΩS

⎡
⎣MI(cj , y)− 1

|S|
∑
ci∈S

MI(cj , ci)

⎤
⎦ (20)

ΩS denotes the set of features that are not yet added to S. This is continued until all of
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the features in X are added to S:

S = (c′1, c
′
2, . . . , c

′
n) (21)

c′i denotes the feature with the ith rank. Next, we utilized incremental feature selection

[HSW+10] to choose the optimal subset. Incremental feature selection constructs n sets by

adding one component at a time in an ascending order, with the ith given as:

si = {c′1, c′2 . . . c′i} (1 ≤ i ≤ n) (22)

The set with the highest accuracy is then selected for selective voting.

2.6 Performance measurement

The performances of the different prediction models were evaluated by leave-one-out

cross-validation (LOOCV), in which each sample in the training dataset is predicted based

on the rules derived from all of the other samples except the one being predicted; this

procedure is repeated so that each sample is used once for validation.

The LOOCV approach was applied to evaluate the state-of-the-art methods of the

all-type membrane predictors iMem-2LSAAC [AHJ18] and MemType-2L [CS07], the

LOOCV approach was chosen here because goes through all the samples in the training

set, and its performance does not vary with different runs.

Furthermore, we evaluated the performance of the model that achieved the highest

performance during LOOCV using an independent testing set and compared it to those

achieved by the models built with the state-of-the-art methods. Four main evaluation

metrics were considered: the sensitivity, specificity, accuracy, and MCC. The sensitivity

indicates the proportion of positive samples that are correctly identified.

Sensitivity =
TP

TP + FN
(23)
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The specificity measures the proportion of negative samples that are correctly identified.

Specificity =
TN

TN + FP
(24)

The accuracy is the number of correct predictions divided by the total number of predictions.

Accuracy =
TP + TN

TP + FN + TN + FP
(25)

The MCC measures the quality of a binary classifier and returns a value in the range from 1

to -1, where 1 indicates a perfect prediction, 0 represents prediction no better than random,

and -1 implies total disagreement between the prediction and observation.

MCC =
(TP × TN − FP × FN)√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(26)

3 Experimental design

The first experiment encodes protein sequences using different methods and uses the

generated vectors as input to train different models based on the KNN, OET-KNN, SVM

and GBM algorithms; the performances of different models are evaluated on the training set

using LOOCV. The second experiment evaluates the two ensemble approaches, all voting

and selective voting, and compares their performances. The third experiment evaluates

the performances of the HMMTOP [TS01], TMHMM [KLvHS01], TOPCONS2 [TPS+15]

and PRED-TMBB2 [TEB16] topology prediction tools for detecting all membrane types.

Finally, the last experiment integrates the prediction achieved by the best-performing

topology prediction tool with the best-performing ensemble in the second experiment; we

refer to this integrative approach as TooT-M.

In all the abovementioned experiments, only the training set is used to choose the

best model/tool. The best-performing method in all of the experiments is chosen as our

membrane predictor, and ultimately, its performance is tested on the independent testing

set and compared to that achieved by the state-of-the-art methods.
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4 Results and discussion

4.1 Evaluation of different protein encodings

The LOOCV performances of the baseline encodings AAC, PAAC, and PseAAC, in

addition to SAAC, which is utilized by iMem-2LSAAC [AHJ18], and the Pse-PSSM utilized

by MemType-2L [CS07] on different machine learning algorithms are illustrated in Table 2.

Only the Pse-PSSMs where λ ∈ (0, 1, 2) are presented here; the rest have comparable

performances and are found in Appendix A.

The encoding extraction techniques can be divided into two primary groups: techniques

that extract features solely from a protein sequence, such as AAC, PAAC, PseAAC,

and SAAC, and the Pse-PSSM technique that incorporates evolutionary information.

Among those techniques that extract features from the protein sequence alone, PseAAC

in combination with GBM achieved the highest performance, with an overall validation

accuracy of 80.60%, followed by PAAC and SVM, for which the overall accuracy reached

80.28%. The SAAC encoding method used by iMem-2LSAAC [AHJ18] was not superior to

the other feature extractors, and it reached its highest overall accuracy (80.00%) with the

GBM model.

The encoding technique that integrates evolutionary information in the form of

Pse-PSSMs for all λ ∈ (0, . . . , 49) consistently achieved higher accuracy by an average of

11% relative to the methods that rely solely on the protein sequences of individual samples.

The highest accuracy reached 89.70% and was achieved by OET-KNN, where the protein

samples were encoded using Pse-PSSM λ = 0. However, when the protein samples were

encoded using Pse-PSSM λ ∈ (1, . . . , 49), the SVM-based models outperformed the models

based on the OET-KNN, KNN, and GBM algorithms.
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Table 2: LOOCV performance of the individual models

Encoding ML Algorithm Sensitivity Specificity Accuracy MCC

AAC

OET-KNN 71.34 81.08 76.28 0.5271
KNN 75.72 74.87 75.29 0.5058
SVM 70.96 83.47 77.30 0.5492
GBM 71.86 83.75 77.89 0.5606

PseAAC

OET-KNN 73.05 81.38 77.27 0.5465
KNN 74.24 79.38 76.84 0.5370
SVM 70.59 83.98 77.37 0.5511
GBM 74.99 86.07 80.60 0.6149

PAAC

OET-KNN 68.94 72.09 70.53 0.4105
KNN 72.96 66.26 69.57 0.3930
SVM 76.15 84.22 80.24 0.6060
GBM 71.33 85.01 77.84 0.5661

SAAC

OET-KNN 66.63 72.88 69.80 0.3960
KNN 69.75 68.81 69.28 0.3856
SVM 72.51 85.85 79.27 0.5895
GBM 73.90 85.95 80.00 0.6034

Pse-PSSM, λ = 0

OET-KNN 86.57 92.75 89.70 0.7953
KNN 85.22 90.44 87.86 0.7580
SVM 83.23 90.05 86.68 0.7350
GBM 83.41 90.45 86.98 0.7409

Pse-PSSM, λ = 1

OET-KNN 85.92 91.79 88.89 0.7788
KNN 85.89 89.06 87.50 0.7501
SVM 86.75 92.22 89.52 0.7912
GBM 85.00 92.19 88.64 0.7744

Pse-PSSM, λ = 2

OET-KNN 85.51 91.90 88.75 0.7762
KNN 85.65 88.28 86.98 0.7397
SVM 86.83 92.06 89.48 0.7904
GBM 84.86 91.72 88.34 0.7682

Pse-PSSM, λ = 3

OET-KNN 84.69 91.44 88.11 0.7636
KNN 84.97 87.92 86.47 0.7295
SVM 86.97 91.61 89.32 0.7871
GBM 85.01 91.74 88.42 0.7697

Pse-PSSM, λ = 4

OET-KNN 85.46 91.37 88.45 0.7701
KNN 85.44 88.41 86.95 0.739
SVM 86.87 91.85 89.39 0.7886
GBM 85.71 92.41 89.11 0.7835

Pse-PSSM, λ = 5

OET-KNN 85.17 91.32 88.29 0.7668
KNN 85.6 88.07 86.85 0.7371
SVM 86.82 92.26 89.58 0.7925
GBM 85.1 92.08 88.63 0.7742

This table shows microaverage LOOCV performance of the different protein encodings on different
machine learning algorithms. The SAAC with SVM, highlighted in bold, reflects the LOOCV
performance of the iMem-2LSAAC method [AHJ18] on DS-M. Only the Pse-PSSMs where λ ∈
(0, . . . , 5) are shown here; the complete performance of all the Pse-PSSMs (λ ∈ (0, . . . , 49)) can be
found in Appendix A.



4.2 Evaluation of the ensemble techniques

The performance of the first ensemble approach, all voting, on the training dataset

is presented in Table 3. Since the data are balanced, we focused on the accuracy when

comparing the performance of the different models. Among the six ensembles in all voting,

the SVM-based ensemble achieved the highest accuracy of 90.15%. The OET-KNN V500

ensemble, which reflects the performance of MemType-2L [CS07] on DS-M, achieved the

second highest accuracy of 89.86%.

Table 3: Performances of the all voting ensemble classifiers on the training dataset

Algorithm Sensitivity Specificity Accuracy MCC

OET-KNN V500 85.10 94.51 89.86 0.8004
OET-KNN V50 85.61 93.57 89.64 0.7950

KNN V500 85.50 91.77 88.68 0.7747
KNN V50 86.19 90.40 88.32 0.7669

SVM 86.48 93.72 90.15 0.8047
GBM 84.52 93.32 88.98 0.7820

all voting with OET-KNN V500, highlighted in bold, reflects the LOOCV performance of
the MemType-2L method on DS-M.

To choose the optimal feature set for selective voting, we tested the mRMR top-ranked

c (1≤c≤50) features incrementally by adding one feature at a time to the OET-KNN V50,

KNN V50, SVM, and GBM models, and the top-ranked c (1≤c≤500) features on the

OET-KNN V500 and KNN V500 models. The optimal feature set is the one with the

highest accuracy. As observed from Figure 14, the accuracy peaked when the number of

top-ranked components were 3, 5, 15, and 11 for the OET-KNN V50-, KNN V50-, SVM-,

and GBM-based ensembles, respectively. In addition, the optimal number of features for

the OET-KNN V500 and KNN V500 ensembles were 20 and 21, respectively, as shown in

Figure 15; the performance started to deteriorate as more votes were counted. The detailed

performances of the optimal feature set are presented in Table 4.

The results show that the ensemble models outperform their constituent classifiers, and

the selective voting ensemble approach outperforms the all voting approach. Generally,

the ensemble works best when the individual classifiers comprising the ensemble are both

accurate and have low correlation [OS96] [KV95]. The superiority of selective voting over all
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voting is due to the mRMR method’s ability to choose the models that have low correlations

among each other and high correlation with the target class (i.e., most accurate) and to

the incremental feature selection’s ability to select the optimal set that reduces the noise

and increases the ensemble classifier’s distinctive power. An interesting observation to

note here is that while the individual SVM and GBM classifiers generally provided higher

performances than those of the OET-KNN and KNN classifiers, the latter leveraged more

from the selective voting ensemble. This suggests that the predictions from the OET-KNN

and KNN classifiers are less consistent (i.e., they make errors in different parts of the

input space) and are therefore better candidates for the ensemble than the SVM and GBM

classifiers.

The best performance in all methods was achieved by selective voting with the

OET-KNN V500 ensemble, where the overall accuracy reached 91.31%, which is 1.67%

higher than what the MemType-2L method (OET-KNN V500 with all voting) achieved.

Because it achieved the best performance, the selective voting approach with the OET-KNN

V500 method is utilized in the integrative approach TooT-M.

Table 4: Performances of the selective voting ensemble classifiers on the training dataset

Algorithm Sensitivity Specificity Accuracy MCC

OET-KNN V500 88.99 94.00 91.53 0.8314
OET-KNN V50 86.58 94.43 90.56 0.8133

KNN V500 89.01 93.63 91.35 0.8280
KNN V50 86.55 91.92 89.27 0.7863

SVM 87.12 93.72 90.46 0.8107
GBM 85.30 93.45 89.44 0.7909

Selective voting with OET-KNN V500, highlighted in bold, refers to the method that
achieved the highest MCC and is the method utilized in TooT-M
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Figure 14: Choice of the optimal constituent classifiers among 50 classifiers

In the pair (x, y), x refers to the number of top-ranked components in the optimal feature
set, and y refers to the achieved accuracy using those x components. The accuracy peaked
when the number of top-ranked components were 3, 5, 15, and 11 for the OET-KNN V50-,
KNN V50-, SVM-, and GBM-based ensembles, respectively.

Figure 15: Choice of the optimal constituent classifiers among 500 classifiers

In the pair (x, y), x refers to the number of top-ranked components in the optimal feature
set, and y refers to the achieved accuracy using those x components. The optimal numbers
of features for the OET-KNN V500 and KNN V500 ensembles were 20 and 21, respectively.
The performance started to deteriorate as more votes were accounted for. Overall, the
results suggest that the selective voting approach outperforms the all voting approach.



4.3 Evaluation of transmembrane topology prediction tools

The performances of HMMTOP [TS01], TMHMM [KLvHS01], TOPCONS2 [TPS+15]

and PRED-TMBB2 [TEB16] on the DS-M training set are shown in Table 5. Based on

our analysis in Section 2.1, we expected the topology prediction tools to fail to predict

at least 20% of the membrane proteins because they do not contain TMSs; the results

reported here confirm this hypothesis. The transmembrane topology reached a maximum

sensitivity of 72%. This finding further highlights the importance of building a model to

predict all membrane types and that transmembrane topology tools disregard surface-bound

proteins and thus fail to recognize more than 20% of membrane proteins. Nevertheless,

a very attractive aspect here is the exceptionally high specificity (true negative rate) in

TOPCONS2, which is due its ability to distinguish signal peptides from transmembrane

regions [TGB+18]. This property means that the confidence in the positive prediction is

high; thus, this aspect is exploited in TooT-M.

Table 5: Transmembrane topology prediction performance on the training dataset

Tool Sensitivity Specificity Accuracy MCC

HMMTOP 72.71 84.60 78.73 0.5777

TOPCONS2 69.86 99.77 85.01 0.7318

TMHMM 68.61 97.14 83.06 0.6878

PRED-TMBB2 41.73 55.48 48.70 -0.0281

TOPCONS2, highlighted in bold, is the tool that achieved the highest MCC and is the
method utilized in TooT-M.

4.4 Performance of TooT-M

The integrative approach TooT-M combines the best models from both the

transmembrane topology tools (TOPCONS2) and the all-type membrane predictors

(selective voting OET-KNN V500) through weighted voting. In weighted voting, a positive

vote from TOPCONS2 is trusted and multiplied by the number of constituent classifiers

in the selective voting OET-KNN V500 ensemble minus one; that is, the OET-KNN V500

selective voting prediction is transformed to positive if and only if there is at least one

constituent classifier that agrees with the positive prediction of TOPCONS2. Among all the
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tested weights, this approach helped enhance the sensitivity without negatively impacting

the specificity.

Table 6 shows the LOOCV performance of TooT-M. Compared to the selective voting

OET-KNN V500 ensemble, the sensitivity (true-positive rate) was enhanced by 2.76% and

the specificity was enhanced by 1.35%. Overall, the accuracy increased by 2%, and the

MCC was boosted by 4%.

Table 6: TooT-M LOOCV performance

Method Sensitivity Specificity Accuracy MCC

Selective voting OET-KNN V500 89.01 93.63 91.35 0.8280

TOPCONS2 69.86 99.77 85.01 0.7318

TooT-M 91.47 94.90 93.21 0.8645

This table shows the LOOCV performance of TooT-M, which integrates the predictions from
the constituent classifiers of the selective voting OET-KNN V500 ensemble and TOPCONS2
through weighted voting.

4.5 Comparison with the state-of-the-art methods

Here we compare the performance of TooT-M to the state-of-the-art methods in three

settings:

1. All the methods are trained on the DS-M training set, and their performances are

evaluated on the DS-M testing set.

2. The TooT-M method is trained on the dataset obtained by the iMem-2LSAAC

authors (DS1), and its performance is compared with the reported performance of

iMem-2LSAAC [AHJ18] on the same dataset.

3. The TooT-M method is trained on the dataset provided by Chou and Shen [CS07]

(DS2), and its performance is compared to the reported performance of MemType-2L

[CS07] on the same dataset.

As illustrated in Figure 16 and indicated in Table 7, the integrative approach outperformed

all of the other methods in terms of sensitivity, specificity, accuracy, and MCC. Similarly, as

shown in Table 8, it outperformed Mem-2LSAAC [AHJ18] in terms of specificity, accuracy,
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Figure 16: Comparison with other state-of-the-art methods on the DS-M dataset

and MCC, while still keeping the sensitivity credible. It also outperformed MemType-2L

[CS07] in terms of sensitivity, accuracy, and MCC, while achieving a similar specificity, as

shown in Table 9.

Table 7: Comparison with other state-of-the-art methods on the DS-M dataset

Method Sensitivity Specificity Accuracy MCC

TooT-M 92.41 92.5 92.46 0.85

MemType-2L [CS07] 88.67 90.19 89.44 0.79

iMem-2LSAAC [AHJ18] 74.52 83.9 79.27 0.59

This table compares the performance of the integrative approach with other state-of-art
methods on the DS-M dataset. The highest performance in each metric is highlighted in
bold. TooT-M outperformed the state-of-the-art methods across all metrics.

Table 8: Comparison with the iMem-2LSAAC predictor on the DS1 dataset

Method Sensitivity Specificity Accuracy MCC

TooT-M 98.09 96.80 97.43 0.94

iMem-2LSAAC 98.23 91.17 94.61 0.89

This table compares the performance of TooT-M with the state-of-art iMem-2LSAAC
predictor [AHJ18] on the same dataset, DS1. The best performance for each metric
is highlighted in bold. TooT-M achieved a higher specificity, accuracy and MCC than
iMem-2LSAAC.
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Table 9: Comparison with the MemType-2L predictor on the DS2 dataset

Method Sensitivity Specificity Accuracy MCC

TooT-M 92.71 94.4 93.57 0.87

MemType-2L 91.00 94.4 92.7 0.85

This table compares the performance of TooT-M with the state-of-art MemType-2L
predictor [CS07] on the same dataset, DS2. The best performance for each metric is
highlighted in bold. TooT-M achieved a higher sensitivity, accuracy and MCC than
MemType-2L and the same specificity.

5 Conclusion

We curated a new membrane protein benchmark dataset that contains all types of

membrane proteins, including surface-bound proteins. We demonstrated the limitation

of using only transmembrane topology prediction tools to predict all types of membrane

proteins, as they detect only IMPs and miss surface-bound proteins, which account for

approximately 20% of membrane protein data. Furthermore, we evaluated the performances

of different protein-encoding techniques, including those employed by the state-of-the-art

membrane predictors with different machine learning algorithms. The experimental results

obtained by cross-validation and independent testing suggest that applying an integrative

approach that combines the results of transmembrane topology prediction and Pse-PSSM

OET-KNN predictors yields the best performance. TooT-M achieved a 92.46% accuracy

in independent testing, compared to the 89.44% and 79.27% accuracies achieved by the

state-of-the-art methods MemType-2L [CS07] and iMem-2LSAAC [AHJ18], respectively.
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Chapter 5

Transporter protein detection

The main focus of this chapter is the second research objective:

O2: To improve the computational tools for predicting de novo transporters, relying only on

the primary protein sequence

Some of the contents of this chapter have been published in BMC Bioinformatics: M.

Alballa, G. Butler, TooT-T: Discrimination of transport proteins from non-transport

proteins, BMC Bioinformatics, 21.3 (2020): 1-10.

This chapter is organized as follows: Section 1 provides an introduction to the work and

highlights the main contributions we make in the chapter. Section 2 gives an overview of the

proposed tool (TooT-T ). Section 3 lists the material and methods utilized in TooT-T and

introduces a new method of encoding a protein sequence, psi-composition, that combines

the traditional compositions with evolutionary information obtained from a PSI-BLAST

search. Section 4 presents and discusses the results, and Section 4.4 compares the results

achieved by TooT-T with those obtained by the state-of-the-art tools. Finally, Section 5

concludes the chapter.

1 Introduction

Transporters control the movement of molecules across the membrane so that essential

molecules such as sugars and amino acids enter the cell while waste compounds leave the

cell. It is estimated that membrane transport proteins encode 2% to 16% of ORFs in
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prokaryotic and eukaryotic genomes, highlighting the importance of transporters in all living

species [RP05].

While many membrane proteins sequences are known due to the large number of

recent genome projects, their structures and functions remain poorly characterized and

understood. This deficiency is related to the immense effort necessary to characterize these

proteins because of their structural flexibility and instability, which create challenges at

many levels, including crystallization, expression, and structure solution. This imbalance

between the number of available sequences and experimentally characterized sequences has

created many obstacles in the advancement of biology and drug discovery. Therefore, there

is a need for advanced computational techniques that can utilize the sequence information

alone to distinguish membrane transporter proteins. These novel techniques can then be

used to direct new experiments and offer clues about protein function.

The findings from previous studies on transporter predictions can be summarized as

follows: an SVM achieved superior performance compared to other machine learning

algorithms [LVY+15] [LLX+16] [HPO+19]. Moreover, PSSM profiles are a highly accurate

encoding method for demonstrating evolutionary information within protein sequence

functional classifications [LVY+15] [MCZ14] [HGS+15].

This work focuses on distinguishing membrane transporter proteins from other

non-transporter proteins. The main contributions of this work can be summarized as follows:

• We explore the practicality of using traditional homology search techniques to detect

transporter proteins.

• We compare the performances of various discriminators/encodings on SVM models

and introduce a new encoding, called psi-composition, which shows superior

performance compared to all of the other examined encodings.

• We propose a new tool, TooT-T, that employs an ensemble classifier that is trained to

optimally combine the predictions obtained from homology annotation transfer and

psi-composition-based models to determine the final prediction. The ensemble exploits

the low correlation between the predictions obtained by various methods to build a

more robust classifier. The proposed model outperforms all of the state-of-the-art
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methods that rely on the protein sequence alone, with overall accuracies of 97.02%

and 97.28% and MCCs of 0.92 and 0.93 in cross-validation and independent testing,

respectively.

2 TooT-T overview

TooT-T utilizes an ensemble classifier that combines the results generated by two

distinct methods, namely, homology annotation transfer and machine learning, to detect

transporter proteins. First, given a query protein Q, a traditional homology search of

the TCDB is performed using BLAST. A query is predicted as a transporter if a hit is

found using three predetermined sets of thresholds. The three predictions are delivered to

the ensemble. Then, three variations of psi-composition encoding (psiAAC, psiPAAC, and

psiPseAAC) are computed and input into their respective trained SVM models. Finally, the

trained ensemble meta-model predicts the final class as a transporter T or non-transporter

NT. Figure 17 delineates an overview of the TooT-T prediction steps. The motivation

behind this selection and descriptions of each step are presented in the following sections.
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Figure 17: TooT-T overview

When a new query protein is input into TooT-T, the class of the query is predicted
by the six base classifiers: three from SVM models based on psiAAC, psiPAAC, and
psiPseAAC encoding, and three from annotation transfer by homology utilizing different
thresholds (TCDB exact, TCDB high, and TCDB med). The six predictions are then input
into the meta-classifier, which outputs the final prediction.

3 Materials and methods

3.1 Dataset

A new benchmark membrane transporter dataset from the Swiss-Prot database (June

2018 release) was collected. The initial dataset was constructed as follows:

Protein sequences that belong to the transporter class were retrieved using the following

search query:

locations:(location:membrane)

goa:("transporter activity [5215]") AND reviewed:yes

This query searches for proteins that have the GO:0005215 transporter activity

GO MF annotation. This GO MF was chosen here because it is directly related to the actual
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function of the protein rather than the general process in which it is involved.

Protein sequences that do not belong to the transporter class but are located in the

membrane were retrieved as non-transporters using the following search query:

locations:(location:membrane)

NOT goa:("transporter activity [5215]")

AND reviewed:yes

The initial set was then filtered to attain the best-quality dataset by adhering to the

following criteria:

• Step 1: Protein sequences that have evidence “inferred from homology” for the

existence of a protein were removed.

• Step 2: Protein sequences that are annotated with multiple functions (e.g.,

transporters and enzymes) were removed.

• Step 3: Protein sequences that have no GO MF annotation or annotation based only

on computational evidence (IEA) were eliminated.

• Step 4: Protein sequences with more than 60% pairwise sequence identity were

removed via the CD-HIT [LG06] program to avoid any homology bias.

Details about the number of samples attained by each step in the curation process are

presented in Figure 18. The final dataset was established after Step 4 and was randomly

partitioned (stratified by class) into a training set (90% of the data) and a testing set (10%

of the data), as presented in Table 10. Since the testing set was kept aside until the final

testing phase and was not used during the training or model selection, we refer to it as

independent testing set.

Class Training Testing Total

Transporter 2,002 222 2,224

Non-transporter 5,943 661 6,604

Total 7,945 883 8,828

Table 10: Transporter membrane dataset DS-T
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Figure 18: Membrane protein curation process

This figure shows details on the number of samples during each step of the curation process.
Step 1: Protein sequences that had evidence for the existence of a protein “inferred from
homology” were removed. Step 2: Protein sequences annotated with multiple functions
(e.g., as transporters and enzymes) were set aside for further examination. Step 3: Protein
sequences with no GO MF annotation or annotation based only on computational evidence
(IEA) were eliminated. Step 4: Protein sequences with more than 60% pairwise sequence
identity were removed.

3.2 Position-specific iterative encodings

A PSI-BLAST search [AMS+97] (3 iterations, e-value cutoff 0.001) was performed on

a sample protein sequence using a modified version of the Swiss-Prot database (June

2018 release) to find homologous sequences. The modified Swiss-Prot database did not

include the exact hits of the test sequences. Regions in the database hit sequences that

were not aligned with the query protein were discarded. The query protein (Q) and the

aligned regions of its hits (h1, h2, ..., hn) were then used to compute the position-specific

iterated AAC (psiAAC), PAAC (psiPAAC), and PseAAC (psiPseAAC) as described in the

following sections.

Position-specific iterated amino acid composition (psiAAC)

The AAC of the query protein (Q) and each of its filtered hits (h1, h2, . . . , hn) were

calculated separately as the fractions of all 20 natural amino acids:

ci =
Fi

L
i = (1, 2, 3, ...20) (27)
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where Fi is the frequency of the ith amino acid and L is the length of the sequence. The

AAC is represented as a vector of size 20:

AAC(Px) = [c1, c2, c3, ..., c20] x ∈ (Q, h1, h2 . . . , hn) (28)

where ci is the composition of the ith amino acid. Then, the mean of individual AAC

compositions represents the psiAAC for Q and was computed as:

AACpsi(Q) =
1

n+ 1

∑
AAC(Px) x ∈ (Q, h1, h2 . . . , hn) (29)

Position-specific iterated pair amino acid composition (psiPAAC)

Similarly, the individual PAAC descriptors for the query protein (Q) and each of its

filtered hits (h1, h2, . . . , hn) were calculated as follows:

di,j =
Fi,j

L− 1
i, j = (1, 2, 3, ...20) (30)

where Fi,j is the frequency of the ith and jth amino acids as a pair (dipeptide) and L is the

length of the sequence. Similar to the AAC, the PAAC is represented as a vector of size

400 as follows:

PAAC(Px) = [d1,1, d1,2, d1,3, ..., d20,20] x ∈ (Q, h1, h2 . . . , hn) (31)

where di,j is the dipeptide composition of the ith and jth amino acids. The mean of

individual PAAC compositions represents the psiPAAC for Q and was computed as follows:

PAACpsi(Q) =
1

n+ 1

∑
PAAC(Px) x ∈ (Q, h1, h2 . . . , hn) (32)

Position-specific iterated pseudo amino acid composition (psiPseAAC)

The PseAAC is a combination of the 20 components of the conventional AAC and a

set of sequence-order correlation factors that incorporate certain biochemical properties,
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originally proposed by Chou [Cho01]. Given a protein sequence of length L:

R1R2R3R4...RL (33)

a set of descriptors called sequence-order-correlated factors are defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 =
1

L− 1

L−1∑
i=1

Θ(Ri, Ri+1)

θ2 =
1

L− 2

L−2∑
i=1

Θ(Ri, Ri+2)

θ3 =
1

L− 3

L−3∑
i=1

Θ(Ri, Ri+3)

.

.

.

θλ =
1

L− λ

L−λ∑
i=1

Θ(Ri, Ri+λ)

(34)

The parameter λ is chosen such that (λ < L). A correlation function is given by:

Θ(Ri, Rj) =
1

3

{
[H1(Rj)−H1(Ri)]

2 + [H2(Rj)−H2(Ri)]
2

+[M(Rj)−M(Ri)]
2
} (35)

where H1(R) is the hydrophobicity value, H2(R) is the hydrophilicity value, and M(R)

is the side-chain mass of the amino acid Ri. These quantities were converted from the

original hydrophobicity, original hydrophilicity, and original side-chain mass values by

standard conversion as follows:

H1(Ri) =

H◦
1 (Ri)− 1

20

20∑
k=1

H◦
1 (Rk)

√√√√√√
20∑
y=1

[
H◦

1 (Ry)− 1

20

20∑
k=1

H◦
1 (Rk)

]2

20

(36)
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where H◦
1 (Ri) is the original hydrophobicity value for amino acid Ri that was taken from

Tanford [Tan62]; H◦
2 (Ri) and M◦(Ri) are converted to H2(Ri) and M(Ri) in the same

way. The original hydrophilicity value H◦
2 (Ri) for amino acid Ri was taken from the work

of Hopp and Woods [HW81]. The mass M◦(Ri) of the side chain of amino acid Ri can

be obtained from any biochemistry textbook. PseAAC is represented as a vector of size

(20 + λ) as follows:

PseAAC(Px) = [s1, ..., s20, s21, ..., s20+λ] x ∈ (Q, h1, h2 . . . , hn) (37)

where si is the pseudo-AAC such that

si =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fi∑20
r=1 fr + ω

∑λ
j=1 θj

1 ≤ i ≤ 20

ωθi−20∑20
r=1 fr + ω

∑λ
j=1 θj

20 < i ≤ 20 + λ

(38)

where fi is the normalized occurrence frequency of the ith amino acid in the protein

sequence, θj is the jth sequence-order-correlated factor calculated from Equation 34,

and ω is a weight factor for the sequence-order effect. The weight factor ω weights the

additional PseAAC components with respect to the conventional AAC components. The

user can select any value from 0.05 to 0.7 for the weight factor. The default value given

by Chou [Cho01] is 0.05. The mean of individual PseAAC compositions represents the

psiPseAAC for Q and was computed as follows:

PseAACpsi(Q) =
1

n+ 1

∑
PseAAC(Px) x ∈ (Q, h1, h2 . . . , hn) (39)

3.3 SVM

SVMs are powerful machine learning tools used in many biological prediction tools, such

as in [MCZ14] and [HPO+19]. We used an SVM with an RBF kernel as implemented in

R with the e1071 library (version 1.6-8). The best combination of the C and γ parameters

was determined utilizing a grid search approach.
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3.4 Annotation transfer by homology

Unlike the discrete representation of a protein sample in the psi-compositions, here,

the protein sample was represented by its amino acid sequence and used in a similarity

search-based tool (BLAST) to find similar matches in the TCDB [SJRT+15]. The TCDB

uses the classification system approved by the IUBMB for membrane transport proteins,

known as the TC system. The TCDB is a curated database of accurate and experimentally

characterized transporters from over 10,000 published references. If the BLAST search

produced a hit, the query was predicted to be a transporter. Since applied thresholds play

an essential role in the quality of prediction, different thresholds were utilized, as shown in

Table 11.

Table 11: Different BLAST thresholds on the TCDB

Name BLAST Threshold Motivation

TCDB exact e-value=0; percent identity=100% exact match

TCDB high e-value ≤ 1e−20; percent identity
≥ 40%; query coverage ≥ 70%;
subject coverage ≥ 70%; and
difference in length of ≤ 10%

thresholds recommended by
Butler et al. [AB17] for TCDB
BLAST

TCDB med e-value ≤ 1e− 8 threshold recommended by
Barghash et al. [BH13] as an
acceptable normalized BLAST
threshold when dealing with a TC
system

3.5 TooT-T methodology

TooT-T solves the binary classification problem in which a membrane protein is classified

as a transporter or non-transporter. Three SVM classifiers were trained with the protein

psiAAC, psiPAAC, and psiPseAAC encodings. The prediction from the three SVM models,

in addition to the predictions from homology annotation transfer with the three thresholds

(TCDB exact, TCDB high, and TCDB med), are combined using an ensemble technique

known as stacked generalization or stacking [Wol92]. Instead of combining the predictions

from multiple predictors using a simple function (such as voting), stacking trains a new

69



model to aggregate the results.

The stacking framework involves two levels of learning. The first level contains base

classifiers, which learn directly from the training data. The second level contains a

meta-classifier, which is trained using the predictions from the base classifiers. The

training instances of the meta-classifier were generated while performing cross-validation.

Algorithm 1 illustrates how the training dataset of the meta-classifier is generated [Agg14].

Algorithm 1 Stacking with K-fold cross-validation

Require: Training data D = {xi, yi}(xi ∈ Rn, yi ∈ {Transporter, Non-transporter})
Ensure: An ensemble classifier H

Step 1: Adopt the cross-validation approach in preparing a training set for the meta-classifier

Randomly split D into K equal-sized subsets: D = {D1,D2, . . . ,DK}
for k ← 1 to K do

Step 1.1: learn the base classifiers

for t← 1 to T do

Learn a classifier hkt from D \ Dk

end for

Step 1.2: Construct a training set for the meta-classifier

for xi ∈ Dk do

obtain {x′
i, yi}, where x′

i = {hk1(xi), hk2(xi), . . . hkT (xi)}
end for

end for

Step 2: Learn the meta-classifier

Learn a new classifier h′ from the collection {x′
i, yi}

Step 3: Relearn the base classifiers using all the data

for t← 1 to T do

Learn a classifier ht based on D
end for

return H(x) = h′(h1(x), h1(x), . . . , hT (x))

A GBM, as implemented by the caret package in R, was utilized to develop the

meta-classifier.
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3.6 Performance evaluation

The performances of different models were evaluated on the training dataset using

10-fold cross-validation (10-CV), in which the training dataset was randomly split into

ten equally sized sets. A single set was retained as the validation data, and the remaining

nine sets were used to train each model. The trained model was then tested using the

validation set. The cross-validation process was repeated ten times, where each set was

used once as the validation data. The performance evaluation of the 10-CV approach was

calculated globally by counting the total true positives, true negatives, false negatives and

false positives in all 10 runs (the microaverage).

The cross-validation performance can vary with different random splits; to obtain a

more stable error estimation, the 10-CV approach was repeated ten times, with different

random splits. The average performance of the 10 runs was calculated, and the variations

between the performances were captured by computing the standard deviation (SD). It

has been reported that the repeated version stabilizes the error estimation and therefore

reduces the variance in the K-CV estimator [Koh95]. Throughout the rest of this chapter,

the cross-validation performance is reported as the means ± SDs for the ten different runs

of the 10-CV approach.

Furthermore, the independent testing set was also used to perform a thorough evaluation

experiment. The data in the independent testing set were not used during the training

process and are completely unknown to our models. Four main evaluation metrics were

used to evaluate the performance: the sensitivity, specificity, accuracy, and MCC. The

sensitivity calculates the proportion of positive samples (transporters) that are correctly

identified:

Sensitivity =
TP

TP + FN
(40)

The specificity calculates the proportion of non-transporters that are correctly identified:

Specificity =
TN

TN + FP
(41)

The accuracy calculates the number of correct predictions divided by the total number of
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predictions:

Accuracy =
TP + TN

TP + FN + TN + FP
(42)

The MCC is less influenced by imbalanced tests because it takes into account true and

false positives and negatives. The MCC values range from 1 to −1, where 1 indicates a

perfect prediction, 0 represents no better than random, and −1 implies total disagreement

between the prediction and observation. Higher MCC values mean that the predictor has

high accuracy with positive and negative classes, as well as low misclassification with the

two classes. The MCC is considered the best singular assessment metric when the data are

imbalanced [Din11] [WP03] [BDA13].

MCC =
(TP × TN − FP × FN)√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(43)

4 Results and discussion

4.1 Performance of the different encodings

The goal is to find the most discriminative encoding to represent a protein sequence;

Table 12 presents the cross-validation performance of the SVM models with various

encodings. The examined encodings are the baseline compositions where no evolutionary

information is incorporated (AAC, PAAC, PseAAC), the PSSM that is commonly used

to encode the evolutionary information (implemented as described in [MCZ14] using

the same psi-composition thresholds (3 iterations, e-value cutoff of 0.001)), compositions

computed from the sequences retrieved from the BLAST search (blast-AAC, blast-PAAC,

blast-PseAAC) (e-value cutoff 0.001), and the proposed encodings (psiAAC, psiPAAC,

psiPseAAC). Since the training data of the transporter classifier are imbalanced, we focused

on the MCC to evaluate the performances of the different models.

The baseline compositions did not show great variations in performance and had an

average MCC of 0.65. The MCC was further boosted when the evolutionary information

was incorporated. While the PSSM is most commonly applied in the literature to encode

evolutionary information, the results suggest that the other encodings that combine AAC
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with evolutionary information yield a higher accuracy. Since the PSSM encoding is

extracted from the PSI-BLAST output, we expected it to show an improved performance

compared to at least the BLAST compositions, but this phenomenon was not what was

illustrated by our results. One explanation for this finding could be that the commonly

used PSSM encoding is computed from the original PSSM profile output to make it fixed

at size 20 × 20, and this PSSM encoding, although superior to the baseline, does not

capture properties to the extent shown by the amino acid compositions. Among all of

the tested encodings, psiPAAC achieved the highest MCC of approximately 0.90. The

use of the psiPAAC encoding also achieved promising results in the detection of other

membrane functional classes, such as enzymes and receptors. The experimental details on

the psi-composition performance in the other functional classes are available in Appendix B.

The high performance achieved by the psi-composition encodings is a result of

incorporating two distinctive approaches, namely, the amino acid composition and

evolutionary information. The idea is that multiple homologous sequences can reveal

more about the function of a protein than a single sequence. Homologous sequences

can be inferred when they share more similarity than would be expected by chance

[Pea13]. Similarity tools such as BLAST help to minimize the number of false positives

(non-homologs with significant scores; type I errors) but do not necessarily detect remote

homologs (homologs with non-significant scores; type II errors) [Pea13]. PSI-BLAST is more

sensitive than BLAST in terms of finding such remote homologs and is thus utilized by the

proposed encodings. Furthermore, the alignment results of PSI-BLAST contain valuable

information about the most conserved regions in the protein, and such conservation can

reflect the function of the protein. Computing the average amino acid composition from

the aligned homologous sequences thus provides a better indication of the function with less

noise than computing the composition from a single sequence.

The impact of incorporating different sources of evolutionary information is presented

in Table 13. The compositions computed from a single BLAST search had an average

improvement over baseline of 37.83%. The psi-composition further enhanced the baseline

MCC by 39.94%. The improved performance between psi-compositions and BLAST

compositions was expected because, unlike BLAST, which uses only a general scoring
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matrix, PSI-BLAST uses a PSSM to detect sequences with a similar conservation pattern

to the PSSM, thus making PSI-BLAST more sensitive to weak but biologically significant

sequence relationships than BLAST [AMS+97].

Table 12: Transporter detection performances of the different models

Encoding Sensitivity Specificity Accuracy MCC

psiPAAC* 88.45 ± 0.17 98.77 ± 0.05 96.17 ± 0.04 0.8970 ± 0.0012

psiAAC * 87.83 ± 0.23 98.66 ± 0.06 95.93 ± 0.07 0.8905 ± 0.0019

blastPAAC 87.50 ± 0.22 98.60 ± 0.06 95.80 ± 0.05 0.8869 ± 0.0015

blastPseAAC 87.31 ± 0.32 98.53 ± 0.07 95.70 ± 0.11 0.8800 ± 0.003

psiPseAAC* 87.10 ± 0.25 98.28 ± 0.08 95.47 ± 0.08 0.8800 ± 0.0021

blastAAC 85.21 ± 0.24 98.12 ± 0.08 94.87 ± 0.08 0.8613 ± 0.0023

PSSM 80.16 ± 0.23 97.17 ± 0.10 92.88 ± 0.10 0.8063 ± 0.0027

PAAC 65.01 ± 0.21 95.81 ± 0.10 88.05 ± 0.08 0.6662 ± 0.0024

AAC 59.78 ± 0.37 95.67 ± 0.15 86.62 ± 0.14 0.6225 ± 0.0041

PseAAC 59.91 ± 0.27 95.40 ± 0.09 86.45 ± 0.12 0.6179 ± 0.0034

This table shows the means ± SDs of the ten different 10-CV runs, in ascending order of
the MCC. The asterisk (*) refers to the models used in TooT-T .

Table 13: Impact of various factors on performance.

Encoding MCC blastX to X psiX to X psiX to blastX
X X blastX psiX Delta Percent Delta Percent Delta Percent

AAC 0.62 0.86 0.89 0.240 38.71 0.270 43.55 0.030 3.49

PAAC 0.67 0.89 0.90 0.220 32.84 0.230 34.33 0.010 1.12

PseAAC 0.62 0.88 0.88 0.260 41.94 0.260 41.94 0.000 0.00

Average 0.24 37.83 0.25 39.94 0.01 1.54

This table notes the difference in the MCC, delta, and percentage improvement in the MCC,
when incorporating different evolutionary information with the baseline compositions. The
highest improvement in the accuracy was achieved by the psi-compositions, with an average
improvement of 39.94% compared to the baseline.

4.2 Performance of annotation transfer by homology

The performance of annotation transfer by homology to detect transporters against the

TCDB under different thresholds is presented in Table 14. The choice of proper similarity

thresholds is critical, as shown in Table 14, and there is a trade-off between sensitivity

and specificity, where stricter thresholds (TCDB exact) result in a low true transporter

detection rate (sensitivity) but more reliable elimination of non-transporters (specificity).
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However, when the thresholds are set to be more tolerant (TCDB med), the percentage of

transporters detected increases but at the cost of more false predictions. A good balance

between sensitivity and specificity was achieved using the TCDB high thresholds, where

the overall MCC reached 0.68, which is lower than the best machine learning method

psiPAAC with an MCC of 0.89. Nevertheless, this gives a different viewpoint, which we

utilize in the TooT-T ensemble classifier.

Table 14: Performance of annotation transfer by homology

Threshold Sensitivity Specificity Accuracy MCC

TCDB exact 47.62 99.80 86.72 0.6329

TCDB high 81.56 89.52 87.52 0.6844

TCDB med 95.87 60.08 69.10 0.4873

This table shows the performance of homology annotation transfer with the training dataset
using different thresholds. The best prediction power was achieved using the TCDB high
threshold. The predicted transporter from TCDB exact was more reliable than that from
the other thresholds due to the high specificity.

4.3 TooT-T ensemble performance

The performance of the ensemble classifier and each of its constituent classifiers in

the cross-validation and independent testing set is presented in Table 15 and in Table 16,

respectively. The ensemble classifier consistently outperformed its constituent classifiers in

detecting transporters (sensitivity) while maintaining a credible true negative rate. Overall,

it surpassed all of the other models in terms of the accuracy and MCC.

It was previously shown by [OS96] and [KV95] that ensemble classifiers benefited the

most when the individual classifiers comprising the ensemble were both accurate and had

low correlation (i.e., making errors in different parts of the input space). The constituent

classifiers in our ensemble achieved the highest MCCs, and the correlations between them

are presented in Table 17. When combining the predictions of only the three models on the

machine learning side, we observed no improvement in the overall accuracy. This finding is

reasonable, since the predictions from the machine learning models in our case were highly

correlated. The obtained performance was mainly achieved by combining a different view,

annotation transfer by homology, which has lower correlation than SVM-based classifiers.
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Table 15: Cross-validation performance of the TooT-T model

Name Sensitivity Specificity Accuracy MCC

S
V
M

psiAAC 87.83 ± 0.23 98.66 ± 0.06 95.93 ± 0.07 0.8905 ± 0.0019
psiPAAC 88.45 ± 0.17 98.77 ± 0.05 96.17 ± 0.04 0.8970 ± 0.0012
psiPseAAC 87.10 ± 0.25 98.28 ± 0.08 95.47 ± 0.08 0.8800 ± 0.0021

A
T
H

TCDB exact 47.62 99.80 86.72 0.6329
TCDB high 81.56 89.52 87.52 0.6844
TCDB med 95.87 60.08 69.10 0.4873

TooT-T 91.80 ± 0.08 98.79 ± 0.01 97.02 ± 0.02 0.9203 ± 0.000

This table lists the means ± SDs of the ten different runs of the 10-CV of the proposed
ensemble. It also shows the performance of each of its constituent classifiers. ATH:
annotation transfer by homology

Table 16: Independent testing performance of the proposed model

Name Sensitivity Specificity Accuracy MCC

S
V
M

psiAAC 88.74 98.18 95.81 0.8872
psiPAAC 89.64 98.49 96.26 0.8995
psiPseAAC 87.84 98.18 95.58 0.8809

A
T
H

TCDB exact 38.74 100 84.6 0.5668
TCDB high 80.18 88.50 86.41 0.6582
TCDB med 96.4 59.61 68.86 0.4879

TooT-T 93.69 98.49 97.28 0.9274
This table shows the performance of the proposed ensemble and each of its constituent
classifiers trained on DS-T training set and tested on DS-T independent testing set. ATH:
annotation transfer by homology

Table 17: Phi correlation coefficients of the constituent classifiers

model psiAAC psiPAAC psiPseAAC TCDB exact TCDB high TCDB med

psiAAC 1.00 0.97 0.96 0.61 0.64 0.47

psiPAAC 0.97 1.00 0.95 0.61 0.64 0.47

psiPseAAC 0.96 0.95 1.00 0.60 0.64 0.47

TCDB exact 0.61 0.61 0.60 1.00 0.59 0.35

TCDB high 0.64 0.64 0.64 0.59 1.00 0.58

TCDB med 0.47 0.47 0.47 0.35 0.58 1.00

This table shows the correlation between the constituent classifiers of the ensemble. Among
them, the homology annotation transfer exhibited a lower correlation than the machine
learning models. This lower correlation motivates the use of ensemble techniques and helps
to build a more powerful model.
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4.4 Comparative performance

The experiments suggest that the TooT-T methodology is effective in detecting

transporters. Since most of the state-of-the-art tools are not accessible and their source

codes are not available, we performed TooT-T methodology on the same TrSSP dataset

[MCZ14] used to train and test the other state-of-the-art transporter predictors to properly

compare them to the TooT-T method.

Table 18 compares the performance of the TooT-T method with the methods from other

published works on the same dataset. The highest prediction accuracy was achieved by the

method proposed by Li et al. [LLX+16]. The high performance achieved by their model was

mainly due to the use of the protein GO annotations as features. Such a high performance

is to be expected, considering the fact that all of the sequences in the benchmark dataset

were well annotated and extracted from the Swiss-Prot database. The goal of TooT-T

is to predict novel and unannotated transporter proteins.

Table 18: Comparison with methods from other published works

Tool Sensitivity Specificity Accuracy MCC
Ind. CV Ind. CV Ind. CV Ind. CV

SCMMTP [LVY+15] 80.00 83.76 68.33 77.68 76.11 81.12 0.47 0.62
TrSSP [MCZ14] 76.67 76.67 81.67 78.46 80.00 78.99 0.57 0.58
Ho et al. [HPO+19] 100.00 83.14 77.50 84.48 85.00 83.94 0.73 0.68
TooT-T 94.17 90.15 88.33 89.97 92.22 90.07 0.82 0.80
Li et al. [LLX+16] 96.67 99.50 95.83 97.44 96.11 98.33 0.91 0.97

The other methods did not incorporate annotations of proteins as features and relied

solely on the protein sequence to extract features to distinguish between transporters

and non-transporters. They therefore provide a better comparison for the proposed

method. The method proposed by Ho et al. [HPO+19] achieved a better sensitivity

(100%) than TooT-T (94.17%) in the independent dataset. However, the specificity was

77.50% compared to the 88.33% achieved by TooT-T. The proposed method achieved a

higher accuracy (↑ 7%) and a higher MCC (↑ 0.09) than the method proposed by Ho

et al. [HPO+19] in transporter detection. Overall, TooT-T achieved a better accuracy,

specificity, and MCC than all of the tools reported in published works, both in independent
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and cross-validation testing.

5 Conclusion

We propose the TooT-T ensemble classifier, which can distinguish transporter membrane

proteins from other proteins. The ensemble classifier is trained to optimally combine the

predictions obtained from machine learning and homology annotation methods to produce a

final prediction. The machine learning components of the ensemble consist of SVM models

that incorporate a novel encoding method, psi-composition. The psi-composition method

combines traditional AAC with the alignment results of PSI-BLAST and shows superior

prediction performance to models built using other features, including the PSSM profile.

While the predictions obtained from annotation transfer by homology were not superior to

the best machine learning models, they provided a different viewpoint of the solution. The

proposed ensemble exploits the fact that different methods misclassify different sequences to

build a more credible model. It was demonstrated through repeated 10-CV and independent

dataset tests that the proposed ensemble outperformed its constituent classifiers and all

other state-of-the-art transporter predictors that rely on the protein sequence alone.

78



Chapter 6

Ontology-based transporter

substrate annotation for

benchmark datasets

This chapter addresses the third research objective:

O3: To facilitate the data collection process in a traceable and reproducible manner

Some parts of this chapter have been presented and published at the BIBM conference:

Alballa, M., & Butler, G. (2019, November). Ontology-based transporter substrate

annotation for benchmark datasets. In 2019, IEEE International Conference on

Bioinformatics and Biomedicine (BIBM) (pp. 2613-2619).

This chapter is organized as follows: Section 1 introduces the chapter. Section 2

delineates the challenges faced when building a substrate-specific transport protein dataset

and highlights the inconsistencies among the gold standard databases. Section 3 elucidates

the proposed ontology-based tool, Ontoclass. Section 4 presents two case studies; the first

case study (Section 4.1) compares Ontoclass annotation with a manually curated dataset,

and the second case study (Section 4.2) reflects the number of annotated transporters

and their substrates in the Swiss-Prot database. Section 5 discusses the findings, and

Section 6 concludes the chapter.
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1 Introduction

Membrane transport proteins perform a fundamental biological task of controlling

the influx of essential nutrients and ions into the cell and the efflux of cellular waste

and toxins out of the cell [G+06]. The identification of the substrate specificity of

a transporter is essential to understanding its function and to develop drugs [G+06].

Predicting the substrate specificities of transporters has been the focus of many studies

[COLG11,SH12,BH13,MCZ14,HPO+19].

In the context of transporters and transported substrates, the ultimate objective is to

predict the exact transported substrate (e.g., arginine). However, the limited number of

annotated substrates makes the prediction possible only at a high level of abstraction (e.g.,

amino acids), where all of the transporters that transport a group of substrates are combined

together in one class.

Data collection is the backbone of any research; constructing a substrate-specific

transport protein dataset for substrate prediction generally follows a manual curation

process, in which a class is assigned to sequences that transport substrates with similar

chemical properties. Unlike the manual curation of major biological databases such as

Swiss-Prot, where the manual curation process is well defined and the entries are handled

in a consistent manner, the manual curation of transporter substrate benchmark datasets is

generally imprecise; details behind the class assignment process are rarely described, which

makes reproducing the same grouping very difficult.

The goal of this work is to define a reliable method to automate the data collection

process and make establishing, updating or expanding a transporter substrate dataset

achievable for any user. To automate the data collection process, two main components are

needed: a source from which the transporter substrate annotation is found and a consistent

method to assign broader classes to more specific substrates (e.g., amino acids to arginine).

We found that the GO MF annotation in the Swiss-Prot database contains information

about transported substrates that are carefully curated by the database curators, and

the well-structured ChEBI ontology for biochemical entities has already established the

relationships between chemical entities. This work therefore proposes an automated tool,
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Ontoclass, that can assign a substrate class to a transporter in a reliable and consistent

manner without an external investigator’s input. Ontoclass takes UniProt identifiers as

input and utilizes the GO annotation from Swiss-Prot to detect transporters and assign

their substrate specificities. Then, the tool utilizes the ChEBI ontology to determine the

substrate class. The tool outputs the assigned substrate classes and related information.

2 Challenges

2.1 Different transporter classifications

There are two main gold standard databases for transporters: the TCDB and the

Swiss-Prot database. TCDB is a curated database of accurate and experimentally

characterized information collected from over 10,000 published references; as of March 2020,

TCDB contains over 19,500 entries, which are classified into 1,448 transporter families. TCDB

uses a hierarchical classification system approved by the IUBMB for membrane transport

proteins; it is known as the TC system. The Swiss-Prot database is the primary

worldwide database of well-annotated and manually inspected data; as of March 2020,

Swiss-Prot contains 561,611 entries. The Swiss-Prot database adopts the GO terms

for its curation, and more than 28,103 proteins are characterized with the GO MF term

GO:0005215 transporter activity).

Proteins classified in one database are not necessarily included in another classification.

For example, only 37% (7,223 of the 19,500) of the TCDB annotated transporters are also

annotated in the Swiss-Prot database. Of those transporters, only 3,618 were annotated

with the transporter-related GO MF term GO:0005215 transporter activity. Such

inconsistencies complicate the process of finding transporters and annotating them with a

substrate class.

2.2 Lack of documentation for manual class assignment

Several datasets have been proposed and used to predict the substrate specificity of

transporters; all of them use manual curation to assign substrate classes to transporters. In

2011, Chen et al. [COLG11] defined four substrate classes: electrons, proteins/mRNAs, ions,

81



and others. Their dataset is not tailored to a specific organism and contains a total of 651

transporters. In 2012, Schaadt et al. [SH12] produced an Arabidopsis thaliana dataset

with a total of 61 transporter proteins that belong to four substrate classes: amino

acids, oligopeptides, phosphates, and hexoses. In 2013, Barghash et al. [BH13] considered

four substrate classes, metal ions, phosphates, sugars, and amino acids transporters

from Escherichia coli (72 transporters), Saccharomyces cerevisiae (79 transporters), and

Arabidopsis thaliana (95 transporters). In 2014, the goal of a study by Mishra et al. [MCZ14]

was to classify transport proteins into the maximum possible number of classes according

to their transported substrates. To achieve this goal, a substrate-specific transport protein

dataset with a total of 900 transporters was constructed. The dataset consisted of seven

transporter classes: amino acids/oligopeptides, anions, cations, electrons, proteins/mRNAs,

sugars, and others. In 2019, Ho et al. [HPO+19] created a new dataset that contained 1,197

transporters that belong to seven classes: amino acids, electrons, hydrogen ions, lipids,

proteins/mRNAs, sugars, and others.

As illustrated above, there is no specific set of transporter classes used in all of the

datasets. Some authors (Chen et al. [COLG11]) group the substrates into four groups with

one general class, others , referring to all other substrate types. Other authors (Schaadt

et al. in [SCH10] and [SH12]) include oligopeptides (i.e., a few amino acids linked in a

polypeptide chain). Other studies (Chen et al. [COLG11] and Mishra et al. [MCZ14]) elect

to incorporate proteins/mRNAs, which consist of one or more polypeptides with at least 50

amino acids. Conversely, others (Barghash et al. [BH13]) completely ignore the protein or

oligopeptide category. Additionally, the boundaries based on which the substrate is assigned

to a class are not clear, which makes expanding the dataset to accumulate new proteins

exceptionally challenging. For example, should the transporter protein with UniProt-ID

Q10901 that transports L-glutamate, an α-amino acid anion, be assigned to the amino

acids class, the anions class, or both?
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3 The proposed tool: Ontoclass

3.1 Overview

The tool takes UniProt identifiers of proteins as input. For each protein, it determines

whether the protein has transporter-related GO MF annotations in the Swiss-Prot

database. If a transporter-related GO MF is found, it looks for the ChEBI identifier of the

transported substrates in the GO annotation. This ChEBI-ID and its ancestors in the ChEBI

ontology are used to find the most specific substrate class according to a predetermined list

of substrate classes and ChEBI-IDs. The tool outputs the final substrate class of each

protein along with additional information (Section 3.5). Details regarding the steps are

presented in the following subsections.

3.2 Substrate classes to ChEBI-ID

To assign a substrate class to a transporter protein, it is necessary to determine the

substrate classes that the tool produces. The first decision we had to make was to choose

the substrate categories with respect to the ChEBI-IDs. We initially attempted to follow

Saier’s classification system [Sai00] (see Table 19) by mapping each subcategory to its

relevant ChEBI term, but we encountered multiple issues.

First, the classification system simultaneously offers role and chemical classifications.

For example, category five (vitamins, cofactors, and their precursors) and some of the

subcategories of category six belong to ChEBI’s role ontology, while the rest of the categories

belong to its chemical ontology. A single compound could have both if it includes the “is a”

and “has a role” relationships in its ontology. Therefore, all of the compounds have chemical

classifications, and some also have role classifications. We would often encounter the issue

of multiple classifications for a single substrate. For example, glycine (CHEBI:15428),

which is an amino acid, is classified under Saier’s classification as follows:

3.A Amino acids and conjugates; 5.D Signaling molecules;

6.B Specific drugs
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Since we are mostly interested in the chemical composition of the transported substrates,

and because of all of the substrate prediction methods used to predict the chemical

classification, we opted to consider the chemical categories.

The second issue concerns the fact that the groupings from Saier’s classification

system categories and the ChEBI ontology are not consistent. For example, there

is no corresponding ChEBI term that corresponds to the 2.A Sugar polyols and

their derivatives subcategory but rather two different terms, polyols (CHEBI:26191)

and monosaccharides (CHEBI:63367). The closest common ancestor between these

two terms is organic molecular entities (CHEBI:50860). Similarly, monosaccharides

(CHEBI:63367) and carbohydrates (CHEBI:16646) share the ancestor carbohydrates and

carbohydrate derivatives (CHEBI:78616) in the ChEBI ontology but are not in the same

major category in Saier’s classification system.

Since we rely on the ChEBI ontology in our automatic substrate assignment scheme, we

modified Saier’s classification system to be consistent with the ChEBI ontology. Figure 19

depicts categories in Saier’s classification system with respect to the ChEBI ontology, where

the edges represent “is a” relationships. Table 20 groups the categories according the

relevant closest ancestor in agreement with the ChEBI ontology. We call this mapping S2C.

84



85

Table 19: Saier’s classification of transporter substrates [Sai00]

Category and substrate type Subcategories

1. Inorganic molecules A. Nonselective
B. Water
C. Cations
D. Anions
E. Others

2. Carbon compounds A. Sugars, polyols, and their derivatives
B. Monocarboxylates
C. Di- and tricarboxylates
D. Noncarboxylate organic anions
(organophosphates, phosphonates,
sulfonates, and sulfates)
E. Others

3. Amino acids and their
derivatives

A. Amino acids and conjugates
B. Amines, amides, and polyamines
C. Peptides
D. Other related organocations
E. Others

4. Bases and their derivatives A. (Nucleo)bases
B. Nucleosides
C. Nucleotides
D. Other nucleobase derivatives
E. Others

5. Vitamins, cofactors, and
their precursors

A. Vitamins and vitamin or cofactor
precursors
B. Enzyme and redox cofactors
C. Siderophores; siderophore-Fe complexes
D. Signaling molecules
E. Others

6. Drugs, dyes, sterols, and
toxics

A. Multiple drugs
B. Specific drugs
C. Bile salts and conjugates
D. Sterols and conjugates

7. Macromolecules A. Carbohydrates
B. Proteins
C. Nucleic acids
D. Lipids
E. Others

8. Miscellaneous compounds
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Figure 19: Simplified view of ChEBI ontology terms

This figure shows a simplified view of the categories in Saier’s classification system with
respect to the ChEBI ontology; the edges represent “is a” relationships in the ChEBI
ontology; some edges were omitted to simplify the view. Each node contains the ChEBI
term and the relevant ChEBI-ID. The leaves
are the categories.
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Table 20: Classification of transport system substrates using the ChEBI ontology

Category and type of
substrate

Class ChEBI-ID

1. Inorganic
molecules

A. Nonselective CHEBI:36914
CHEBI:24431

B. Water CHEBI:15377
C. Cations CHEBI:36915
D. Anions CHEBI:24834

2. Organic ions
A. Organic cations CHEBI:25697
B. Organic anions CHEBI:25696

3. Carbohydrates and
derivatives

A. Monosaccharides and
derivatives

CHEBI:35381
CHEBI:63367

B. Oligosaccharides and
derivatives

CHEBI:50699
CHEBI:63563

C. Polysaccharides and
derivatives

CHEBI:18154
CHEBI:65212

4. Carboxylic
acids

A. Monocarboxylic acids CHEBI:25384
B. Tricarboxylic acids CHEBI:27093
C. Dicarboxylic acids CHEBI:35692

5. Organonitrogen
compounds

A. Amino acids CHEBI:33709
B. Amino acid derivatives CHEBI:83821
C. Peptides CHEBI:16670
D. Amines CHEBI:32952
E. Polyamines CHEBI:88061
F. Proteins CHEBI:36080
G. Other organic amino
compounds

CHEBI:50047

6. Organic
heterocyclic
compounds

A. Nucleobases CHEBI:18282
B. Nucleosides CHEBI:33838
C. Nucleic acids CHEBI:33696
D. Nucleotides CHEBI:36976

7. Miscellaneous

A. Polyols CHEBI:26191
B. Organic phosphates CHEBI:25703
C. Amides CHEBI:32988
D. Other organic molecular
entities

CHEBI:50860

This table corresponds to a map from the substrate class to the ChEBI-ID (S2C ). The first
two columns represent a modified version of Saier’s classification system [Sai00], the last
column shows the corresponding ChEBI-IDs.



3.3 Mapping GO terms to substrate classes

This stage constructs a lookup table, GO2C, which maps transporter-related terms, i.e.,

descendants of the GO MF, GO:0005215 transporter activity, to the ChEBI-ID

of the most specific substrate class. Algorithm 2 constructs the lookup table GO2C.

First, all descendants of the GO MF term (GO:0005215 transporter activity) and

their corresponding transported substrate ChEBI-ID mappings were obtained from the

go-plus.owl ontology file downloaded from http://snapshot.geneontology.org/

ontology/extensions/go-plus.owl Then, related classes in Table 20 that are in,

or ancestors of, the ChEBI-ID in the ChEBI ontology, available at ftp://ftp.ebi.ac.

uk/pub/databases/chebi/ontology/chebi_lite.obo, were mapped to that term.

This initial mapping was further filtered to retain only the most specific substrate class.

For example, the initial mapping could represent 1.A (Nonselective), 5.A (amino acids),

5.G (another organic amino compounds), 7.D (other organic), and the concise class is 5.A

(amino acids). Table 21 presents samples of the GO2C lookup table.

Algorithm 2 Construction of the GO2C mappings: This algorithm constructs a map from
the GO MF term descendants of the GO MF (GO:0005215 transporter activity) →
ChEBI-ID
Require: GO as Gene Ontology

Require: ChEBI as ChEBI ontology

Require: S2C mapping

Ensure: GO2C mapping

Initiate GO2C as an empty map

for term t ∈ descendants from GO:0005215 do

tc ← ChEBI term in t

tcs ← most specific ChEBI term in ancestors(tc) ∩ range(S2C)

add item [t→ tcs] to map GO2C

end for

return GO2C
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Table 21: Samples of the GO2C lookup table

GO MF term ChEBI-ID Substrate class
GO:0005249 voltage-gated
potassium channel activity

CHEBI:29103 1.C Cations

GO:0015105 arsenite
transmembrane transporter
activity

CHEBI:29866 1.D Anions

GO:0005277 acetylcholine
transmembrane transporter
activity

CHEBI:15355 2.B Organic cations

GO:0015136 sialic acid
transmembrane transporter
activity

CHEBI:26667 3.A Monosaccharides
and derivatives

GO:0071913 citrate secondary
active transmembrane
transporter activity

CHEBI:30769 4.B Dicarboxylic acids

GO:0015193 L-proline
transmembrane transporter
activity

CHEBI:17203 5.A Amino acids

GO:0015638 microcin
transmembrane transporter
activity

CHEBI:64627 5.C Peptides

GO:0005340
nucleotide-sulfate
transmembrane transporter
activity

CHEBI:64702 6.D Nucleotides

GO:0015255 propanediol
channel activity

CHEBI:26288 7.A Polyol

GO:0031927 pyridoxamine
transmembrane transporter
activity

CHEBI:16410 7.D Other organic
molecular entities

This table shows example entries in the lookup table. Each entry contains the GO MF term,
the ChEBI-ID of the transported substrate, and the general class that the substrate belongs
to as defined by Table 20.

3.4 Class assignment with confidence

Given the UniProt-ID of a protein, the GO MF annotations of that protein from the

Swiss-Prot database are examined. Each GO MF annotation in the GO2C lookup table

conveys that the protein is a transporter with the same transporter substrate class in the

lookup table. If the protein contains multiple GOMF terms in the GO2C lookup table, then

all of the corresponding classes are assigned to that protein. The assigned classes are then
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filtered to retain only the most specific class, as presented in Algorithm 3. Furthermore,

the evidence of each class assignment is provided, as determined by the GO annotation in

Swiss-Prot for that sequence, which provides an impression of the confidence level of the

assignment of that substrate.

Algorithm 3 Construction of the U2S mapping: This algorithm constructs a map from
the UniProt-ID of transporters → P(substrate classes)

Require: S2C map

Require: GO2C map

Require: identifier u in UniProt of a transporter

Ensure: s set is a set of most specific substrate classes of u in the modified Saier’s list of substrate classes

s set ← empty set

for term t ∈ u that is descendant of GO:0005215 do

s set ← s set ∪ S2C−1(GO2C(t))

end for

s set← s set− {t′ ∈ s set | ∃ t ∈ s set s.t t is more specific than t′}
return s set

3.5 Presenting the output

The tool outputs the automatically assigned substrate class of a given protein along

with other additional information collected from different sources as presented in Table 22.

Such information gives the user a broader view into the query protein and its updates. If

the protein does not have any transporter-related GO MF term, the tool will simply output

“NA” for that protein.
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Table 22: Ontoclass substrate assignment output

Name Description

UniProt-ID Input UniProt-ID of the protein sequence

Auto.Assignment Ontology-based automated substrate class assignment

Auto.Confidence Evidence of the annotation

Date Last modification date of the entry in the Swiss-Prot database

KW List of keywords as in the Swiss-Prot database

GO.annotation GO MF annotation of the protein

ChEBI.annotation ChEBI-ID associated with the transporter-related GO annotation

In.TCDB. Cross-reference of this protein with the TCDB. The entry could have
3 possible letters Y, H, or N; Y indicates that the protein has an
exact match with a TCDB entry, H indicates that there is a hit by
homology, and N indicates that there is no hit

TCDB.fam Corresponding TCDB family of the protein, if there is a hit in TCDB
TCDB.substrate Substrate annotation in the TCDB for the protein hit.

This table shows the output of the automated tool. In addition to the substrate class
mapping, it includes other information from different sources to give the user a general
overview.



4 Case studies

4.1 Comparison with manually curated datasets

To assess how well Ontoclass establishes different classes relative to other manually

annotated datasets, we used the same sequences in Mishra et al.’s TrSSP dataset

[MCZ14] and compared the output classes with their manually assigned classes. Since

Ontoclass includes more substrate classes than the dataset from [MCZ14], we grouped some

classes in our output to more general classes in Mishra et al.’s dataset as follows: organic,

inorganic cations into cations; organic, inorganic anions into anions; amino acids, amino

acid derivatives, peptides into amino acids ; monosaccharides, oligosaccharides into sugars.

Table 23 compares the obtained classes. “No mapping” refers to the sequences that do

not have sufficient annotation for our tool to infer the substrate. Those sequences either have

a GO MF annotation that is a descendant of transporter activity and no substrate mapping

(e.g., GO:0015297 antiporter activity) or they are sequences that do not have

any descendant of transporter activity, such as nearly all of the proteins in Mishra et al.’s

electron class with the annotation (GO:0009055 electron transfer activity), as

presented in Figure 20. There are 641 sequences with sufficient GO annotations for our tool

to infer the substrate class. Of them, 576 (90%) agree with Mishra et al.’s classes, while

the other 65 disagree. Several examples that illustrate the disagreement are presented in

Table 24.
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Table 23: Comparison between the TrSSP dataset and the Ontoclass dataset

Ontoclass

Transporter
class

TrSSP dataset No mapping Agreement Disagreement

Amino acids 85 6 73 6

Anions 72 7 57 8

Electrons 70 67 0 3

Cations 296 36 244 16

Proteins 85 57 20 8

Sugars 72 14 54 4

Others 220 72 128 20

Total 900 259 576 65

This table compares the transporter mapping from the TrSSP dataset in Mishra et al.
[MCZ14] and those generated by our automated tool. Because the transporter classes are
not the same between the two datasets, we mapped our classes to the TrSSP dataset classes
as follows: amino acids and amino acid derivatives (5.A, 5.B) into the amino acids class;
organic and inorganic anions (1.D, 2.B) into the anions transporter class; organic and
inorganic cations (1.C, 2.A) into the cations class; monosaccharides, oligosaccharides and
derivatives (3.A, 3.B) into the sugars class; and proteins (5.E) to the proteins class. The
rest of our classes were mapped to others. The column labeled Agreement indicates that
the ontology-based assignment dataset class is the same as the TrSSP dataset class. No
mapping indicates that there is no corresponding class. Disagreement indicates that the
ontology-based mapping and the TrSSP dataset have different substrate classes.
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Table 24: Examples of disagreement

UniProt-ID GO annotations Ontoclass assignment TrSSP dataset

P46133 GO:0015558; F:
secondary active
p-aminobenzoyl-glutamate
transmembrane
transporter
activity

2.A Organic anions Amino

Q12482 GO:0015183; F:
L-aspartate
transmembrane
transporter
activity

2.A Organic anions Amino

GO:0005313; F:
L-glutamate
transmembrane
transporter
activity

Q20106 GO:0015232; F:
heme transporter
activity

7.D Other organic entities Cation

P33941 GO:1904680;
F: peptide
transmembrane
transporter
activity

5.C Peptides Protein

GO:0042626; F:
ATPase-coupled
transmembrane
transporter
activity

Q10185 GO:0044604; F:
ATPase-coupled
phytochelatin
transmembrane
transporter
activity

5.C Peptides Other

GO:0042626; F:
ATPase-coupled
transmembrane
transporter
activity

This table shows examples where the substrate classes produced by the automated tool and
those in the dataset from Mishra et al. [MCZ14] conflict. Only the transporter-related GO
MF annotations that have ChEBI mappings are shown.



Figure 20: Ancestor chart for GO:0009055.

This figure illustrates the ancestor chart for the GO MF term GO:0009055 electron
transfer activity; black edges represent “is a” relationships; blue edges represent
“part of” relationships. This term is not a descendant of a transporter activity term, and
it is therefore not recognized as a transporter by Ontoclass.

4.2 Building a new dataset

To ascertain the number of available sequences in each substrate class, we extracted all

of the sequences from the Swiss-Prot database that are located in the membrane and

have GO:0005215 transporter activity annotations. The data were then filtered

to attain the highest-quality dataset by adhering to the following commonly used criteria:

• Step 1: Protein sequences that have evidence “inferred from homology” for the

existence of a protein were removed;

• Step 2: Protein sequences annotated with multiple functions (e.g., transporters and

enzymes) were removed.

• Step 3: Protein sequences that have no GO MF annotation or annotations based

solely on computational evidence (IEA) were eliminated;
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• Step 4: Protein sequences with more than 60% pairwise sequence identity were

removed via a CD-HIT [LG06] program to avoid any homology bias.

The dataset contained 2,224 transporter sequences. We then used the Ontoclass to find

their substrate class. Of the 2,224 sequences, 1,524 had clear substrate annotations, 379

had no ChEBI mapping, and 321 had multiclass annotations. Table 25 indicates the number

of proteins assigned to each class. The class with the largest number of proteins was 1.C

(inorganic cations) with 601 transporters. The class with the second highest number was

5.A (amino acids) with 147 proteins, followed by 4.A (monosaccharides and derivatives)

with 126 sequences. Classes 5.F (proteins), 2.B (organic anions), and 1.D (inorganic

anions) had 113, 107, and 102 proteins, respectively.

5 Discussion

Building a substrate-specific transporter protein dataset requires assigning a substrate

class to a transporter that represents the general substrate that the transporter transports

across the membrane. Most of the established manually curated benchmark datasets extract

this information from the Swiss-Prot database. The Swiss-Prot database is manually

annotated and reviewed in terms of which GO terms (i.e., MF, BP, or CC) are assigned

to the protein records, along with the reference from which the term was derived and the

evidence code that indicates the degree to which the annotation is supported. The GO

MF terms describe the activities that occur at the molecular level and are thus utilized

in our tool; the GO terms are cross-referenced with other ontologies. Of specific interest

to us is the ChEBI ontology, which provides information on chemical entities. There are

1,080 descendant terms of the GO:0005215 transporter activity annotation, 775 of

which are cross-referenced with the ChEBI ontology. The cross-references of the descendant

terms indicate the transported substrate. The advantage of using an ontology to collect the

transported substrates is that the relationships between more specific substrates and broader

classes are already established and therefore can be delegated to the ontology rather than

to the dataset curator. Thus, any user who does not have significant prior knowledge of
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chemistry can build a new dataset or expand an already established one to accommodate

the newly added entries.

We used the proposed Ontoclass tool to infer the substrate classes of two datasets. The

first benchmark dataset was developed by Mishra et al. [MCZ14], wherein the substrate

classes were manually assigned. Ontoclass was not able to infer the classes of approximately

28% of the sequences in this dataset due to insufficient GO annotations to assign the

classes. Furthermore, we compared the manually assigned classes with those inferred by

Ontoclass and discovered that the majority of the assigned classes (90%) are similar and

that the disagreement arises from different interpretations between the dataset curator

and the established ontology. Thus, using the standard performance measures to evaluate

Ontoclass is not useful. In essence, we are trying to compare the manual curation conducted

by Mishra et al. to the ChEBI ontology relationships, which are in turn manually annotated

by expert annotators. For example, a transporter that transports L-glutamate, an α-amino

acid anion, was mapped to the organic anions class in the ChEBI ontology, whereas the

benchmark dataset assigned it to the amino acids class. In addition, a transporter that

transports phytochelatin was mapped to the peptides class in the ChEBI ontology, whereas

the benchmark dataset assigned it to the other class. An advantage of delegating the

decision to the ontology is that, unlike the decisions made by a dataset curator, all of the

reasoning is included, and thus, the decisions are easily reproduced.

The second dataset was extracted from the Swiss-Prot database and includes all of

the proteins with transporter activity annotations. The goal of this case study is to achieve

an overview of the available substrate classes. As expected, the distribution of substrates is

not equal. The majority of mapped sequences belong to the 1.C inorganic cations substrate

class, which is expected since ion channel transporters compose a large class that transports

ions such as potassium, sodium, and calcium. Other classes include fewer sequences, even

though the tool does not infer specific substrates (e.g., benzoates) and grouped them into

larger categories (e.g., monocarboxylic acids); we acquired a small number of proteins from

many classes. This phenomenon highlights the fact that membrane proteins are still not

well characterized and that there is still insufficient data available to build a predictor that

can predict the specific substrate.
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6 Conclusion

The construction of benchmark datasets for supervised learning requires a label or class

to be assigned to each datapoint. In those cases where the label is not directly taken from

a reference source, this is done by the constructor of the dataset . In transporter substrate

prediction, building a transporter dataset is commonly conducted through manual curation,

in which the rationale behind assigning specific substrates to more general classes is not

explained. The lack of documentation has created many challenges when establishing a

new dataset or updating an established dataset. This chapter demonstrates that using

transporter-related GO MF terms from the annotations in the Swiss-Prot database

along with their corresponding ChEBI mappings can help to achieve automation. We

have proposed an automated tool (Ontoclass) that exploits the well-defined and consistent

annotation by the Swiss-Prot curators and delegates the substrate class to established

ontologies without any external dataset curator judgment. The automated tool relieves us

of the burden of manual curation to assign a label; it is consistent with other ontologies and

is reproducible. It can adapt to the exponential growth and updates of biological databases

with minimal prior knowledge.
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Table 25: Number of sequences in each substrate class with similarity removed

Category and
substrate type

Class Number of
sequences

Total

1. Inorganic molecules

A. Nonselective 26

755
B. Water 26

C. Cations 601

D. Anions 102

2. Organic ions
A.Organic cations 13

120
B.Organic anions 107

3. Carbohydrates
and
derivatives

A. Monosaccharides and
derivatives

126

141

B. Oligosaccharides and
derivatives

11

C. Polysaccharides and
derivatives

4

4. Carboxylic
acids

A. Monocarboxylic acids 28

33B. Tricarboxylic acids 4

C. Dicarboxylic acids 1

5.
Organonitrogen
compounds

A. Amino acids 147

317

B. Amino acid derivatives 10

C. Peptides 27

D. Amines 4

E. Polyamines 11

F. Proteins 113

G. Other organic amino
compounds

5

6. Organic
heterocyclic
compounds

A. Nucleobases 18

61
B. Nucleosides 16

C. Nucleic acid s 3

D. Nucleotides 24

7. Miscellaneous

A. Polyols 4

97

B. Organic phosphates 23

C. Amides 3

D. Other organic
molecular entities

67

This table shows the distribution of substrate classes in the Swiss-Prot database for all
of the sequences that have GO MF GO:0005215 transporter activity annotations
with less than 60% similarity.



Chapter 7

Predicting substrate specificity

This chapter addresses the fourth research objective:

O4: To broaden the scope of the state-of-the-art for substrate class prediction while

maintaining credible predictive performance.

Some parts of this chapter have been published in PLoS ONE : Alballa, M., Aplop, F., &

Butler, G. (2020). TranCEP: Predicting the substrate class of transmembrane transport

proteins using compositional, evolutionary, and positional information. PLoS ONE, 15(1),

e0227683.

Contributions of the authors are as follows:

• Alballa, M. Conceptualization, Formal analysis, Investigation, Methodology,

Software, Validation, Visualization, Writing – original draft, Review & editing.

• Aplop, F. Conceptualization, Review & editing.

• Butler, G. Conceptualization, Formal analysis, Methodology, Project

administration, Supervision, Writing – original draft, Review & editing.

The chapter is organized as follows: Section 1 provides an introduction to transporter

substrate prediction. Section 2 describes the materials and methods utilized to build

the proposed tool, TooT-SC. Section 3 presents and analyzes the results, and Section 3.2

compares the performance of TooT-SC with the state-of-the-art methods. Finally, Section 4

concludes the chapter.
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1 Introduction

Existing tools for the annotation of transporters that predict the substrates of transport

reactions lag behind tools for other kinds of proteins, such as for predicting enzymes involved

in metabolic reactions.

Many tools rely simply on homology or orthology to predict transporters. These

tools include the metabolic network tools merlin [DRFR15], Pantograph [LZS15], and

TransATH [AB17].

Among the tools for de novo prediction of substrate class, FastTrans [HPO+19] claims

to be the state-of-the-art. De novo prediction tools predict the type of substrate from

a general subset of substrate types, without attempting to predict the specific substrate

[SCH10, COLG11, SH12, BH13, MCZ14]. The main reason for this is that the current

number of annotated transporters with specific substrates is still quite limited. As discussed

in Chapter 6, even when the transporter substrates of the Swiss-Prot database are

grouped into a higher level of abstraction, there are still a small number of samples in

many classes. This phenomenon hinders the possibility of building tools that predict exact

substrates. Tools that classify transporters based on their substrate specificity have reached

a maximum of seven substrate types [MCZ14] [HPO+19]. For network modeling in systems

biology [TP10,SAJT14], we require tools to process the complete proteome and predict each

transport reaction, which means identifying the transport protein and the specific substrate.

Our laboratory’s previous efforts for the de novo prediction of specific substrates for

sugar transporters in fungi were not successful [Apl16]. However, from these studies, we

learned how much depends on a very few residues of the transporter, often approximately

three residues, and often internal to different helix TMSs of the transporter [FBS+14].

These residues are far apart in the linear protein sequence but close to each other in the 3D

structure of the protein when integrated in the membrane. In looking forward to how we

may improve upon approaches that rely on the amino acid composition of the protein, we

developed a protocol whereby the compositional information is combined with evolutionary

information as captured by an MSA, and by positional information on the residues

responsible for determining the specificity of the transporter [TWNB12]. This protocol
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is a schema for a large number of possible algorithms, due to the many choices for encoding

amino acid compositions, MSA algorithms, and algorithms for specificity-determining

sites [CC14]. We also realized the importance of the alignment in preserving the TMS

positions because the important residue positions seem to be located there. There are a

number of such MSA algorithms [PFH08,CDTTN12,FTC+16,BGA+17].

We therefore conducted a study utilizing a new benchmark dataset DS-SC with

additional substrate classes, which indicated that the combination of information about

protein composition, protein evolution, and the specificity-determining positions had a

significant impact on our ability to predict the transported substrates. We chose the

TrSSP methodology [MCZ14] as our baseline and varied it to illustrate the impact of

each of the factors: compositional, evolutionary, and positional information. Our best

approach, which defines our predictor ,TooT-SC , involves utilizing the PAAC encoding

scheme, the TM-Coffee MSA algorithm [CDTTN12], and the transitive consistency score

(TCS) algorithm [CDTN14] for determining informative positions in the MSA to build a

suite of SVM classifiers, one for distinguishing each substrate class.

2 Materials and methods

2.1 Dataset

To construct a high-quality benchmark dataset, the UniProt-IDs from the transporter

dataset in Chapter 5 were used as input to our ontology-based tool Ontoclass to assign a

substrate class to the transporters. This was then modified in such a way that the sequences

that belong to the substrate classes with very small samples were grouped into a higher level

of abstraction. The final dataset contains 11 substrate classes, with the largest being the

inorganic cations class with 601 samples and the smallest being the nucleotide class with 24

samples, as presented in Table 26. The data were randomly partitioned (stratified by class)

into training (90%) and testing (10%) sets. We refer to the data in Table 26 as DS-SC. To

the best of our knowledge, these data contain the highest number of substrate classes being

used to predict the substrate class of a transporter.
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Table 26: Dataset DS-SC

ID Substrate class Training Testing Total

C1 Nonselective 24 2 26
C2 Water 24 2 26
C3 Inorganic cations 541 60 601
C4 Inorganic anions 92 10 102
C5 Organic anions 97 10 107
C6 Organo-oxygens 157 17 174
C7 Amino acids and derivatives 142 15 157
C8 Other organonitrogens 144 16 160
C9 Nucleotides 22 2 24
C10 Organic heterocyclics 34 3 37
C11 Miscellaneous 99 11 110

Total 1,376 148 1,524

2.2 Databases

We used the Swiss-Prot database when searching for similar sequences. When

constructing MSAs, we used TM-Coffee [CDTTN12] with the UniRef50-TM database,

which consists of the entries in UniRef50 that have the keyword transmembrane.

2.3 Algorithm

Figure 21 illustrates the steps of the TooT-SC method. The sequence in (a) has four

TMSs, as shown by the gray shading. The example focuses on the first TMS and abbreviates

the middle section of the sequence. Part (b) shows an MSA conserving the TMS structure

constructed by TM-Coffee, where the gray shading indicates the TMS location. Part (c)

shows the color coding of the reliability index of each column as determined by TCS, and

shows how gaps replace unreliable columns in the filtered MSA. Part (d) shows a part of

the 400-dimensional vector of dipeptide frequencies (PAAC) from the filtered MSA.

The template for combining evolutionary, positional, and compositional information

is presented in Algorithm 4. Note that the use of evolutionary (E) and positional (P)

information is optional, and that if positional (P) information is used, then it requires

evolutionary (E) information in the form of MSA. Note also that if Step (E) is not completed,

then the compositional Step (C) encodes the sequence s. Finally, note that if Step (E) is

completed but Step (P) MSA is not, then Step (C) encodes the MSA.
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Figure 21: Example of steps of the TooT-SC method

The figure illustrates the steps of the TooT-SC method. Note that we abbreviated the
middle section of the sequence. Part (a) shows the sequence of the four TMSs in gray. Part
(b) shows an MSA constructed by TM-Coffee. The gray shading indicates a TMS. Part (c)
shows the color coding of the reliability index of each column as determined by the TCS,
as well as gaps in unreliable columns in the filtered MSA. Part (d) shows a 400-dimensional
PAAC vector from the filtered MSA.

Algorithm 4 Template for constructing the composition vector

function comp vec(seq s)

// Evolutionary (E) step, optional

Construct an MSA from s

// Positional (P) step, optional

Determine the informative positions (columns) in the MSA

Filter the uninformative positions from the MSA

// Compositional (C) step, mandatory

return Vector-encoding composition of the filtered MSA

end function

In this work, we used TM-Coffee to compute the MSA that conserves the TMSs and

the TCS to determine a reliability index for each position (column) in the MSA. We

experimented with three composition schemes, AAC, PAAC, and PseAAC, as well as the

optional use of TM-Coffee and the TCS. Algorithm 5 shows the composition vectors being
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used to build a set of classifiers (SVM classifiers in this case). Algorithm 6 presents the

prediction algorithm.

Algorithm 5 Building the SVM classifiers

Require: training set T of sequences labeled with classes C1, ..., Cn

Ensure: set of SVMs svm(i), distinguishing class Ci from other classes

procedure Build SVMs(T : a set of seqs; svm: a set of SVMs)

for all seq s in T do

v(s) ← COMP VEC( s )

end for

for all (Ci) in classes do

Cî : {C1, ..., Cn} − Ci

svm(i) ← SVM.build({v(s) : s ∈ T ∩ (Ci ∪ Cî)}, probability= T)

end for

end procedure

Algorithm 6 Prediction

Require: test sequence s

Require: set of SVMs svm(i) distinguishing classes Ci from other classes

Ensure: result is the predicted class Cp

function predict class(seq s)

v ← COMP VEC( s )

c ← array of length n

for all Ci in {C1, ..., Cn} do
c[i] ← probability of class i (svm(i) applied to v)

end for

Cp ← argmax(c)

return Cp

end function

2.4 Encoding the amino acid composition

The properties of the amino acids at each position in the protein sequence can be encoded

into vectors that summarize the overall composition of the protein. Three approaches for

encoding the amino acid composition were implemented in this study: AAC, PAAC, and
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PseAAC.

2.5 MSA

We adopted the MSA-AAC approach [SCH10] that combines AAC with the evolutionary

information available from the MSA.

This method is implemented by first retrieving homologous sequences of each protein

sequence in the dataset, building an MSA for the corresponding protein, and then taking

the counts for computing the composition information using all of the residues in the

MSA. Schaadt et al. [SCH10], utilized only AAC encoding, whereas we also applied the

approach to PAAC and PseAAC encoding. Another difference was that we made use of

TM-Coffee [CDTTN12] (Version-11.00.8cbe486) to compute the alignments, rather than

ClustalW [THG94], as was done by Schaadt et al. [SCH10], because we felt it was important

to align the TMSs.

Other differences included searching the Swiss-Prot database [BBA+03] and

retrieving a maximum of 120 homologous sequences instead of searching the nonredundant

database nr and retrieving 1,000 sequences. This process was done to make the

computational time more manageable because the TM-Coffee algorithm requires a great

deal of memory and a longer execution time.

Furthermore, all exact hits of the test sequences were removed from the Swiss-Prot

and UniRef50-TM databases, to maintain a degree of independence between the MSA and

the test data. It should be noted that any bias in Swiss-Prot is still inherited by both

the training data and the test set; however, the last step reduces correlation. Our alignment

command was the following:

t_coffee mysequences.fasta -mode psicoffee \

-protein_db uniref50-TM \

-template_file PSITM

where mysequences.fasta is the file that contains the 120 similar sequences retrieved

by a BLAST search on the Swiss-Prot database.
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2.6 Positional information

To focus on those positions in the protein that determine the specificity, we needed a

method to determine those positions, and then to filter our MSA. The MSA was filtered

by setting the entries for all other positions to null, that is, the symbol “-” so that it was

ignored when gathering the counts for the amino acid composition.

We applied the TCS algorithm [CDTN14] to the alignment to determine the informative

positions. The TCS is a scoring scheme that uses a consistency transformation to assign a

reliability index to every pair of aligned residues, to each individual residue in the alignment,

to each column, and to the overall alignment. This scoring scheme has been shown to be

highly informative with respect to structural predictions based on benchmarking databases.

The reliability index ranges from 0 to 9, where 0 is extremely uncertain and 9 is extremely

reliable. Columns with a reliability index less than 4 were removed using the following

command:

t_coffee -infile myMSA.aln -evaluate \

-output tcs_column_filter4.fasta

where myMSA.aln is the MSA file and tcs column filter4.fasta is the filtered file

in FASTA format.

2.7 Training

Following TrSSP [MCZ14], we used SVM with an RBF kernel, as implemented in the

R e1071 library (version 1.6-8), utilizing a one-against-the-rest approach in which n binary

classifiers are trained, one for each class. The classifier i is trained with all the samples of

class i as a positive class and the rest as a negative class. The final predicted class is the

class with the highest probability among the n predictions. Both the cost and γ parameters

of the RBF kernel were optimized by performing a grid search using the tune function in

the library (cost range: 2(1...5), γ range: 2(−18...2)).
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2.8 Methods

We adopted three approaches to encode the amino acid composition: AAC, PAAC (as

done by TrSSP [MCZ14]), and PseAAC. This was followed by training using an SVM to

form the prediction methods AAC, PAAC, and PseAAC.

By combining the amino acid composition and the evolutionary information obtained

using TM-Coffee, followed by an SVM, we implemented the prediction methods:

TMC-AAC, TMC-PAAC, and TMC-PseAAC.

Filtering was incorporated by applying TCS after TM-Coffee, computing the amino

acid composition vectors, and applying the SVM to implement the prediction methods:

TMC-TCS-AAC, TMC-TCS-PAAC, and TMC-TCS-PseAAC.

The method used in TooT-SC is TMC-TCS-PAAC—the method that achieved the

best performance during cross-validation.

2.9 Performance evaluation

The performance of each method on the DS-SC training set was determined using

10-CV, whereby the training dataset was randomly partitioned into ten sets of equal size.

A single set was kept as the validation data, and the remaining nine sets were used to train

the SVM model. This model was then tested using the validation set. The cross-validation

process was repeated nine times, where each of the sets was used once as the validation data.

The performance of all the models was aggregated and used to produce a single estimate

(microaverage).

Since the 10-CV performance varies with different random splits and to make the error

estimation more stable, we repeated the 10-CV process ten times with different random

partitions, and the performance variations between the runs were captured by computing

the standard deviation. It has been reported [Koh95] that this repetition stabilizes the error

estimation and therefore reduces the variance in the K-CV estimator. Throughout the rest

of this chapter, the cross-validation performance is reported as the means ± SDs of the ten

different runs of the 10-CV process.

Four statistical measures were considered to measure the performance:
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The sensitivity, which is the proportion of positive samples that are correctly identified:

Sensitivity =
TP

TP + FN
(44)

The specificity, which is the proportion of negative samples that are correctly identified:

Specificity =
TN

TN + FP
(45)

The accuracy, which is the proportion of correct predictions made among all the

predictions:

Accuracy =
TP + TN

TP + FN + TN + FP
(46)

The MCC, which is a single measure taking into account the true and false positives and

negatives:

MCC =
(TP × TN − FP × FN)√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(47)

where TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives, and FN is the number of false negatives.

We used the MCC because it is less influenced by imbalanced data and is arguably the

best single assessment metric in this case [Din11,WP03,BDA13]. The MCC value ranges

from 1 to −1, where 1 indicates a perfect prediction, 0 represents no better than random,

and −1 implies total disagreement between the prediction and observation. A high MCC

value means that the predictor has high accuracy on both positive and negative classes and

low misclassification in both classes.

When dealing with multiclass classification, it is often desirable to compute a single

aggregate measure that reflects the overall performance. There are two methods to

compute the overall performance, namely, microaveraging and macroaveraging [MRS08].

Macroaveraging computes the simple average performance of individual class performances.

Microaveraging computes the overall performance by globally counting the total true

positives, false negatives and false positives. Depending on the class distribution, the
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difference between the two methods can be large. Macroaveraging gives equal weight

to each class, whereas microaveraging gives equal weight to each individual classification

decision [MRS08]. The overall accuracy of the tool is often calculated as the fraction of the

correct predictions by the total number of predictions as follows:

Accuracyoverall =

K∑
k=1

TPk

N
(48)

where TPk is the number of true positives in class k, K is the number of different classes,

and N is the total number of predictions.

Another way to compute the accuracy is to take the macroaverage accuracy of the

individual classes:

Accuracymacro =
1

K

K∑
k=1

Accuracyk (49)

where Accuracyk is the accuracy of class k, and K is the number of different classes.

Similarly, the overall MCC is calculated in terms of a K×K confusion matrix C [Gor04]:

MCCoverall =

∑
k

∑
l

∑
mCkkClm − CklCmk√∑

k(
∑

l Ckl)(
∑

k′|k′ �=k

∑
l′ Ck′l′)

√∑
k(
∑

l Clk)(
∑

k′|k′ �=k

∑
l′ Cl′k′)

(50)

Or as a macroaverage MCC:

MCCmacro =
1

K

K∑
k=1

MCCk (51)

whereMCCk is the accuracy of class k, andK is the number of different classes. Because the

number of samples in each class of the dataset is imbalanced, we used the overall accuracy

as in Equation 48 and the overall MCC as in Equation 50 to evaluate and compare the

different methods. It is explicitly stated when the macroaverage was used.

2.10 Statistical analysis

In this analysis, Student’s (two-tailed, paired) t-tests were applied, and the average

number of informative residues, as determined by TCSs, in different segments of a protein

sequence was computed. For each substrate class, pairwise comparisons between the means
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of important positions in different segments were performed. The differences were considered

statistically significant when the P-value of the Student’s t-test was less than 0.0001.

3 Results and discussion

3.1 Methods evaluation

Since the data are imbalanced, we focused on the MCC when comparing the

performances of the different models. Table 27 presents the overall accuracy values and

MCCs of the SVM models for the nine methods, sorted from the best to the worst according

to the MCC. The details of the performance for each method are available in Appendix C;

the comparisons among the different methods for the eleven classes in terms of the MCC

are presented in Figure 22.

Table 27: Overall cross-validation performance of the methods

Method Accuracy MCC

TMC-TCS-PAAC 82.53 ± 0.12 0.7772 ± 0.0019
TMC-PAAC 81.92 ± 0.12 0.7695 ± 0.0014
TMC-AAC 79.84 ± 0.13 0.7430 ± 0.0014
TMC-PseAAC 79.46 ± 0.30 0.7374 ± 0.0038
TMC-TCS-AAC 79.33 ± 0.24 0.7360 ± 0.0035
TMC-TCS-PseAAC 79.03 ± 0.27 0.7324 ± 0.0037
PAAC 58.93 ± 0.45 0.4610 ± 0.0069
PseAAC 54.80 ± 0.76 0.3999 ± 0.0108
AAC 52.21 ± 0.60 0.3628 ± 0.0091

For each method, the table presents the accuracy and MCC as the means ± SDs across the
ten runs of the 10-fold cross-validation.

The SVMmodel that utilized PAAC encoding outperformed those that utilized AAC and

PseAAC encoding by 27% and 15%, respectively, in terms of the overall MCCs. This model

shows exceptionally high performance in the water and nucleotide classes. In addition, all

of the SVM models that utilized evolutionary data performed notably better overall than

the SVM models that did not. The top model, TMC-TCS-PAAC, which is the method

chosen for our predictor TooT-SC , incorporates the use of the PAAC with evolutionary

data in the form of MSA with positional information, in which columns that have a reliability

below 4 are filtered out. We found that the performance peaked using this threshold and
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Figure 22: MCCs of the different methods on the substrate classes

This figure shows the cross-validation MCC performance of the different methods on the
eleven substrate classes. The dotted line represents the performance of TooT-SC , which is
TCS-TMC-PAAC

started to decline when columns with a reliability index greater than 4 were filtered out.

The TMC-TCS-PAAC method yielded an overall MCC of 0.77 during cross-validation.

Table 29 shows the impact of evolutionary information and positional information on the

composition-encoding PAAC.

The use of evolutionary information in the form of MSA on the composition-encoding

PAAC showed a considerable positive impact in most of the substrate classes, where the

average improvement of the MCC was 126.41%, with the highest improvement being in the

C1 (nonselective) class (347%). The baseline encoding PAAC for the C2 (water) substrate

class showed a high discriminatory power with an MCC of 0.96, with the incorporation of

additional information having a slightly negative impact of 1.01%.

The further use of positional information by filtering out the unreliable columns from the
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Table 28: TMC-TCS-PAAC performance

Class ID Sensitivity Specificity Accuracy MCC

C1 75.00 ± 0.00 99.78 ± 0.00 99.21 ± 0.00 0.7979 ± 0.0000
C2 95.83 ± 0.00 99.85 ± 0.00 99.74 ± 0.00 0.9376 ± 0.0000
C3 95.19 ± 0.47 86.92 ± 0.28 89.36 ± 0.21 0.7936 ± 0.0046
C4 64.35 ± 1.97 99.24 ± 0.18 96.38 ± 0.19 0.7252 ± 0.0155
C5 68.04 ± 0.49 98.40 ± 0.13 95.66 ± 0.14 0.6974 ± 0.0084
C6 83.44 ± 0.52 98.97 ± 0.12 96.72 ± 0.15 0.8543 ± 0.0066
C7 84.08 ± 0.95 98.55 ± 0.16 96.56 ± 0.18 0.8357 ± 0.0085
C8 71.46 ± 0.95 96.84 ± 0.27 93.42 ± 0.22 0.6830 ± 0.0084
C9 80.91 ± 1.92 99.98 ± 0.04 99.61 ± 0.05 0.8904 ± 0.0132
C10 82.35 ± 0.00 100.00 ± 0.00 99.47 ± 0.00 0.9050 ± 0.0000
C11 55.96 ± 1.09 97.95 ± 0.16 94.21 ± 0.20 0.5858 ± 0.0136

Overall 82.53 ± 0.12 0.7772 ± 0.0019

Table 29: Impact of factors on the performance of the PAAC.

Class MCC TMC-PAAC TMC-TCS-PAAC TMC-TCS-PAAC

ID to PAAC to PAAC to TMC-PAAC

PAAC TMC-PAAC TMC-TCS Delta % Delta % Delta %
PAAC

C1 0.18 0.82 0.80 0.64 347.27 0.61 336.01 -0.02 -2.52

C2 0.96 0.95 0.94 -0.01 -1.01 -0.02 -2.40 -0.01 -1.41

C3 0.47 0.81 0.79 0.33 70.12 0.32 67.25 -0.01 -1.68

C4 0.31 0.69 0.73 0.38 120.32 0.41 131.69 0.04 5.16

C5 0.37 0.66 0.70 0.29 78.83 0.33 90.23 0.04 6.38

C6 0.44 0.84 0.85 0.40 88.82 0.41 92.11 0.01 1.74

C7 0.38 0.83 0.84 0.44 116.44 0.45 119.06 0.01 1.21

C8 0.36 0.64 0.68 0.28 75.77 0.32 87.23 0.04 6.52

C9 0.69 0.91 0.89 0.22 31.72 0.20 29.02 -0.02 -2.05

C10 0.34 0.91 0.91 0.57 168.32 0.57 166.96 0.00 -0.51

C11 0.15 0.58 0.59 0.43 293.97 0.44 297.15 0.00 0.81

Average 0.36 126.41% 0.37 128.57% 0.01 1.24%

This table notes the differences in the MCC, delta, percentage improvement in the MCC,
and the percent of the cross-validation performance for the introduction of evolutionary
information using TM-Coffee, and the positional information using the TCS. The use of
evolutionary information in the form of an MSA on the composition-encoding PAAC
improved the MCC by an average of 126.41%. The further use of positional information
by filtering out the unreliable columns from the MSA boosted the MCC of the composition
encodings by an average of 128.57%.

MSA showed an average improvement of 128.57% compared to the baseline compositions.

The impact of positional information over that already achieved by evolutionary information

showed a positive impact in most substrate classes; the highest was in the C5 (organic

anions) class, where the MCC improved by 6.38% with TMC-TCS-PAAC. However, the

impact was slightly negative in the C1 (nonselective), C2 (water), C3 (inorganic cations),
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and C9 (nucleotides) classes.

3.2 Comparison with other published work

The top two tools with the best reported performance are TrSSP [MCZ14] and

FastTrans [HPO+19]. Since the original code was not available for TrSSP or FastTrans,

we reimplemented the methods to the best of our ability. We compared the performance of

the TooT-SC method with our implementation of the TrSSP and FastTrans methods. All

of the methods were trained using the DS-SC training set (Section 2.1) and tested using

its testing set. It should be noted that our implementation of the TrSSP method [MCZ14]

achieved a similar macroaverage MCC to that reported in the original paper (0.41) on

their dataset. However, it was not possible to reproduce the reported performance of the

FastTrans method [HPO+19], for which our implementation on their same dataset achieved

a macroaverage MCC of 0.47, while their reported macroaverage MCC was 0.87.

A comparison between the TooT-SC method and our implementation of the other

state-of-the-art methods on the DS-SC benchmark dataset is presented in Table 30. The

TooT-SC method scored higher than the other methods for all of the substrate classes

in terms of the accuracy, sensitivity, and MCC. Overall, the TooT-SC method scored an

overall MCC of 0.82, which outperformed the TrSSP method by 26% and the FastTrans

method by 115%.

3.3 Positional information analysis

It is difficult to isolate the exact residues that are key to inferring the substrate class;

the results suggest that evolutionary information, obtained by MSA, is the main source for

achieving a high prediction performance. In addition, the TCS informative positions (with

TCSs ≥ 4) can help to filter out unnecessary noise and obtain a clearer signal to further

improve the prediction. Using the TCS informative positions filtered out an average of 31%

± 19% of the sequence. However, when we attempted to filter out more positions (by using

a TCS score cutoff stricter than 4), the performance started to deteriorate.

To visualize the informative positions relative to the hydropathy scale of amino acids,

the hydropathy scale proposed by [KD82] was utilized, and the average hydropathy of each
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Table 30: Comparison between TooT-SC and the state-of-art methods

Class Specificity Sensitivity Accuracy MCC

ID TrSSP FastTrans TooT-SC TrSSP FastTrans TooT-SC TrSSP FastTrans TooT-SC TrSSP FastTrans TooT-SC

C1 100.00 100.00 100.00 0.00 0.00 50.00 98.18 97.70 99.22 0.00 0.00 0.70

C2 99.32 100.00 100.00 100.00 100.00 100.00 99.08 100.00 100.00 0.81 1.00 1.00

C3 80.68 76.14 88.64 91.67 86.67 96.67 83.08 74.56 91.37 0.68 0.50 0.83

C4 98.55 95.65 100.00 60.00 40.00 70.00 94.74 87.63 97.69 0.64 0.33 0.83

C5 98.55 97.83 97.83 80.00 50.00 90.00 96.43 91.40 96.95 0.78 0.51 0.81

C6 96.95 96.18 97.71 64.71 35.29 76.47 91.53 84.16 94.78 0.64 0.35 0.76

C7 97.74 87.97 100.00 73.33 40.00 86.67 93.91 77.27 98.45 0.72 0.20 0.92

C8 94.70 96.21 96.21 56.25 25.00 87.50 88.52 83.33 94.78 0.50 0.25 0.77

C9 99.32 99.32 100.00 100.00 0.00 100.00 99.08 96.59 100.00 0.81 -0.02 1.00

C10 98.62 100.00 100.00 33.33 66.67 100.00 96.43 98.84 100.00 0.31 0.81 1.00

C11 99.27 95.62 100.00 27.27 36.36 45.45 92.31 86.73 95.49 0.42 0.31 0.66

Overall 72.97 57.43 85.81 0.65 0.44 0.82

Macroaverage 93.94 88.93 97.16 0.57 0.39 0.84

This table presents the performance of the proposed tool (TooT-SC ) built with the complete
training set and run on the independent testing set of DS-SC (see Table 26) and the
corresponding results for the TrSSP and FastTrans methods trained and tested with the
same dataset. This table shows the specificity, sensitivity, accuracy and MCC for each of
the eleven substrate types; the overall accuracy and MCC; and the macroaverage accuracy
and MCC. The overall accuracy was calculated as the number of correct predictions divided
by the total number of predictions, and the overall MCC was calculated from the confusion
matrix as in Equation 50.

column in the MSA was computed. Higher positive scores indicate that amino acids in

that region have hydrophobic properties and are likely located in a transmembrane α-helix

segment. The TCS of each column in the alignment is noted on the hydropathy plot

through color coding. Figure 23 shows diverse examples. The red shades correspond

to the informative columns (TCS ≥ 4), while the gray and white shades correspond to

noninformative columns that are filtered out by TooT-SC . In Figure 23 (a) and (b), the

regions with high positive average hydropathy values appear to be more informative than

those with lower values. However, in Figure 23 (c) and (d), the difference between the

informative positions with high and low hydropathy values is not as clear.

To measure the informative positions relative to different segments of the protein

sequence, we divided the protein sequence positions into those in the TMS and those not

in the TMS. Those in the TMS were divided into the interior one-third positions, and the

remaining exterior positions in the TMS. The non-TMS positions were divided into those

near a TMS, that is, within 10 positions, and the remaining positions were considered
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far from a TMS. The location of the TMS was retrieved from the Swiss-Prot database

under the subcellular location topology section. Table 31 shows a breakdown of where the

informative positions, as determined by the TCS, are located with respect to the TMS

regions.

Table 31: Positional information.

Class SeqLth TMS TMSLth Positions TMS Non-TMS

ID Num %Seq Num Interior Exterior Num Close Far

Num Num Num Num

C1 322 4 81 200 64.35 63 22 41 138 35 103

C2 273 6 126 203 74.72 121 42 79 82 57 25

C3 681 7 149 387 57.23 126 45 81 250 65 185

C4 575 8 168 376 62.01 142 50 92 215 73 142

C5 598 10 203 417 70.69 179 62 117 233 91 142

C6 461 10 203 325 70.45 177 62 115 144 70 74

C7 467 10 206 306 67.33 170 59 111 136 83 53

C8 537 4 83 347 39.34 70 24 46 133 37 96

C9 403 6 129 282 71.25 122 43 79 159 79 80

C10 497 12 241 402 79.86 218 76 142 183 95 88

C11 639 7 149 349 47.44 110 38 72 164 54 110

This table presents information on the sites retained by the TCS filtering step. For each
class of substrates in the dataset, the table presents the average sequence length (SeqLth),
the average number of TMS regions (TMS), and the average total number of residues in the
TMS regions (TMSLth). It also presents the average of the number of positions retained
by the filtering step (Positions: Num) and the average of the number as a percentage of
the total sequence length (Positions: %Seq). It notes the total number of sites that occur
in the TMS regions (TMS: Num) and the non-TMS regions (non-TMS: Num). For the
TMS regions, it presents the average number of informative sites that occur in the central
one-third of the TMS regions (TMS: Interior: Num), and in the remaining exterior
regions outside of the central one-third of the TMS regions (TMS: Exterior: Num). For
the non-TMS regions, it presents the average number of informative sites that occur close
to the TMS regions (within 10 positions of the TMS) (non-TMS: Close: Num) and the
remaining sites far from the TMS regions (non-TMS: Far: Num).

For instance, in Figure 23 (a), 41.04% of the residues of the sequence with UniProt-ID

Q59NP1 are informative (i.e., correspond to informative columns in the alignment); thus,

58.96% of this sequence is filtered out. In this case, the residues in the TMSs of this protein

are indeed more informative than those of the other proteins, where 100% of them are

informative. On the other hand, only 29.19% of the residues in non-TMSs are informative.
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The difference is not as significant in the sequence with UniProt-ID Q9NY37 in Figure 23

(c), where the informative positions in the TMSs are similar to those of non-TMS positions.

Details of the sequences in the figure are presented in Table 32.

Table 32: Examples of the informative residue distributions with respect to TMSs and
non-TMSs

UniProt-ID SeqLth TMS TMSLth Positions TMS non-TMS

Num % Seq Num % Seq Num % Seq

Q59NP1 251 2 42 103 41.04 42 100.00 61 29.19

Q8BFW9 622 12 252 386 62.06 246 97.62 140 37.84

Q9NY37 505 2 42 355 70.30 31 73.81 324 69.98

Q9Y584 194 3 63 78 40.21 32 50.79 46 35.11

This table shows the details of individual sequences in Figure 23. The table presents the
sequence length (SeqLth), the number of TMS regions (TMS), and the total number
of residues in the TMS regions (TMSLth). It also presents the number of informative
positions retained by the filtering step (Positions: Num) and that number as a percentage
of the total sequence length (Positions: % Seq). It also denotes the total number of
informative sites that occur in the TMS regions (TMS: Num), as well as that number as
a percentage of the total TMS length (TMS: % Seq). In addition, the total number of
informative sites that occur in the non-TMS regions (non-TMS: Num) are reported, as
well as that number as a percentage of the total non-TMS length (non-TMS: % Seq).

Table 33 presents a pairwise comparison between informative positions in the TMS and

non-TMS regions. The sequences in all of the substrate classes except the C1 (nonselective)

substrate class have significantly more informative positions in the TMS regions than in

the non-TMS regions. Similarly, there is a significant difference between the informative

positions close to TMSs and positions far from TMSs in all sequences that belong to all

substrate classes except the C1 (nonselective) and C8 (other organonitrogens) classes, as

shown in Table 34. In contrast, there is no difference between the informative positions

in the central one-third of the TMS regions and the remaining exterior regions in the

sequences that belong to the C1 (nonselective), C2 (water), C5 (organic anions), C8 (other

organonitrogens), C9 (nucleotides), C10 (organic heterocyclics), and C11 (miscellaneous)

classes; the difference is significant in the sequences that belong to the C3 (inorganic

cations), C4 (inorganic anions), C6 (organo-oxygens), and C7 (amino acids and derivatives)

classes, as presented in Table 35.
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Table 33: Statistical analysis of the informative position rates in the TMS and non-TMS
regions

Class ID TMS non-TMS P-value

C1 80.74±23.46 58.69±22.43 0.0007

C2 95.58±9.43 57.48±12.14 <0.0001

C3 78.31±28.07 49.57±22.49 <0.0001

C4 79.81±27.38 53.94±25.36 <0.0001

C5 88.74±20.17 60.55±19.79 <0.0001

C6 85.35±15.54 56.20±16.58 <0.0001

C7 81.95±16.90 55.28±17.58 <0.0001

C8 46.18±44.77 34.39±33.03 <0.0001

C9 94.67±6.00 59.84±6.84 <0.0001

C10 90.45±14.48 69.15±17.63 <0.0001

C11 55.77±37.82 41.13±27.80 <0.0001

All of the data are reported as the sample means ± SDs. The locations of the TMS
regions are shown as annotated by the Swiss-Prot database. There are statistically
significant (P-value <0.0001) informative positions in the TMS regions compared to the
non-TMS regions in the sequences from all classes except for the nonselective class, where
the difference is not significant.

Table 34: Statistical analysis of the informative position rates close to TMS regions and far
from TMS regions

Class ID Close Far P-value

C1 78.24±23.09 53.31±26.22 0.002

C2 76.58±10.97 38.59±15.94 <0.0001

C3 66.82±26.47 43.77±22.95 <0.0001

C4 67.26±26.48 47.89±26.31 <0.0001

C5 78.15±19.54 50.94±21.79 <0.0001

C6 69.96±14.50 45.09±19.63 <0.0001

C7 69.18±17.71 43.39±20.65 <0.0001

C8 38.10±41.33 30.53±30.93 0.001

C9 76.60±06.79 49.55±11.43 <0.0001

C10 80.52±14.54 58.05±23.81 <0.0001

C11 49.91±33.30 34.75±26.89 <0.0001

All of the data are reported as the sample means ± SDs. For the non-TMS regions, there
are statistically significant (P-value <0.0001) informative positions that occur close to the
TMS regions (within 10 positions of the TMS) compared to other regions far from TMS
regions in the sequences that belong to most classes, except the C1 (nonselective) and C8
(Other organonitrogens) classes, where the differences are not significant.
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(a) Q59NP1 (b) Q8BFW9

(c) Q9NY37 (d) Q9Y584

Figure 23: Average Kyte-Doolittle hydropathy of the MSAs with TCSs.

The figure indicates that the columns highlighted in red are informative and used by
TooT-SC . The TooT-SC considers a column to be informative if it has a TCS of at least
4 (shades of red) and filters out the other columns (gray and white). In (a), Q59NP1
contains 251 residues, and the alignment of Q59NP1 with other homologous sequences has
692 columns; only 151 of them are informative (highlighted in shades of red). In (b), Q8BFW9
contains 622 residues, and the alignment of Q8BFW9 with other homologous sequences has
2,414 columns; only 439 of them are informative. In (c), Q9NY37 contains 505 residues, and
the alignment of Q9NY37 with other homologous sequences has 2,568 columns; only 508 of
them are informative. In (d), Q9Y584 contains 194 residues, and the alignment of Q9Y584
with other homologous sequences has 1,644 columns; only 79 of them are informative.



Table 35: Statistical analysis of the informative position rates in the interior and exterior
TMS regions

Class ID Interior Exterior P-value

C1 80.66±24.30 80.21±23.55 0.6485

C2 98.44±07.03 94.92±10.54 0.0003

C3 80.92±28.99 77.48±28.05 <0.0001

C4 81.74±28.33 79.10±27.18 <0.0001

C5 90.09±19.91 88.25±20.49 0.0001

C6 87.65±17.15 84.68±15.50 <0.0001

C7 83.93±17.22 81.31±16.97 <0.0001

C8 47.03±45.76 45.86±44.65 0.0641

C9 97.82±4.81 93.32±6.95 0.0001

C10 92.73±14.89 89.75±14.52 0.0002

C11 56.88±39.33 55.45±37.52 0.03335

All of the data are reported as the sample means ± SDs. For the TMS regions, there is no
difference between the informative positions in the central one-third of the TMS regions and
the remaining exterior regions in the sequences that belong to the C1 (nonselective), C2
(water), C5 (organic anions), C8 (other organonitrogens), C9 (nucleotides), C10 (organic
heterocyclics), and C11 (miscellaneous) classes. The difference is significant in the sequences
that belong to the C3 (inorganic cations), C4 (inorganic anions), C6 (organo-oxygens), and
C7 (amino acids and derivatives) classes.

4 Conclusion

We have developed a novel method (TooT-SC ) for the de novo prediction of substrates

for membrane transporter proteins that combines information based on the amino acid

composition, evolutionary information, and positional information. TooT-SC is able to

efficiently classify transport proteins into eleven classes according to their transported

substrate (i.e., nonselective, water, inorganic cations, inorganic anions, organic anions,

organo-oxygens, amino acids and derivatives, other organonitrogens, nucleotides, organic

heterocyclics, and miscellaneous); to the best of our knowledge, this is the highest

number of classes offered by a de novo prediction tool. The TooT-SC method first

incorporates the use of evolutionary information by taking 120 similar sequences and

constructing an MSA using TM-Coffee. Next, it uses the positional information by

filtering out unreliable positions, as determined by the TCS, and then uses the PAAC.

The TooT-SC method achieved an overall MCC of 0.82 on an independent testing set,
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which is a 26% improvement over the state-of-the-art method. In addition, we evaluated

the impact of each factor on the performance by incorporating evolutionary information and

filtering out unreliable positions. We observed that the PAAC encoding outperforms other

combinational variations. However, it does not show compelling performance on its own;

the enhanced performance comes mainly from incorporating evolutionary and positional

information.

Analysis of the location of the informative positions reveals that there are more

statistically significant informative positions in the TMSs compared to the non-TMSs and

there are more statistically significant informative positions that occur close to the TMSs

compared to regions far from them. These findings provide a potential direction for future

research to focus on these regions when incorporating evolutionary information.
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Chapter 8

Conclusion

Numerous genome projects have resulted in a wealth of protein sequences, many of which

are still unannotated. Membrane proteins are one of the least characterized proteins in terms

of their structure and function due to their hydrophobic surfaces and poor conformational

stability. Membrane proteins perform virtually all membrane functions, aside from the basic

barrier property of the lipid bilayer. Transporters serve as gatekeepers that control the flow

of molecules into and out of the cell and are attractive targets for the pharmaceutical

industry. The main objectives of this research are solutions that correspond to major

challenges in the annotation of proteins. The first objective is to detect membrane proteins.

Detecting all types of membrane proteins is often overlooked when using transmembrane

topology prediction to find TMSs, and when any are detected, it is assumed that the proteins

of interest are membrane proteins. The experimental results suggest that this approach

helps eliminate false-negative assignments, i.e., membranes assigned to nonmembranes, but

fails to detect over 25% of membrane proteins. On the other hand, machine learning

models trained using all types of membrane proteins help to mitigate this issue. Our results

also suggest that encoding a protein based on merely its sequence does not show high

discriminatory power compared with encodings that incorporate evolutionary information.

This finding could be because while the protein sequence contains a great deal of important

information, it also contains noise, and the use of evolutionary information places more

emphasis on conserved residues likely to have functional roles, thus helping to improve the

discriminatory power. Finally, combining both transmembrane topology prediction and
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the predictions from machine learning classifiers exploits the strengths of both approaches

and boosts the overall accuracy of membrane protein detection. The proposed integrative

approach TooT-M combines both transmembrane topology prediction and predictions from

machine learning classifiers; the comparative performance results indicate that TooT-M

outperforms the state-of-the-art methods in terms of accuracy and MCC.

The second objective is to distinguish transporter proteins from non-transporter

proteins. To accomplish this aim, there are two typical approaches: annotation transfer by

homology and traditional machine learning methods. Our results suggest that annotation

transfer by homology requires a trade-off between sensitivity and specificity. A stricter

threshold eliminates false-negative assignments but at the cost of lower true-positive

assignments, while a less strict threshold increases the true-positive assignments and the

false-negative assignments. A good balance is achieved by the thresholds suggested by Aplop

and Butler [AB17]. Nevertheless, annotation transfer by homology achieves a lower overall

MCC than machine learning models that utilize features with evolutionary information.

Interestingly, the predictions from annotation transfer by homology and the predictions

from traditional machine learning methods have a lower correlation, which makes them

good candidates for an ensemble classifier. The TooT-T ensemble classifier proposed by

this research is trained to optimally combine the predictions from annotation transfer by

homology and traditional machine learning models. The experimental results indicate that

TooT-T achieves a performance superior to all the other approaches, outperforming all of

the state-of-the-art de novo prediction methods in terms of accuracy and MCC.

The third objective is to facilitate the data collection process for the substrate specificity

of transporters. The ultimate goal of transporter substrate specificity methods is to predict

the exact substrate(s) that a transporter transports across the membrane; the analysis of

the number of annotated transporters reveals that this goal is not feasible with the current

number of annotated transporters. This lack of data justifies why substrate prediction

researchers predict the general class to which the substrate belongs (e.g., amino acids)

instead of the exact substrate(s) (e.g., arginine). However, the assignment of a general

class in place of exact substrates is not explained or documented, which makes replicating

or expanding a dataset to account for newly annotated transporters extremely difficult
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and subject to errors and inconsistencies. The proposed tool (Ontoclass) automates the

data collection process for transporter substrate-specific datasets. Ontoclass applies Saier’s

classification system for substrates and relies on gold standard ontologies and databases to

make the assignment. Ontoclass makes it possible to construct and expand a dataset in a

consistent, explainable, and reproducible manner.

The fourth objective is to broaden the scope of substrate class prediction while still

maintaining a credible predictive performance. The largest number of substrates predicted

by the state-of-the-art methods is seven substrate classes. To increase this number, we

utilized Ontoclass to construct a benchmark transporter dataset from the Swiss-Prot

database and modified it so that the classes with a very small number of samples are

grouped into a higher level of abstraction. The final dataset contains eleven different

substrate classes: nonselective, water, inorganic cations, inorganic anions, organic anions,

organo-oxygens, amino acids and derivatives, other organonitrogens, nucleotides, organic

heterocyclics, and miscellaneous. Using this dataset, we developed a novel tool, TooT-SC,

that utilizes compositional, evolutionary and positional information. The experimental

results suggest that this method outperforms all of the state-of-the-art methods in terms

of the overall accuracy and MCC. Furthermore, the analysis of the reliable positions in the

alignments reveals that the TMSs contain more statistically significant informative positions

than the non-TMSs, and more statistically significant informative positions occur close to

the TMSs than in regions far away from them. This finding offers a direction for future

work to target these regions, as more important information seems to be located there.

1 Contributions

The main contributions of this thesis are summarized below:

1.1 Improving computational approaches to detect membrane proteins

We have demonstrated the limitation of merely using transmembrane topology

prediction to detect all types of membrane proteins. The performances of different

feature extraction techniques, including those employed by state-of-the-art predictors, were

124



examined with the combination of the KNN, OET-KNN, SVM, and GBM machine learning

algorithms. The experimental results suggest that features that incorporate evolutionary

information outperform features that rely on a single protein sequence. In addition, an

ensemble classifier that combines the results from a selected set of Pse-PSSM OET-KNN

predictors outperforms all of the other approaches. The selected set was chosen so that it

would have low within-set correlation and high correlation with the target class. This is

an improved version of the MemType-2L technique that reduces the number of constituent

classifiers by over 90% while enhancing the performance. The proposed approach (TooT-M )

combines the predictions obtained from the selected set of classifiers and the prediction

from the TOPCONS2 transmembrane topology prediction tool. Experiments on multiple

datasets suggest that TooT-M outperforms all of the state-of-the-art methods in terms of

accuracy and MCC.

1.2 Improving computational approaches to detect transporter proteins

We proposed a new way to encode a protein sequence by combining traditional

compositions with evolutionary information called psi-composition. The combination of

AAC with evolutionary information from a BLAST output has been performed previously

in the literature [SCH10]. To the best of our knowledge, the combination of PAAC and

Pse-AAC with evolutionary information is a novel contribution of this research. The results

suggest that among all of the tested encodings, the psiPAAC encoding, which incorporates

PAAC with PSI-BLAST output, achieves the highest discriminatory power.

The proposed tool for transporter detection (TooT-T ) is trained to optimally combine

the predictions from homology annotation transfer and machine learning methods to

determine the final prediction. Homology annotation transfer detects transporters by

searching against the TCDB under three different thresholds. The machine learning methods

include three SVM models wherein the protein sequences are encoded using the proposed

psi-composition encodings. The experimental results obtained by cross-validation and

independent testing show that the combination of the two approaches (i.e., homology

annotation transfer and machine learning methods) is more beneficial than employing only

one method. Further, TooT-T outperforms all of the state-of-the-art methods that rely on
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the protein sequence alone in terms of accuracy and MCC.

1.3 Facilitating the substrate-specific data collection process

An obstacle encountered when establishing a substrate-specific transporter dataset

is that the number of annotated transporters with specific substrates is limited. This

limitation led researchers to assign a general label to more specific substrates to produce a

dataset with a sufficient number of samples in each class. This assignment shift from specific

substrates to a general class is not documented or explained, which makes reproducing the

same dataset or expanding it to include newly annotated transporters both time consuming

and subject to inconsistencies.

The proposed tool (Ontoclass) automates the data collection process for transporter

substrate-specific datasets. Ontoclass determines if a protein has transporter-related

GO MF annotations in the Swiss-Prot database and obtains the ChEBI-IDs of the

transported substrates from the GO annotation. These ChEBI-IDs and their ancestors

are used to identify the class according to Saier’s classification system. The tool outputs

the final substrate class of each protein along with additional information. The automated

tool relieves the burden of manual curation, is consistent with other ontologies, and is

reproducible. In addition, it can adapt to the exponential growth of and updates to

biological databases with minimal prior knowledge.

1.4 Broadening the scope of substrate-specific prediction

The proposed tool (TooT-SC ) is able to efficiently classify transport proteins according

to eleven substrate classes: nonselective, water, inorganic cations, inorganic anions, organic

anions, organo-oxygens, amino acids and derivatives, other organonitrogens, nucleotides,

organic heterocyclics, and miscellaneous. This is the highest number of classes predicted by

any transporter substrate specificity detection tool.

In addition, TooT-SC utilizes the PAAC encoding scheme, the TM-Coffee MSA

algorithm [CDTTN12] and the TCS algorithm [CDTN14] to determine informative positions

in the MSA. The use of evolutionary information in the form of an MSA on the

composition-encoding PAAC shows a considerable positive impact in most substrate
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classes, where the average improvement in the MCC is 126.41%. The further use of

positional information by filtering out unreliable columns from the MSA shows an average

improvement of 128.57% over the baseline PAAC. The impact of positional information over

that already achieved by evolutionary information is positive in most substrate classes. The

combination of the three sources of information is a novel contribution of this research. Our

results suggest that the TooT-SC method outperforms all of the state-of-the-art methods

in terms of the overall accuracy and MCC.

Furthermore, the analysis of informative positions in the alignments reveals that there

are more statistically significant informative positions located in the TMSs than in the

non-TMSs, as well as more statistically significant informative positions close to the TMSs

compared to regions far away from them.

2 Data availability

The datasets used in this research are available online at:

https://tootsuite.encs.concordia.ca/datasets/

The proposed tools are available at:

https://github.com/bioinformatics-group/

3 Limitations and future directions

A major focus of this research is on feature engineering, (i.e., encoding the protein

sequence in a numerical vector in a way that encapsulates it function); from our

exterminations, we learned that evolutionary information is the driving force behind high

performance. In all of the experiments and in all of the tasks, features with evolutionary

information outperformed those extracted from a single protein sequence. One of desirable

aims is to automatically learn features from the data and to discover the representations

needed to build a classification from raw sequences. Word embeddings are a feature learning

technique in NLP, where words are represented in dense n-dimensional vectors in a way that

preserves their semantic relationships. Many studies have proposed treating the protein

sequence as a “sentence” of “words” and applying techniques similar to those in NLP to
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learn the word-embedding representation of a protein such as in [AM15,YWBA18,HPO+19].

Our initial attempts to do so were not as successful as those using features with evolutionary

information; this could be because one fundamental difference between protein sequences

and natural language is that the words of similar meaning rely on evolutionary information

rather than the word itself; two words could have completely different relationships

depending of the evolutionary context of a given protein. How can we incorporate such

evolutionary information into word embedding? A straightforward approach is to manually

incorporate the evolutionary information to learned vectors from word embedding; other

possible approaches include applying deep learning to extract fixed-length features from the

sequence-length-dependent features, as done by [LWU+18]. We see potential in these very

interesting directions for future work.

Further, the solution proposed for each problem is a working solution, and the results

are promising; however, the tools were not applied in the annotation of a complete genome.

Applying the tools to annotate a complete genome followed by an analysis of the findings

are initial future directions.

For substrate specificity prediction, although the proposed tool TooT-SC predicts

eleven substrate classes, which is the highest number of substrate classes offered by

any de novo prediction tool, it still falls short of the ultimate goal of predicting the

exact substrate(s). This goal is mainly obstructed by the limited number of annotated

transporters. Thus, a periodic investigation and the expansion of the predicted substrates

as sufficient experimental data becomes available is necessary. In addition, all substrate

specificity detection methods, including TooT-SC, overlook that the relationship between

the transporter and the substrate is not one-to-one. For example, a transporter could

transport more than one type of substrate. Granted, dealing with overlapping classes while

single class methods are yet far from being established is illogical. However, experiments

on multiclass transporters and substrates are a desirable direction for the future research.

The framework of the TooT-SC tool combines PAAC, the TM-Coffee MSA algorithm,

and the TCS [CDTN14] algorithm for determining informative positions in the MSA. The

results indicate that the combination of the three sources (i.e., compositional, evolutionary

and positional information) is advantageous. However, the computational time is not

128



optimal for a genome-scale annotation, as it takes an average of 15 minutes to compute

the encoding vector of a given protein on a MacBook Pro with an Intel Core i7 @ 2.9 GHz

processor (16 GB 1 2133 MHz LPDDR3 and 1 TB HD storage). The majority (95%) of the

computational cost comes from the TCS filtering step. Thus, exploring efficient alternatives

is worthwhile.
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Appendix A

Detailed performance evaluation of

Pse-PSSM where λ ∈ (0, . . . , 49)

Figure 24 delineates the accuracy of different models trained using the Pse-PSSM

encodings (λ ∈ (0, . . . , 49)).

Figure 24: Choice of different models with Pse-PSSM, λ ∈ (0, . . . , 49)
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Table 36: LOOCV performances of the individual Pse-PSSM models

Encoding ML Algorithm Sensitivity Specificity Accuracy MCC

Pse-PSSM, λ=0

OET-KNN 86.57 92.75 89.7 0.7953
KNN 85.22 90.44 87.86 0.7580
SVM 83.23 90.05 86.68 0.7350
GBM 83.41 90.45 86.98 0.7409

Pse-PSSM, λ=1

OET-KNN 85.92 91.79 88.89 0.7788
KNN 85.89 89.06 87.50 0.7501
SVM 86.75 92.22 89.52 0.7912
GBM 85.00 92.19 88.64 0.7744

Pse-PSSM, λ=2

OET-KNN 85.51 91.9 88.75 0.7762
KNN 85.65 88.28 86.98 0.7397
SVM 86.83 92.06 89.48 0.7904
GBM 84.86 91.72 88.34 0.7682

Pse-PSSM, λ= 3

OET-KNN 84.69 91.44 88.11 0.7636
KNN 84.97 87.92 86.47 0.7295
SVM 86.97 91.61 89.32 0.7871
GBM 85.01 91.74 88.42 0.7697

Pse-PSSM, λ=4

OET-KNN 85.46 91.37 88.45 0.7701
KNN 85.44 88.41 86.95 0.7390
SVM 86.87 91.85 89.39 0.7886
GBM 85.71 92.41 89.11 0.7835

Pse-PSSM, λ=5

OET-KNN 85.17 91.32 88.29 0.7668
KNN 85.60 88.07 86.85 0.7371
SVM 86.82 92.26 89.58 0.7925
GBM 85.10 92.08 88.63 0.7742

Pse-PSSM, λ=6

OET-KNN 85.26 91.39 88.37 0.7684
KNN 85.41 87.61 86.52 0.7305
SVM 86.72 91.85 89.32 0.7871
GBM 84.96 92.22 88.63 0.7743

Pse-PSSM, λ=7

OET-KNN 84.95 91.06 88.04 0.762
KNN 85.25 87.53 86.41 0.7281
SVM 86.80 91.79 89.32 0.7872
GBM 85.36 92.12 88.78 0.7771

Pse-PSSM, λ=8

OET-KNN 85.3 91.28 88.33 0.7676
KNN 85.45 87.86 86.67 0.7335
SVM 86.33 92.03 89.22 0.7853
GBM 84.57 91.60 88.13 0.7641

Pse-PSSM, λ=9

OET-KNN 84.81 91.25 88.07 0.7626
KNN 85.40 87.79 86.61 0.7322
SVM 86.28 91.75 89.05 0.7819
GBM 83.89 91.95 87.97 0.7614

Pse-PSSM, λ=10

OET-KNN 84.73 90.81 87.81 0.7572
KNN 85.22 87.08 86.16 0.7232
SVM 86.36 91.47 88.95 0.7796
GBM 84.46 91.84 88.19 0.7655

Pse-PSSM, λ=11

OET-KNN 84.92 91.00 88.00 0.7611
KNN 85.01 87.10 86.07 0.7214
SVM 86.31 91.75 89.06 0.7821
GBM 84.69 92.10 88.45 0.7707
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LOOCV performances of the individual Pse-PSSM models (cont.)

Encoding ML Algorithm Sensitivity Specificity Accuracy MCC

Pse-PSSM, λ=12

OET-KNN 84.59 91.11 87.90 0.7591
KNN 85.00 87.13 86.08 0.7215
SVM 86.26 91.59 88.96 0.7800
GBM 84.24 91.77 88.06 0.7629

Pse-PSSM, λ=13

OET-KNN 84.80 90.87 87.87 0.7585
KNN 84.67 87.57 86.14 0.7229
SVM 86.42 91.32 88.90 0.7787
GBM 84.62 91.60 88.16 0.7646

Pse-PSSM, λ=14

OET-KNN 84.54 90.72 87.67 0.7545
KNN 84.92 86.78 85.87 0.7173
SVM 86.49 91.27 88.91 0.7789
GBM 84.33 91.55 87.99 0.7613

Pse-PSSM, λ=15

OET-KNN 84.64 90.79 87.76 0.7562
KNN 84.56 87.45 86.02 0.7205
SVM 86.22 91.49 88.89 0.7786
GBM 84.32 91.42 87.91 0.7598

Pse-PSSM, λ=16

OET-KNN 84.66 90.66 87.70 0.7549
KNN 85.15 86.87 86.02 0.7204
SVM 86.03 91.55 88.83 0.7774
GBM 84.15 91.75 88.00 0.7618

Pse-PSSM, λ=17

OET-KNN 84.82 90.56 87.73 0.7555
KNN 84.97 86.96 85.98 0.7195
SVM 86.56 91.46 89.04 0.7814
GBM 84.51 91.30 87.95 0.7603

Pse-PSSM, λ=18

OET-KNN 84.64 91.30 88.01 0.7616
KNN 84.72 87.70 86.23 0.7247
SVM 86.17 91.05 88.64 0.7735
GBM 84.48 91.68 88.13 0.7641

Pse-PSSM, λ=19

OET-KNN 84.96 90.70 87.86 0.7582
KNN 85.45 86.91 86.19 0.7237
SVM 86.07 91.55 88.85 0.7778
GBM 84.68 91.60 88.19 0.7652

Pse-PSSM, λ=20

OET-KNN 84.46 90.78 87.66 0.7543
KNN 84.76 87.47 86.13 0.7227
SVM 86.36 92.23 89.33 0.7876
GBM 84.17 91.76 88.01 0.762

Pse-PSSM, λ=21

OET-KNN 84.58 90.79 87.73 0.7556
KNN 84.59 87.48 86.06 0.7212
SVM 85.85 91.92 88.93 0.7796
GBM 83.88 91.81 87.90 0.7598

Pse-PSSM, λ=22

OET-KNN 84.12 90.89 87.55 0.7523
KNN 84.41 87.43 85.94 0.7189
SVM 86.15 91.85 89.04 0.7817
GBM 83.50 91.63 87.62 0.7543

Pse-PSSM, λ=23

OET-KNN 84.71 90.76 87.77 0.7565
KNN 84.72 87.10 85.93 0.7186
SVM 86.12 92.07 89.13 0.7837
GBM 83.64 91.27 87.50 0.7518
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LOOCV performances of the individual Pse-PSSM models (cont.)

Encoding ML Algorithm Sensitivity Specificity Accuracy MCC

Pse-PSSM, λ=24

OET-KNN 84.61 90.08 87.38 0.7484
KNN 84.33 86.69 85.52 0.7105
SVM 86.34 92.13 89.27 0.7865
GBM 83.69 91.65 87.72 0.7564

Pse-PSSM, λ=25

OET-KNN 84.15 91.01 87.63 0.7539
KNN 84.51 87.07 85.80 0.7161
SVM 86.44 92.04 89.28 0.7865
GBM 83.79 91.59 87.74 0.7567

Pse-PSSM, λ=26

OET-KNN 84.34 90.47 87.45 0.75
KNN 84.52 86.92 85.73 0.7147
SVM 86.33 91.76 89.08 0.7825
GBM 83.83 91.50 87.72 0.7561

Pse-PSSM, λ=27

OET-KNN 84.32 90.19 87.29 0.7468
KNN 84.63 87.14 85.90 0.7181
SVM 86.18 92.15 89.21 0.7852
GBM 83.79 91.80 87.85 0.7589

Pse-PSSM, λ=28

OET-KNN 84.39 90.49 87.48 0.7506
KNN 84.47 87.13 85.82 0.7164
SVM 85.83 91.99 88.95 0.7802
GBM 83.74 91.59 87.72 0.7562

Pse-PSSM, λ=29

OET-KNN 84.14 90.70 87.46 0.7504
KNN 84.58 87.04 85.83 0.7166
SVM 85.97 91.91 88.98 0.7806
GBM 83.85 91.52 87.73 0.7565

Pse-PSSM, λ=30

OET-KNN 84.19 90.74 87.51 0.7514
KNN 84.54 87.48 86.03 0.7208
SVM 86.24 91.86 89.09 0.7827
GBM 83.70 91.65 87.73 0.7565

Pse-PSSM, λ=31

OET-KNN 84.25 90.34 87.34 0.7477
KNN 84.56 86.83 85.71 0.7142
SVM 86.05 92.08 89.11 0.7832
GBM 83.69 91.44 87.62 0.7541

Pse-PSSM, λ=32

OET-KNN 84.23 90.83 87.57 0.7527
KNN 84.93 87.25 86.11 0.7222
SVM 85.99 91.64 88.85 0.778
GBM 83.75 91.48 87.67 0.7551

Pse-PSSM, λ=33

OET-KNN 84.28 90.84 87.60 0.7533
KNN 84.32 87.39 85.87 0.7175
SVM 86.18 92.15 89.21 0.7852
GBM 84.02 91.50 87.81 0.7579

Pse-PSSM, λ=34

OET-KNN 84.02 90.46 87.28 0.7468
KNN 84.25 86.78 85.54 0.7108
SVM 86.17 91.77 89.01 0.7811
GBM 83.69 91.96 87.88 0.7597

Pse-PSSM, λ=35

OET-KNN 84.30 90.45 87.42 0.7494
KNN 84.67 86.93 85.82 0.7163
SVM 85.75 91.84 88.83 0.7778
GBM 83.74 91.23 87.54 0.7524
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LOOCV performances of the individual Pse-PSSM models (cont.)

Encoding ML Algorithm Sensitivity Specificity Accuracy MCC

Pse-PSSM, λ=36

OET-KNN 84.15 90.67 87.45 0.7503
KNN 84.96 86.78 85.88 0.7176
SVM 85.92 91.80 88.90 0.7789
GBM 83.70 91.50 87.65 0.7549

Pse-PSSM, λ=37

OET-KNN 84.28 90.57 87.47 0.7504
KNN 84.56 86.89 85.74 0.7148
SVM 85.58 91.84 88.75 0.7761
GBM 84.03 91.68 87.90 0.7598

Pse-PSSM, λ=38

OET-KNN 84.18 90.18 87.22 0.7453
KNN 84.53 86.81 85.69 0.7137
SVM 85.93 91.72 88.86 0.7783
GBM 83.83 91.53 87.73 0.7563

Pse-PSSM, λ=39

OET-KNN 84.62 90.40 87.55 0.7519
KNN 85.00 86.71 85.87 0.7173
SVM 86.14 92.22 89.22 0.7855
GBM 83.98 91.76 87.92 0.7603

Pse-PSSM, λ=40

OET-KNN 84.08 90.17 87.16 0.7443
KNN 84.46 86.94 85.72 0.7144
SVM 86.03 91.76 88.93 0.7796
GBM 83.55 91.38 87.52 0.7522

Pse-PSSM, λ=41

OET-KNN 83.85 90.40 87.17 0.7446
KNN 84.66 87.03 85.86 0.7172
SVM 85.46 91.77 88.66 0.7744
GBM 83.85 91.64 87.80 0.7578

Pse-PSSM, λ=42

OET-KNN 84.19 90.24 87.26 0.7461
KNN 84.14 87.04 85.61 0.7123
SVM 85.94 91.75 88.88 0.7787
GBM 83.37 91.81 87.65 0.7551

Pse-PSSM, λ=43

OET-KNN 84.04 90.45 87.29 0.7469
KNN 84.37 86.69 85.54 0.7109
SVM 85.73 91.92 88.86 0.7784
GBM 83.83 91.49 87.71 0.756

Pse-PSSM, λ=44

OET-KNN 84.24 90.50 87.41 0.7493
KNN 84.78 86.80 85.80 0.7160
SVM 85.88 91.53 88.74 0.7757
GBM 83.56 91.55 87.61 0.7541

Pse-PSSM, λ=45

OET-KNN 84.02 90.22 87.16 0.7442
KNN 84.56 86.89 85.74 0.7148
SVM 85.80 91.77 88.83 0.7776
GBM 83.83 91.66 87.80 0.7578

Pse-PSSM, λ=46

OET-KNN 84.32 90.56 87.48 0.7507
KNN 84.51 87.20 85.87 0.7175
SVM 85.97 91.99 89.02 0.7815
GBM 83.73 91.70 87.77 0.7572

Pse-PSSM, λ=47

OET-KNN 84.03 90.47 87.29 0.747
KNN 84.48 86.93 85.72 0.7145
SVM 85.71 91.65 88.72 0.7755
GBM 83.54 91.49 87.57 0.7532

Pse-PSSM, λ=48

OET-KNN 83.85 90.34 87.14 0.7439
KNN 84.47 86.88 85.69 0.7138
SVM 85.81 91.97 88.93 0.7798
GBM 83.73 91.70 87.77 0.7572

Pse-PSSM, λ=49

OET-KNN 84.19 90.82 87.55 0.7522
KNN 84.43 87.35 85.91 0.7183
SVM 85.93 91.92 88.96 0.7803
GBM 83.69 91.58 87.68 0.7556



Appendix B

Experiments on the

psi-composition encodings for the

prediction of other functional

classes

Here, we conduct a preliminary study to determine how well the proposed

psi-composition encodings can differentiate between the other functional classes and how

this finding compares to that of other published work.

1 Dataset

The sequences in the non-transporter class of the transporter dataset in Chapter 5 were

partitioned into other functional classes based on their biological roles: enzyme, receptor,

or other. Protein sequences that have the annotation keyword “Receptor [KW-0675]”

in the Swiss-Prot database were categorized into the receptor class, protein sequences

that have an enzyme commission number (EC) annotation in the Swiss-Prot database

were classified into the enzyme class, and all of the other sequences that were in neither

the receptor class nor in enzyme class were labeled as other. The dataset was randomly
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partitioned (stratified by class) into a training set (90% of the data) and an independent

testing set (10% of the data), as presented in Table 37

Class Training Testing Total

Enzyme 2,591 287 2,878

Receptor 1,012 111 1,123

Other 2,340 263 2,603

Total 5,943 661 6,604

Table 37: Other dataset of functional membrane classes

2 Overview

We have a multiclass classification problem in which a membrane protein can be

classified into a functional class (i.e., receptor, enzyme, or other). Similar to Chapter 5,

an SVM with an RBF kernel was utilized as implemented by the R e1071 library (version

1.6-8). The protein samples were represented using the psiPAAC encoding, as it achieved

the highest performance during cross-validation. Since SVMs inherently deal with the

binary classification problem, we extended the SVM approach using a one-against-the-rest

approach, in which a binary classifier is trained for each individual class; samples of that

class are positive samples and the rest of the samples are negative samples. The final

prediction was determined by comparing the output probabilities of the positive class from

each binary SVM, and the class with the highest probability was the predicted class. The

best combination of the C and γ parameters was determined for each binary classifier

independently by utilizing a grid search approach. Figure 25 delineates an overview of the

prediction steps.

3 Comparison among different encodings

The overall accuracy and MCC of the SVM models for which a protein sample

is encoded using different strategies is presented in Table 38. Similar patterns as in

transporter detection (Chapter 5) were observed; as illustrated in Figure 26, the proposed

psi-compositions outperformed the other variations, including the commonly applied PSSM
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Figure 25: TooT-REO overview
Given a query protein Q, the psiPAAC encoding is computed and input into three trained
SVM classifiers, one for each functional type, namely, receptors, enzymes, and others. The
output Pi indicates the probability that the query protein belongs to that class. The
predicted class is the class with the highest output probability Pi.

encoding. The multiclass SVM that utilized psiPAAC encoding achieved the highest MCC

in all of the classes; thus, this model was chosen as our functional membrane predictor.

Table 39 shows the details of its cross-validation performance.

4 Comparison with other published work

To the best of our knowledge, there is no other tool that can simultaneously predict

all of the functional membrane classes, so we cannot directly compare the performance of

the proposed tool to that proposed by another work. Below, we perform two case studies

— the first for detecting G protein-coupled receptors (GPCRs) and the second for enzyme

detection.
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Table 38: Functional class prediction of the different methods

Encoding Accuracy MCC

psiPAAC 89.93 ± 0.14 0.8386 ± 0.0022

blastPAAC 89.20 ± 0.20 0.8267 ± 0.0032

psiAAC 89.00 ± 0.06 0.8240 ± 0.0010

psiPseAAC 88.97 ± 0.12 0.8233 ± 0.0019

blastPseAAC 87.81 ± 0.18 0.8043 ± 0.0029

blastAAC 86.90 ± 0.17 0.7898 ± 0.0027

PSSM 86.09 ± 0.24 0.7767 ± 0.0039

PAAC 75.48 ± 0.25 0.6052 ± 0.0042

PseAAC 72.02 ± 0.14 0.5489 ± 0.0024

AAC 70.10 ± 0.26 0.5175 ± 0.0042

For each method, the table presents the accuracy and MCC as the means ± SDs, calculated
across the ten runs of the 10-CV in ascending order according to the MCC. The entry
highlighted in bold refers to the best performance, that is, the model chosen for membrane
functional prediction.

Table 39: Membrane functional prediction cross-validation performance

Class Sensitivity Specificity Accuracy MCC

Receptors 87.11 ± 0.32 98.67 ± 0.04 96.47 ± 0.05 0.8793 ± 0.0017

Enzymes 92.10 ± 0.13 93.56 ± 0.12 92.70 ± 0.11 0.8526 ± 0.0023

Others 88.75 ± 0.19 91.20 ± 0.16 90.21 ± 0.14 0.7961 ± 0.0029

Overall 89.93 ± 0.14 0.8386 ± 0.0022

Detailed cross-validation performance of the multiclass SVM where the protein samples
were encoded using the psiPAAC encoding; this was the best-performing method during
the cross-validation procedure.

4.1 Case 1: G protein-coupled receptors (GPCRs)

Studies on membrane receptor detection were designed to detect a specific function of

the receptors, such as whether a membrane protein is a GPCR or a non-GPCR [XWC11]

or an olfactory receptor or not [HS15]. Since GPCR proteins are frequent targets of

therapeutic drugs, we compared the psiPAAC method to the state-of-the-art GPCR-2L

predictor [XWC11] that achieved 97.2% accuracy in identifying proteins as GPCRs or

non-GPCRs. Considering that our dataset contains a general receptor class and is not

specific to GPCRs, we trained a new SVM to distinguish between GPCR and non-GPCR

proteins using the psiPAAC encoding on the protein samples from the same dataset for the

GPCR-2L predictor [XWC11]. Table 40 compares the performance. Overall, psiPAAC-SVM

outperformed the GPCR-2L method by 0.04 (MCC).
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(a) Receptors (b) Enzymes

(c) Others

Figure 26: Impact of incorporating different sources of evolutionary information on
membrane functional class prediction

The figure shows the improvement in the SVM performance, as measured by the MCC,
of each functional class prediction when incorporating different sources of evolutionary
information into the baseline encodings (AAC, PAAC, and PseAAC) and compares it to
the commonly used encoding that also integrates evolutionary information (PSSM).

Table 40: Comparison with GPCR-2L in GPCR receptor detection

Class Number correct prediction Success rate (%) MCC
of proteins

GPCR-2L psiPAAC-SVM GPCR-2L psiPAAC-SVM GPCR-2L psiPAAC-SVM

GPCRs 367 360 359 98.09 97.82 0.93 0.97
Non-GPCRs 1,101 1,068 1,094 97.00 99.36 0.93 0.97

overall 1,468 1,428 1,453 97.28 98.97 0.93 0.97

This table compares the performance of the proposed method (psiPAAC-SVM) trained

on the GPCR-2L dataset with the reported performance of the state-of-the-art GPCR-2L
predictor [XWC11] trained on the same dataset.
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4.2 Case 2: Enzymes

Among the membrane functional classes, enzymes are the most studied, mainly because

enzymes are located in the membrane and there are many tools available to build powerful

prediction models. There are several accessible web servers for enzyme protein detection in

general; however, none of them are designed for membrane proteins. To see how our model

compares to the state-of-the-art tools DEEPre [LWU+18] and EzyPred [SC07] in membrane

enzyme detection, we ran our testing dataset on their web servers and compared the results

to those achieved by our model. Table 41 compares the results and demonstrates that

our psiPAAC-based membrane functional class predictor achieved the highest prediction

accuracy and MCC among the examined enzyme predictors.

Table 41: Comparison with the state-of-the-art enzyme prediction tools

Class Number correct prediction Success rate (%) MCC
of proteins

DEEPre EzyPred Proposed DEEPre EzyPred Proposed DEEPre EzyPred Proposed

Enzyme 287 239 233 255 83.28 81.18 88.85 0.75 0.21 0.84
Non-enzyme 374 342 155 355 91.44 41.44 94.92 0.75 0.21 0.84

overall 661 581 388 610 87.90 58.70 92.28 0.75 0.21 0.84

This table presents the performance of the proposed tool, psiPAAC-SVM, and compares it
with the performance of the DEEPre [LWU+18] and EzyPred [SC07] web servers on the
independent dataset from Table 10. The proposed tool achieved a higher success rate in
both enzyme and non-enzyme detection than both DEEPre and EzyPred.
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Appendix C

Detailed cross-validation

performance in substrate

specificity prediction

The following tables show the means ± SDs of the ten different runs of the 10-CV.

Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 13.75 ± 3.95 99.59 ± 0.05 96.48 ± 0.20 0.2110 ± 0.0581
Water 37.92 ± 3.65 99.60 ± 0.06 97.25 ± 0.16 0.4748 ± 0.0372
Inorganic cations 87.08 ± 0.56 61.26 ± 0.88 64.61 ± 0.65 0.3364 ± 0.0124
Inorganic anions 13.80 ± 2.05 98.32 ± 0.31 87.68 ± 0.53 0.1716 ± 0.0349
Organic anions 32.06 ± 1.57 96.90 ± 0.22 87.18 ± 0.38 0.3060 ± 0.0176
Organo-oxygens 44.71 ± 2.91 92.42 ± 0.38 80.03 ± 0.61 0.3179 ± 0.0243
Amino acids and derivatives 30.99 ± 2.68 93.32 ± 0.50 79.93 ± 0.79 0.2109 ± 0.0281
Other organonitrogens 33.89 ± 1.79 95.56 ± 0.20 82.73 ± 0.36 0.3022 ± 0.0162
Nucleotides 41.36 ± 3.98 99.49 ± 0.10 97.32 ± 0.23 0.4724 ± 0.0397
Organic heterocyclics 23.82 ± 4.26 99.37 ± 0.11 95.43 ± 0.25 0.3194 ± 0.0440
Miscellaneous 10.91 ± 2.01 98.66 ± 0.24 87.22 ± 0.42 0.1539 ± 0.0370

Overall 52.21 ± 0.60 0.3628 ± 0.0091

Table 42: AAC performance
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Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 12.08 ± 5.36 99.74 ± 0.06 96.84 ± 0.24 0.2176 ± 0.0897
Water 32.92 ± 4.14 99.51 ± 0.08 97.08 ± 0.19 0.4094 ± 0.0402
Inorganic cations 88.37 ± 0.46 63.65 ± 0.61 67.30 ± 0.53 0.3915 ± 0.0114
Inorganic anions 8.15 ± 1.93 99.21 ± 0.19 88.84 ± 0.44 0.1481 ± 0.0420
Organic anions 38.76 ± 2.02 97.00 ± 0.38 88.52 ± 0.60 0.3758 ± 0.0233
Organo-oxygens 48.03 ± 2.41 92.70 ± 0.36 81.55 ± 0.81 0.3578 ± 0.0271
Amino acid and derivatives 32.25 ± 2.25 93.23 ± 0.54 80.75 ± 0.86 0.2259 ± 0.0270
Other organonitrogens 41.94 ± 1.58 96.07 ± 0.25 85.10 ± 0.37 0.3982 ± 0.0133
Nucleotides 42.73 ± 3.83 99.46 ± 0.06 97.43 ± 0.14 0.4774 ± 0.0313
Organic heterocyclics 22.35 ± 3.16 99.18 ± 0.18 95.27 ± 0.27 0.2804 ± 0.0317
Miscellaneous 21.62 ± 1.19 98.39 ± 0.17 88.48 ± 0.30 0.2797 ± 0.0149

Overall 54.80 ± 0.76 0.3999 ± 0.0108

Table 43: PseAAC performance

Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 10.00 ± 3.51 99.71 ± 0.09 96.95 ± 0.16 0.1830 ± 0.0587
Water 93.33 ± 2.91 99.99 ± 0.03 99.78 ± 0.10 0.9607 ± 0.0174
Inorganic cations 88.98 ± 0.65 69.21 ± 0.96 71.91 ± 0.56 0.4745 ± 0.0096
Inorganic anions 24.24 ± 2.35 98.46 ± 0.26 90.06 ± 0.43 0.3130 ± 0.0316
Organic anions 38.76 ± 1.77 96.69 ± 0.40 88.86 ± 0.49 0.3666 ± 0.0193
Organo-oxygens 54.20 ± 1.51 93.83 ± 0.51 84.65 ± 0.67 0.4447 ± 0.0211
Amino acids and derivatives 47.39 ± 2.25 93.91 ± 0.26 84.40 ± 0.43 0.3815 ± 0.0193
Other organonitrogens 39.58 ± 2.68 95.54 ± 0.33 85.11 ± 0.36 0.3648 ± 0.0194
Nucleotides 68.64 ± 3.98 99.54 ± 0.10 98.41 ± 0.21 0.6901 ± 0.0371
Organic heterocyclics 27.35 ± 3.41 99.23 ± 0.08 95.85 ± 0.13 0.3390 ± 0.0297
Miscellaneous 11.01 ± 1.93 98.43 ± 0.20 88.24 ± 0.40 0.1475 ± 0.0358

Overall 58.93 ± 0.45 0.461 ± 0.0069

Table 44: PAAC performance

Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 72.08 ± 4.41 99.73 ± 0.04 99.07 ± 0.10 0.7675 ± 0.0300
Water 95.83 ± 0.00 99.85 ± 0.00 99.73 ± 0.00 0.9376 ± 0.0000
Inorganic cations 93.77 ± 0.28 86.86 ± 0.49 88.45 ± 0.29 0.7748 ± 0.0053
Inorganic anions 59.24 ± 2.31 98.87 ± 0.12 95.48 ± 0.23 0.6610 ± 0.0200
Organic anions 68.04 ± 2.38 97.98 ± 0.11 95.08 ± 0.22 0.6727 ± 0.0175
Organo-oxygens 80.83 ± 0.36 98.61 ± 0.22 95.89 ± 0.23 0.8210 ± 0.0095
Amino acids and derivatives 80.07 ± 0.67 97.84 ± 0.17 95.23 ± 0.19 0.7782 ± 0.0081
Other organonitrogens 70.28 ± 2.14 95.81 ± 0.28 92.09 ± 0.26 0.6372 ± 0.0133
Nucleotides 81.82 ± 0.00 99.90 ± 0.07 99.52 ± 0.09 0.8719 ± 0.0219
Organic heterocyclics 72.35 ± 2.48 99.80 ± 0.13 98.91 ± 0.16 0.8032 ± 0.0277
Miscellaneous 46.57 ± 1.75 98.24 ± 0.17 93.58 ± 0.23 0.5269 ± 0.0186

Overall 79.84 ± 0.13 0.743 ± 0.0014

Table 45: TMC-AAC performance
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Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 63.33 ± 5.12 99.78 ± 0.06 98.93 ± 0.14 0.7220 ± 0.0411
Water 95.83 ± 0.00 99.93 ± 0.00 99.82 ± 0.00 0.9574 ± 0.0000
Inorganic cations 94.49 ± 0.59 84.49 ± 0.49 87.28 ± 0.36 0.7561 ± 0.0072
Inorganic anions 59.57 ± 1.76 99.43 ± 0.09 96.09 ± 0.16 0.7065 ± 0.0143
Organic anions 64.54 ± 1.55 98.94 ± 0.11 95.80 ± 0.14 0.7070 ± 0.0112
Organo-oxygens 80.19 ± 0.82 97.92 ± 0.23 95.09 ± 0.21 0.7887 ± 0.0081
Amino acids and derivatives 74.65 ± 1.29 98.55 ± 0.18 95.30 ± 0.23 0.7732 ± 0.0110
Other organonitrogens 72.50 ± 1.40 95.37 ± 0.48 91.88 ± 0.55 0.6390 ± 0.0207
Nucleotides 32.73 ± 4.18 99.79 ± 0.10 98.41 ± 0.12 0.4780 ± 0.0418
Organic heterocyclics 88.82 ± 4.11 99.87 ± 0.08 99.49 ± 0.15 0.9132 ± 0.0261
Miscellaneous 53.43 ± 1.30 98.18 ± 0.19 94.03 ± 0.25 0.5781 ± 0.0164

Overall 79.46 ± 0.30 0.7374 ± 0.0038

Table 46: TMC-PseAAC performance

Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 75.00 ± 0.00 99.85 ± 0.05 99.30 ± 0.06 0.8185 ± 0.0141
Water 98.33 ± 2.15 99.85 ± 0.00 99.79 ± 0.05 0.9510 ± 0.0115
Inorganic cations 95.25 ± 0.28 88.26 ± 0.19 90.11 ± 0.14 0.8072 ± 0.0029
Inorganic anions 63.80 ± 1.99 98.80 ± 0.17 95.86 ± 0.23 0.6896 ± 0.0178
Organic anions 68.04 ± 1.75 97.65 ± 0.06 94.86 ± 0.18 0.6556 ± 0.0146
Organo-oxygens 83.63 ± 0.67 98.61 ± 0.18 96.35 ± 0.19 0.8397 ± 0.0079
Amino acids and derivatives 82.96 ± 1.28 98.49 ± 0.10 96.34 ± 0.16 0.8257 ± 0.0085
Other organonitrogens 66.39 ± 1.68 96.70 ± 0.27 92.67 ± 0.17 0.6412 ± 0.0084
Nucleotides 85.45 ± 1.92 99.96 ± 0.06 99.66 ± 0.07 0.9090 ± 0.0185
Organic heterocyclics 83.24 ± 4.81 100.00 ± 0.00 99.50 ± 0.14 0.9096 ± 0.0272
Miscellaneous 54.34 ± 1.33 98.09 ± 0.16 94.18 ± 0.16 0.5811 ± 0.0110

Overall 81.92 ± 0.12 0.7695 ± 0.0014

Table 47: TMC-PAAC performance

Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 70.00 ± 2.64 99.66 ± 0.09 98.93 ± 0.13 0.7365 ± 0.0288
Water 100.00 ± 0.00 99.85 ± 0.00 99.82 ± 0.00 0.9599 ± 0.0000
Inorganic cations 92.88 ± 0.34 85.96 ± 0.70 87.52 ± 0.40 0.7562 ± 0.0071
Inorganic anions 54.57 ± 1.76 98.98 ± 0.23 95.21 ± 0.35 0.6346 ± 0.0278
Organic anions 64.43 ± 2.89 97.65 ± 0.17 94.42 ± 0.33 0.6294 ± 0.0245
Organo-oxygens 83.63 ± 0.31 98.06 ± 0.27 95.67 ± 0.26 0.8168 ± 0.0097
Amino acids and derivatives 82.68 ± 1.34 98.07 ± 0.18 95.75 ± 0.32 0.8049 ± 0.0149
Other organonitrogens 68.54 ± 0.98 96.35 ± 0.31 92.36 ± 0.29 0.6428 ± 0.0115
Nucleotide 70.45 ± 3.21 99.79 ± 0.11 99.16 ± 0.17 0.7698 ± 0.0415
Organic heterocyclics 70.00 ± 2.32 99.86 ± 0.04 98.90 ± 0.09 0.8000 ± 0.0178
Miscellaneous 49.39 ± 1.99 98.41 ± 0.17 93.94 ± 0.29 0.5602 ± 0.0229

Overall 79.33 ± 0.24 0.736 ± 0.0035

Table 48: TMC-TCS-AAC performance
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Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 58.33 ± 0.00 99.65 ± 0.04 98.67 ± 0.04 0.6545 ± 0.0089
Water 95.83 ± 0.00 99.87 ± 0.04 99.75 ± 0.04 0.9435 ± 0.0096
Inorganic cations 93.84 ± 0.29 85.50 ± 0.48 87.57 ± 0.33 0.7594 ± 0.0061
Inorganic anions 58.59 ± 1.49 98.90 ± 0.15 95.42 ± 0.13 0.6585 ± 0.0092
Organic anions 62.58 ± 1.46 97.46 ± 0.19 94.05 ± 0.29 0.6061 ± 0.0183
Organo-oxygen s 80.89 ± 0.79 98.67 ± 0.12 95.92 ± 0.11 0.8239 ± 0.0047
Amino acids and derivatives 78.24 ± 1.35 97.84 ± 0.12 94.98 ± 0.18 0.7660 ± 0.0095
Other organonitrogens 68.96 ± 1.39 97.15 ± 0.20 93.16 ± 0.22 0.6752 ± 0.0108
Nucleotides 76.82 ± 2.58 99.62 ± 0.06 99.06 ± 0.10 0.7618 ± 0.0232
Organic heterocyclics 75.00 ± 2.08 99.85 ± 0.05 99.04 ± 0.08 0.8294 ± 0.0145
Miscellaneous 48.89 ± 2.44 97.71 ± 0.18 93.16 ± 0.33 0.5158 ± 0.0255

Overall 79.03 ± 0.27 0.7324 ± 0.0037

Table 49: TMC-TCS-PseAAC performance

Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 75.00 ± 0.00 99.78 ± 0.00 99.21 ± 0.00 0.7979 ± 0.0000
Water 95.83 ± 0.00 99.85 ± 0.00 99.74 ± 0.00 0.9376 ± 0.0000
Inorganic cations 95.19 ± 0.47 86.92 ± 0.28 89.36 ± 0.21 0.7936 ± 0.0046
Inorganic anions 64.35 ± 1.97 99.24 ± 0.18 96.38 ± 0.19 0.7252 ± 0.0155
Organic anions 68.04 ± 0.49 98.40 ± 0.13 95.66 ± 0.14 0.6974 ± 0.0084
Organo-oxygens 83.44 ± 0.52 98.97 ± 0.12 96.72 ± 0.15 0.8543 ± 0.0066
Amino acids and derivatives 84.08 ± 0.95 98.55 ± 0.16 96.56 ± 0.18 0.8357 ± 0.0085
Other organonitrogens 71.46 ± 0.95 96.84 ± 0.27 93.42 ± 0.22 0.6830 ± 0.0084
Nucleotides 80.91 ± 1.92 99.98 ± 0.04 99.61 ± 0.05 0.8904 ± 0.0132
Organic heterocyclics 82.35 ± 0.00 100.00 ± 0.00 99.47 ± 0.00 0.9050 ± 0.0000
Miscellaneous 55.96 ± 1.09 97.95 ± 0.16 94.21 ± 0.20 0.5858 ± 0.0136

Overall 82.53 ± 0.12 0.7772 ± 0.0019

Table 50: TMC-TCS-PAAC performance


