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ABSTRACT

Since large amounts of biological data are genéraising various high-
throughput technologies, efficient computational thmes are important for
understanding the biological meanings behind theptex data. Machine learning is
particularly appealing for biological knowledge absery. Tissue-specific gene
expression and protein sumoylation play esserdlakrin the cell and are implicated in
many human diseases. Protein destabilization isomnn mechanism by which
mutations cause human diseases. In this study, ineadbarning approaches were
developed for predicting human tissue-specific gengotein sumoylation sites and
protein stability changes upon single amino acithsstutions. Relevant biological
features were selected for input vector encodimg] anachine learning algorithms,
including Random Forests and Support Vector Madhingere used for classifier
construction. The results suggest that the appesadfive rise to more accurate
predictions than previous studies and can provideiable information for further
experimental studies. Moreover, seeSUMO and Mu%#aib servers were developed to
make the classifiers accessible to the biologese¢arch community.

Structure-based methods can be used to predictetleets of amino acid
substitutions on protein function and stability.eThonsynonymous Single Nucleotide
Polymorphisms (nsSNPs) located at the protein hopainterface have dramatic effects
on protein-protein interactions. To model the eBethe nsSNPs at the interfaces of 264
protein-protein complexes were mapped on the pratguctures using homology-based

methods. The results suggest that disease-caus®iRs tend to destabilize the



electrostatic component of the binding energy as8NPs at conserved positions have
significant effects on binding energy changes. TWiricture-based approach was
developed to quantitatively assess the effectsnoh@ acid substitutions on protein

stability and protein-protein interaction. It wasos/n that the structure-based analysis
could help elucidate the mechanisms by which martatcause human genetic disorders.
These new bioinformatic methods can be used toyamaome interesting genes and
proteins for human genetic research and improveuoderstanding of their molecular

mechanisms underlying human diseases.



DEDICATION

| dedicate my dissertation to my parents, wife tamal daughters. Without their

love, the completion of this work would not haveebeossible.



ACKNOWLEDGMENTS

| would like to thank my advisor, Dr. Liangjiang W& for all of his guidance,
patience and financial support. | am grateful tm for his expertise in machine learning
and help in scientific writing. | appreciate thdmef other committee members: Dr. Emil
Alexov for his advice and guidance on my structmiedeling studies, Dr. Charles
Schwartz for his academic advice on my human gersttidies, Dr. Chin-Fu Chen for
teaching me bioinformatic knowledge. | also wanéxpress gratitude to all faculty, staff
and students in Department of Genetics and Biocstemat Clemson University and

Greenwood Genetic Center for providing help foriPD studies.



TABLE OF CONTENTS

Page

TITLE PAGE ...ttt e emeeeese s se s bessnsnsnnnnnnnes i
ABSTRACT ...ttt s e e e e e e e e e teeeeeeeeteseeeteeeeeee et eeees mamans s sesbesssennnsnnnnnnns il
DEDICATION ...cttttettetietietieeiesiessarnnesmmmeeassssassaaseasaaaaassasaasasaseseesesesssmmmamteressessessessssnnns v
ACKNOWLEDGMENTS ...ooiiiiiiiiiiiiiiiiiieiieensmmnmessenssnsssnsssn s s s s s smmmmme s s e s Y
LIST OF TABLES ...t e e e ee e ee e ee s emmmme e aneanees Vi
LIST OF FIGURES ... ..ottt mmmees e s s s X
CHAPTER

. INTRODUCTION ...uuiiiiiiis s s saeessrsnensnsssnss s mmmnns s 1

II.  AMACHINE LEARNING APPROACH FOR PREDICTING HUMN
TISSUE-SPECIFIC GENES USING MICROARRAY EXPRESSION

DA T A e et e ——— ettt e e ettt raraae et ——— 11
YA 0 1] 1 = (o1 A 11
BaACKGIOUNG ...ttt e 12
1Y/ 11 g To o T 15
ReSUIts and DIiSCUSSION........uoiiieeeeceeeemie e e e e ann 21

(Of0] g 103 (13 T0] o IO 34
RETEIENCES. ...t e e 35

1.  PREDICTING PROTEIN SUMOYLATION SITES FROM SBIENCE

FEATURES ... s et e e e ae b e 39
Y o 15 (= (] A 39
BaACKGIOUNG ...ttt e 40
/=Y 1 (o T 42
ReSUItS anNd DiSCUSSION......uuviiiiiiiivieeeemmereteie e e e e ae e ee 49
(©F0] oo (513 (o] o NP, 61
R ] (=] (=] (o= 62

Vi



IV.  SEQUENCE FEATURE-BASED PREDICTION OF PROTEINABILITY

CHANGES UPON AMINO ACID SUBSTITUTIONS.......coceee.. 65
YA 0 1] 1 = (o1 S 65
BaACKGIOUNG ...ttt e 66
Y/ 1= 1 g To o =T 68
Results and DIiSCUSSION.........oooiievicceeeemieie e eei e e e e e een L
(O00] g 103 (1= T0] o I 85
RETEIENCES ... .ot e 86

V. MODELING EFFECTS OF HUMAN SINGLE NUCLEOTIDE
POLYMORPHISMS ON PROTEIN-PROTEIN INTERACTIONS .89

Y o 15 (= (] A 89
Ty Ao To [UTo3 ¥ o] o [N 90
Y=Y 1 (o T 94
ReSUItS anNd DiSCUSSION.....uuuiiiiiiiiiieeeemmeeeee e e 100

(OFo] o Tod (117 0] o HPU O 115
R (=] (=] (o=, 119

VI.  STRUCTURAL ASSESSMENT OF THE EFFECTS OF AMINEZID
SUBSTITUTIONS ON PROTEIN STABILITY AND PROTEIN-

PROTEIN INTERACTION.....ooiiiiie ettt sttt enee s 126
ADSTIACT ...ttt ettt e e e e eemm e 126
INEFOAUCTION. ...ttt 126
METNOAS ... e 130
Results and DISCUSSION..........cciiiiiemeeeeeeee it ee e 137
CONCIUSIONS ...ttt e 146
REEIENCES ... e e 147
VII. CONCLUSIONS ...ttt emmmemes 152
APPENDICES ... ..ottt ctee et e e et s emmmnme e e e e e e enn 154
A:  Publications resulting from the present researc.............ccccceeiiiiiiinnens 155
B: Additional files for predicting human tissueesjific genes.............ccccee.... 157
C: Additional files for predicting protein sumotitan Sites...........cccceevveeeenn. 158
D: Additional data regarding the effect of nsSMR%Inding energy
with respect to amino acid characteristiCs...............occccceiiiieeennnes 172

vii



Table

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

LIST OF TABLES
Page

Comparison of Random Forest and Support Védamhine

classifiers for predicting tissue-specific genes............ococceeeencieennnne 24
GO term enrichment analysis of predicted bspiecific genes.................. 26
List of high-scoring genes with specific exgsien in the brain.................. 29
GO term enrichment analysis of predicted Isgecific genes................... 31
List of high-scoring genes with specific exgsien in the liver................... 32

Random Forest classifiers for predicting #ssalective genes .................. 34

Effect of sequence context on predictive parénce of
Random Forest classifiers ... 51.

Comparison of Random Forest and Support Védamhine
classifiers constructed WithKXE+/-2 (W= 8). ....cceeiiiiiiiiniiiiieeee e 55

Effect of evolutionary information on protesiamoylation
SItE PrediCON....ccoi i et e 56

Comparison of classifier performance usingndependent
TEST AATASEL . eeiiie e et ——————— 59

Effect of window sizes on sequence-based gtiediof
protein stability Changes..........cuuiiiercmriiiee e eee D

Predictive performance of classifiers cons&daising
single sequence features.........ccooeeeeeeeiieieee e eeeeeeeemn d o

Predictive performance of classifiers conggddy combining
the best single features ........ ..o oo eeee 81

Predictive performance of classifiers cons&daising
the optimal subsets of sequence features.....ccccccvvveeveeeeeiiciiciinvineenn. 82

viii



List of Tables (Continued)

Table

5.1

6.1

6.2

Cl

C.2

D.1

Page

Parameters of distributions of total bindimgmgy difference and

its components together with the correspondivglBes.................... 101
The effects of five amino acid substitutiomspootein stability................ 138
The effects of five amino acid substitutions o

protein-protein iNteraction ............. oo eeeeoeeeeeeennniie e ereiree e 141
The list of 457 experimentally verified sunetydn sites in

A C T o] (0] =11 1 1S TP P PP 158
List of 40 biological features used in chaplgee...............cccceeerieenens 170
Parameters of distribution of total bindingeegy

difference and itS COMPONENTS .........ooeermriiiiiee e 173



Figure

2.1
2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

LIST OF FIGURES

Page

Schematic diagram of the approach for prawjdissue-specific genes ....16
Visualization of known tissue-specific genpmssion patterns................. 22
ROC curves to compare the performances of ®arfebrest (RF)
and Support Vector Machine (SVM) classifiersgeedicting
tISSUE-SPECITIC JENES ....eiiieiiiee et 25

Visualization of predicted tissue-specific g@xpression patterns ............ 27

The sequence logo of the protein sumoylatiotifftPKXE) and
itS flanKing reSIdUES.......oueeiii e s 50

ROC curves to show the effect of context imfation for sumoylation

SItE PredIiCION. ....cii it st et 52
Performance comparisons of Random Forest §Ré)

Support Vector Machine (SVM) classifiers.........cccovieiniiiiiecninne. 54
ROC curves to show the effect of evolutionafgrmation on

classifier performanCe ... e 57
Sample output from the seeSUMO Web SeIVEeS v .ccccoivciiiviiiiiiiieeee e, 61

ROC curves to show the effect of context imation on prediction of
protein stability changes upon amino acid stlogins......................... 76

ROC curves to show the different performaresels of classifiers
constructed using individual sequence featureS......ccccccccvveeeenn. 78

ROC curves for sequence-based predictionaiépr stability changes
using multiple sequence features. ..., 83

Sample output from the MuStab web Server........cccccccceviiiiiiiieeeeeeeeen, 85



List of Figures (Continued)

Figure Page

5.1 Distribution 0f444G¢(NsSNPaNAAAAG(nsSNF for

OMIM and NON-OMIM CASES ........cuvuieiiiiceemee e e 102
5.2 lllustration of nsSSNPs at interface of protpimtein complexes............... 104
5.3 Multiple sequence alignment (MSA) ... 111

5.4  The change of the binding energy as a funafdhe
AMINO ACIA CONSEIVALION . ..eeee et et e e e 131

5.5 The change of the binding energy as a funadfaralculated
proton uptake/release...........ooiiieeeocrreeee e 114

6.1 Schematic diagram of the approach for assg#seeffects of amino acid
substitutions on protein stability and protein-pintinteraction......... 131

6.2 lllustration of two amino acid substitutiodsl 11V and T119N)

INNUMAN HBAZ ... e et e e eee e e e e e e e e e e e e e e eame 141
6.3 lllustration of two disease-causing mutati@61K and A146T)

INNUMAN HRAS . ... e en 144
6.4 lllustration of the A693V mutation in human 7B20............ccccuvvvveennnnnn. 146

D-1  Distribution ofAAAG;(NSSNP, A44G(NSSNP)andAAAG,q(NSSNP
in respect with physico-chemical propertiesmfra acids................. 174

Xi



CHAPTER ONE

INTRODUCTION

With the development of various genome sequencingjegts and high-
throughput technologies, modern biology has entdred a “data explosion” era.
However, such large amounts of biological data drite so-called "data rich,
information poor" problem. On one hand, more andentmological data are generated by
experimental studies, ranging from genomics togmwotics. On the other hand, it is not
easy to extract useful information from the biotajidata, and the underlying molecular
mechanisms remain elusive. There is a significaeédn for developing efficient
computational methods to discover biological knalgle hidden in the massive and
heterogeneous datasets.

Machine learning is a broad research field with evapplications in business,
engineering and science. It focuses on designidgdaweloping computer algorithms to
improve predictive performance based on traininga dastances. Machine learning
approaches such as Bayesian Networks, Hidden Mavkadels, Neural Networks and
Genetic Programming have been applied to varioiensiic fields including natural
language processing, computer vision, search emgaelopment, medical diagnosis and
bioinformatics [1]. Machine learning can be useddoognize hidden patterns in data,
and thus is particularly appealing for biologicalokvledge discovery in bioinformatic
studies. There are different types of learning udirlg unsupervised learning and
supervised learning. Unsupervised learning canoglesc unknown clusters or detect

anomalies from unlabeled data instances. It has bsed to analyze genes associated



with human diseases. For example, clustering metihede been applied to analyses of
gene expression data from different cancer sampddisding breast tumour samples [2],
prostate cancer samples [3] and colon cancer sanyleBy contrast, the training data
instances used for supervised learning are labeded the known information.
Supervised learning can recognize hidden pattainthe labeled examples, and the
resulting model can be used to make predictionsnéw data instances. It has been
utilized for analyzing some important protein fuoos, such as protein secondary
structures [5], functional residues [6], proteialslity [7] and protein-protein interaction
networks [8].

Supervised machine learning algorithms such as &@tupyector Machines
(SVMs) and Random Forests (RFs) have found widdicgtipns in bioinformatic
studies. SVMs can transform the training data anteature space using kernel functions
and then separate the data by a maximum-marginrpigoe [9]. SVMs have been used
for predicting DNA/RNA-binding residues [10, 11]rgtein-protein interaction [12],
subcellular localization [13] and protein stabiltiganges upon mutations [14]. RFs are
ensemble learning algorithms which can handle gelasumber of input variables and
avoid model overfitting. It combines the votes mdgethe independent decision trees,
and gives the most popular class as the output. &&$ecoming popular in various
bioinformatic fields including structure classiftman [15], protein interaction site
prediction [16], DNA-binding residues identificatig17] and drug sensitivity prediction

[18].



Tissue-specific gene plays a key role in the pathegis of many human diseases
[19]. Several statistical approaches, including ik&s information criterion [20],
Shannon entropy [6] and hypothesis testing [2&}ehbeen utilized for identifying the
tissue-specific genes using microarray expressata.dHowever, the statistical methods
assign an equal weight to each observation andodause biological knowledge for
predictions. A SVM-based approach has been develap@redict tissue-specific genes
in Caenorhabditis elegang2], but whether the machine learning methods lmamused
for predicting human tissue-specific genes is stilknown. Protein sumoylation is
important for many cellular processes and any aitars in the process may cause
various human diseases. Several computational wetlsuch as SUMOpre [23],
SUMOsp [24] and SUMOsp2.0 [25] have been develojpedoredicting sumoylation
sites. To understand how a single amino acid dulisti changes protein stability can
help elucidate the molecular mechanism by whichnthetations cause human diseases.
Machine learning approaches such as I-Mutant2.( g4l iPTREE-STAB [26] have
recently been applied to sequence-based predictiomrotein stability changes upon
mutations. However, little domain-specific knowledg terms of relevant biological
features was used in the studies for analyzingeprdunctions. In this study, machine
learning approaches were developed for predictungdn tissue-specific genes (chapter
two), protein sumoylation sites (chapter three) prmtein stability changes upon single
amino acid substitutions (chapter four).

Supervised learning algorithms, including RFs aR®1S, have new applications

in the present study. RFs and SVMs were used tatilgehuman tissue-specific genes



with microarray gene expression data and predatepr sumoylation sites from protein

sequence information. RF classifiers were founadutperform SVM models, and the

approaches can provide useful information for feirtexperimental studies. Furthermore,
SVMs were applied to sequence-based predictiomaiém stability changes upon amino
acid substitutions. The supervised learning algord were used to develop seeSUMO
(http://bioinfo.ggc.org/seesumo) and MuStab (Mtpoinfo.ggc.org/mustab) web servers
for predicting protein sumoylation sites and protsiability changes upon single amino
acid substitutions, respectively.

The novelty of our approach is that the biologikabwledge was used for
classifier construction. Relevant biological featircan be selected to construct
classifiers and improve the predictive performaatelassifiers. For example, the use of
biochemical features and evolutionary informaticor finput vector encoding can
significantly improve the predictive performance@NA-binding site prediction [11]. In
this study, relevant features representing bioklgioowledge were used to encode input
variables for sequence-based predictions of pret@mnoylation sites and protein stability
changes upon single amino acid substitutions. ¥ slaown that the use of relevant
biological features for classifier construction csignificantly improve the predictive
performances of classifiers.

The improvement of experimental determination aftgin 3D structures and
computational modeling [27, 28] made it possiblgtedict the effects of mutations by
mapping them on the corresponding structures oretsodProtein structural information

has been used in many studies to reveal the rodemaio acid substitutions on protein



function and stability. Previous studies on humam-synonymous Single Nucleotide
Polymorphisms (nsSNP) in disease candidate geneslesl that approximately 70% of
the deleterious mutations are located in the stralty and/or functionally important
sites [29-32]. A structure-based approach that isodesidue-residue interaction
networks was developed recently [33], and graploréteceal measures were used to
predict the residues that are important for stmattstability. The results suggest that
mutations impact protein function and stabilitydffecting their structures, which in turn
may cause changes in protein-protein interactions.

It has been estimated that each person may ha®®®4,40,000 nsSNPs, and
there are a total of 67,000 - 200,000 common nsSNRke human population [34].
Previous study suggest that approximately 25% @&N#%s in the human population
might be deleterious to protein function [35], é8&P6 of disease-associated nsSNPs are
located in the voids/pockets important for proterotein interactions [32]. The nsSNPs
located at the binding interface or active sitdteigay cause a series of changes, such as
disruption of salt bridges, breakage of hydrogendsocand alteration of binding affinity.
In chapter five, we investigated the effects of MBS at the interfaces of 264 protein-
protein complexes using a structure-based methbd. ISSNPs were mapped on the
protein structures and their effects on the binderergy were investigated with
CHARMM force field and continuum electrostatic aadhtion. The findings reveal that
disease-causing nsSNPs tend to destabilize théradtatic component of the binding
energy on protein-protein interactions and nsSNR=aserved positions can lead to a

large variance of the binding energy changes.



The sequence/structure-based computational metteddoped in this study can
be used to analyze proteins, in which mutations case human genetic disorders such
as intellectual disability. Intellectual disabilitis the most frequent developmental
disability with an estimated incidence of 1-3% ebple worldwide. It is often caused by
loss-of-function mutations in associated genes. Esample, several deleterious
mutations in the spermine synthase (SMS) gene vVeemed to cause Snyder-Robinson
syndrome, an X-linked recessive disease with nuldibderate intellectual disability
[36]. Recently, a structure-based approached wézedt to predict the effects of three
missense SMS mutations causing Snyder-Robinsonraym®d on protein stability,
flexibility and interactions [37]. In chapter sithe structure-based approach is described
for quantitatively assessing the effects of aminms on protein stability and protein-
protein interaction using homology modeling ancefenergy calculation methods. The
results suggest that the structure-based approaggiher with sequence-based methods
can provide useful information for characterizingtations associated with intellectual
disability in human genetic studies and elucidatimg molecular mechanisms by which

the mutations cause intellectual disability.
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CHAPTER TWO
A MACHINE LEARNING APPROACH FOR PREDICTING HUMAN TBSUE-
SPECIFIC GENES USING MICROARRAY EXPRESSION DATA
ABSTRACT
Understanding how genes are expressed specificallyarticular tissues is a

fundamental question in developmental biology. Mtsgue-specific genes are involved
in the pathogenesis of complex human diseases. Hawexperimental identification of
tissue-specific genes is time consuming and dilficthe accurate predictions of tissue-
specific gene targets could provide useful inforaratfor biomarker development and
drug target identification. In this study, we haleveloped a machine learning approach
for predicting the human tissue-specific/selecfjeaes using microarray expression data.
The lists of known tissue-specific genes for défetrtissues were collected from UniProt
database, and the expression data retrieved fram ptieviously compiled dataset
according to the lists were used for input vectacagling. Random Forests (RFs) and
Support Vector Machines (SVMs) were used to coostaccurate classifiers. The RF
classifiers were found to outperform SVM modelstissue-specific gene prediction. The
results suggest that the candidate genes for brdimer specific expression can provide
valuable information for further experimental stesli Our approach was also applied for
identifying tissue-selective gene targets for dédfe types of tissues. The approach
provides an efficient way to select some intergsgianes for developing new biomedical

markers and improve our knowledge of tissue-speeifpression.

Teng S, Wang L: A machine learning approach fodjsteng human tissue-specific genes using
microarray expression data, in preparation.
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BACKGROUND

Understanding how different tissues achieve spmatyifis a fundamental question
in tissue ontogenesis and evolution. Some genesigldy expressed in a particular
tissue and lowly expressed or not expressed inr dis®ies. These genes are generally
called tissue-selective genes. The genes are reipmrior specialized functions in
particular tissues, and thus can serve as the Ibkemsafor specific biological processes.
In addition, many tissue-selective genes are ireslin the pathogenesis of complex
human diseases [1], including insulin signalinghpatys in diabetes [2] and tumour—host
interactions in cancer [3]. Since the majority idehse genes have the tendency to be
expressed preferentially in particular tissues idéntifying tissue-selective genes is also
important for drug target selection in biomedicadearch. Tissue-specific genes, which
are expressed specifically in a particular tisswe,regarded as the special case of tissue
selective genes. The identification of tissue-dpeayenes could help biologists to
elucidate the molecular mechanisms of tissue dewedmt and provide valuable
information for identifying candidate biomarkerdadrug targets.

Different methods have been proposed to identity @maracterize tissue-specific
genes. Traditional experimental technologies, miclg RT-PCR and Northern blot, are
usually carried out at the single-gene level angs thme-consuming. High-throughput
technologies, such as Expressed Sequence Tag gegligncing and DNA microarrays,
have the capacity to perform genome-wide analyste Wwigh efficiency. The DNA
microarray technology can generate large amoungené expression data from various

tissues, and provide the useful data source folyzing tissue-specific genes. Several
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statistical methods have been applied for idemigfytissue-specific genes using gene
expression data. Kadota and co-workers [5] desdrdn unsupervised method to select
the tissue-specific genes using Akaike’s informataviterion (AIC) approach. Another
method called ROKU [6] has been developed by theesgroup for detecting tissue-
specific gene expression patterns. The approacd &ennon entropy and outlier
detection to scan expression profiles for rankisgue-specific genes. Liang et al. [7]
developed a statistical method based on hypothesisng procedures to profile and
identify the tissue-selective genes. However, ttatistical methods for tissue-specific
gene prediction suffer from drawbacks. The micarexpression data are generated
from different experiments, both biological varats and experimental noise result in
significant variations in data quality. The statiat methods usually assigned an equal
weight to each observation for prediction. Thusg, mhethods do not work well for non-
linear models and may not detect the hidden exjorespatterns from the noisy
microarray data. Moreover, the statistical methddsot use biological knowledge for
prediction. The simple data-driven analysis maydpoe some misleading results for
further experimental studies.

Machine learning can automatically recognize hiddatterns in complex data. It
has been shown that machine learning can be usednsiruct accurate classifiers for
tissue-specific gene prediction. Chikina et aly8gd Support Vector Machines (SVMs)
to predict tissue-specific gene expressiorCaenorhabditis eleganwith whole-animal
microarray data. The SVM classifiers reached higtdigtive performances in nearly all

tissues. It was shown that the approach outperfdrohestering methods and provided
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valuable information for further experimental sesli However, it is still unknown
whether machine learning methods can be used thcptessue-specific genes in human.
In a previous study [9], a large dataset has leeempiled from a compendium of
microarray expression profiles collected from 13Icroarray datasets in different
studies. The integrated dataset contained 2,968gsion profiles for various human
tissues including brain (616 profiles) liver (11ibfiles), testis (36 profiles), blood (409
profiles) and kidney (73 profiles). A computatiomaéthod was developed for predicting
tissue-selective genes with the integrated datasag both microarray intensity values
and detection calls. However, the method assigmedgaial weight to each expression
profile for prediction. In this study, a machineadeing approach was developed for
human tissue-specific gene prediction using thalaia dataset. According to the lists
of known tissue-specific genes, the gene expresdaia were extracted from the
compiled dataset and used for classifier constnctRandom Forests (RFs) and Support
Vector Machines (SVMs) were trained with the expi@s data to construct accurate
classifiers. The results indicate that the RF diass achieved better predictive
performance for tissue-specific gene predictione Bpbproach generated large numbers
of candidate genes for brain and liver-specific regpion. The examinations of high
scoring genes suggest that our approach can be tossedlect candidate genes for

experimental studies.
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METHODS

A schematic diagram of the approach used in thidysits shown in Figure 2.1.
The microarray expression profiles of various hurtissues were collected from NCBI
GEO database [9]. The selected profiles were iatedrinto a single dataset through
normalization and transformation. The lists of kmowuissue-specific genes were
manually collected from UniProt database. The @sspecific gene expression data were
extracted from the integrated single dataset ahdlled as positive training instances.
The remaining expression data were randomly divitdéo two subsets. The negative
dataset contained tenfold number of data instamsethe positive instances. Random
Forests (RFs) and Support Vector Machines (SVMsjewteained with the training
instances to construct classifiers. The tenfoldssnaalidation method was performed to
evaluate the classifier performance. The modelse wleen used to score the remaining
data instances for prediction. The classifier cartsion and prediction were repeated ten
times, and the candidate genes were prioritizedrdety to their average classifier

outputs from ten predictions.
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Figure 2.1 Schematic diagram of the approach fedipting tissue-specific genes.

Microarray data collection and integration

The approach for compiling human microarray expoesprofiles was described
previously [9]. The microarray gene expressionfif@® of various human tissues from
131 microarray studies were compiled from NCBI GH@tabase. The expression
profiles were generated using the Affymetrix HG-B1Rus 2.0 Array and obtained from
normal tissue samples. The raw data in CEL filenfar were organized into different
normalization groups and normalized using the dG@bad with the invariant set method

[10]. The outlier array exclusion and global medi@nsformation were used to integrate
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the normalized microarray profiles into a singldéadet. The dataset used in this study

contained 54,613 probe sets and 2,968 expressuditegr

Training data preparation

Tissue-selective genes are defined as the genesevdxpression is enriched for
one or a few similar tissue types. The genes wearually collected from the UniProt
database. The particular tissue name was usedj@srg and the reviewed human genes
were selected for preparation. The tissue-selegevees are defined as the genes that are
expressed preferentially in a particular tissuenfiihhe descriptions of their annotations.
Most of the genes are identified by the experimemtathods, which are independent
from the microarray expression data in the listthis study, 408 brain-selective genes,
96 liver-selective genes, 326 testis-selective geB24 blood-selective genes and 45
kidney-selective genes were collected from UniRtatabase. Tissue-specific genes,
whose expression is specific to only one partictissue type, are considered as the
special case of tissue-selective genes. 289 bp&ioHEc genes and 69 liver-specific genes
were selected from the corresponding tissue-se&gines with the annotation that their
expression is specific to only brain or liver. Tigsspecific-genes are the focus of the
present study.

According to the known tissue-specific/selective ngelists, the tissue-
specific/selective gene expression data was retlielvom the integrated microarray
dataset and labelled as the positive training nt&s. The probe sets with detectable

expression signals in corresponding tissue samplese selected for classifier
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construction. For tissue-specific gene predicttbe,expression values for 403 probe sets
of brain-specific genes and 90 probe sets of Isggeific genes were used for input

vector encoding. 692 probe sets of brain-selegterees, 150 probe sets of liver-selective,
430 probe sets of testis-selective genes, 456 metseof blood-selective genes and 76
probe sets of kidney-selective genes were usetisfre-selective gene prediction.

The negative examples were defined as the genésithaot have preferential
expression in particular tissues. For this studg,randomly selected the data instances
from the remaining data and labelled as the negdt®ining instances. The number of
negative instances was set as tenfold with positnances to make enough data
instances for training. The negative and positia¢adnstances were combined as the
training dataset to construct classifiers usinghmraclearning algorithms. The remaining
probes were used as the candidate genes for poedigith the classifiers constructed

from the training dataset.

Random Forests

The use of 2,968 expression profiles for input @e@ncoding gives the same
number of input variables. One potential problenmzdel overfitting since there were
only a small number of positive instances (probks s¢ known tissue-specific genes)
available for this study. The problem could be sdlusing the Random Forests (RFs)
learning algorithm. A typical RF model is made upmny independent decision trees
constructed using bootstrap samples from the trgidiata. During tree construction, m

variables out of all the n input variables €< n) are randomly selected at each node, and
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the tree node are split using the seleatedariables. The RF classifier then combines the
votes made by the decision trees, and gives the popailar class as the output of the
ensemble for classification. Because of the ranteature selection, RFs could handle a
large number of input variables and avoid modelriittiag. In the present study, the
randomForest package in R was used for classifiestcuction. The number of variables
selected to split each nodentfy) was set to 6, and the number of trees to grmwed
was set to 1000. Other values of tiéry and ntree parameters for training were also

examined, but did not result in significant improent of classifier performance.

Support vector machine training

Support Vector Machines (SVMs) are computationgbathms that can learn
from training examples for binary classificatiorVI3 classifiers were constructed and
compared with RF classifiers for identifying humtssue-specific genes. The SVM
learning algorithm can be described by four basincepts, including the separating
hyperplane, the maximum-margin hyperplane, the saiftgin, and the kernel function
[11]. For a linear classification, the data instne classifier is represented as ran
dimensional vector, and an € 1) dimensional hyperplane is used to separatpdkitive
instances from the negative ones. The SVMlight veamr package
(http://svmlight.joachims.org/) was utilized to struct the SVM classifiers using the
linear function in this study. The polynomial aratlial basis function (RBF) kernel
functions were also examined for classifier coredtoms, but the classifiers did not

achieve high predictive performances in cross-adlih tests.
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Classifier evaluation and prediction

This study used a tenfold cross-validation methad etvaluate classifier
performance. Positive and negative instances veesr@omly distributed into ten folds. In
each of the ten iterations, nine of the ten foléseaused to train a classifier, and then the
remaining one fold was used as the test data tuaeathe classifier. Since the dataset
was imbalanced, the positive instances of trainilega were replicated to get the
approximately equal number with the negative ingtanHowever, the positive instances
in the test data were not replicated. The predistimade for the test instances in all the

ten iterations were combined and used to competéoilowing performance measures:

Accuracy(AC) = T ':—I\TI-;E TEN (2.1)
Sensitivity (SN) = % (2.2)
Specificiy (SP)= TNTJI:IFP (2.3)
MCC TPxTN-FPxFEN (2.4)

~ J(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

where TP is the number of true positives; TN isrenber of true negatives; FP is the
number of false positives; and FN is the numbefatfe negatives. For imbalanced
datasets, above measures could be misleading. Tthes, Receiver Operating

Characteristic (ROC) curve [12], which generatedvhyying the output threshold of a
classifier and plotting the true positive rate @#wity) against the false positive rate (1 —
specificity) for each threshold value, was useddiassifier evaluation and comparison.

Since the ROC curve of an accurate classifierasecto the left-hand and top borders of
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the plot, the area under the curve (AUC) can bel asea reliable measure of classifier
performance [13]. The good classifiers have AUCueal close to 1, whereas weak
classifiers have AUC values near to 0.5.

The classifier construction and prediction wereesdpd ten times. In each run,
the performance of classifier was computed by aboeasures. The mean value and
standard deviation of the measures in ten runs escellated to check the average levels
and variations of classifier performances, respetiti The classifier was used to
evaluate the candidate genes for prediction. Tsué-specific gene targets were sorted
according to the decreasing average value of @ilxssutputs from ten predictions, and a
higher value indicates a higher probability of lgeiaxpressed predominantly in a

particular tissue.

RESULTS AND DISCUSSION

Dataset validation

The known tissue-specific genes are expressed miadatly in particular
tissues, so the transcripts of the genes were &gdo be detected in corresponding
tissue samples in the integrated microarray datdsevisualize the expression patterns
of the known tissue-specific genes, TM4 MeV [14]swesed to generate the heat maps
for brain and liver-specific genes. As shown in ufe 2.2, the known brain-specific
genes have expression patterns in brain as wedltes samples. Since retina shares the

common embryonic origins with brain and transldhesvisual images into nerve signals
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for brain, the retina is considered as the sengartyof the brain. Thus, the known brain-
specific genes may also have some expression levedsina samples.

The transcripts of known liver-specific genes astedted clearly in liver samples
(Figure 2.2). The results suggest that the expessata according to our lists of known
tissue-specific genes can provide useful infornmatior classifier construction using
machine learning methods. It is noteworthy thatesg@mbe sets of known tissue-specific
genes have high expression or no expression fotiszlle samples. To improve the
qguality of classifiers, the probes without detetdadxpression signals in all the samples

are excluded from the training dataset.

Microarray samples Specific
Liver Genes

mevm we ol e ey n g ow s bl ow e o

Brain

Retina
|l -

Brain

Liver

Low Expression value High

Figure 2.2 Visualization of known tissue-specifeng expression patterns.
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Prediction of tissue-specific genes

Random Forests (RFs) and Support Vector Machind8vié$ were used to
construct classifiers for predicting brain and iitiesue specific genes. The results
suggest that RF classifiers reached better predigierformance than SVM models
(Table 2.1 and Figure 2.3). We identified 1,408rspecific gene targets and 493 liver-
specific gene targets using RF classifiers (Appeidj which are even more than tissue-
selective genes identified in the previous stl#B2(brain-selective targets and 69 liver-
selective targets) [9]. It was shown that the tcaipss of candidate genes could be
detected clearly in corresponding tissue sampleguf€ 2.4), and the functions of
predicted targets were consistent with tissue sign GO enrichment analysis (Table 2.2
and 2.4). High scoring gene targets with brainieerispecific expression have been
examined (Table 2.3 and 2.5), and the results sighat the approach can provide
useful information for identification of novel getargets in biomedical research.

In this study, we constructed both RF and SVM dfiass for predicting brain
and liver-specific genes. 403 probe sets of brpecHic genes and 90 probe sets of liver-
specific genes were used for classifier constractieor brain-specific gene prediction,
the RF classifier achieved the AUC value at 0.9¢B&ble 2.1), which is significantly
higher than the AUC value of SVM classifier (AUQ:8937). The RF classifier reached
53.73% sensitivity and 97.43% specificity, and ME®.5676. For liver-specific gene
prediction, the SVM classifier gave MCC = 0.835@ &ROC AUC = 0.9854. The RF

classifier achieved a similar level of performamdgth MCC = 0.8290 and ROC AUC =
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0.9777. Thus, the results suggest that the RF iigoperforms better for predicting

tissue-specific genes in this study.

Table 2.1 Comparison of Random Forest and SuppedidY Machine classifiers for
predicting tissue-specific genes. The values oetaidd inside brackets are the average

value and standard deviation of measures in tessifilar evaluations, respectively.

. A N SP ROC
Tissue | Method (0/8 (f/o) %) MCC AUC
SVM 92.07 54.23 95.82 0.5091 0.893’
Brain (x0.302) | (£1.227) | (x0.263) | (x0.015) | (+0.003)
RE 93.48 53.73 97.43 0.5676 0.9488
(x0.240) | (£1.485) | (¢0.153) | (x0.016) | (£0.002)
VM 97.2¢ 84.11 98.61 0.8350 0.9854
Liver (x0.421) | (£2.281) | (x0.309) | (x0.025) | (+0.004)
RE 97.29 79.00 99.12 0.8290 0.9777
(x0.341) | (£1.355) | (x0.255) | (£0.0213)| (£0.002)

The ROC curves of RF and SVM classifiers for pradg brain-specific genes
and live-specific genes have been compared in €i@u2. The ROC curves of RF and
SVM classifiers are not significantly different fdre prediction of liver-specific genes
(Figure 2.2b). However, The ROC curve of RF classifias clearly better than the SVM
classifier for the prediction of brain-specific gsn(Figure 2.2a). The results confirm that
RF classifier outperforms the SVM models for tisspecific gene prediction. The
possible reason is that RFs can handle a large ewaibnput variables and avoid model
overfitting. The use of 2,968 expression profiles ihput vector encoding results in the
same large number of input variables, which mag leamodel overfitting. Interestingly,
the RF algorithm can handle the situation and shetter predictive performance in the

present study.
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Figure 2.3 ROC curves to compare the performantBsuwwdom Forest (RF) and Support
Vector Machine (SVM) classifiers for predictingdige-specific genes.

Brain-specific gene expression

The human brain gives us the ability to think aatssis apart from other animals.
It has a highly complex structure which contairfedent regions with specific functions.
For example, the hippocampus is involved in spaiaigation and long-term memories,
whereas the cerebral cortex plays key roles indagg, attention and consciousness. Any
damage in these regions results in various mergatders including Alzheimer disease,
Parkinson's disease and Mood disorder. In thisystild predicted brain-specific genes
are expected to have preferential expression itothi®, and may play important roles in
neuron functions such as synaptic transmissiomandonal migration.

In the study, 1,408 candidate targets with posiseeres (the average value of
classifier outputs from ten predictions) were pceell as the brain-specific genes
(Additional file B1). In Figure 2.4, the expressipatterns of candidate gene targets using

RF classifier are visualized with the heat mapsgatied using TM4 MeV. The predicted
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targets show clear expression patterns in brairppEsnwhich indicates that our approach
is useful for brain-specific gene prediction. Semilo the known brain-specific genes, the
transcripts of the predicted targets are also tklem retina samples. GO enrichment
analysis of the candidate targets demonstratesntfaaty candidate genes have basic
neuron functions (Table 2.2). For example, nearsmission is an electrical or
chemical signal motion within synapses caused &ystmission of a nerve impulse. The
predictions are enriched for neurotransmissiontedlaGO terms such as “synapse”,
“synapse part’, “transmission of nerve impulse”,etinon projection”, “synaptic
transmission” and “passive transmembrane trangpadevity”. Some channel-related
GO terms including “ion channel activity”, “subdeaspecific channel activity”, “gated

channel activity” and “channel activity” are detttin the enrichment analysis of our

predictions.

Table 2.2 GO term enrichment analysis of predibteih-specific genes.

Category Term Count* | %* | P-Value*
GOTERM_CC_FAT| GO0:0045202~synapse 103 11.41.37E-49
GOTERM_CC_FAT| GO0:0044456~synapse part 83 919 24BH
GOTERM_BP_FAT %232292264@”5“53'0” of ner 80 | 8.86| 5.25E-36
GOTERM_CC_FAT| GO0:0043005~neuron projection 85 9{41.00E-35
GOTERM_BP_FAT | GO:0007268~synaptic transmission 73 .088 6.82E-35
GOTERM_MF_FAT| GO0:0005216~ion channel activity 76| 438. 2.29E-30

GOTERM_MF_FAT | 80:0022838~subslrate speci 77 | 853| 3.03E-30
- - channel activity

GOTERM_MF_FAT| G0:0022836~gated channel activity 64 7.53 | 4.80E-30

GOTERM_MF_FAT | GO:0015267~channel activity 77 8.p3 .28E-29

77 8.53| 3.87E-29

GOTERM ME EAT GO:0022803~p§55|ve transmembr.
- - transporter activity

*Count: the number of genes involved in the give@® @&rm; %: the percentage of
involved genes in total genes; P-Value: the modifiesher Exact P-Value.
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Figure 2.4 Visualization of predicted tissue-speajene expression patterns.

Table 2.3 shows the top 20 high-scoring predictibosn RF classifiers. The
predicted targets were not shown to have brain#sp@&xpression from the annotations
of UniProt, thus the genes are excluded from thdnitrg datasets. However, recent
studies suggest that some predicted targets, imguBRUNOL4 ANKS1B TRIM9
NCAN FAIM2, OPCML and FXYD7, are expressed predominantly in the brain. For
example, the RNA-binding protein encoded BRUNOL4 plays an important role in
many cellular processes including RNA stabilityeqpnRNA alternative splicing, mRNA
editing and translation [15, 16]. It was shown tlila¢ protein was predominantly

expressed in the brain with enrichment in the hgapopus [17]. In this study, the probes
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of BRUNOL4 have the highest (223654 s_at, 0.8753) and foartked (238966 _at,
0.8600) scoresANKS1B encodes an Amyloid-beta protein which can regulate
nucleoplasmic coilin protein interactions in newabpells. Previous studies showed that
the protein was mainly expressed in brain and neayniplicated in Alzheimer’s disease
[18]. Brain-specific E3 ligase encoded BRRIM9 has a high level of expression in the
cerebral cortex and may be involved in the pathegmsnof Parkinson's disease [19].
Neurocan NNCAN modulates neuronal adhesion and migration andexpressed
preferentially in the brain [20]. The protein eneddoyFAIM2 could protect cells from
Fas-mediated apoptosis and shows a high levelmksgion in the hippocampus [21]. It
was shown thaDPCML was predominantly expressed in cerebellum andocareortex
[22], whereas=XYD7was preferentially expressed in the brain [23].

Other predicted targets have not been previougigested to have brain-specific
expression, but some candidate genes, inclu@highOl, SV2A SYN2 UNC13A and
NTRKZ2 are involved in basic neuron functions (Table).2@uanine nucleotide binding
protein GNAO] mediates the physiological effects of variousrmeal receptors [24].
SV2A SYN2andUNC13Aencode proteins which are important for synapéngmission
in the central and peripheral nervous system [&, IMTRK2 encodes a neurotrophic
tyrosine kinase receptor for brain-derived neumgtio factor BDNF) and is implicated
in childhood mood disorder [27]. By contrast, thadtions of some high scoring genes in
brain remain to be characterizddS6ST3encodes a Heparan sulphate sulfotransferase
which plays a key role in the modulation of fibrasd growth factor signalling [28]. The

protein encoded b CN2Aforms a voltage-dependent sodium channel and &ceded
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with generalized epilepsy with febrile seizuressp[@9]. The corresponding genes of
three cDNA sequences@C389073 AA879409 Al186173 were not determined, and

their functions in the brain are not clear. Theuhlsssuggest that the machine learning
approach developed in the present study can betasddntify some interesting targets

for further experimental studies.

Table 2.3 List of high-scoring genes with spea#figpression in the brain.

Probe Gene Description Scor e
223654 s at| BRUNOL4| Bruno-like 4, RNA binding pinotéDrosophila) 0.8753
227440 _at ANKS1B ?grlfgii;\irzgplegt and sterile alpha motif dom 0.8685
230280 _at TRIM9 Tripartite motif-containing 9 0.864
238966 _at BRUNOL4| Bruno-like 4, RNA binding protéibrosophila) 0.8345
205143 at NCAN Neurocan 0.832
20areas o] Gao | Spenne calie iang oo © e [ osaon
232276 _at HS6ST3 Heparan sulfate 6-O-sulfotranséeBa 0.8186
203619 s at| FAIM2 Fas apoptotic inhibitory moleczile 0.8124
241998 at LOC38907BSimilar to RIKEN cDNA D630023F18 0.8074
206381 _at SCN2A Sodium channel, voltage-gated, tiyadpha subunit 0.8021
203069 at SV2A Synaptic vesicle glycoprotein 2A 0g
1557256_a_alt AA879409 | CDNA FLJ37672 fis, clone BRHIP2012059 @.79
229039_at SYN2 Synapsin Il 0.7956
242651 at Al186173 Transcribed locus 0.79p1
227453 at UNC13A unc-13 homolog A (C. elegans) 8874
203618 _at FAIM2 Fas apoptotic inhibitory molecule 2 0.7744
229463 at NTRK2 Neurotrophic tyrosine kinase, rémepype 2 0.7728
214111 at OPCML Opioid binding protein/cell adhasioolecule-like 0.7722
214376 _at Al263044 Clone 24626 mRNA sequence 8.7p6
220131 _at FXYD7 FXYD domain containing ion tranggegulator 7 0.7662

* Score: the average value of RF classifier outfrot® ten predictions.
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Liver-specific gene expression

The liver is a vital organ for human metabolismd gotays key roles in detoxification,
plasma protein synthesis, glycogen storage and dregrproduction. For example, liver is
the source and target organ of inflammatory medsatm the pathogenesis of
inflammatory response syndrome [30], and it is oesjble for the production of
coagulation factors. Thus, the liver-specific tasg@lentified in this study might be
involved in basic liver functions. We identified 39iver-specific gene targets with
positive scores in the analysis (Additional file)BZhe functional analysis of the liver-
specific gene targets using RF classifier confithret many of the predicted targets are
enriched for liver-related GO terms (Table 2.4).r Fxample, the GO terms for
inflammatory response contained “acute inflammatagsponse”, “response to
wounding” and “activation of plasma proteins invadvin acute inflammatory response”;
the coagulation-related GO terms included “bloodagtdation”, “coagulation” and
“hemostasis”. The expression patterns of the ptedibver-specific genes are visualized
with the heat map (Figure 2.3). Clearly, the traipss of the predicted targets are

predominantly detected in liver samples.

3C



Table 2.4 GO term enrichment analysis of predititext-specific genes.

Category Term Count* | %* | P-Value*
GOTERM BP EAT G0:0002526~acute inflammato 29 841! 1.65E-24
- - respons
GOTERM_BP_FAT | G0:0009611~response to wounding 55 .9415 8.55E-23
GOTERM_CC_FAT | GO:0005615~extracellular space 63 2@8.8.65E-23
GOTERM_CC_FAT | GO:0005576~extracellular region 109 1.59| 1.35E-21
GOTERM_BP_FAT | GO:0007596~blood coagulation 25 7|2%.55E-19
GOTERM_BP_FAT | GO:0050817~coagulation 25 7.25 5.39E}
GOTERM_BP_FAT | GO:0007599~hemostasis 25 7125 2.3H-1
GOTERM_BP_FAT | GO0:0055114~oxidation reduction 54| 6855. 2.46E-18
GOTERM_BP_FAT | G0:0006956~complement activatipn 18 .225 2.70E-18
G0:000254 1~activatn of plasme
GOTERM_BP_FAT | proteins involved in acute 18 5.22| 4.37E-18
inflammatory response

*Count: the number of genes involved in the give@® @&rm; %: the percentage of
involved genes in total genes; P-Value: the modifiesher Exact P-Value.

As listed in Table 2.5, 17 of the top 20 high-segrigenes are involved in the
metabolism of human liver. The genes inclidel, F9, SERPINC1APOA2 AKR1D]
ACSM2 ITIH2, PON1, CPB2 AFM, NROB2 ALB, CYP4A1]1 PGLYRP2andSLC22A7
For exampleF11, F9 andSERPINC1are involved in the regulation of blood coagulatio
cascade [31]JAPOA2encodes apolipoprotein which is synthesized mamliiver and
involved in the metabolism of high density lipoiot [32]. AKR1D1encodes the aldo-
keto reductase catalyzing the reduction of stetmdmones [33], whereaBCSM2
encodes enzyme catalyzing the activation of medshain length fatty acids [34]. The
genes were not shown to have liver-specific exjpoasa UniProt annotations, but recent
studies suggest that the genes are expressedgmtidély in the liver. The expression and
functions of other three prediction8%398937 C6 and LPA) have not been well

documented in the literature.
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Table 2.5 List of high-scoring genes with speagfigression in the liver.

Probe Gene Description Scor e
206610_s at| Fi1 gr?ti%glc?gr?tr)‘ factor XI (plasma thromboplas 0.7869
1554491 a_at SERPINC1| Serpin peptidase inhibitor, clade C member 1 0.79137
219465_at APOA2 Apolipoprotein A-ll 0.7609
217512_at BG398937 Unknown 0.7559
207102_at AKR1D1 | Aldo-keto reductase family 1, membl 0.7466
207218 at F9 Coagulation factor IX 0.724
210168 at C6 Complement component 6 0.7439
204987 _at ITIH2 Inter-alpha (globulin) inhibitor H2 0.7191
209978 s at| LPA/PLG| Lipoprotein, Lp(a)/ plasminoge 0.7191
214069 at ACSM2 Acyl-CoA synthetase medium-chamifamember 2| 0.7099
206345 s at| PON1 Paraoxonase 1 0.7004
206651 s at| CPB2 Carboxypeptidase B2 (plasma) 9.495
241914 s at| ACSM2 Acyl-CoA synthetase medium-cFaximly member 2| 0.6945
206840_at AFM Afamin 0.6846
206410 _at NROB2 Nuclear receptor subfamily 0, grBumember 2 0.6837
214842 _s at| ALB Albumin 0.6809
217319 x_at| CYP4All (l:i/tochrome P450, family 4,subfamily A, polypept 06772
242817 at PGLYRPZ Peptidoglycan recognition pro2ein 0.6765
207407 x_at| CYP4Al1 (l:i/tochrome P450, family 4, subfamily A, polypept 06752
231398 at SLC22A7| Solute carrier family 22, member 0.6746

* Score: the average value of RF classifier outfrot® ten predictions.

Tissue-selective gene prediction

Tissue-specific genes are considered as the sp=gal of tissue-selective genes.
Our approach was developed for tissue-specific geadictions, but its application to
tissue-selective gene predictions is straightfodwvém this study, the RF classifiers were

used to predict the genes that are expressed @néfdly in the brain, liver, testis, blood
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and kidney. As shown in Table 2.6, The RF classifieeached high predictive
performance for tissue-selective gene predictiéior example, the classifier for brain-
selective gene prediction shows overall accuracf)(Aat 92.70% with Matthews
Correlation Coefficient (MCC) = 0.4925. The cldissi for liver-selective gene
prediction gave predictive performance with theraileaccuracy at 96.02% and MCC =
0.7378. It is noteworthy that the classifiers uded tissue-specific gene prediction
achieved higher predictive performance than thosdi$sue-selective gene prediction.
For instance, the AUC value of RF classifier foaibrspecific gene prediction (AUC =
0.9488, Table 2.1) is higher than that for brailest#ve gene prediction (AUC = 0.9178,
Table 2.6), whereas the RF classifier gave beteiptive performance for liver-specific
gene prediction (AUC = 0.9777, Table 2.1) thanrliselective gene prediction (AUC =
0.9547, Table 2.6). The possible explanation ist te tissue-specific genes are
expressed specifically in only one particular tesggpe, thus the clear expression patterns
of the genes may improve the quality of classifiarsd result in high predictive
performance for predictions.

The RF classifiers gave high predictive performafarepredicting genes that
have preferential expression in other tissue typhs.testis is the male sex gland, which
produces sperm, male reproductive cell and sex twesy The classifier for testis-
selective gene prediction reached predictive perdorce with overall accuracy at
91.00% and ROC AUC = 0.8433. The blood transpoxtggen and nutrients to other
tissues and carries away waste products from dédlks classifier for blood-selective gene

prediction showed overall accuracy at 93.29% witE®1= 0.5109 and ROC AUC =
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0.9170. The kidneys play key roles in urinary systeThe organs filter waste products
from the blood and excrete them in urine. The diassfor kidney-selective gene
prediction achieved predictive performance withralleaccuracy at 93.62% with MCC =
0.4648 and ROC AUC = 0.9300. The results suggedtdtr approach can be used to

identify the genes that have preferential expressiaifferent types of tissues.

Table 2.6 Random Forest classifiers for predictisgue-selective genes. The values
outside and inside brackets are the average valdestandard deviation of measures in

ten classifier evaluations, respectively.

Tissue AC SN SP ROC

(%) (%) (%) MEC | auc
Brain 92.70 43.55 97.60 0.4925 0.9178
(£0.273) (£1.212) (x0.211) (x0.018) (£0.002)
Liver 96.02 65.6 99.07 0.7378 0.95467
(x0.341) (x2.499) (x0.191) (x0.024) (£0.003)
Tetis 91.00 1.49 99.95 0.0€80 0.8433
(x0.033) (x0.405) (x0.038) (x0.014) (£0.004)
Blood 93.29 40.20 98.53 0.5109 0.9170
(x0.190) (x1.291) (x0.108) (x0.016) (£0.002)
Kidney 93.62 26.43 99.73 0.4648 0.9300
(x0.508) (£5.355) (x0.159) (x0.062) (£0.003)

CONCLUSION

A machine learning approach has been developdusrstudy for identifying the
human tissue/specific gene targets. Random Fofests) and Support Vector Machines
(SVMs) were trained separately with the microargeyne expression data to construct
classifiers for prediction. It was shown that thé &lassifiers outperform SVM models
for tissue-specific gene prediction. 1,408 brairesfic gene targets and 493 liver-

specific gene targets were identified using RF sifigss. The predicted targets show
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clear expression patterns in corresponding tisangpkes and have functions consistent
with the tissues in GO enrichment analysis. Thdyamsaof high-scoring candidate genes
for brain and liver specific expression suggestst thur approach can select some
interesting targets for further experimental stadi®ur approach could also provide
useful information for tissue-selective gene predic The approach can be used to
develop new drug targets for biomedical researchepand our knowledge of tissue-

specific expression.
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CHAPTER THREE

PREDICTING PROTEIN SUMOYLATION SITES FROM SEQUENGEATURES

ABSTRACT

Protein sumoylation is a post-translational modifien that plays an important
role in a wide range of cellular processes. Sniatjuitin-related modifier (SUMO) can
be covalently and reversibly conjugated to the sgation sites of target proteins, many
of which are implicated in various human genetgodiers. The accurate prediction of
protein sumoylation sites may help biomedical redesas to design their experiments
and understand the molecular mechanism of protemoglation. In this study, a new
machine learning approach has been developed @mtighing sumoylation sites from
protein sequence information. Random Forests (Rifs) Support Vector Machines
(SVMs) were trained with the data collected frome thterature. Domain-specific
knowledge in terms of relevant biological featuness used for input vector encoding. It
was shown that RF classifier performance was aftediy the sequence context of
sumoylation sites, and twenty residues with the cootif YPKXE in the middle appeared
to provide enough context information for sumoylatsite prediction. The RF classifiers
were also found to outperform SVM models for prédg protein sumoylation sites from
sequence features. The results suggest that thkimealearning approach gives rise to
more accurate prediction of protein sumoylatioessthan previous studies. The RF and

SVM models were used to develop a new web seraledcseeSUMO (freely available

*Teng S, Luo H, Wang L: Predicting protein sumoylatites from sequence features, submitted.
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at http://bioinfo.ggc.org/seesumo), for sequencatigprediction of protein sumoylation

sites.

BACKGROUND

Post-translational modifications regulate proteundtions, and orchestrate a
variety of cellular processes. Protein sumoylati@m important reversible post-
translational modification, is essential for mamukaryotic cellular processes, including
DNA damage recovery regulation, subcellular tramspatranscription factor
transactivation, protein stability, cell cycle pregsion and chromosome segregation [1].
Small ubiquitin-related modifier (SUMO) can be cterdly attached to and detached
from specific lysine residues in target proteins any sumoylated proteins, including
huntingtin, DJ-1, ataxin-1 and tau, play key rolesdisease states. For instance, the
stability and correct targeting of huntingtin arentrolled by sumoylation, and any
alternations of the process may cause Huntingtdissase [3]. Sumoylation is also
involved in the pathogenesis of Parkinson's diseddeheimer's disease, neuronal
intranuclear inclusion disease, amyotrophic latesalerosis, spinobulbar muscular
atrophy, spinocerebellar ataxia type 1 and seVenalan cancers [4].

Only one or a few lysine residues in a protein rnaynvolved in sumoylation. It
is rather difficult and time-consuming to identifiye sumoylated lysine among many
candidate lysine residues through experimental cggbres. Accurate computational
prediction of protein sumoylation sites can helpldigists better design their experiments

and interpret the experimental data. A core consensotif YPKXE has been identified
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for sumoylation sites, in whicl represents an aliphatic amino acid (1, V, L, AQiRM),
K is the sumoylation site, X indicates any amin@aand E is glutamic acid. Extended
sumoylation motifs have also been reported [5]hsas NDSM (negatively charged
amino acid-dependent sumoylation mo¥KXE + downstream cluster of [D/E]) [6],
PDSM (phosphorylation-dependent sumoylation mo#iKXEXXSP) [7] and SUMO-
acetyl switch YKXEP) [8]. These findings suggest that the sequdlariking the core
motif (WKXE) may also contribute to the specific recogmitiof the sumoylation sites.
Moreover, it is noteworthy that some sumoylatictesido not follow the above motifs,
and not all lysine residues matched to these matdssumoylated. It is still challenging
to accurately predict the true sumoylation sitesgaized by the cellular machinery.
Accurate prediction of sumoylation site could hetpderstand the mechanism of
protein sumoylation underlying human genetic disosd Several computational methods
have been reported for predicting sumoylation sifestatistical method used by the
SUMOpre web server [9] can predict sumoylationsséethe overall accuracy of 96.71%
and Matthews Correlation Coefficient of 0.6364 inss-validation tests. Xue et al. [10]
developed the SUMOsp 1.0 web server, which usedGiteeip-based Phosphorylation
Scoring (GPS) algorithm with the pattern recognitgirategy MotifX for sumoylation
site prediction. SUMOsp 2.0 [11] was developed itk upgraded GPS algorithm. It has
been shown that SUMOsp 2.0 reached better predipgrformance than SUMOsp 1.0.
However, the previous studies did not utilize tendin-specific knowledge for classifier

construction.
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Domain-specific knowledge in terms of relevant b@tal features can be used to
enhance classifier performance for predicting DNAding residues and protein stability
changes upon amino acid substitutions [12-14].dxample, the predictive performance
of DNA-binding site prediction could be signifidgnimproved by using biochemical
features [14] and evolutionary information [15] faput vector encoding. In this study,
we have developed a new approach for sequence-pesgidtion of protein sumoylation
sites using Random Forests (RFs) and Support Vétachines (SVMs). The biological
knowledge in terms of forty sequence features weesl for input encoding. It was found
that the RF classifier performance was affecteddnyuence context of sumoylation sites.
The results obtained in this study indicate thad fRF classifiers achieved better
predictive performance than the SVM classifiers anelvious predictors. To make our
classifiers publicly accessible to the biologiedearch community, we have developed a

new web server called seeSUMO (freely availablgtat//bioinfo.ggc.org/seesumo).

METHODS
Data
We collected 457 experimentally verified sumoylatsites in 263 proteins, by
searching the research articles in NCBI PubMedgqus8UMO’ and ‘sumoylation’ as
keywords (Appendix C, Table C.1). This dataset amad all the instances used by
SUMOpre [9], including 268 sumoylation sites in 1pfbteins from research articles
reported before August 10, 2006. The other 189 siation sites have been manually

collected from research articles published betwa&agust 10, 2006 and June 1, 2010.
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The amino acid sequences of these proteins weracgad from the SwissProt database.
In order to remove redundancy in the dataset, thstdust program in the BLAST
software package (http://blast.ncbi.nlm.nih.govgswused for clustering analysis with a
25% sequence identity threshold, and ClustalX [M&F used for multiple sequence
alignment of the sequences in each cluster. Thengaht sumoylation sites were
manually removed from the dataset. The final datesatains 9,952 lysine residues in
247 proteins, including 425 non-redundant sumoyhatsites used as positive data
instances and 9,527 non-sumoylated lysine sitet as@egative data instances.

To compare the predictive performance of our clessiwith previous predictors,
the final dataset was divided into two subsets. e Ttaining dataset included 377
sumoylation sites and 8,237 non-sumoylated lysiegidues in 221 proteins from
publications before January 2010. The remainingsdi®oylation sites and 1,290 non-
sumoylation sites in 26 proteins reported aftendayn 2010 were used as the test dataset

for classifier evaluation and comparison.

Sequence logos

Protein Sequence Logos (http://www.cbs.dtu.dk/~dkirvappl/plogo.html) was
used to generate the sequence logo for visualifiagsequence pattern of sumoylation
motifs. The twenty eight residues with the core im®KXE in the middle of 388 known
sumoylation sites was used as the inputs, and¢logiéncies of residues at each position

were measured in bits of information as describegrevious studies [17, 18]. The
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height of residuek at positioni (di) is proportional to its frequency relative to the

expected frequencies, which is computed as follows:

_ G/ Py l. (3.1)

dik_Z|Qi|/p| I
where gi represents the fraction of residkeat positioni, and px indicates the priori
amino acid distribution, which was set to the amawd composition obtained from
UniProtKB/Swiss-Prot Release 57.15 in this stullyis the information content of

positioni as described below:

Ii:ZIik:Zqiklogz% (3.2)

keA keA k

whereA is the set of residues including gaps.

Seqguence features

Forty biological features, including ten biochenhié@atures, seven structural
features, nine thermodynamic features, six empifeatures and eight other biological
features, selected from Protscale [19] and AAIN@&Y, were used to encode each amino
acid residue in a data instance (Appendix C, Tdbl2). These features represent
different types of biological knowledge such as chiemical properties, structural
information, protein stability, folding energy, etéor example, the biochemical feature,
polarity (P), represents the dipole-dipole interecollar interactions between the
positively and negatively charged residues, andstinectural feature, conformational
parameter for alpha-helix (A), indicates the terjenf an amino acid to form the

secondary structures, alpha-helix. Some of thesteikes were used for predicting DNA-
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binding residues and protein stability changes upmimo acid substitutions in previous

studies [12-14].

Evolutionary Information

It was shown that utilizing the evolutionary infaation in terms of position-
specific scoring matrix (PSSM) scores could imprdlie performance of Random
Forests for DNA-binding site prediction [21]. THRSSM scores generated by PSI-
BLAST in this study indicated how well each positiof a sequence was conserved
among its homologues. The protein sequences dodedb&om UniProtKB/Swiss-Prot
(http://mww.pir.uniprot.org/, release 57.15) wesed as the reference database, and PSI-

BLAST was run for three iterations with the E-vatheeshold set to 1e-5.

Random Forests

The use of forty biological features and evolutigniaformation for input vector
encoding gives rise to a large number of inputaldes, especially with a large window
size. Considering the relatively small number ofsipee instances (experimentally
identified sumoylation sites) available for thisudyg, this might result in model
overfitting. To avoid model overfitting, the Randdforest (RF) learning algorithm was
used in this study. A typical RF model is madeofipnany independent decision trees
constructed using bootstrap samples from the trgidiata. During tree constructiom,
variables out of all tha input variablesrf << n) are randomly selected at each node, and

the tree nodes are split using the seleatechriables. For classifying a data instance, a
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RF classifier combines the votes made by the dectisees, and gives the most popular
class as the output of the ensemble. Because ohtitom feature selection, RFs have
the capability of handling a large number of inpartiables and avoid model overfitting.

In this study, the RF algorithm is implemented gdime randomForest package in
R. The number of variables selected to split eastienfntry) was set to 6, and the
number of trees to grownffee) was set to 1000. Other values of tméry and ntree
parameters for training were also examined, buhdidresult in significant improvement

of classifier performance.

Support vector machine training

Support Vector Machine (SVM) classifiers were atenstructed, and compared
with RF classifiers for protein sumoylation siteeg@iction. The SVM method is a data-
driven approach for binary classification. The S\#4rning algorithm can be described
by four basic concepts, including the separatingpenylane, the maximum-margin
hyperplane, the soft margin, and the kernel fumcfi2]. For a linear classification, data
instances are represented @aslimensional vectors, and am ( 1) dimensional
hyperplane is used to separate the positive ineg&afrom the negative ones. Non-linear
classifications are generally used for the analgsisomplex biological data. In these
cases, a kernel function can be used to measurdisbence between data points in a
higher dimensional space, which allows the SVM atgm to fit the maximum-margin

hyperplane in the transformed space. The SVMlightftware package
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(http://svmlight.joachims.org/) was utilized to struct the SVM classifiers using the
radial basis function (RBF) kernel in this study.

In this study, forty biological features were usedbuild the SVM models.
However, the features used for classifier constactmight contain redundant or
correlated information. Thus, feature selection wasformed to choose an optional
subset of relevant features for constructing simpfécient models. The five relevant

features were selected by Random Forests, andifeghto construct SVM classifiers.

Classifier evaluation

The predictive performance of classifier was evadaby tenfold cross-
validation. The whole dataset were randomly disted into ten folds. In each of the ten
iterations, the classifier was trained in nine lof ten folds and tested in the remaining
one fold. Since the dataset was imbalanced withy a0 of lysine residues as
sumoylation sites, the positive instances of trajndata were replicated to get the
approximately equal number with the negative ingtanHowever, the positive instances
in the test data were not replicated. The predia@sults made for the test data instances
in all the ten iterations were combined and evaldidty various performance measures,
including Accuracy (AC), Sensitivity (SN), Specific(SP), Strength (ST) and Matthews

Correlation Coefficient (MCC):

Accuracy(AC) = TP+ TN (3.3)
TP +TN + FP + FN
Sensitivity (SN) = — (3.4)

TF + FN
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Specificiy (SP)= — (3.5)

TN+ FP
Strength(ST) = Sensitivity ; Specificity (3.6)
MCC TPxTN-FPxFEN (3.7)

B \/(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

where TP is the number of true positives; TN isrenber of true negatives; FP is the
number of false positives; and FN is the numbefatfe negatives. For imbalanced
datasets, the accuracy alone could be misleadimgs, TSensitivity, specificity and their
average (strength) were also computed from predictesults. MCC was used to
measure the correlation between predictions andattteal class labels. However,
different trade-offs of sensitivity and specificityay give rise to different MCC values
for a classifier.

The Receiver Operating Characteristic (ROC) cu®] s probably the most
robust approach for classifier evaluation and campa. In the present study, the ROC
curve was generated by varying the output thresbhblal RF classifier and plotting the
true positive rate (sensitivity) against the fafsesitive rate (1 — specificity) for each
threshold value. Since the ROC curve of an accutatssifier is close to the left-hand
and top borders of the plot, the area under theec(hUC) can be used as a reliable
measure of classifier performance [24]. The ran§eAOC value is 0.5 (random

guessing) to 1 (perfect classifier).
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RESULTS AND DISCUSSION

Sequence patterns of protein sumoylation sites

Protein sumoylation sites are often identified witle consensus mot¥KXE,
where¥ represents an aliphatic amino acid (I, V, L, ApPM), and X indicates any
residue. However, 159 (~35%) of 457 known sumogtatsites in this study do not
contain the core motif{KXE), whereas the dataset contains 228 non-sunewligsine
residues that match this motif. To visualize thgussce patterns in sumoylation sites and
their flanking sequences, the sequence logo wasrgd using the 28-residue sequences
from 388 experimentally identified sumoylation sitéigure 3.1). The result suggests
that certain positions outside of the core moMKKE), such as the positions -7, 1, 3, 4
and 9, may contain some information for the specdicognition of sumoylation sites in
the cell. For instance, the most abundant residugositions 1 is Proline (P), which
agrees well with the SUMO-acetyl switchPKXEP). Interestingly, glutamine (Q),
Methionine (M) and Threonine (T) appear to be naivandant than any other residues in
the X position of the core motWKXE, suggesting that there may be subtle amino acid
preference at the X position.

The above observations suggest that the flankingueseces of protein
sumoylation sites have some subtle patterns. Howehese patterns may not be
modelled completely by consensus motifs or sequégms, which do not consider the
dependence among neighboring residues. Thus, aimealdarning approach has been

developed in this study to model the sequence rpattef protein sumoylation sites.
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Figure 3.1 The sequence logo of the protein surtioylanotif (’KXE) and its flanking
residues.

Effect of sequence context on classifier perfornganc

We first constructed Random Forest (RF) classifiesgg the forty biological
features for input vector encoding. The RF classfwere trained with data instances of
various window sizes. The results suggest thatIR$sifier performance was affected by
the sequence context of sumoylation sites (Talile Bhe classifier constructed with KX
(window sizew = 2) gave predictive performance with the predittstrength (ST) =
57.07%, Matthews Correlation Coefficient (MCC) 9890 and ROC AUC = 0.6107.

The classifier performance was improved signifisanthen the core motf¥KXE (w =
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4) was used for input encoding. The classifier gheeprediction strength at 82.04% with
MCC = 0.5379 and AUC = 0.9024. When the neighboregjdues of the core motif
were used to construct the classifiers, the preigierformance was further improved.
For example, the classifier constructed WHKXE+/-5 (w = 14) achieved the highest
MCC at 0.6786. Since the dataset was imbalancddamily 4% of lysine residues as the
sumoylation sites, the ROC AUC is probably the mieiable performance measure for
the present study. The classifier using the tweatydues with the core motfKXE in
the middle WYKXE+/-8, w = 20) reached the highest ROC AUC at 0.9200. Tasstier
also shows the highest overall accuracy at 97.68% $6.00% sensitivity and 99.50%
specificity, and high MCC = 0.6711. Thus, this RE&ssifier is considered as the best
classifier in Table 3.1.

Table 3.1 Effect of sequence context on predicfregformance of Random Forest
classifiers.

Sequence context AC SN SP ST MCC ROC

(%) (%) (%) (%) AUC
KX 61.80 51.89 62.25 57.0% 0.0590 0.61Q7
YK XE 95.27 67.51 96.52 82.0¢ 0.537¢ 0.902¢
YK XE+/-1 97.28 61.35 98.90 80.13 0.6489 0.9038
YK XE+/-2 97.42 59.73 99.12 79.42 0.6582 0.9145
YK XE+/-3 97.45 60.00 99.15 79.58 0.6638 0.9172
YK XE+/-4 97.54 60.28 99.20 79.74 0.6688 0.9014
YK XE+/-5 97.63 60.00 99.31 79.65 0.6786 0.91Q3
YK XE+/-6 97.57 57.78 99.34 78.54 0.6668 0.9048
YK XE+/-7 97.54 54.86 99.40 77.13 0.6508 0.9188
YK XE+/-8 97.68 56.00 99.50 77.79 0.6711 0.92Q0
YK XE+/-9 97.59 51.71 99.60 75.64 0.6522 0.9133
YK XE+/-10 97.57 47.65 99.70 73.67 0.6340 0.9149
YK XE+/-11 97.46 43.82 99.75 71.79 0.611b5 0.9136
YK XE+/-12 97.43 42.35 99.79 71.0% 0.6056 0.9134
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The ROC analysis for investigating the effect afignce context information on
RF classifier performance has been shown in FigWeThe classifier constructed with
WYKXE is clearly better than the classifier constedactwith KX. Furthermore, the
classifier using twenty residues with the core matthe middle $YKXE+/-8) appears to
be slightly better than the classifier construatgth WKXE. The results suggest that the
context information in the flanking sequences may useful for sumoylation site

prediction.
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Figure 3.2 ROC curves to show the effect of contaefdrmation for sumoylation site
prediction.
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RF versus SVM classifiers

Support Vector Machines (SVMs) have been widelydulee biological pattern
classification. In this study, we constructed SVMssifiers using the forty biological
features, and compared their ROC AUC values withsg¢hof the RF classifiers over
various window sizes. As shown in Figure 3.3, tliedRassifiers using the forty features
(RF40) achieved comparable performance measurasvaxieus window sizes with the
highest AUC atv = 20 ’KXE+/-8). However, SVM classifiers using the fofgatures
(SVM40) showed significantly degraded performaneeth large window sizes. For
example, the AUC value of SVM40 decreased from @08® 0.5254 when the window
size was increased from= 4 (YKXE) to w = 8 PKXE+/-2). Thus, the SVM classifiers
did not achieve the same level of predictive penfamce as the RF classifiers. The
possible explanation is that some of the forty fes¢ may contain redundant or
correlated information for sumoylation site preaint which may have caused the
degradation of SVM classifier performance.

To enhance the predictive performance of SVM cfiessj feature selection was
performed using Random Forests (RFs). Five highlgvant features selected by RFs,
including polarity (P), conformational parametess &lpha helix (A) and coil (C), short
and medium range non-bonded energy per residuea(ttr)free energy in alpha-helical
conformation (Ea), were used to construct the SMa&sifiers (SVM5). As shown in
Figure 3.3, the ROC AUC values of the SVM5 class#iwere higher than those of the
SVM40 classifiers over various window sizes. Forample, the SVM5 classifier

constructed using eight residu&#KXE+/-2, w = 8) achieved the highest AUC value of
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0.8917 over various window sizes (Figure 3.3), Wwhigas significantly higher than the
AUC value of the SVMA40 classifier (AUC = 0.5254vat= 8). This classifier reached the
prediction strength at 78.42% (58.38% sensitivityl ®8.46% specificity) and MCC =
0.5902 (Table 3.2). The SVM5 classifier construciatth WKXE+/-2 was regarded as the

best SVM classifier in this study.
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Figure 3.3 Performance comparisons of Random Foffes) and Support Vector
Machine (SVM) classifiers.
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However, the RF40 classifiers still outperformed 8vM5 models (Figure 3.3).
As shown in Table 3.2, The RF40 classifier consédiaising eight residue¥KXE+/-2)
achieved the prediction strength of 79.42% with ME®.6582 and AUC = 0.9145,
which were higher than those of the SVM5 classifiethe same window size. Thus, the
RF algorithm appears to be better for predictingfgin sumoylation sites from sequence
features. The possible explanation is that RFs ltamdle a large number of input
variables and avoid model overfitting. The feateareoded input vector has a large
number of variables, especially with a large windsize. For example, when twenty
residuesw = 20) are used for classifier construction, the benof input variables is 800
for classifiers using forty features and 100 faassifiers using five features. The large
number of input variables, together with the smalnber of positive instances, may lead

to model overfitting.

Table 3.2 Comparison of Random Forest and Suppedtdy Machine classifiers
constructed withPKXE+/-2 (w = 8).

Features (AO/S (‘3’:) (f'/f) (‘31_) MCC ,F:\Sg

RF40 97.42 59.73 99.12 79.42 0.6582 0.9145
SVM5 96.73 58.38 98.46 78.42 0.5902 0.89%7
SVM40 95.66 0.00 99.99 49.99 -0.0028 0.52%

Use of evolutionary information

Evolutionary information in terms of position-speciscoring matrix (PSSM)

scores was previously shown to improve classifierfggmance [21, 25, 26]. To

determine whether or not sumoylation site predictiould be further improved by using
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evolutionary information, the PSSM scores of twenetyidues with the core motHKXE

in the middle were used to construct the RF cl&ssif The scores in a PSSM represent
how well each position of a protein sequence wasewed among its homologues. As
shown in Table 3.3, the RF classifier constructétl WSSMs (PSSM, Table 3.3) reached
the prediction strength of 51.96% with MCC = 0.1%6%] AUC = 0.8672. By using both
PSSMs and the forty biological features for inpeittor encoding, the RF classifier (Bio
+ PSSM, Table 3.3) gave a relatively high classiperformance (74.82% prediction
strength, MCC = 0.6443 and AUC = 0.9181). Howetkese performance measures
were not significantly different from those of thRF classifier using the biological

features only (Bio, Table 3.3).

Table 3.3 Effect of evolutionary information on fm sumoylation site prediction.

RO
Features (AO/S) (‘3’:) (f'/f) (‘31_) MCC AUg
PSSM 95.90 4.00 99.91 51.96 0.1566 0.8612
Bio 97.68 56.00 99.50 77.75 0.6711 0.9200
Bio + PSSM 97.56 50.00 99.64 74.82 0.6443 0.9131

The ROC curves of the three RF classifiers are eavetpin Figure 3.4. The
results confirm that classifier performance is moproved by adding the evolutionary
information to the biological features for inputceding. The possible explanation is that
the PSSM, which is designed for PSI-BLAST searches; not capture the evolutionary
information for sumoylation site prediction. Anoth@ossibility is that the forty
biological features may already contain the evohdry information necessary for

predicting protein sumoylation sites.
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Figure 3.4 ROC curves to show the effect of evohary information on classifier
performance.

Comparison with previous studies

The existing computational methods for protein sylatton site prediction
include SUMOplot (http://www.abgent.com//tools/toaplot), SUMOsp2
(http://sumosp.biocuckoo.org/online.php) and SUM®O[®]. The datasets used in these
previous studies are smaller than the dataset unsdloe present work. We manually
collected additional instances of experimentallgnitfied sumoylation sites from the

latest publications. To further demonstrate therowpd performance of our classifiers,
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the most accurate RF classifidf{XE+/-8, Table 3.1) and SVM classifier (SVM5, Table
3.2) have been compared with the previous classif@BUMOplot and SUMOsp2, using
an independent test dataset with 48 sumoylatioes sieported after January 2010.
SUMOplot predicts the probability of sumoylatiortesi based on the SUMO consensus
sequence and hydrophobicity, whereas SUMOsp2 [EEk uwo pattern recognition
strategies (GPS and MotifX) for sumoylation sitegiction. The two types of prediction
in SUMOplot were low (motifs with low probabilityand high (motifs with high
probability), whereas the three levels of stringemcSUMOsp2 were low, medium and
high. The corresponding thresholds of classifiggpotin our approach (seeSUMO) were
setto -0.2 (low), 0 (medium) and 0.2 (high).

As shown in Table 3.4, the overall accuracy (A@gdficity (SP) and MCC of
our SVM classifier (seeSUMO-SVM) and RF classifeeeSUMO-RF) are considerably
higher than those of SUMOsp2 and SUMOplot in thev-tbreshold predictions.
SUMOsp2 with its medium threshold gave the predictstrength at 68.31% (43.75%
sensitivity and 92.87% specificity) and MCC = 0.940Our SVM classifier achieved a
similar level of performance with 67.36% predictiatrength, 41.67% sensitivity,
93.06% specificity and MCC = 0.2361. The RF classitvith the medium threshold
reached higher performance with 71.60% predictteength, 51.16% sensitivity, 92.04%
specificity and MCC = 0.2639. For the high-threshpledictions, the overall accuracy
and MCC of our RF classifier are also higher tHarsé of SUMOsp2 and SUMOplot. It
is noteworthy that the MCC values of our RF classiére the highest in any level of

threshold predictions. Therefore, the performanicthe RF classifier developed in this

58



study compares favorably with SUMOsp2 and SUMOfdotprotein sumoylation site
prediction.

SUMOpre [9] uses a statistical method for predgtimotein sumoylation sites. It
was not included in the direct comparisons becauseb-based tool was not available
for the classifier. However, our classifier usdarger dataset and shows better predictive
performance. For example, the dataset used by SUB ({9 contains 268 sumoylation
sites, and the predictor reached 96.71% overallracy and MCC = 0.6364. In the
present study, the dataset includes 377 sumoylaites, and the best RF classifier

(WYKXE+/-8, Table 3.1) achieved 97.68% overall accyracd MCC = 0.6711

Table 3.4 Comparison of classifier performance gisin independent test dataset.

Threshold | Methods (AO/OC) (502') ZEZ) 2}) ) |mcc
Low SUMOplot 7955 | 68.75 | 79.95| 7435 02196
SUMOsp2 8363 | 5000 | 84.88| 6744 01753
seeSUM O-SVM 89048 | 47.92 | 91.04| 6948 0238
seeSUM O-RF 9009 | 5349 | 91.33| 7241| 02644
Medium | SUMOsp2 9111 | 43.75 | 92.87| 6831 02449
seeSUM O-SVM 9121 | 41.67 | 93.06| 67.36| 02361
seeSUM O-RF 90.70 | 51.16 | 92.04| 71.60] 02639
High SUMOplot 9169 | 5000 | 9324| 71.62| 02916
SUMOsp2 9424 | 3958 | 9627| 67.93] 03058
seeSUM O-SVM 9249 | 3958 | 94.47| 67.02] 02528
seeSUM O-RF 9436 | 4419 | 96.06| 70.12| 03210
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seeSUMO web server

To make our classifiers accessible to the bioldgEsearch community, we have
developed the seeSUMO web server (http://bioinfo.gg/seesumo/). Users can enter an
amino acid sequence in the FASTA format, specify mhethods, and input the proper
threshold for prediction of protein sumoylationesit For prediction using the RF
classifier, the system encodes the input sequenibsthe 40 biological features, and
then calls the randomForest program of the R sofivpackage to classify the protein
sumoylation sites using the most accurate RF md@@#XE+/-8, Table 3.1). For
prediction using the SVM classifier, the systemoslas the input sequences with the five
highly relevant features, and then the best SVMsifer (SVM5, Table 3.2) constructed
in this work is used to predict sumoylation siteshe query sequence. The seeSUMO
web server will return the prediction results, udihg the protein name, potential
sumoylated sites, classifier outputs and the ptieticonfidence levers (Figure 3.5). The
prediction confidence lever is calculated as (&ns#ivity) for positive predictions, and
(1 - specificity) for negative predictions [12, 14he help documents are available at the

website.
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Method: Random Forest
There are 21 lysine residues in 1 protein.

Prediction results (threshold: 0)

Protein name ESmoi}‘aﬂon site Classifier output  Confidenee level*
Q96C00 K286 0,948 100

Q96000 K29 0415 826

Q6000 K307 0.466 8553

QU6C00 K397 0.059 5237

4 lysine residues are predicted to be sumoylation sites.
. * The confidence level is caloulated as (| - sensitivity) for positive predictions, and (1 - specificity) for negative predictions.

Figure 3.5 Sample output from the seeSUMO web serve

CONCLUSION
A new machine learning approach has been developiis study for predicting
protein sumoylation sites from protein sequenceorinfition. Domain-specific
knowledge in terms of relevant biological featuvess used for input vector encoding.
The results suggest that classifier performanceaffected by the sequence context of
sumoylation sites. The highest predictive perforoeafROC AUC = 0.9200) has been
achieved by the Random Forest classifier using tyveesidues with the core motif

YKXE in the middle. Moreover, the Random Forest sifeess were found to outperform
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Support Vector Machine models on the imbalanceds#at The classifiers developed in
this study compare favourably in performance wite previous predictors for protein
sumoylation site prediction. A web server, seeSUW@p://bicinfo.ggc.org/seesumo/),

has been developed to make our classifiers actéestib the biological research

community.
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CHAPTER FOUR
SEQUENCE FEATURE-BASED PREDICTION OF PROTEIN STABIY
CHANGES UPON AMINO ACID SUBSTITUTIONS
ABSTRACT
Protein destabilization is a common mechanism byichvhamino acid
substitutions cause human diseases. Although dewaehine learning methods were
reported for predicting protein stability changg®om amino acid substitutions, these
previous studies did not utilize relevant sequeffieatures representing biological
knowledge for classifier construction. In this stud new machine learning method has
been developed for predicting protein stability rj@s upon amino acid substitutions
from sequence features. Support vector machinese weined with data from
experimental studies on the free energy changeaiéin stability upon mutations. To
construct accurate classifiers, twenty sequenceirfes were examined for input vector
encoding. It was shown that classifier performaveged significantly by using different
features. The most accurate classifier in thisystuds constructed using a combination
of six sequence features. The classifier achieved\aerall accuracy of 84.59% with
70.29% sensitivity and 90.98% specificity. Protstability changes upon amino acid
substitutions can be predicted accurately from veele sequence features. Since
predictive results at this level of accuracy magvate useful information to distinguish

between deleterious and tolerant alterations ireadis candidate genes, we have

*Teng S, Srivastava AK, Wang L: Sequence featureebpeediction of protein stability changes
upon amino acid substitutions. BMC Genomics 201¢Slippl 2):S5.
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developed a new web server, called MuStab (htipinfm.ggc.org/mustab/), to make the

classifier accessible to the genetics research cortyn

BACKGROUND

Amino acid substitutions may cause a series of gémnto normal protein
function, such as geometric constraint changessipbychemical effects, and disruption
of salt bridges or hydrogen bonds [1]. These chaumgay lead to protein destabilization
or some abnormal biological functions. Previouslitsl suggest that each person may
have 24,000 — 40,000 non-synonymous Single Nudedolymorphisms (nsSNPs), and
there are a total of 67,000 — 200,000 common ns$N&e human population [2]. These
nsSNPs give rise to amino acid substitutions ingans. While most nsSNPs appear to be
functionally neutral, the others affect protein dtian and may cause diseases. Yue and
Moult [3] investigated the effect of amino acid stitutions on protein stability, and
estimated that approximately 25% of nsSNPs in thendn population might be
deleterious to protein function. Of the known dseaausing missense mutations, the
vast majority (up to 80%) resulted in protein dbsitzation [4]. However, it is not
feasible to experimentally determine the effeceéath human nsSNP on protein stability.
Rather, computational methods are needed to profade and efficient tools for
examining a large number of nsSNPs for potentedae-causing mutations.

Machine learning has recently been applied to sempibased prediction of
protein stability changes upon amino acid substiist [5]. The machine learning

problem can be specified as follows: given the aranid sequence of a protein and a
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single amino acid substitution, the task is to pedhether the substitution may alter
protein stability. By using the available data frexperimental studies, classifiers can be
constructed for predicting either the free energsinge AAG) of protein stability upon
mutations or the direction of the change (increastatbility if AAG > 0, or decreased
stability if AAG < 0). Nevertheless, for many biological applicasi, correctly predicting
the direction of the stability change (a binaryssification problem) is more relevant
than estimating the magnitude of the free energygh (a regression problem) [5].
Capriotti et al. [5] reported an artificial neuraketwork-based method for
predicting the direction of protein stability ch&sgupon point mutations. The predictor
was trained with protein sequence alone. It wasvshthat the sequence-based system
could be used to complement the available energgédbanethods for improving protein
design strategies. The same research group alseloped support vector machine
(SVM) models for sequence-based prediction of lbth free energy change and the
direction of the change upon mutations [6]. Theg®3nodels were used to develop the
I-Mutant2.0 web server, which could predict protsiability increase or decrease at the
overall accuracy of 77% (based on cross-validatibrigrestingly, it was found that the
sequence-based system was almost as accurate adrubtire-based method (80%
overall accuracy) on the same dataset [6]. Thiemasion was further confirmed by
Cheng et al., who trained SVMs for predicting prottability changes from amino acid
sequence and structural information [7]. More régerHuang et al. [8] developed the
IPTREE-STAB web server, which used decision treath van adaptive boosting

algorithm to discriminate stabilizing and destanlg substitutions in protein sequences.
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Among all the existing methods, IPTREE-STAB achétee best classifier performance
in cross-validation tests (82.1% overall accuragthw5.3% sensitivity and 84.5%
specificity).

The above-mentioned studies suggest that protebilisf changes can be
predicted directly from primary sequence data wsimilar prediction accuracy as
structure-based methods. The sequence-based appsoaarticularly appealing since
structural information is still not available forost proteins. However, little domain-
specific knowledge in terms of biological featuress used for classifier construction in
the previous studies [5]. In the present studyhasxe examined twenty sequence features
for classifier construction. Support vector machkii8VMs) have been trained with the
feature-encoded data instances of protein stalstignges upon amino acid substitutions.
Our results indicate that accurate SVM classifieasr be constructed using relevant

seqguence features for input vector encoding.

METHODS
Data
The dataset used in this study was derived from gvavious studies [6, 8], in
which experimental data for the free energy chamjgsotein stability upon mutations
were collected from the ProTherm database [9] c®wstruct a robust classifier, data
redundancy was removed and the dataset had les2%% identity among the amino
acid sequences. Each data instance in the datdehd following attributes: amino acid

sequence, wide-type amino acid identity and sequeasition, mutant amino acid
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identity, pH value, and free energy change. If fftee energy change was negative
(protein destabilization), the instance was laloels a negative example. Otherwise, the
instance was labelled as a positive example. Thesdtacontained 464 positive instances

and 1,016 negative instances.

Sequence features

Twenty sequence features were used to code eacio anid residue in a data
instance. The sequence features were obtained frdhrotscale [10]
(http://expasy.org/tools/protscale.html) and AAirde [11]
(http://mvww.genome.jp/aaindex/). These featurelsriéd the following four classes:

1) Biochemical features: including molecular weidfeature M); side-chain pKa value

(K); hydrophobicity index (H); polarity (P); and esall amino acid composition (Co).
Each amino acid has a unique molecular weight (hjich is related to the volume of
space that a residue occupies in protein struct@iee-chain pKa (K) is related to the
ionization state of a residue, and thus plays arkésyin pH-dependent protein stability.
Hydrophobicity (H) is important for amino acid sideain packing and protein folding.
Hydrophobic interactions make non-polar side champack together inside proteins,
and disruption of these interactions may causespratestabilization. Polarity (P) is the
dipole-dipole intermolecular interactions betweba positively and negatively charged
residues. The amino acid composition (Co) was prtesly shown to be related to the

evolution and stability of small proteins [12].
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2) Structural features: including the conformatigon@rameters for alpha-helix (A), beta-

sheet (B), and coil (C); average area buried onsfea from standard state to folded
protein (Aa); and bulkiness (Bu). Protein seconddinyctures can be divided into alpha-
helix, beta-sheet, and coil conformations. An armanil often has a different tendency to
form one of the three types of secondary structl¥es instance, amino acids A, |, E, L

and M tend to be in the alpha-helical conformatwwhereas K, N and D are often found
in beta-sheets. In this study, the conformatiorelameters reported by Deléage and
Roux [13] were used for features A, B and C. Feafa is another structural parameter,
which estimates a residue’s average area burid¢iteirnterior core of a globular protein

[14]. Bulkiness (Bu), the ratio of the side chawmlume to the length of an amino acid,

may affect the local structure of a protein [15].

3) Empirical features: the protein stability schsed on atom-atom potential (S1); the

relative protein stability scale derived from midatexperiments (S2); and the side-chain
contribution to protein stability (S3). Zhou et HI6] derived two protein stability scales
from atom-atom potential of mean force based ontadie scaled Finite Ideal-gas
REference (DFIRE) state (S1) and a large databfasei@tions (S2). Takano and Yutani
[17] calculated the transfer Gibbs energy of mufaoteins, and derived the amino acid
scale for the side-chain contribution to proteiabdity (S3) based on data from protein

denaturation experiments.

4) Other biological features: including the averfigribility index (F); the mobility of an
amino acid on chromatography paper (Mc); the nunddezodons for an amino acid

(No); refractivity (R); recognition factor (Rf); ¢hrelative mutability of an amino acid
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(Rm); and transmembrane tendency (Tt). The aveftagiility index of an amino acid
(F) was derived from structures of globular prateifi8]. Feature Mc was derived from
experimental data by Aboderin [19]. Refractivity) (lefers to protein density and folding
characteristics [20]. Recognition factor (Rf) i®thverage of stabilization energy for an
amino acid [21]. The relative mutability (Rm) indtes the probability that a given amino
acid can be changed to others during evolutiontufed't is the transmembrane tendency

scale described by Zhao and London [22].

Support vector machine training

Support vector machines (SVMs) are computationgbrghms that can learn from
training examples for binary classification prob&nihe SVM learning algorithm can be
described by four basic concepts, including theasstmg hyperplane, the maximum-
margin hyperplane, the soft margin, and the kefaettion [23]. For a typical linear
classifier, a data instance is represented as dimensional vector, and am ¢ 1)
dimensional hyperplane is used to separate théiymaistances from the negative ones.
However, for non-linear classifiers that are geliyeepplicable to biological problems, a
kernel function can be used to measure the distaeteeen data points in a higher
dimensional space. This allows the SVM algorithm fib the maximum-margin
hyperplane in the transformed space. In this study,used the radial basis function

(RBF) kernel:

K (%) = expr 1X - VIP) 4.1)
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where X and ¥ are two data vectors, andis a training parameter. A smallewalue
makes decision boundary smoother. The regularizddotor C, another parameter for
SVM training, controls the tradeoff between lowrrag error and large margin.

The SVMlight software package (available at htgwitilight.joachims.org/) was
used to construct the SVM classifiers in this stuach training instance was a
subsequence af consecutive residues, wherewas also called the window size. The
amino acid substitution site was positioned in mthieldle of the subsequence, and the
other (v— 1) neighbouring residues provided context infation for the substitution site.
The input vector was then obtained by encoding easidue with one or more biological
features. The input vector also included the pleat which the free energy change was
measured experimentally. In this study, variousi@alofw, y andC parameters were

examined to optimize SVM classifier performance.

Classifier evaluation

This study used a fivefold cross-validation methtal evaluate classifier
performance. Positive and negative instances waerdomly distributed into five folds.
In each of the five iterations, four of the fivdde were used to train a classifier, and then
the remaining one fold was used as the test daadlnate the classifier. The predictions
made for the test instances in all the five iterati were combined and used to compute

the following performance measures:

TP+TN (42)

Accuracy(AC) =
TP+TN +FP +FN
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TP

Sensitivity (SN) = 4.3
ensitivity (SN) ——— 4.3)
TN
. _ 4.4
Specificiy (SP) TNLFP (4.4)
Strength(ST) = Sensitivity ; Specificity (4.5)
MCC TPxTN-FPxFEN (4.6)

~ JTP+ FP)(TP+ EN)(TN + FP)(TN + FN)

where TP is the number of true positives; TN isrenber of true negatives; FP is the
number of false positives; and FN is the numbefatfe negatives. In addition to the
commonly used performance measures (overall acgusaasitivity and specificity), the
average of sensitivity and specificity or the stlethprediction strength [24, 25] was also
used for classifier comparison in this study. Mets Correlation Coefficient (MCC)
measures the correlation between predictions anddtual class labels. Nevertheless, for
imbalanced datasets, different tradeoffs of sentsitand specificity may give rise to
different MCC values for a classifier.

We also used the Receiver Operating Character{®@©C) curves [26] for
classifier evaluation and comparison. In this siuthe ROC curve was generated by
varying the output threshold of an SVM classifierdgplotting the true positive rate
(sensitivity) against the false positive rate (dpecificity) for each threshold value. Since
the ROC curve of an accurate classifier is closthéoleft-hand and top borders of the
plot, the area under the curve (AUC) can be used asliable measure of classifier
performance [27]. The maximum value of AUC is 1 jckhindicates a perfect classifier.

Weak classifiers and random guessing have AUC satlgse to 0.5.

73



RESULTS AND DISCUSSION

Effect of sequence context on classifier perfornganc

We first constructed a classifier using the thresclemical features, including
the hydrophobicity index (H), side-chain pKa va{#@, and molecular weight (M) of an
amino acid. These features were previously selefdedNA and RNA-binding site
prediction [24, 25]. In the initial attempt to congt a classifier for protein stability
prediction, the window size was set to elewer=(11). Different values of SVM training
parameters were tested, and the optimal paramettangs were found to be= 0.8 and
C = 1.0. As shown in Table 6.1, the classifier aekie the overall accuracy (AC) of
81.82% with 74.48% sensitivity (SN) and 85.11% d&pety (SP). The prediction
strength (ST) reached 79.79% with MCC = 0.5843 RC AUC = 0.8804. Therefore,
this SVM achieved similar performance measureb@abeést existing classifier (iPTREE-
STAB with 82.1% overall accuracy, 75.3% sensitiatd 84.5% specificity) [8].

To determine whether classifier performance waectétl by the sequence
context of the substitution site, SVMs were traimeth data instances of various window
sizes. As shown in Table 4.1, protein stabilitydicton was affected by window sizes.
The classifier constructed without any context infation (v = 1) gave 67.94%
prediction strength (70.69% sensitivity and 65.2§8éclificity), MCC = 0.3349 and AUC
= 0.7425. The prediction strength, MCC and AUC wenproved when neighbouring
residues of the substitution site were includedrput encoding. The use of= 11 gave

the highest prediction strength (79.79%), MCC (@3%8and AUC (0.8804), and

74



classifier performance was not further improvedrimiuding more neighbouring residues

(Table 4.1).

Table 4.1 Effect of window sizes on sequence-bgsedliction of protein stability

N

changes.
Window AC SN SP ST MCC ROC
size (%) (%) (%) (%) AUC
1 66.92 70.69 65.20 67.94 0.3349 0.7425
3 73.91 74.83 73.49 74.16 0.4554 0.799¢
5 77.51 76.67 77.90 77.28 0.5194 0.8517
7 80.80 76.43 82.83 79.63 0.5750 0.8731
9 81.28 75.66 83.78 79.72 0.5774 0.8755
11 81.82 74.48 85.11 79.79 0.5843 0.8804
13 82.10 71.84 86.67 79.26 0.5824 0.879
15 81.45 69.71 86.75 78.23 0.5665 0.8775
17 81.88 69.50 87.58 78.54 0.5779 0.879¢4
19 81.21 68.80 86.98 77.89 0.5627 0.8774
21 81.29 68.98 86.98 77.98 0.5645 0.8731

The effect of sequence context information on SMiksifier performance was

also demonstrated by using ROC curves. As showigare 4.1, the ROC curve of the

classifier constructed wittv = 11 was clearly better than the SVM trained withany

context information W = 1). However, the use of = 21 did not further improve

classifier performance. Thus, eleven residues whth substitution site in the middle

position (v = 11) appeared to provide enough context inforomator sequence-based

prediction of protein stability changes.
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Figure 4.1 ROC curves to show the effect of coniteiktrmation on prediction of protein
stability changes upon amino acid substitutions.

Relevant seqguence features for classifier consbruct

Many sequence features are available for encodmmaa acid residues. To
determine which features were relevant for prosability prediction, we constructed
SVM classifiers using each of the twenty sequeeegures listed in Table 4.2 for input
encoding W = 11). The results were obtained with the traimpagameters; = 0.8 andC
= 1.0. It was found that classifier performanceiadrsignificantly by using different

features. As shown in Table 6.2, the highest l@feAUC (0.8835) was achieved by

76



using the empirical feature S3 for input encodifilgis classifier reached the prediction
strength at 79.67% (72.19% sensitivity and 87.15%c#icity) and MCC = 0.5922.

However, the highest prediction strength at 80.28%62% sensitivity and 84.94%
specificity) with MCC = 0.5919 and AUC = 0.8777 washieved by using amino acid
bulkiness (Bu) for input encoding. In contrast, tlse of the average flexibility index (F)
for input encoding resulted in the lowest predictgirength at 62.02%, MCC = 0.2226

and AUC = 0.6728 (Table 4.2).

Table 4.2 Predictive performance of classifiers strutted using single sequence
features.

AC SN SP ST ROC

Features (%) (%) %) (%) MCC AUC

H 75.88 71.62 77.79 74.70 0.4728 0.823)7
K 73.29 73.90 73.02 73.46 0.4402 0.792p
M 68.06 73.52 65.62 69.57 0.3629 0.748p
P 75.94 71.24 78.04 74.64 0.4718 0.8234
Co 70.18 71.62 69.53 70.58 0.3838 0.758p
A 76.41 74.29 77.36 75.82 0.4904 0.820p
B 78.18 74.48 79.83 77.15 0.5199 0.8508
C 72.18 71.05 72.68 71.86 0.4116 0.784)
Aa 79.12 76.57 80.26 78.41 0.5431 0.845p
Bu 82.06 75.62 84.94 80.28 0.5919 0.877|
S1 69.82 70.86 69.36 70.11 0.3756 0.7754
S2 70.24 72.19 69.36 70.78 0.387% 0.766p
S3 82.53 72.19 87.15 79.67 0.5922 0.883p
F 61.41 63.62 60.43 62.02 0.2226 0.672B
R 66.47 65.14 67.06 66.10 0.3008 0.714p
Mc 78.35 73.52 80.51 77.02 0.5202 0.841)/
No 69.82 74.86 67.57 71.22 0.3944 0.765p
Rf 62.06 73.71 56.85 65.28 0.2831 0.688p
Rm 75.94 69.90 78.64 74.27 0.4672 0.811B
Tt 83.59 66.48 91.23 78.86 0.603% 0.8704
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Figure 4.2 shows the ROC curves of the best andtwdassifiers (based on
AUC) that were constructed using the individualussgpe features. Also shown in Figure
6.2 is the ROC curve of the SVM classifier congtedcwith the K feature, which gave

approximately the average performance among theeseg features.

True positive rate

O T T T T

0 0.2 0.4 0.6 0.8 1
False positive rate

Figure 4.2 ROC curves to show the different pertmmoe levels of classifiers constructed
using individual sequence features.

The results suggest that a variety of sequencartesafire relevant for predicting

protein stability changes upon amino acid substiigt Of the five biochemical features
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(H, K, M, P and Co), the hydrophobicity index (H3wg the best predictive performance
at 74.70% prediction strength (71.62% sensitivihd &/7.79% specificity), MCC =
0.4728 and AUC = 0.8237 (Table 4.2). Hydrophobigsty key factor in amino acid side
chain packing and protein folding. Hydrophobicithanges owing to amino acid
substitutions may cause proteins not to fold irteble conformation, and thus result in
protein destabilization.

Of the structural features (A, B, C, Aa and Bu)lkiness (Bu) gave rise to the
highest prediction strength at 80.28% with MCC $909 and AUC = 0.8777. In
contrast, the classifier using the conformatioreabameter for coil (C) had the relatively
low performance with 71.86% prediction strength, € 0.4116 and AUC = 0.7847
(Table 4.2). The possible explanation is that siocods are often unstructured and
flexible, amino acid substitutions in the coil regimay not cause significant changes in
protein structure and stability.

The empirical features (S1, S2 and S3) are proséability scales based on
experimental data. Interestingly, when used for S\Mssifier construction, these
features did not give significantly better perfoma than the other sequence features.
While the use of the S3 feature (side-chain coatidn to protein stability) resulted in
the highest level of AUC (0.8835) with 79.67% priin strength and MCC = 0.5922,
the other two empirical features (S1 and S2) wetehmless accurate for predicting
protein stability changes (Table 4.2). Thus, passible that the empirical features do not

capture all the information about the determinafsrotein stability.
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Of the other biological features, transmembraneddany (Tt) achieved the
highest level of MCC (0.6035) with 78.86% prediatistrength and AUC = 0.8704
(Table 4.2). The feature Mc (the mobility of an amiacid on chromatography paper)
also gave rise to relatively high classifier pemiance (77.02% prediction strength, MCC
= 0.5202 and AUC = 0.8417). Therefore, multipletdieas from each of the four feature
classes achieved high performance for predictirtdepr stability changes upon amino
acid substitutions. It might be possible that dfeessperformance could be further

improved by combining several sequence featureimput encoding.

Use of multiple sequence features to improve diasgierformance

To examine whether classifier performance couldusther improved, we first
used all the 20 sequence features for input engo&arprisingly, the resulting classifier
was not as accurate as some of the SVMs trainddswigle features (Table 4.3). While
the best single feature S3 gave rise to 79.67%igirea strength with MCC = 0.5922
and AUC = 0.8835, the classifier using all the 2@&tfires achieved only 75.45%
prediction strength with MCC = 0.5791 and AUC =@28. The possible explanation is
that some of the 20 features contain redundantooelated information, which may
cause classifier performance degradation.

We then constructed SVM classifiers by combiningnsoof the best single
features for input encoding. Interestingly, none¢hafse feature combinations gave rise to

better classifier performance than the best sifeglaure S3 (Table 4.3). For example, the
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classifier constructed using the best six singktuiees (S3, Bu, Tt, B, Aa, and Mc)

achieved only 77.54% prediction strength with MCQ.5993 and AUC = 0.8737.

Table 4.3 Predictive performance of classifiersstartted by combining the best single
features.

A N P ROC
Features (%C) (f/o) (§/0) (31-) MCC AUC
S3 8253 | 72.19| 87.15 < 79.67  0.592p 0.8835
S3, Bu 83.41 | 68.00| 90.30] 79.1% 0.601Pp 0.8821
S3, Bu, Tt 8288 | 61.90| 92.26f 77.08 0.582p 0.8725
S3,Bu, Tt, B 83.65| 62.10 9328 77.89 0.6009 0.8168
S3, Bu, Tt, B, Aa 83.65| 61.9( 9336 77.63 0.60p9 8743
S3, Bu, Tt, B, Aa, Mc 8359 | 61.71| 93.36| 77.54 0.599B 0.8737
All 20 features 82.88| 56.00 9489 7545 0.5791 G086

To determine whether any combinations of the secpid@atures could improve
classifier performance, we performed a brute-faearch for the optimal feature subset.
As shown in Table 4.4, classifier performance bamed\UC was improved slightly but
steadily when more features were used for inpub@ing. Among all the two-feature
combinations, the biochemical feature Co (ovenalin® acid composition) together with
the structural feature Bu (bulkiness) achieved st classifier performance based on
AUC (0.8872) with 80.54% prediction strength and M€ 0.6057. These performance
measures are slightly better than those of the mrapfeature S3, a protein stability scale
based on experimental data [17]. Significantly, fiee&ture Co is also included in all the
other feature subsets shown in Table 4.4, suggeghat the overall amino acid
composition is highly relevant for sequence-bagsedliption of protein stability changes.

For instance, the best four-feature subset conthiesiochemical features Co and H
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(hydrophobicity index), the structural feature Borformational parameter for beta-

sheet), and the empirical feature S3. The classfihieved 80.16% prediction strength

with MCC = 0.6231 and AUC = 0.8940 (Table 4.4).

Table 4.4 Predictive performance of classifiersstatted using the optimal subsets of
seqguence features.

Features (ﬁ\/OC) (f/’:) (f/f) (31-) MCC 288

S3 82.53 72.19 87.15 79.6Y 0.5922 0.88B5
Bu, Co 83.00 74.10 86.99 80.54 0.6057 0.88J2
B, Co, S3 84.12 69.33 90.72 80.03 0.6194 0.8924
B, Co, H, S3 84.29 69.33 90.98 80.16 0.6231 0.8940
A, Aa, B, Co, P 84.47 70.48 90.72 80.60 0.6287 89
A, Aa, B, Co, No, P 84.59 70.29 90.98 80.63 0.63[L00.8961

As shown in Table 4.4, the highest performance oreaswere obtained by using
the optimal subset of six features, including tieebhemical features Co and P (polarity),
the structural features A (conformational paraméieralpha-helix), B and Aa (average
area buried on transfer from standard state toetblprotein), and the other biological
feature No (number of codons for an amino acidas€ifier performance was not further
improved significantly by including additional semnce features (data not shown).
Interestingly, the optimal feature subset did mafiude the best single feature S3. The
classifier constructed using the optimal featurdssti achieved 80.63% prediction
strength with MCC = 0.6310 and AUC = 0.8961. In & 6.3, this classifier's ROC
curve is compared with those of two other classfi@ne constructed using the best

single feature S3, and the other trained withred|20 features.
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Figure 4.3 ROC curves for sequence-based predictigorotein stability changes using
multiple sequence features.

The results suggest that classifier performance bm®nhanced by combining
certain sequence features for input encoding. Ti@nal six-feature subset contains
sequence features from different classes, espedimthemical features and structural
features. Each of these features may not be amradecscale of protein stability, but
when combined, they can outperform the best engbirieature (S3) for predicting

protein stability changes upon amino acid subsgbist
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Web server description

To make the accurate SVM classifier accessible hio Ibiological research
community, we have developed the MuStab web sdéhigr://bioinfo.ggc.org/mustab/).
Users can enter an amino acid sequence in FASTRAalhrand specify the position and
the identity of the substituting residue. The sysencodes the input sequence with the
optimal feature subset, and then calls the svmsi€jasrogram of the SVMlight software
package to classify the protein stability changesnuthe amino acid substitution using
the best SVM model developed in this study.

The output report returned from the MuStab web eseincludes the information
about the query sequence and amino acid substifutie prediction result, and the
prediction confidence. The prediction result indésaeither decreased or increased
protein stability. The prediction confidence is &&®n the SVM output and computed as
(1 — s), where s is the expected sensitivity fosifpee predictions or the expected
specificity for negative predictions if the SVM put is used as the threshold in the ROC
analysis (Figure 4.3). An example output repominetd from the MuStab web server is
shown in Figure 4.4 for the G56S substitution adrepine synthase (PDB: 3C6K), which
causes X-linked Snyder-Robinson syndrome [28]. Babstitution is predicted to

decrease protein stability, and the prediction ictamice is 82.32%.
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Figure 4.4 Sample output from the MuStab web server

CONCLUSION
In this study, we have developed a machine learmieghod for predicting
protein stability changes upon amino acid sub#bimst The novelty of our method lies in
the use of sequence features representing biologimawvledge for input encoding.
Twenty sequence features were examined for SVMiikasconstruction, and several of
them were shown to be highly relevant for protetiabgity prediction. However, the
SVM classifier constructed using all the twentytéwas did not show high predictive
performance. We thus used a wrapper approach &ure selection, and identified the

optimal subset of six sequence features for inpegbeing. The best classifier achieved
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the overall accuracy of 84.59% with 70.29% senigjtiand 90.98% specificity. This
SVM classifier is compared favorably in performanegh the previously published
models for protein stability prediction. Since theevious studies did not utilize the
biological knowledge for classifier constructiomranethod can be used to complement
the existing methods to predict the consequencemmfo acid alterations in disease
candidate genes and may provide useful informafmnelucidating the molecular
mechanisms of human genetic disorders. We haveditneloped the MuStab web server
(http://bioinfo.ggc.org/mustab/) to make our cléssiaccessible to the genetics research

community.
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CHAPTER FIVE
MODELING EFFECTS OF HUMAN SINGLE NUCLEOTIDE POLYMORHISMS
ON PROTEIN-PROTEIN INTERACTIONS
ABSTRACT
A large set of 3D structures of 264 protein-proteamplexes with known non-

synonymous SNPs (nsSNPs) at the interface was umirig homology-based methods.
The nsSNPs were mapped on the proteins’ strucamestheir effect on the binding
energy was investigated with CHARMM force field ambntinuum electrostatic
calculations. Two sets of nsSNPs were studied:adseannotated (OMIM) and non-
annotated (non-OMIM). It was demonstrated that OMIBBNPs tend to destabilize the
electrostatic component of the binding energy,antast with the effect of non-OMIM
nsSNPs. In addition, it was shown that the chariglesobinding energy upon amino acid
substitutions is not related to the conservationth® net charge, hydrophobicity or
hydrogen bond network at the interface. The resnttxate that, generally, the effect of
nsSNPs on protein-protein interactions cannot feglipted from amino acids’ physico-
chemical properties using the structure-based mdstta@one, since in many cases a
substitution of a particular residue with anotharira acid having completely different
polarity or hydrophobicity had little effect on thending energy. Analysis of sequence
conservation showed that nsSNP at highly consepesdions resulted in large variance
of the binding energy changes. In contrast, amicid gubstitutions corresponding to

nsSNPs at non-conserved positions, on average,v¢rfeund to have a large effect on

“Teng S, Kundrotas P, Madej T, Panchenko A, AlexoMEdeling effects of human SNPs on
protein-protein interactions. Biophysics. J. 2088(6):2178-2188.
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binding affinity. pKa calculations were performedda showed that amino acid
substitutions could change the wild type protonalipfrelease and thus resulting to

different pH-dependence of the binding energy.

INTRODUCTION

Each individual possesses unique characteristiestimg their genotype, i.e. the
uniqueness of the individual's DNA [1]. For examp&most all nucleotide bases
(99.9%) are exactly the same in all people; howether remaining 0.1% account for
about 1.4 million individual-specific differencesir{gle nucleotide polymorphism: SNP)
that occur in humans. These differences may bemille coding or non-coding regions
of DNA and may or may not result in amino acid ays) which, in turn, can either be
harmless or disease causing [2]. From a computdtioiophysics point of view, SNPs
resulting in amino acid changes (hon-synonymous:3NBNP) are of particular interest
because such changes should affect the stabilityproteins and protein-protein
complexes.

From a biological perspective, the major factortdbnting to the complexity of
biological systems is the high degree of conndgtimn the molecular scale. In particular,
many proteins responsible for cellular functionly om interactions with other proteins to
perform these functions. If the structures of theesponding protein-protein complexes
are available, then we will have the opportunityapply theoretical biophysical methods
to model the energetics of protein-protein compek®-9] and apply the results in

structure-based drug design [10]. Thus, understangrotein-protein interactions and
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their roles in cell function will help reveal theotacular mechanisms of protein
recognition and model of the effect of perturbatiam biological network, in particular,
the effects of nsSSNPs on protein-protein interastid 1-14].

The effects caused by nsSNPs can be broadly grougedfour distinctive
categories [15] (although the effects may be miytutdpendent) depending on what type
of system or process have been affected by nsS{psprotein folding, stability,
flexibility and aggregation; (b) functional sitegaction kinetics and dependence on the
environmental parameters, such as pH, salt corat@rtrand temperature; (c) protein
expression and subcellular localization and; (atgin-small molecule, protein-protein,
protein-DNA and protein-membrane interactions (@@ew and references within [15]).
Among these categories, the effect of nsSNPs oteiprstability [16-18] attracted most
of the attention of scientific community. The megisms of the effect of nsSNPs on
protein stability could vary from geometrical camastts (the mutation of a small side
chain to a bulky side chain in the protein intérioto physico-chemical effects
(replacement of hydrophobic residue with polar des), to the reversal of a charge
within a salt bridge, or to the disruption of hygem bonds [19]. For example, the
nsSNPs resulting in changes of functionally impartesidues should be almost always
deleterious as they would block protein functiof][21]. However, since there are only
a few functional residues within an entire protsgguence, the probability for such
mutations is low [22]. The possibility of a nsSNfeating the subcellular location of a
corresponding protein was reported in a recentystuldich showed that in about one

percent of the cases the disease is caused byirpsatiecellular delocalization [23]. In
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addition to the above mentioned effects, nsSNPs d@nge the kinetics of the
corresponding reactions as it was experimentalbyshin case of patients with chronic
lymphocytic leukemia [24], inflammatory diseas®2S][or to affect the pharmacokinetics
[26], however modeling these effects is computatilyrdifficult. However, although the

studies of consequences of nsSNPs on proteinsdravwan much attention recently, the
effect of nsSSNPs on protein-protein interactions hat been extensively investigated.
Perhaps this is due to the lack of sufficiently m&@D structures of protein-protein

complexes for which nsSNPs are known.

The progress recently made in experimental 3D &tracdetermination, led by
the Structural Genomic Initiatives [27], in additicco advances in computational
modeling [28, 29] made it possible to predict tiffects of nsSNPs by mapping them on
the corresponding structures or on the protein pratein-protein models. Indeed,
structural information was used in many studieseteeal the role of SNPs on protein
function and stability. A recent study on humanMBS and disease-associated mutations
in orthologous genes revealed that approximateBb 03 disease-associated mutations
were in protein sites that most likely affect pmtéunction [30-33]. Moreover, it was
found that disease mutations are much more likelpdcur at sites with low solvent
accessibility [32]. Recently, a structure-based rapgh that models residue-residue
interaction networks was reported [34]. It applggdph theoretical measures to predict
the residues that are important for structuraliktabThese results imply that nsSNPs
impact protein function and stability by affectitigeir structures, which in turn might

cause changes in protein-protein or protein-ligateractions.
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It should be mentioned that most of the effortthm field so far have been aimed
at predicting deleterious mutations, since suchdiptens could be used for early
diagnostics and potential drug discovery [23, 3,, 3-38]. However, the goals of our
study are: (a) to investigate the possibility tdeéease-causing and harmless nsSNPs
affect protein-protein interactions differently,catb) to reveal the basic principles of the
effects of naturally occurring interfacial nsSSNPRs protein-protein interactions. The
rationale behind our approach is that any mutadioa protein-protein complex interface
should, in principle, affect somehow the binding@m®y and even harmless nsSNPs can
also cause dramatic changes in the phenotype iresuit natural differences among
individuals. To deduce the effect of nsSNPs onginofunction, further investigation of
the effect of nsSNPs on protein-protein interactiwork is needed, combined with
detailed analysis of the importance of the pertdritgeractions for normal cellular
function.

In this study, we use homology modeling to condti®D models of a large
number of protein-protein complexes (264) with knomsSNPs at their interfaces. The
effect of amino acid substitution resulted from N&S on the protein-protein binding
energy was calculated using a standard force f€EHARMM [39]), in contrast to
previous studies that applied descriptors or senpiacal functions. In addition, specific
attention was paid to possible ionization changekcharge reorganization caused by the
nsSNP mutations. The calculated effects are groupgedategories that describe several
distinctive mechanisms of nsSNPs affecting the gerters of protein-protein interactions.

The role of charge relaxation is also investigated.
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METHODS

Sequence alignment, template detection and modldirbm

The first task was to extract query amino acid segas associated with nsSNPs
and to search for available 3D structures or forsdDctures that are homologous to the
guery sequences. The locus-id files for humans wevenloaded from build 126 of the
dbSNP database, which contains the SNPs assoeittedene names and locations on
genes. These files also included accessions faeipr@equences associated with the
SNPs. The protein sequences, which were found tadseciated with SNPs, were
compared against the set of human protein struet(petential structural templates)
(NCBI MMDB) [40], using Blast algorithm [41]. Thoseuman structures which were
found at an E-value of 10e-5 or better were kegtlteng in 5.6 millions alignments. If a
3D structure of a query protein was available, ramleting was required. Query proteins
that matched any of the entries in the OMIM datab§2-44] were marked as
“annotated” disease-causing. The rest of the entmere considered undetermined with
respect to possible disease association and age@fto in the manuscript as “non-
annotated” or “non-OMIM”.

At the second stage of processing, additional riaitevere used requiring that
80% of the query sequence to be mutually aligndtl Whie structural template (nsSNPs
that were not mapped in the alignment were discBrd@nly templates corresponding to
protein-protein (or domain-domain) complexes wesedufor modeling 3D structures of
nsSNP containing sequences. During this procesgeggcorded whether or not the SNP

was on the interface for each chain/domain painas done using query-template Blast
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alignments. Interface residues were defined asetbeing 8A from each other (distance
was measured between C-alpha atoms) on differenh®llomains[45]. These positions
were flagged as interfacial residues.

The detected templates and corresponding sequdigrenants were used as
input for the homology modeling. The 3D models wleudt with program NEST using
the sequence alignment between queries and stalictemplates [46]. Identical
alignments were discarded. The number of models fouidifferent degrees of modeling
difficulty were as follows: (1) 1257 models werellbby side chain replacement where
guery and template sequences differed only by arésrues and the models were built
by mutating corresponding residues in the origatain and (2) 5274 models were built
with the NEST program. Because of the restrictikgnanent criteria applied above, in
most of the cases, the alignment had very few gegestions, and thus the models were
very close to the template structures. In totaBl6%rotein models were constructed
which corresponded to the first allele (the firdéla in case of OMIM is the dominant
allele, while in case of non-OMIM it is simply tHest allele in the list). Then the
monomeric proteins models were joined to the cpoerding partners using the 3D
structure of template protein-protein complex. Tinedels of complexes were then
evaluated according to the flagged interfacial fpms$, and only models with nsSNPs
occurring at the interface of protein-protein coexgls were retained for our study,

resulting in 264 model structures.
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Energy minimization

The structures of the 264 complexes were subjeotéite TINKER package [47]
using the CHARMM27 force field parameters [39]. Ttheimization was done running
the TINKER’sminimize.xmodule. Theminimize.xmodule performs energy minimization
using the Limited Memory BFGS Quasi-Newton Optinima algorithm [47]. The
implicit solvent was modeled using the Still Getieesl Born model [48], and the
internal dielectric constant was set to 1.0 to bescstent with the CHARMM27 force
field parameters [49]. The convergence criteriplied was RMS gradient per atom =
0.01. For energy minimization calculations, weizgtl a High Throughput Distributed
Computing Resource, CONDOR, originally developedhat University of Wisconsin-
Madison (www.cs.wisc.edu/condor), which is now &fale at Clemson University with
more than 1,080 single CPUs of computational power.

The minimized 3D structures of the complexes wittired acids corresponding to
the first reported allele in the dbSNP databaseewtsen used to generate the
corresponding nsSNP mutations. Utilizing the SCA@gpmm [50], the mutations,
corresponding to either the second allele in th&®NM® database or the disease-causing
nsSNP in OMIM database, were introduced using theve minimized model 3D
structures, while keeping the rest of the structigiel, including the hydrogen atoms. In
case of homooligomeric-complexes, the nsSNP mustiwere introduced on both
monomers. Then, the resulting 3D structures wereamized again with TINKER using

the same protocol that was described above.
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Binding energy calculations

The binding energy was calculated with the so-dalfgid body approach
keeping the structures of the monomers as they wdlee complexes. Such an approach
is advantageous because the internal mechanicajieseof the unbound and bound
monomers are the same and do not have to be irclndée calculations of the binding

energy. Thus, the single point calculations reisubinding energy:

AAG(binding) = AG(compleX— AG(A) — AG(B) (5.1)
where AG(complex),AG(A) and AG(B) are the unfolding free energy for the complex,
monomer A and monomer B, respectively. The totaldinig energy and its two
components (electrostatics and van del Waals) waralysed. The electrostatic
component of the binding energy is the sum of tbal@nbic and reaction field energies

as described in detail in [51, 52]:

AG, (X) = G(coul) + AG(rxn) (5.2)
where X stands for the complex® and B monomers, respectivelyG(Coul) is the
Coulombic interaction energy, a{rxn) is the reaction field energy, which is calculated
with Delphi program [51, 52].

The total binding energy is:

AG,, (X) = AG(bond$ + AG(vdW) + AG(el) (5.3)
whereAdG(bonds)are the bonded energy term§;(vdW)is the van der Waals energy and
AG(el) is the Coulombic interactions and solvation enempiculated with the

Generalized Born (GB) model. However, since we &etbghe rigid body approach,
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AG(bonds)for the complexes and free monomers is the samheamcels in eq. (5.3). All
of the above energy terms were calculated withathelyze.xmodule in TINKER. The
non-polar component of the binding energy was noluded in the calculations because
the single point mutation is not expected to chahgeinding interface significantly.

Changes in protein stability caused by the nsSNRtion were calculated with
respect to the energy of the target (the first resgballele or wild type allele in case of
OMIM nsSNPs) protein. The corresponding quantityAis4G(snSNP),as described
below:

AAAG(snSNP = AAG(target: binding) — AAG(snSNP binding (5.4)

The changes of the total binding enefgAG(nsSNP))as well as the change
of its vdW (444G,q(nsSNP)) and electrostatic AAA4G¢(NSSNP)) components are
analyzed in this work. If the change is negativgs indicates that the nsSNP mutation
weakens the affinity and destabilizes the comphMle if the change is positive then the

mutant binding is tighter.

Multiple sequence alignment

Protein sequences from different species were doadeld from the NCBI Entrez
database, using GENE search option and submitech ef the gene’s ID as a query.
Only cases for which a protein was found in moentfour species were considered, and
the MSAs were built resulting in 227 out of thealoP64 sequences. We used EBI’s
Clustalw2 web service (http://www.ebi.ac.uk/Todlsstalw2/index.html) to perform

multiple sequence alignments (MSA).
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pKa calculations of the ionizable states and protiotake/release

The pKa values of the ionizable groups were catedlausing the Multi
Conformation Continuum Electrostatics (MCCE) methasd previously described [53-
55]. Recently, we demonstrated that MCCE can Heedi to calculate pKa'’s using 3D
structures that were built by homology [56]. Cadtidns were performed for all 264
protein complexes corresponding to the first aJleled another set of pKa calculations
were done for the protein complexes with correspgndnsSNP mutation. The
calculations were also performed on the correspmndinbound monomers, which
structures were taken from the corresponding prgiedtein complex. These results
were used to predict the changes of the titratabbeips’ ionization states caused by
complex formation. For each complex, we calculatesl difference of the net charge

(49(X)) of the complex and of the unbound monomers, cgltetbn uptake/release:

AQ(X) =q(X :complex—q(X: A —-q(X:B) (5.5)
where X is the first allele or nsSNP variant, and the net charge of the complex
and of monomer A and B, respectively, calculatethwWACCE at a pH of 7.0. We chose
a pH of 7.0 because there was no information oftwhtne physiological pH for each of
the proteins studied in this manuscript. In additiwe analyzed the proton uptake/release
difference between complexes with the first alkee the nsSNP variant:

AAq = abgAq(dominantallele)- Ag(nsSNP)) (5.6)
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P-value calculations

The P-values were calculated performing t-testgSJ The distributions of the
corresponding changes of the binding energy andoitsponents in case of OMIM and
non-OMIM sets were checked against the null hypothd arge P-value indicates that
the corresponding distribution is similar to thermal distribution (null hypothesis),
while small P-value points out a deviation fromdam distribution. Typical cut-off for
P-value is 0.01, i.e. distribution with P-value disrahan 0.01 is considered significantly
different from random. The distribution of the \mrce of AAAG(NsSSNP) and
A44G¢(nsSNP)was checkedagainst the null hypothesis that assumes equahnees.
The S1% scale was divided into five bins, corregpiog to cases with SI% smaller than
20%, 20% < S1% <40%, 40% < S1% < 60%, 60% < S1%0<&hd 80% < Sl1% < 100%.
The variance of the corresponding energies wasikeaéd within each of the bins and the
resulting P-value evaluated. In case\afy, six bins were considered: 0.0A4q < 0.05,
0.05 <AAQ < 0.10, 0.10 «AAq < 0.15, 0.15 AAQ < 0.20, 0.20 AAQ < 0.25 and\Aqg >
0.25. Then, the variance of the correspondinggeemwithin these bins and the P-value

were calculated.

RESULTS AND DISCUSSION

Distribution of binding energy

The changes in the total binding energy and itstedstatic and vdW components
due to the nsSNPs were calculated for all compléxdabe dataset (Figure 5.1, Table

5.1). The distributions oflAAG:(SNSNPYor OMIM and non-OMIM cases are shown in
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Figure 5.1a. It can be seen that the distributibage similar shapes, showing slight
tendency toward negative values. The mean valueteofrostatic A44G¢(SNSNP))and
vdW (444G.aW(SNSNP))components of the binding energy changes are tutatig
different for OMIM and non-OMIM cases (P-values dess than 0.006 and 0.01
respectively), although this is not the case ferttital binding energy. Figure 5.8hows
the distribution 0fA44G¢(snSNP)for both OMIM and non-OMIM cases. One can see
the long negative tail of the distribution of OMIb&ses for which nsSNP substitutions
destabilize binding. Moreover, the mean of OMIMtdimition of electrostatic energy is
significantly different from zero and shifted towlarnegative values although this is not
the case for non-OMIM distribution of electrostatomponent (Table 5.1). This
indicates that, overall, there is a tendency for IIMisSNP substitutions to weaken
electrostatic component of the binding energy,algh there are many examples where
disease nsSNPs make binding tighter as well. Tleetei less pronounced for the total
binding energy.

Table 5.1: Parameters of distributions of total dimg energy difference and its

components together with the corresponding P-va(tles null hypothesis that mean
value is greater or equal to zero is rejectedviRse is less than 0.01)

AAAG AAAG AAAG

Group No mean | std T P-value | mean | std VdWP-vaIurs mean | std 7 P-value
OMIM 45 | -1.65 | 3.8C | 0.00¢ | -1.0z | 3.3z | 0.0z | -2.35 | 5.51 | 0.00:
Non-OMIM 21¢| -0.7C | 4.3¢ | 0.00¢ | 0.1¢ | 3.0¢| 0.7¢ | -0.45 | 43¢ | 0.0¢
Polar (P) 62 | -0.27 | 3.77 0.2¢ 0.3¢ | 3.9¢ 0.77 -0.85 | 4.74 00¢
Charge (C) 76 | -2.01 | 6.3¢ | 0.00¢ | -0.3% | 2.2¢ 0.1 -1.37 | 6.5¢| 0.0
Small (S) 94 | -0.74| 2.3¢ | 0.00z | -0.0z| 24¢| 04t | -0.7¢ | 2.5¢ | 0.00z
Hydrophobic | 32 0.3z | 2.5C 0.77 -0.3€ | 4.4¢ 0.3z 0.74 | 3.2t 0.0¢
(H)
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Figure 5.1: ROC Distribution ad44G¢(nsSNP)aNdA44G(nsSSNRF for OMIM and
non-OMIM cases. OMIM: black bars, non-OMIM: whitars.

From an electrostatic point of view, replacing thild type amino acid (dominant
allele) at a protein-protein interface with anoth@mino acid (amino acid which
corresponds to NnsSNP) is expected to be a degtabgilevent. Indeed, in our previous
study of 654 protein-protein and domain-domain clexgs, we demonstrated that the
electrostatic component of the binding energy tentie optimized [60] with respect to
random shuffling of the amino acid sequences of dbeesponding binding partners.
Thus, since wild type (dominant allele) interacticacross the interface are optimized,
any change should make the binding affinity weakadeed, the destabilization effect
upon disease substitutions is the most pronounte@dse of electrostatic component of
binding energy 444Gg distributions is shifted toward negative valueshw?-value of
less than 0.003). However, the tendency of OMIM atiahs to destabilize electrostatic
component of the binding energy is not very strarigch perhaps stems from the fact

that nsSNP substitutions are not random, rather @ne constrained mutations accepted
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by the cell. At the same time, for non-OMIM suhsiiins the electrostatic component
should be optimized for both alleles and conseduy¢iné mean oAAG(NSSNP)s not
statistically significant different from zero (Plua is 0.06).

Despite the differences, in majority of the cadesth OMIM and non-OMIM
substitutions were calculated to have little effentthe binding. Since we investigate
nNsSNP substitutions at the interface of protein glewes, such an observation deserves
further investigation. The next sections invesggabssible patterns and correlations
between different types of amino acid substitutiansl their calculated effects on the

binding energy.

Effect of nsSNPs on binding energy with respeeinono acid characteristics

In this section, four different classes of amin@saavere considered based on the amino
acids’ physico-chemical properties: polar (S, T,M,Q, Y), charged (E, D, K, R),
hydrophobic (W, I, L, M, F) and small (P, A, G, ¥). We adopt such a simplified
classification to ensure that each class has enoetesentatives in our dataset. Of
course, many other classifications exist, includmgre detailed definitions of the
subgroups. Below we investigate the effects of ri3&Nitations on thdAAG(SNSNP),
AA44Gg(NsSNP)and 444G (nsSNP)separatelyfor each class (more detailed analysis
including analysis of the effects of substitutiohstween classes is given in the

supplementary results).
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Figure 5.2: lllustration of nsSNPs at interfacepobtein-protein complexes. (a) TTR
(transthyretin, Gene ID: 4507725) Red: A ChailyeB E Chain. Green: Ser in A85,
Yellow: F in A85, Magenta: N in E63. (b) DYNLRB1 ¢dblock-1, Gene ID: 7661822)
Red: A Chain of target, Light Red: A Chain of SN&iants. Blue: B Chain of target, Sky
Blue: B Chain of SNP variant, Green: K in A75, s\t E in A75, Magenta: D in B61 of
target, Pink: D in B61 of SNP variant. (c) HBBeta globin, Gene ID: 4504349)
Red: B Chain, Blue: C Chain. Green: V in B34, YelioL in B34. (d) GSTM2
(glutathione S-transferase M2, Gene ID: 4504175)Red: A Chain, Blue: B Chain.
Green: M in A130, Yellow: K in A130, Magenta: M B0
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Binding energy changes caused by a substituti@pofar amino acid

There are 62 cases in our dataset for which a pefadue corresponding to the
first allele and located at the interface of thetgin-protein complex is substituted by
other variant (Table 5.1). Overall, there is ndistigally significant bias for energy to be
shifted upon substitution towards lower or highalues.

From an electrostatic point of view, polar-another amino acid substitution
tends to be an unfavorable event in the majoriticades (P-value=0.09). In another
words, removal of a polar group at the interfacespite structural refinement, makes
electrostatic binding energy less favorable. Furdrelysis of such cases showed that a
removal of a polar residue disturbs the hydrogemdboetwork at the interface.
Substitution of a polar residue with either a smallarged or hydrophobic groups tends
to make electrostatic component of binding weak®&rsmall residue will create
energetically unfavorable cavities, a charged tesidill pay large desolvation penalty
and a hydrophobic residue will not be able to ptevihe required hydrogen bonds.
However, exceptions are cases when a polar growgplaced by another polar residue
whose side chain can satisfy the required geomiketye last case, the electrostatics may
not change or even become more favorable.

A particular example gbolar2hydrophobicsubstitution is shown in Figure. 2a.
It demonstrates that removal of a polar residue sudastitution with a hydrophobic
residue results in the placement of the hydrophsitie chain in a polar environment, an
event that weakens the binding affinifytypical case is Transthyretin (TTR), which is a

plasma protein that binds retinol and thyroxine .npalistinct forms of amyloidosis are
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related to different nsSSNPs in TTR. For example, tisSNP (refSNP ID: rs11541784)
results in a change of the polar (Ser) residue atbydrophobic residue (Phe). The
nNsSSNP Phe residue is located in a polar environmedtreduces the binding affinity by

0.717 kcal/mol.

Binding energy changes caused by a substituti@cbérged amino acid

There are 76 cases in our dataset in which a ebargsidue located at the
interface of the target protein-protein complesubstituted in the nsSNP variant (Table
1). The values of the means af44G(NSSNP)and its electrostatic component
AAAGg(NsSNP)are negative and this bias is statistically sigaiit (P-values 0.004 and
0.04, respectively) which means that the targetemmeprotein complexes are more stable

compared to the nsSNP variants.

Substituting a charged with another residue igral; an unfavorable event with
respect to protein-protein association (Table S5Rgmoval of a charged residue that
forms a salt bridge across the interface in thgetacomplex leaves the charged partner
without favorable pair-wise interactions. The remmag charged residue pays a huge
desolvation penalty upon complex formation, whiohthe nsSNP variant may not be
compensated by favorable pair-wise interactionss Ppovides an intuitive explanation
why distributions of both the1l44Gi(nsSNP)and 444G (nsSNP)are shifted toward
negative values .

The mutation of a charged amino acid to anotheargdd amino acid

(charged=charged is an interesting case. The mutation could pves#re charge (Asp
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& Glu; Lys & Arg) or invert the charge (Asp,Gi&> Lys, Arg). Presumably, a mutation
that preserves the charge should have a lesset efiethe binding energy as compared
with charge-reversal mutations. However, our anslgsowed that this is not always the
case. Overall, all mutations of the target changsitdue to another charged residue were
found to be unfavorable events (Table 5.1). Evethéncase of Glu to Asp substitutions,
like aldolase B (s2525, Glu to Asp in position 64hich is a mutation (refSNP ID:
2854709) that preserves the net charge of the @mftle change of the binding energy
is huge: 444G;(NsSNP)= -9.06 kcal/mol,444G,qW(nSSNP )= -1.58 kcal/moland
AAAGg(NSSNP)= -11.30 kcal/mol. This is due to the fact that #ide chain of Asp is
shorter than the Glu side chain, and the nsSNBdated Asp cannot form a strong salt
bridge with the original partner Lys in position®a@f the other chain in this homo-dimer
complex. Another example (Figure 5.2b) is the aalseharge reversal in Roadblock-1
(DYNLRB1), which is a homo-dimeric protein that mde involved in tumor
progression, as the up-regulation of this gene ssoa@ated with hepatocellular
carcinomas. The corresponding nsSNP (refSNP 1I1:537531) of this protein results in
the change of a Lys amino acid to a Glu amino atithe complex’s interface. In the
target protein complex, the distance between Lys3% chain A and its partner Asp61
from chain D is only 1.62 A, resulting in a veryostg hydrogen bond and pair-wise
electrostatic interactions. However, in the nsSidRant, the positively charged Lys is
replaced by Glu, a negatively charged residue. tDusinimization, the distance between
the nsSNP residue and the original Asp61 from ciaimcreases to 9.99A due to the

repulsive charge-charge interaction between theegatively charged groups (Figure



5.2b). This reduces the effect, but the bindingrgynaes still much less favorable as
compared with the dominant allele. The correspapdienergy changes are
AAAG(nNsSNP) = -11.13 kcal/mol, 444Gyau(NSSNP) = -4.42 kcal/mol and
AAAGg(NSSNP)= -3.08 kcal/mol. This is an example of a strualtwelaxation that

reduces the effects of charge reversal.

Binding energy changes caused by a substituti@sofll amino acid
There are 94 cases in our dataset for which al sesadiue located at the interface
of the target protein-protein complex is substduteto the nsSNP variant (Table 1).
Overall, the total binding energy and electrostatimponentsre statistically significant
(both P-values are 0.002) shifted toward negatigkies which indicates that nsSNP

destabilizes the complex.

Substitution of a small with another amino acidh@ét always will result in
sterical clashes. The volume of a small amino mcrduch smaller that the volume of the
other residues. Thus, there will be no room forkbpuhmino acid side chain at the
interface. Such a replacement will cause distorabthe interface and will weaken the
binding (Table 5.1)A typical example is the histidine triad nucleotiieding protein 1
(HINT1), Gene ID: 4885413. The nsSNP codes for tGhArg substitution in position 92
of B chain. The substitution introduces a new chdrgesidue, which pays large
desolvation penalty and the resulting change iretbetrostatic component of the binding

energyAAAG(nsSNPJs -9.23 kcal/mol).
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However, there are also opposite examples, indg#bhat protein complexes can
tolerate small amino acid substitutions at therfates. A typical example is Hum#n
globin (HBB), which regulates developmental expi@ssThe corresponding nsSNP
(refSNP ID: rs1141387) in this protein replaces @ késidue with a Leu amino acid.
Despite the difference in these two amino aciddunes, the structure of the complex
does not change by much, resulting in very smatgndifferences444G(NSSNP)= -
0.16 kcal/mol444G,qw(nsSNP) =-0.44 kcal/mol and144G¢(nsSNP)= -0.00 kcal/mol
(Figure 5.2c). The main reason for this is thahlsle chains are partially exposed to the

solution, and there is room for a larger Leu sidaic.

Binding energy changes caused by a substituti@hgéirophobic amino acid

There are 32 cases in our dataset in which a pdtoc residue located at the
interface of the target protein-protein complesubstituted by the nsSNP variant (Table
1). The mean values of all energy distributionsravesignificantly different from zero.
In general, substituting a hydrophobic residuehatihterface with another residue does
not have large effect on protein-protein bindingriaps this is due to the fact that
hydrophobic groups do not form specific interacsiomhus, the effect of a replacement
of a particular hydrophobic side chain with anottesidue depends on geometry of the
interface and the ability of the substituted sidein to form new interactions. For
example, a polar or charged residue, substitutingcaophobic one, could increase the
binding affinity only if the corresponding residueanages to create new favorable

interactions across the interface. If this doesaweur, then the mutation should weaken



the binding. Such a case is shown in Figure. 2dtaBiione S-transferase M2 (GSTM2)
is an important enzyme that contributes to the bhwdism of phase Il biotransformation
of xenobiotics. The corresponding nsSNP (refSNP rE1056799) changes the target
amino acid Met to Lys in position A130. Howevere thew charged residue cannot form
favorable interactions with any other residue asrtlse interface since it is in a
hydrophobic environment. As a result, the solvatass cannot be compensated for, and

the mutation weakens the binding.

Correlation of the calculated effect on the bindafiinity and residue conservation

Multiple sequence alignments (MSA) were used foyipgenetic analysis and for
determining the evolutionary relationships betwebfierent species. Only positions
corresponding to interfacial sites were considefegosition in the MSA that is totally
or highly conserved indicates strong evolutionamstraints, and the substitution of such
a highly-conserved amino acid is expected to hagrefEant effects on protein structure,
function and interactions. In contrast, an aminid #tat is not conserved among different
species is, perhaps, not crucial for the structfwuection and interactions of that
particular protein complex.

We began our analysis with a case corresponding toghly conserved site.
Position B34 in Humarfi-globin (HBB) is totally conserved among the spsdiigure
5.3a). The nsSNP causes a mutation that changeesdle to Leu. As result, the total
binding energy, van der Waals and electrostaticpmrants are more favorable in the

target complex compared with the nsSNP variant. ¢hwwesponding changes of the
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binding energy aretA4AG((NsSNP)= -0.94 kcal/molAAAG,q(NSSNP)= -0.10 kcal/mol
andA44G¢(nsSNP)= -1.12 kcal/mol.

Another example is GSTM2, glutathione S-transtefsl? (Figure 5.3b). Position
A130 is not conserved; in humans it is a Met resjdwwever, in other species the same
position is a Lys amino acid. The nsSNP inducesed ¥ Lys change in the human
protein, a mutation that is already seen in otpecees. Perhaps this explains why such a
drastic change (a hydrophobic to a charged groas)ittle effect on the binding affinity.
The corresponding changes of the binding energylas,(nsSNP)= -0.53 kcal/mol,

AAAGW(NSSNP) 0.28 kcal/mol andiA4Ge(NsSNP)= -0.26 kcal/mol.

Homo_sapiens MVHLTPEEKSAVIALWGKVNVDEVGGEALGRLLVVIY FWIQRFFESFGDLS 50
Pan_troglodytes MVHLTPEEKSAVTALNGKVNVDEVGGEALGRLLVVY PWIQRFFESFGDLS 50
Oryctolagus _cuniculus MVELSSEEKSAVIALWCKVNVEEVGGEALGRLLVVY PWIQREFESFGDLS 50
Bos_taurus -=-MLTAEEKARVT AFWGKVKVDEVGGEALGRLLVVY PWIQRFFESFGDLS 48
Ovis_aries --MLTAEEKAAVT GEWGKVKVDEVGAEALGRLLVVYPWIQRFFEHFGDLS 48
Rattus_norvegicus MVHLTDAEKRAVNGLWGKVNPDDVGGEALGRLLVVI PWIQRYFDSFGDLS 50
Mus_musculus MVELTDAEKRAVSCLWGKVNSDEVGGEALGRLLVVY EWTQRYFDSFGDLS S0
Gallus_gallus MVEWSAEEKQLITSVWSKVNVEECGAEALARLLIVYPWIQRFFASFGNLS 50
T T L L L T I LS T
Homo_sapiens ENQFMDSRMQLAKLCYDPDFEKLKPE YLQALPEMLKLYSQFLGKQPWFLG 150
Macaca mulatta ENQLMDNRMOLARLCYDPDFEKLKPEYLEGLPEMLKLYSQFLGKQPWELG 150
Bos_taurus ENQVMDVRFAMARICYSPDFEKLKPGFLKEIPEKTKLFSEFLGKRPWFAG 150
Oryctolagus_cuniculus ENQLMDNRFQLVNVCYSPDFEKLKPEYLKGLPEKLQLYSQFLGSLEWEAG 150

Kbk dh ke 0 ok kAkkAAkEh ke okk cakokedkd  hkE #

b
Figure 5.3: Multiple sequence alignment (MSA). Tiank frame is nsSNP position. (a)

HBB (beta globin, Gene ID: 4504349). (b) GSTM2u(gthione S-transferase M2, Gene
ID: 4504175)
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The magnitude of the binding energy change asnatiin of the degree of
conservation is shown in Figure 5.4. It can be ghan as the degree of conservation
increases (calculated in terms of percent ider&i8f) the maximal amplitude of both the
AAAG(nsSNP)andthe 444Ge(nsSNP)ncreases as well (illustrated by the broken lines
in Figure 5.4). The effect culminates at high SB#4 > 80%) where the variance of the
magnitude of both theAAG,(nsSNP)andthe A44G¢(NnsSNP)s significantly different,
i.e. the null hypothesis about the equality of @ades between the bins was rejected with
P-value<0.00001 (see Methods section). Note thatctrresponds to significant variance
of the binding constant resulting to either inceddscrease or no change of the affinity.
The points located close to the horizontal axis eadesponding to highly conserved
positions (Figure 5.4) indicate that in some caaesutation of a highly conserved amino
acid may not affect the binding affinity. In thesases, the effect depends on the
geometry of the interface and where the site isaged. These highly conserved sites are
predominantly located at the periphery of the bigdinterface and apparently are not
important for the binding affinity. Figure 5.4 pides indirect support demonstrating that
the calculated effects are reasonable, since ge l@nding energy change was calculated

to be associated with nonconserved positions iMBA.
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Figure. 5.4: The change of the binding energy fasietion of the amino acid
conservation (S1%). The broken lines are guides$tfereye and follow the maximal
amplitude of binding energy change). )AG(NsSSNR. (b) AAAG(NSSNP)

Effect of nsSNPs on proton uptake/release

Figure 5.5 shows the change of the corresportuiimijng energy as a function of
the absolute difference of the proton uptake/reldas target complexes and an nsSNP
variant calculated at pH = 7.0. No correlation ket either the magnitude or variance of
the binding energy change andq was found. At the same time, it can be seennttost
AAq are close to zero, indicating that at least arcaumpH of 7.0 the pH-dependences of
the binding energy are the same for the target é®ognd the nsSNP variant. However,
this is not necessarily the case for the entiredppendence. At the same time, there is
significant percentage of cases in which thg is different from zero. This indicates

that nsSNP mutations not only change the bindireyggnbut also result in a different
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pH-dependence of the binding. This could have aifstgint physiological importance;

however, there is practically no experimental datailable for comparison.

Figure 5.5: The change of the binding energy asation of calculated proton
uptake/release (absolute valueAdly). (a) AAAG(NSSNP. (b) 444G (NSSNP)

In general any substitution can lead to ionizatbanges. The above results indicate
that an amino acid substitutions correspondingsSNPs not only change the binding
energy but could also result in changes in thezation states of the titratable groups.
Such an effect could occur not only when a titrigajroup is involved in the target
nsSNP mutation but could also occur in each ofdother cases as well. This is because
any substitution changes the geometry of the mderfand thus affects the electrostatic
potential of all ionizable residues. However, inststudy we did not perform charge
relaxation, i.e., no attempt was made to adjusteék&lues’ ionization states according to
the pKa calculations because the calculated propoake/release is a fractional number.

Modeling fractional ionization in single point calations is impossible and any attempt
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would be an error (see for details [61]). Howevarmore sophisticated approach
involving ensemble presentation could take intooaat these ionization changes and
will result in a reduction of the magnitude of teergy change caused by the nsSNP
mutation. Thus, all of the data points (Figure.)5c®rresponding tad4q that are
significantly different from zero may get closer4dAG (nsSNP) 0, i.e., closer to the
horizontal axis. Perhaps this is an effect thauocem vivo and results in toleration of
nsSNP mutations. Site-directed mutagenesis expetsrend complementary numerical
calculations have proven the charge-compensatdegtefi62-64]. Perhaps, the charge-
compensatory is the reason that maximayg (Figure. 5.5) is only about 0.6 units,

despite that some nsSNPs cause charge reversal.

CONCLUSION

This analysis is focused on nsSNPs located atiprpirotein interfaces. Protein-
protein interactions are essential for cell functiand nsSNPs affecting these interactions
are expected to have significant impacts on théepranteraction network. Indeed, our
analysis showed that OMIM and some non-OMIM nsSNghirhave a significant effect
on binding energy especially on the electrostabmmonent. Although the effect is
statistically significant, the majority of aminoidcsubstitution corresponding to nsSNP
does not affect the binding affinity by much. Thibservation should be taken with
caution. A small change of the binding affinity bBykcal/mol or even less could still

disrupt the functionality of the interaction netkoor change the kinetics of the
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corresponding reaction [24, 25]. However, invediiga this effect requires modeling

protein-protein networks, a task that is far beythedgoals of the present study.

Two data sets were considered in this study: sSNat are known to be disease-
causing (OMIM dataset) and nsSNPs that were nattated to be disease-causing (non-
OMIM). The distributions of the change in the bimglienergy and its components in both
the OMIM and non-OMIM cases were found to be déferalthough the difference is
small. However, looking at the electrostatic congrarof the free energy we found that it
is significantly shifted toward negative values @MIM nsSNP, this is not the case for
non-OMIM nsSNPs. This indicates that disease-cgusisSNPs tend to destabilize

electrostatic component of protein binding enengyontrast with non-OMIM nsSNPs.

Although large number of nsSNPs did not affeatgin interactions by much
(perhaps this shows the plasticity of protein ifsiees and their ability to tolerate amino
acid changes), an even larger fraction of the nsSiNdP affect the affinity. In fact, about
a half of nsSNPs destabilize/stabilize the com@dx¥emore than 1kcal/mol. In addition,
we find that 31.8% of nsSNPs affect protein-protaimding by more than 2kcal/mol and

23.9% by more than 3kcal/mol.

As was mentioned before, in the case of non-OMidnplexes there is no
information about which nsSNP is the dominant allélowever, our numerical protocol
builds a 3D model of the first allele in the lishinimizes the structure and then
introduces a side chain mutation at the nsSNP iposénd minimizes the mutant

structure. Could this bias the calculations? SindeiG(nsSNP)s a difference between
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two binding energies, the change of the order withply change the sign of the
A44G(nsSNP)If the numerical protocol is not biased, then wewt see that the effect
of, for example, a C mutation is opposite to the effect of ®@ variation. Comparing
the means reported in the supplementary resultsleTa.1, we can see that this is the
case, except for €H and H>C. (in both cases the means of the distributions of
A44G(nsSNP)were found to be negative). However, this is thalkst subset in our
study comprised of only 5 cases and many more ebesmare needed to draw a

conclusion.

Another important issue to address is how sessitie results are in respect to the
computational protocol and force field used. Regeme have demonstrated that the
calculations of absolute value of the binding epesge very sensitive to both
computational protocol and force fields [65]. Tleene study [65], however, found that
the distribution of the binding energy and the gehé&ends are almost insensitive to
force field and protocol used. Since the presemysis not aimed at computing the
absolute binding energy, but rather the changdefbinding energy upon single amino
acid substitution, the effects of force field armmputational algorithm are expected to

largely cancel out.

It is expected that a mutation that changes thgsipo-chemical property of a
position at the interface of the corresponding girsprotein complex should affect
binding affinity. However, our results indicate thhis is not necessarily the case. The
outcome of the mutation depends on a variety dabfacwhose interplay determines the

effects of the substitution. In addition, some poss are located in structural regions



that allow for structural relaxations. From an gedics perspective, an amino acid
substitution may not always affect the bindingraffi. An example includes a charged
residue for which the favorable pair-wise interaics are almost entirely cancelled by an
unfavorable desolvation penalty. Another exampl@ask hydrogen bonds formed at the
interface. A third example is a partially exposediophobic residue at the periphery of
the interface. Substitution of such residues witlother may not affect the binding

affinity; in fact, the nsSNP mutation could streragt the binding.

A highly conserved position within the proteingaence is often related to an
important biological function. Multiple sequencégaiment analysis showed that most of
the positions corresponding to interfacial nsSNPeur dataset are highly conserved. It
was shown that the variance of the total bindingrgy and its components of the highly
conserved positions is larger as compared withvimance of positions with lower
conservation. However, significant fraction of ngSNccurring at conserved positions
was calculated not to change the binding energyniych. This indicates that
conservation of amino acids in certain interfacsifgans does not occur to preserve
binding affinity. Rather, such conservation mayeeif the preservation of the binding
mode or specificity. An interesting case is an nBShutation that introduces an amino
acid found in another species. Since such a muatat&s evolutionarily accepted in the
other species, the overall effect on protein-prot&ffinity is expected to be small. In
further work, we will explore this observation amdll determine the effects of

introducing mutations to any other 20 amino acids.
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In this paper, we showed that that the changth@fbinding energy from the
target complex to the nsSNP variant is not relétethe conservation of the net charge,
hydrophobicity or hydrogen bond network. This imeglithat one cannot simply use the
physical-chemical properties of amino acids to eatd the effects an nsSNP has on
protein-protein interactions. Rather detailed dtriesbased energy calculations must be

performed in order to predict these effects, asg done in the present work.

REFERENCES

1. Simon-Sanchez J, Scholz S, Fung HC, Matarin MrnBEindez D, Gibbs JR,
Britton A, de Vrieze FW, Peckham E, Gwinn-Hardy ®rawley A, Keen JC,
Nash J, Borgaonkar D, Hardy J, Singleton A: Genarnae SNP assay reveals
structural genomic variation, extended homozygosityd cell-line induced
alterations in normal individualslum Mol Gene2007, 16(1):1-14.

2. Mooney S: Bioinformatics approaches and rescurf single nucleotide
polymorphism functional analysiBrief Bioinform2005, 6(1):44-56.

3. Dominy BN: Molecular recognition and binding drenergy calculations in drug
developmentCurr Pharm Biotechna2008, 9(2):87-95.

4. Huang N, Jacobson MP: Physics-based methodsstiatying protein-ligand
interactionsCurr Opin Drug Discov Deve2007, 10(3):325-331.

5. Jones S, Thornton J: Principles of protein-pnotateractions derived from
structural studieProceedings of the National Academy of Scied®&6, 93:13-
20.

6. Vajda S, Vakser |, Steinberg M, Janin J: Modglof Protein Interactions in
GenomesProteins2002, 47:444-446.

7. Aloy P, Russell RB: Structural systems biologyodelling protein interactions.
Nat Rev Mol Cell BioR006, 7(3):188-197.

8. Gilson MK, Zhou HX: Calculation of protein-ligdrbinding affinities Annu Rev
Biophys Biomol Stru@007, 36:21-42.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Alexov E: Protein-protein interactior@Gurr Pharm Biotechno2008, 9(2):55-56.

Villoutreix BO, Bastard K, Sperandio O, Fahmély Poyet JL, Calvo F, Deprez
B, Miteva MA: In silico-in vitro screening of prateprotein interactions: towards
the next generation of therapeutiCsiurr Pharm Biotechno2008, 9(2):103-122.

Kuntz ID: Structure-Based strategies for dragigin and discovergciencel992,
257:1078.

Kick E, Roe D, Skillman A, Liu G, Ewing T, Sif) Kuntz I, Ellman J: Structure-
based design and combinatorial chemistry yield lbanomolar constants of
cathepsin DChem Bioll997, 4:297-307.

Cavasotto CN, Orry AJ, Abagyan RA: Structuredahidentification of binding
sites, native ligands and potential inhibitors féfprotein coupled receptors.
Proteins2003, 51(3):423-433.

Gonzalez-Ruiz D, Gohlke H: Targeting proteintpm interactions with small
molecules: challenges and perspectives for comipuotdt binding epitope
detection and ligand findinGurr Med Chen2006, 13(22):2607-2625.

Teng S, Michonova-Alexova E, Alexov E: Approashand resources for
prediction of the effects of non-synonymous singleleotide polymorphism on
protein function and interactionSurr Pharm Biotechno2008, 9(2):123-133.

Koukouritaki SB, Poch MT, Henderson MC, SiddeRs Krueger SK, VanDyke
JE, Williams DE, Pajewski NM, Wang T, Hines RN: idiéication and functional
analysis of common human flavin-containing mono@nase 3 genetic variants.
J Pharmacol Exp The2007, 320(1):266-273.

Ode H, Matsuyama S, Hata M, Neya S, Kakizaw8ugjiura W, Hoshino T:
Computational characterization of structural rofehl® non-active site mutation
M361 of human immunodeficiency virus type 1 proead Mol Biol 2007,
370(3):598-607.

De Cristofaro R, Carotti A, Akhavan S, Palla Reyvandi F, Altomare C,
Mannucci PM: The natural mutation by deletion oERyin the thrombin A-chain
affects the pKa value of catalytic residues, theral enzyme's stability and
conformational transitions linked to Na+ bindifriggbs J2006, 273(1):159-169.

Shirley BA, Stanssens P, Hahn U, Pace CN: @umrion of Hydrogen Bonding

to the Conformational Stability of Ribonuclease Biochemistry1992, 31:725-
732.

12C



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Inoue M, Yamada H, Yasukochi T, Kuroki R, MiKi Horiuchi T, Imoto T:
Multiple role of hydrophobicity if tryptophan-108 ichicken lysozyme: structural
stability, saccharide binding ability, and abnornp{a of glutamic acid-35.
Biochemistryl992, 31:5545-5553.

Stevanin G, Hahn V, Lohmann E, Bouslam N, GodtM, Soumphonphakdy C,
Welter ML, Ollagnon-Roman E, Lemainque A, Ruberg Btice A, Durr A:
Mutation in the catalytic domain of protein kingdSegamma and extension of the
phenotype associated with spinocerebellar ataxpe ti4. Arch Neurol 2004,
61(8):1242-1248.

Sunyaev S, Ramensky V, Bork P: Towards a strattasis of human non-
synonymous single nucleotide polymorphismigends Gene2000, 16(5):198-
200.

Reumers J, Schymkowitz J, Ferkinghoff-Borgtdcker F, Serrano L, Rousseau
F: SNPeffect: a database mapping molecular phemosffects of human non-
synonymous coding SNP8lucleic Acids Re2005, 33(Database issue):D527-
532.

Pfeifer D, Pantic M, Skatulla I, Rawluk J, KteuC, Martens UM, Fisch P,
Timmer J, Veelken H: Genome-wide analysis of DNAyoaumber changes and
LOH in CLL using high-density SNP array®@lood2007, 109(3):1202-1210.

Paladini F, Cocco E, Cauli A, Cascino |, VadcaBelfiore F, Fiorillo MT,
Mathieu A, Sorrentino R: A functional polymorphisyhthe vasoactive intestinal
peptide receptor 1 gene correlates with the presaicHLA-B (*)2705 in
SardiniaGenes Immug008.

Seithel A, Klein K, Zanger UM, Fromm MF, Konid: Non-synonymous
polymorphisms in the human SLCO1B1 gene: an inovanalysis of SNP
€.1929A>C Mol Genet Genomic®008, 279(2):149-157.

Slabinski L, Jaroszewski L, Rodrigues AP, Rgargki L, Wilson 1A, Lesley SA,
Godzik A: The challenge of protein structure detieation--lessons from
structural genomic®rotein Sci2007, 16(11):2472-2482.

Godzik A, Jambon M, Friedberg I: Computatiomatein function prediction: are
we making progresell Mol Life Sciz007, 64(19-20):2505-2511.

Vakser IA, Kundrotas P: Predicting 3D strucsuod protein-protein complexes.
Curr Pharm Biotechna2008, 9(2):57-66.

121



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Sunyaev S, Ramensky V, Koch [, Lathe W, 3rdnd¢ashov AS, Bork P:
Prediction of deleterious human allelelsim Mol Genef001, 10(6):591-597.

Sunyaev SR, Lathe WC, 3rd, Ramensky VE, BorBNP frequencies in human
genes an excess of rare alleles and differing modfleelection.Trends Genet
2000, 16(8):335-337.

Dimmic MW, Sunyaev S, Bustamante CD: Inferri®NP function using
evolutionary, structural, and computational methoBsac Symp Biocomput
2005:382-384.

Stitziel NO, Tseng YY, Pervouchine D, GoddeaWKBsif S, Liang J: Structural
location of disease-associated single-nucleotidgnparphisms.J Mol Biol 2003,
327(5):1021-1030.

Cheng TM, Lu YE, Vendruscolo M, Lio P, BlunddiL: Prediction by graph
theoretic measures of structural effects in pret@nsing from non-synonymous
single nucleotide polymorphismBLoS Comput Bid2008, 4(7):e1000135.

Wang Z, Moult J: SNPs, protein structure, ansease.Hum Mutat 2001,
17(4):263-270.

Karchin R, Diekhans M, Kelly L, Thomas DJ, RepJ, Eswar N, Haussler D,
Sali A: LS-SNP: large-scale annotation of codingn4sgnonymous SNPs based
on multiple information sourceBioinformatics2005, 21(12):2814-2820.

Yue P, Melamud E, Moult J: SNPs3D: candidateegand SNP selection for
association studieBMC Bioinformatic®2006, 7:166.

Ye Y, Li Z, Godzik A: Modeling and analyzingrée-dimensional structures of
human disease proteirdac Symp Biocomp@006:439-450.

Brooks BR, Bruccoleri RE, Olafson BD, States Bdaminathan S, Karplus M:
CHARMM: A program for macromolecular energy, mimaation and dynamic
calculationsJ Comp Chem983, 4:187-217.

Wang Y, Addess KJ, Geer L, Madej T, Marchleu&aA, Zimmerman D, Bryant
SH: MMDB: 3D structure data in Entrelducleic Acids Re2000, 28(1):243-245.

Altschul S.F. M, T.L., Schaffer, A.A., Zhand, Zhang, Z., Miller, W. and

Lipman, D.J.: Gapped BLAST and PSI-BLAST: A New @mtion of Protein
Database Search PrograNsiclei Acid Re4997, 25:3389-3402.

122



42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Hamosh A, Scott AF, Amberger JS, Bocchini CAcKusick VA: Online
Mendelian Inheritance in Man (OMIM), a knowledgebad human genes and
genetic disorderdNucleic Acids Re2005, 33(Database issue):D514-517.

Hamosh A, Scott AF, Amberger J, Bocchini C,l&¥d&, McKusick VA: Online
Mendelian Inheritance in Man (OMIM), a knowledgebad human genes and
genetic disorderdNucleic Acids Re2002, 30(1):52-55.

Hamosh A, Scott AF, Amberger J, Valle D, McKiksVA: Online Mendelian
Inheritance in Man (OMIM)Hum Mutat2000, 15(1):57-61.

Shoemaker BA, Panchenko AR, Bryant SH: Findiiadpgically relevant protein
domain interactions: conserved binding mode amalyBrotein Sci 2006,
15(2):352-361.

Petrey D, Xiang Z, Tang C, Xie L, Gimpelev MjtMs T, Soto C, Goldsmith-
Fischman S, Kernytsky A, Schlessinger A, Koh I, &le E, Honig B: Uning
Multiple Structure Alignments, Fast Model Builingnd Energetic Analysis in
Fold Recognition and Homology Modelingroteins2003, 53:430-435.

Ponder JW: TINKER-software tools for molecudasign. In, 3.7 edn. St. Luis:
Washington University; 1999.

Still WC, Tempczyk A, Hawley RC, HendricksonSemianalytical Treatment of
Solvation for Molecular Mechanics and Dynamidaurnal of the American
Chemical Societ§990, 112:6127-6129.

MacKerell Jr. AD, Bashford D, Bellot M, Dunbkadr. RL, Evanseck JD, Field
MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McC@thguchnir L, Kuczera K,

Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DTpBnhom B, Reiher Il WE,

Roux B, Schlenkrich M, Smith JC, Stote R, StraulW/atanabe M, Wiorkiewicz-
Kuczera J, Yin D, Karplus M: All-atom empirical mottial for molecular

modeling and dynamics studies of proteth®hys Chem998, 102:3586-3616.

Xiang Z, Honig B: Extending the Accuracy Limd$ Prediction for Side-chain
ConformationsJ Mol Biol2001, 311:421-430.

Rocchia W, Alexov E, Honig B: Extending the Bgability of the nonlinear

Poisson-Boltzmann equation: Multiple dielectric stamts and multivalent ion3.
Phys Chen2001, 105(85):6507-6514.

12¢



52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Rocchia W, Sridharan S, Nicholls A, Alexov Bi&rera A, Honig B: Rapid

Grid-based Construction of the Molecular Surface thre Use of Induced Surface
Charges to Calculate Reaction Field Energies: A&pfibns to the Molecular

Systems and Geometrical Objecd€Comp Cherd002, 23:128-137.

Alexov EG, Gunner MR: Incorporating protein favmational flexibility into the
calculation of pH-dependent protein propertiiephys J1997, 72(5):2075-2093.

Georgescu R, Alexov E, Gunner M: Combining ©@omftional Flexibility and
Continuum Electrostatics for Calculating Residueajskin ProteinsBiophysical
Journal2002, 83:1731-1748.

Alexov E: Role of the protein side-chain fluations on the strength of pair-wise
electrostatic interactions: comparing experimentaith computed pK(a)s.
Proteins2003, 50(1):94-103.

Kundrotas P, Georgieva P, Shosheva A, ChrisRyvaélexov E: Assesing the
guality of the homology-modeled 3D structures frelactrostatic standpoint: test
on bacterial nucleoside monophosphate kinase fesnili bioinf Comp Biophys
2007:in press.

Zhou N, Wang L: A modified T-test feature sétmt method and its application
on the HapMap genotype dataenomics Proteomics Bioinformati2®07, 5(3-
4):242-249.

Neely JG, Hartman JM, Forsen JW, Jr., Wallac8: Mutorials in clinical
research: VII. Understanding comparative statigiocsitrast)--part B: application
of T-test, Mann-Whitney U, and chi-squatearyngoscope€2003, 113(10):1719-
1725.

Kowalski CJ, Schneiderman ED, Willis SM: PC gram implementing an
alternative to the paired t-test which adjusts fegression to the meaint J
Biomed Comput994, 37(3):189-194.

Brock K, Talley K, Coley K, Kundrotas P, Alexok: Optimization of
electrostatic interactions in protein-protein coexgls. Biophys J 2007,
93(10):3340-3352.

Alexov E: Calculating Proton Uptake/Release d&nel Binding Free Energy
Taking into Account lonization and Conformation @has Induced by Protein-
Inhibitor Association. Application to Plasmepsin, atepsin D and
Endothiapepsin-Pepstatin Complexesteins2004, 56:572-584.

124



62.

63.

64.

65.

Alexov E, Miksovska J, Baciou L, Schiffer M, ikkon D, Sebban P, Gunner M:
Modeling the Effects of Mutations on the Free Emgedf the First Electron
Transfer from Qa- to Qb in Photosynthetic Reac@amtersBiochemistry2000,
39:5940-5952.

Alexov E, Gunner M: Calculated Protein and &nd¥lotions Coupled to Electron
Transfer: Electron Transfer from QA- to QB in BacéePhotosynthetic Reaction
CentersBiochemistryl999, 38:8253-8270.

Ofiteru A, Bucurenci N, Alexov E, Bertrand Tri@&zo P, Munier-Lehmann H,
Gilles AM: Structural and functional consequencels single amino acid
substitutions in the pyrimidine base binding pockétEscherichia coli CMP
kinase Febs J2007, 274(13):3363-3373.

Talley K, Ng K, Shroder M, Kundrotas P, Alexd&: On the electrostatic
component of the binding free energyVC Biophysic2008.

12t



CHAPTER SIX
STRUCTURAL ASSESSMENT OF THE EFFECTS OF AMINO ACID
SUBSTITUTIONS ON PROTEIN STABILITY AND
PROTEIN-PROTEIN INTERACTIOR
ABSTRACT

A structure-based approach is described for predidhe effects of amino acid
substitutions on protein function. Structures weredicted using a homology modelling
method. Folding and binding energy differences betwwild-type and mutant structures
were computed to quantitatively assess the effaicésnino acid substitutions on protein
stability and protein—protein interaction, respesly. We demonstrated that pathogenic
mutations at the interaction interface could affeiciding energy and destabilise protein
complex, whereas mutations at the non-interfacehtnigduce folding energy and
destabilise monomer structure. The results sugpestthe structure-based analysis can

provide useful information for understanding thelecalar mechanisms of diseases.

INTRODUCTION
Revealing the effects of amino acid substitutiongwmtein structure and function
is critical for understanding the complex mechasisshhuman disease caused by single
amino acid mutations. There are 67,000 - 200,008symonymous Single Nucleotide
Polymorphisms (nsSNPs) in the human populationfhjch give rise to a large number

of amino acid substitutions in proteins. The residhanges at key sites within a protein

Teng S, Srivastava AK, Schwartz CE, Alexov E, Wan§tructural assessment of the effects of
amino acid Substitutions on protein stability amot@in-protein interaction, Int. J. ComputationaBgy
and Drug Design 2010, 3(4):334-349.
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may result in a series of conformation changedudieg the breakage of salt bridges,
alteration of interaction network, disruption ofdmggen bonds, which in turn may
perturb the energy landscape. These changes @t #fé kinetics of protein folding or
cause protein aggregation and destabilisationM2fe than half of monogenic diseases
are caused by single mutations, and a common misthaby which amino acid
substitutions cause human disease is protein syathlange. Yue and Moult investigated
the effect of amino acid substitutions on proteitabgity, and estimated that
approximately 25% of nsSNPs in the human populatmght be deleterious to protein
function [3]. Of the known disease-causing missemségations, the majority (83%)
resulted in alternation of protein stability [4].

Amino acid substitutions can also affect proteiotpin interactions.
Approximately 88% of disease-associated nsSNPsfa@wad to be located in the
voids/pockets important for protein-protein intdiags [5]. The amino acid substitutions
located at the binding interface or active sitdtateuld block the entrance to the active
site, change the recognition, alter the specificdy affect the binding affinity. For
example, the substitution G2019S in leucine-righes¢ kinase 2 (LRRK2) was shown to
be associated with familial and sporadic ParkirsatiSease [6]. Structure analysis
indicates that this mutation is located at therfate of LRRK2's N-terminal and C-
terminal domains which is important for positioniagMg®* within the active site of the
kinase [7, 8]. This finding is in agreement withe tbxperimental result that G2019S
enhances kinase activitg vitro [9]. Recently, Teng et al. [10] examined the efeaf

nsSNPs at the interaction interfaces of 264 protmmplexes using a homology



modeling method and all atoms energy calculatidiie results suggest that disease-
causing mutations tend to destabilise protein-protenteractions. Therefore,
understanding how amino acid substitutions affeotgin stability and protein-protein
interactions can provide new insights into the roolar mechanisms of human genetic
diseases.

Protein structure modeling methods have been widsld for predicting the
effects of disease-causing mutations on proteinilgtaand protein-protein interaction.
For instance, to predict the effects of the mutetioelated to the genetic disorder
galactosemia, more than one hundred mutant stestwf galactose-1-phosphate
uridyltransferase were constructed using the hogyitaodeling method, and the results
suggested that most mutations might alter protébilgy [11]. By mapping disease-
causing mutations onto known three-dimensional gmmotstructures, Dimmic and
coworkers [12] have shown that about 70% of thetdebus mutations are located in the
structurally and/or functionally important sitesowkver, the effects of mutations were
analyzed statically in these studies. The free@neerturbation (FEP) calculation has
been used to quantitatively assess the effectamifica acid substitutions on protein
stability. Dixit et al. [13] used the AMBER forceeld and solvent-accessible surface area
solvation methods to calculate the protein stabithanges in terms of free energy
differences caused by cancer-associated mutatiorisei RET and MET kinases, and
showed that the amino acid substitutions couldehse the thermodynamical stability of
the mutant structures. The FEP calculation was aé®ul to assess the protein stability

changes upon single amino acid substitutions in omene proteins [14]. Nevertheless,
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these studies on FEP calculation did not take adoount the effects of amino acid
substitutions on protein-protein interactions.

The advent of high-throughput sequencing technolawgkes it possible to
identify a large number of nsSNPs in the human gendrhe dbSNP database, one of
the primary data resources for genetic studiestados the information of more than 23
million human SNPs [15]. The records in the dbSN#aldase are linked to the Online
Mendelian Inheritance in Man (OMIM) database, whicbntains disease gene
information, including genetic polymorphisms, magdtions, inheritance patterns and
clinical descriptions [16]. Computational analypegvide an efficient way for examining
the effects of nsSNPs on protein stability and fiemg and for identifying potential
disease-causing mutations. Ng and Henikoff [17Husgosition-specific scoring matrix
(PSSM) based method called Sorting Intolerant Ffaterant (SIFT) to predict whether
an amino acid substitution affects protein functitdde have recently developed the
MuStab web server for predicting protein stabiibhanges upon amino acid substitutions
from sequence features [18]. MuStab uses a supgetbr machine (SVM) model to
discriminate between destabilizing and stabilizargino acid substitutions in proteins.
iIPTREE-STAB [19] and I|-Mutant 3.0 sequence vers[@0] are also available for
sequence-based prediction of protein stability geancaused by point mutations.
Structure-based methods, including PoPMuSIiC-2.Q, [PInutant [22], Eris [23], I
Mutant 3.0 structure version [20] and FoldX [24% available for examining the effects
of mutations on protein stability and protein-pmotmteractions. In particular, the FoldX

software tool can be used to provide quantitatstgeations about the effects of amino



acid substitutions on the stability of proteinspootein complexes using the empirical
force field calculation [24]. Among these proteitalslity predictors, I-Mutant3.0
structure version, Dmutant and FoldX gave the pedictive performances [25].

The experimental approach for determining the é&ffe€ amino acid substitutions
on protein stability is to obtain the mutant proseand measure their thermal stability
changes by melting experiments. However, the experial approach is time-consuming
and thus may not be applied to a large number af@uawcid substitutions. In the present
study, a structure-based approach was performegréalicting the effects of amino acid
substitutions on protein stability and protein-piot interaction. The differences of
folding energy and binding energy between the wjgk and mutant structures were
calculated to predict the protein stability andtpio-protein interaction changes caused
by the mutations. The predictions were evaluatedidiyg other bioinformatic methods.
The results suggest that the structure-based agpian provide useful information for

characterizing disease-causing mutations in hureaetg studies.

METHODS
The schematic diagram of the structure-based apprsashown in Figure 6.1.
The methodology was also investigated in two previstudies [26, 27]. For a specific
gene with mutations, the related sequence ands#iseformation were extracted from
the doSNP and OMIM databases. If the structurbetarget protein was available in the
Protein Data Bank (PDB), no structure modeling wasded. Otherwise, target structures

were constructed using the homology modeling mef8Y The suitable templates were
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identified in the PDB database using the PSI-BLAS®gram [29], and then used to
construct the target structures with the NEST mogf30]. Energy minimization was
performed to obtain the optimal structure with THBKER program [31], and the mutant
structure was constructed using the SCAP progréh e folding energy of the wild-

type or mutant structure was calculated using TIRKE estimate the effects of the
mutations on protein stability. For amino acid gitbsons located at the interface, the
binding energy changes were also computed to gréukceffects of the mutations on
protein-protein interaction. At the end, the préidits were compared with several
bioinformatics tools, including FoldX [24], POPMSR.0 [21], Dmutant [22], Eris [23],

MuStab [18], IPTREE-STAB [19] and I|-Mutant 3.0 (hosequence and structure

versions) [20].

‘ Gene with ‘
Mutations
o
dbSNP Disease
‘ Target Sequence ‘h OMIM ‘ Information

Modeling

g
£ Ne
Template Searching
PDB # PSI-BLAST
s
Yes

‘ Structure Building ‘
NEST
-
Energy Minimization
TINKER
.

‘ Target Structurew #‘ Mutan;(:S;Lucture ‘

—E—— Interface

Folding Energy | Binding Energy

TINKER TINKER
Protein Stability Protein-Protein Interaction

~“J@~  Evaluation

l Bioinformatic Tools l

Figure 6.1 Schematic diagram of the approach feessng the effects of amino acid
substitutions on protein stability and protein-piot interaction. Underlined are the
software tools used in this study.

131



Protein structure modeling

Homology modeling was applied to the proteins withstructures available in the PDB
database. The structures were modeled as follows:

1) Template searching: The suitable templates welected from the PDB database for

the target protein. Position-Specific Iterated BOA@SI-BLAST) [29] was used for the
template searching. The structures with signifid@value (< 10) were selected as the
suitable templates.

2) Structure building: The program NEST was usedhe build structure models

according to the sequence alignment between thettprotein and its structural template
[30]. NEST is an integrated model-building prograncjuding the program LOOPY?9 for
loop prediction and SCAP10 for side-chain modeling.

3) Energy minimization: To generate the optimauaure, energy minimization was

performed by using the TINKER package [31] with tB#&ARMMZ27 force field
parameters [33]. The MINIMIZE program in TINKER wased to minimize structures
with the algorithm of Limited Memory BFGS Quasi-Newv Optimization [31].

The mutant structures were derivadilico from the wild-type structure using the
SCAP program [32]. The amino acid substitutions ev@rtroduced by side-chain
replacements with the rest of the structure kegitlriThe MINIMIZE program in the

TINKER package was used to minimize the mutancsires.
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Folding energy calculation

The effects of amino acid substitutions on protebility were assessed by the
folding energy changes. The energy calculation based on the monomer structure of
the target protein, and was performed as desciibélle recent publication [27]. The
folding energy is the energy difference betweerfdlded and unfolded states:

AG( folding) = G( folded) — G(unfolded) (6.1)
where G(folded or G(unfolded is the total potential energy of the target proie the
folded or unfolded state, respectively.

The protein stability change 4 Gsaiity) is the folding energy difference between
the wild-type (WT) structure and the structure witie amino acid substitution (AAS). It
can be calculated using the following equation:

AAGstabiity= AG( folding: WT) — AG( folding: AAS (6.2)
=[G(folded:WT) -G(folded: AAS]-[G(unfoldedWT) —G(unfolded AAS] '

However, the energy difference between the wilcetgpd mutant proteins in the
unfolded stateG(unfolded: WT) - G(unfolded: AASs difficult to calculate. In the
present study, we assume that the difference ofggne the unfolded state can be
estimated by using the substitution site and itghieoring residues. The total potential
energy of the eleven-residue segme®tl with the substitution site in the middle
position was used to represent the folding enerfyhe full-length protein in the

unfolded state. Equation (2) can thus be rewrisn

AAGsuity = [G( folded:WT) - G( folded: AAS)] -[G( folded:WTas) - G( folded: AASw)] (6.3)
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All of the above total potential energy terms wetalculated using the
ANALYZE program in the TINKER package. A positivaalue ofAAGgtapiity indicates
that the amino acid substitution may make the jproteore stable, whereas a negative

value ofAAGganiity SUgQests that the mutation can destabilise theipro

Binding energy calculation

For an amino acid substitution located at the &ugon interface, the binding
energy difference of the protein complex between whid-type and mutant structures
was used to assess the effect of the mutation @eiprprotein interaction. As described
in the previous study [10], the binding energy wadculated using the rigid body
approach, in which the structures of the monomense\kept as they were in the dimer
complex. The binding energyAG(binding) was the difference between the total
potential energy of the dimer complex and the iitlial monomers:

AAG(binding) = AG( folding : comple)— AG( folding : A) — AG( folding : B) (6.4)
where AG(folding: complex)AG(folding: A) and AG(folding: B) are the folding free
energy values of the dimer complex, monomer A andamer B, respectively. Since the
internal mechanical energy values of the unboumdb@mund monomers are the same, the
energy terms in the unfolded state can be canaeled equation (4). Thus, the binding
free energy can be calculated as below:

AAG(binding) = G( folded: compleX— G( folded: A) — G( folded: B) (6.5)
whereG(folded: complex)G(folded)and G(folded)are the total potential energy values

of the dimer complex, monomer A and monomer B enftided state, respectively.
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In this study, the total potential energy was coteguusing the ANALYZE
program in the TINKER package. The effect of anramacid substitution on protein-
protein interaction was assessed by using thergneiergy difference between the wild-
type (WT) structure and the structure with the aaoid substitution (AAS):

AAAG(binding) = AAG(binding:WT) — AAG(binding: AAS) (6.6)

A positive value of the binding energy changel{Gyinding) indicates that the amino acid
substitution may strengthen the binding affinitydamake the protein dimer complex
more stable. In contrast, a negative valuelofiGpinging SUggests that the mutation can

weaken the binding affinity and destabilise thee&limomplex.

Prediction evaluation

Several bioinformatic tools were used to evaluae predictive power of the
structure-based approach used in this study, amgtédictions were considered to be
reliable if a consensus was reached by most gptbdictors. Sequence-based prediction
of the direction of protein stability change coudive useful information. Three
sequence-based tools were used to predict thetidimscof protein stability changes
caused by amino acid substitutions from primaryusege data, including iPTREE-
STAB (http://210.60.98.19/IPTREET/iptree.htm), Malst
(http://bioinfo.ggc.org/mustab/) and [-Mutant3.0  edsence version)
(http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Munt3.0/1-Mutant3.0.cgi).

Structure-based prediction methods could providentjtative assessment of the

effects of amino acid substitutions on protein gitgbKhan and Vihinen [25] compared
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the predictive performances of different protembdity predictors, and showed that three
structure-based tools, including [-Mutant3.0 (Stowe version)
(http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Muit3.0/1-Mutant3.0.cgi), Dmutant
(http://sparks.informatics.iupui.edu/hzhou/mutatml) and FoldX [24] were the most
reliable predictors. These three tools were usetthigstudy. Other two structure-based
predictors, including PoPMuSIiC-2.0 (http://babylarle.ac.be/popmusic/) and Eris
(http://eris.dokhlab.org), were also used to caltulthe folding energy for monomer
structures, respectively. The difference of theliftg energy between the wild-type and
mutant structures was used to assess the prosdiittchange caused by an amino acid
substitution, and compared with the\Gsuaniiy Value calculated using the approach
applied in this paper. Furthermore, FoldX was alsed to determine the interaction
energy of complex protein. The effect of an amiea asubstitution on protein-protein
interaction was estimated by the interaction eneafijierence of the protein complex
between the wild-type and mutant structur@dXGroux), Which was compared with
AAAGyingingcOmputed using the method utilized in this study.

In addition, ClustalX [34] was used to perform tineltiple sequence alignment
for conservation analysis. Protein sequences frdfferent species were downloaded

from the NCBI Entrez database using the GENE segption with the gene name as the

query.
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RESULTS AND DISCUSSION

To evaluate the usefulness of the structure-bagptbach utilized in this paper,
three case studies were carried out for four pahiesgmutations and one neutral NSSNP
in three human genes (Table 6.1). One diseasentamsutation, A111V (dbSNP ID:
rs28928889, OMIM ID: 141850.0029), and one neutrsSNP, T119N (dbSNP ID:
rs1058069), in the humadBA2 gene (haemoglobin subunit alpha) were used to show
their different effects on protein stability andf@in-protein interaction. Two pathogenic
mutations, Q61K (dbSNP ID: rs28933406, OMIM ID: 020.0002) and A146T (dbSNP
ID: rs104894231, OMIM ID: 190020.0008), in the huntéRASgene (v-Ha-ras Harvey
rat sarcoma viral oncogene homolog) were analyaexsess the effects of mutations on
different structural regions (interface or non-nfeee). The computational approach was
also used to investigate the substitution, A693Mthe humarZzBTB20gene (zinc finger
and BTB domain containing 20). As discussed in fhiowing sections, the results
suggest that the pathogenic mutations make the mencstructures less stable
(AAGstabiity < 0), and/or weaken the binding affinity to desdliabithe dimer structures
(AAAGpinding < 0). In contrast, the neutral nsSNP has onlyhsligffects on protein
stability and protein-protein interactioNAGstabiiity BNAAAA Gpinging ClOSe t0 0).

It was shown that the predictions agree well wit# tesults gave by the most of
structure-based methods. However, the sequenceé-bass often did not agree with the
consensus predictions from the structure-basedadst(Table 6.1). The structure-based

predictors (I-Mutant3.0 structure version, Dmutamd FoldX) appeared to be more



reliable for predicting protein stability changesised by mutations [25]. Thus, this study

focused on the structure-based analyses.

Table 6.1 The effects of five amino acid substingi on protein stability. The unit of
energy change is kcal/mol.

Amino acid substitution A111V T119N Q61K A146T ABI3V
(HBA2) (HBA2) (HRAS) (HRAS) | (ZBTB20)
Structure | AAGgahiity -0.75 0.06 -4.42 -1.39 -2.69
-based FoldX -4.19 10.54 -2.74 -0.22 -0.68
Tools Tol
;%PM uSiC -0.49 -0.50 -0.24 -0.38 -0.05
Dmutant -0.48 0.32 -0.38 -0.24 -0.34
Eris 428 2.29 -2.63 -1.24 -0.72
I-Mutant 3.0
(structure 0.13 -0.30 0.29 -0.79 -0.03
version)
Consensus Decreased Increased Decreased Decreased Decleased
Sequence | |-Mutant 3.0
-based (sequence Increased Increased Increased Decredsed Incrdased
Tools version)
MuSab Increased Decreased Increased Decreased Incr¢ased
'SI?I_-I:A\F‘I;EE' Increased Decreased Increased Decreased Decrkpased
Consensus Increased Decreased Increased Decreased Incr¢ased

Pathogenic mutation and neutral nsSNP in haemaglobi

Haemoglobin molecules in red blood cells transpagtgen from the lung to the

peripheral tissues, and thus are important for tamimg cell viability. Human

haemoglobin is made up of symmetric dimers of peptmle chains, the/p-globin

dimers [35]. Several point mutationsdrglobin have been shown to causthalassemia,

which can result in Hydrops fetalis [36]. In thtsidy, the two amino acid substitutions of

human haemoglobin subunit alpha (HBA2), A111V aldd 9N, were analyzed to show

the different effects of disease-causing and neatrano acid substitutions on protein
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stability and protein-protein interaction. The hatmoer structure of HBA2 was built
using the crystal structure of human deoxy haentmgl(PDB: 101P) as the template.

The majority of disease-causing mutations causeepraestabilisation, whereas
most neutral nsSNPs have limited effect on proséatility [4]. In the present study, the
predicted effects of A111V (disease-causing) and9NL (neutral) on protein stability
agree well with the previous observations. As shawifable 6.1, the folding energy
change AAGsaniiy) Caused by A111V is -0.75 kcal/mol, suggesting tha mutation
may destabilise haemoglobin monomer structure. ddwreased protein stability is also
predicted for the A111lV mutation by three structbased tools including FoldX,
PoPMuSIiC-2.0 and Dmutant (Table 6.1). In contrés¢, neutral nsSNP (T119N) is
predicted by our calculations and three structageld tools (FoldX, Dmutant and Eris)
to stabilize the protein monomer. PoOPMuSIC-2.0 laMditant3.0 (structure version) give
the opposite predictions. The results suggestith@®N may not cause destabilisation of
the monomer structure.

Amino acid substitutions at the interaction integanay result in binding affinity
changes, and thus affect the structure of the jpra@mplex. As shown in Figure 6.2a,
the pathogenic mutation, A111V, is located in dHeelix of the HBA2 binding interface.
Although most regions of the wild-type and mutamactures are similar, the structures
are not overlapped in the-helix interface region. This structural change may
significantly affect the binding energy, and make tprotein complex unstable. The
observation has been confirmed by the binding gnealculation using both TINKER

and FoldX AAAGeinding= -11.56 kcal/mol andAAGerqax = -1.41 kcal/mol) (Table 6.2).



In contrast, the neutral nsSNP (T119N) is locatedhie flexible loop region (Figure
6.2b). Since T119N is not located in the inner @agof the interface, it may not
significantly affect protein-protein interactionh& binding energy change caused by
T119N is AAAGpinging = 0.90 kcal/mol (Table 6.2), which is smaller théae absolute
value of binding energy change caused by A111V.

In addition, the multiple sequence alignment shanvirigure 6.2c suggests that
the residue, Ala 111, is well conserved, but Th® isLlnot conserved iXenopus laevis
and Xenopus tropicalisThe result agrees with the previous observatian pathogenic

mutations tend to be located at evolutionarily esnsd positions [37].
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C A111 T119

Homo sapiens -
Equus caballus -
Gallus gallus ™
Xenopus laevis
Xenopus tropicalis ...
Pan troglodytes ...
Pongo abelii -

Figure 6.1 lllustration of two amino acid subsibas (A111V and T119N) in human
HBAZ2. a) Structural representation of the A111V atioin. The wild-type chain A is
shown in green color, mutant chain A in cyan, wiide chain B in yellow, and mutant
chain B in orange. The amino acid residue Ala Mid{type) is shown in magenta, and
Val 110 (mutant) in white. b) Structural represéinta of T119N. Chains A and B are
shown in green and yellow, respectively. The residan 119 (wild-type) is shown in
pink, and Thr 119 (mutant) in blue. c) Multiple seqce alignment of HBA2 with the
amino acid substitution sites indicated.

Table 6.2 The effects of five amino acid substiasg on protein-protein interaction. The
unit of energy change is kcal/mol.

Amino acid AL11V T119N Q61K A146T ABI3V
substitution (HBA2) (HBA2) (HRAS) (HRAS) | (zZBTB20)
AANGringing -11.56 0.90 -7.29 -0.21 -0.31
Ao -1.41 1.39 -2.40 -0.11 0.00
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Pathogenic mutations at the interface or non-iateriof HRAS

Follicular carcinoma is the second most commondiglycancer, which accounts
for about 15% of all thyroid malignancies. The v-tda Harvey rat sarcoma viral
oncogene homolodHRAS encodes a follicular cancer-related protein ledatt the inner
surface of cell membrane. The protein plays an mapo role in the transduction of
signals arising from tyrosine kinase and G protzopled receptors. One pathogenic
mutation (Q61K) inHRASwas found to cause constitutive activation of doe/nstream
signaling pathways [38]. Another disease-causingatian (A146T) was identified in
patients with Costello syndrome, and was shownfecathe GTP/GDP binding of
HRAS [39]. In this study, the heterodimer structofeHRAS has been built using the
crystal structure of the transforming protein Rh@¢ZDB: 10W3) as the template. The
amino acid substitution Q61K is located at the rext&on interface (Figure 6.3a), and
A146T lies in a non-interface region of HRAS (Figus.3b). These two mutations in
different structural regions have been analyzedsgess their effects on protein stability
and protein-protein interaction.

Both amino acid residues in the HRAS protein, Glh &d Ala 146, are
conserved in other species (Figure 6.3c), suggedtiat they may be functionally
important sites. As shown in Table 6.1, the foldémgrgy changes\( Gsiapiity) caused by
Q61K and Al146T are -4.42 kcal/mol and -1.39 kcal/rfibable 6.1), respectively,
suggesting that both mutations may destabilis¢HRAS monomer structure. Consistent
with the above results, the predictions made bycsire-based tools show decreased

protein stability for both mutations (excluding Ikt&nt3.0 structure version for Q61K).
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Furthermore, all the sequence-based methods adslicpthat A146T could make HRAS
protein unstable.

The Q61K mutation is located at the interactioreifsice (Figure 6.3a), and the
binding energy change caused by Q61K As\Gpinding= -7.29 kcal/mol, o0AAAGroidx = -
2.40 kcal/mol (Table 6.1), suggesting that the mtamay significantly affect protein-
protein interaction. The distance between GIn &l itminteraction partner, Arg 47 from
the other chain, is only 1.88 A, which is withirettlistance of hydrogen bond formation.
When the polar residue Gln is replaced by posiiwlarged residue Lys, the hydrogen
bonds may be affected, and thus make strongly ordime interactions with Arg 47. In
contrast, the A146T mutation located in a non-fiats region (Figure 6.3b) does not
appear to have a significant effect on proteingarotnteraction. As shown in Table 6.1,
the binding energy change caused by A146TAM\Gpindging = -0.21 kcal/mol, or
AAAGEqgx = -0.11 kcal/mol. Nevertheless, Ala 146 and itgghboring residues (Leu 15
and Val 148) may form the hydrophobic pocket, whiglmvolved in the binding of the
purine ring of GTP/GDP. The substitution of Ala 1% the polar residue Thr may alter

the hydrophobic environment in the pocket, and #ftect the binding of GTP or GDP.
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Sus scrofa

Pan troglodytes
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Figure 6.3 lllustration of two disease-causing miates (Q61K and A146T) in human
HRAS. a) Structural representation of the Q61K rorta Chains A and B are shown in
green and yellow, respectively. The residue Gln\@ild-type) is shown in red, Lys 61
(mutant) in blue, and Arg 47 of chain B in cyaneTinydrogen bond is represented as a
white dash line. b) Structural representation ef Md46T mutation. Chains A and B are
shown in green and yellow, respectively. Ala 14@dvwype) is shown in magenta, and
Thr 146 (mutant) in blue. Two neighboring residuesy 15 in orange and Val 148 in
white, are also shown. c) Multiple sequence aligmned HRAS with the amino acid
substitution sites indicated.

Application: the A693V substitution in ZBTB20

The structure-based approach was also used to tigates the amino acid
substitution, A693V, in the humaZBTB20 gene (zinc finger and BTB domain
containing 20).ZBTB20plays important roles in neurogenesis [40], posinstirvival
and glucose homeostasis [41]. The A693V substitui® implicated to impair the

function of ZBTB20 in the brain. Thus, predictiniget effects of A693V on protein
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stability and function may help determine the pg#dmc potential of the amino acid
substitution.

The structure of the C-terminal region (560-739¢8fTB20, including five zinc
finger domains, was constructed using the homologgeling method with the six-
finger zinc finger peptide (PDB: 2113) as the teatpl As shown in Figure 6.4a, although
ZBTB20 may form a homodimer structure, the A693Vtation is not located at the
interaction interface. The binding energy changesed by A693V i\AAGyinging= -0.31
kcal/mol, or AAAGroigx = 0 kcal/mol (Table 6.2), suggesting that the amammd
substitution has little effect on dimer formatiofhe folding energy change was also
calculated for A693V using TINKERAQGstaniity = -2.69 kcal/mol, Table 6.1). In
addition, all of the structure-based methods ptedithat A693V will decrease protein
stability. Thus, the consensus prediction is th&93V will slightly destabilise the
monomer structure of ZBTB20.

Since the ZBTB20 protein was previously shown twddDNA [40], the structure
of ZBTB20 in complex with DNA has been modeled gsthe six-finger zinc finger
peptide (PDB: 2113) as the template. As shown gufé 6.4b, the amino acid residue,
Ala 693, is located close to the phosphate groupMA backbone. Therefore, another
possibility is that the A693V substitution may bwalved in protein-DNA interaction.
The multiple sequence alignment shown in Figurec @o suggests that Ala 693 is
highly conserved in other species, and thus maynpertant for the normal function of

ZBTB20
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Homo sapiens -
Pan troglodytes -
Bos taurus "
Equus caballus
Canis familiaris ...
Mus musculus ...
Rattus norvegicus --

Figure 6.4 lllustration of the A693V mutation in rhan ZBTB20. a) Structural
representation of the A693V mutation. Chains A &dre shown in green and yellow,
respectively. Ala 693 (wild-type) is shown in magerand Val 693 (mutant) in white. b)
Representation of the modeled structure of ZBTB2@amplex with DNA. Shown are
chain A in green, Ala 693 in magenta, Val 693 initehand the DNA molecule as
wireframe. c) Multiple sequence alignment of ZBTB&{h the amino acid substitution
site indicated.
CONCLUSION

In this paper, a structure-based approach is destifor assessing the effects of amino
acid substitutions on protein stability and proteintein interaction. Homology
modeling and free energy calculation methods weesl uo compute the differences of
folding energy and binding energy between the wyjze and mutant structures. Three

case studies showed that the disease-causing am#att the interaction interface might

reduce the binding energy, and thus weaken theitgffin the protein complex. The
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pathogenic mutations in the non-interface regionld¢daeduce the folding energy and
thus destabilise the monomer structure. Therethe structure-based approach can be
used to quantitatively assess the effects of aratid substitutions on protein stability
and protein-protein interaction. The approach may useful for understanding the

molecular mechanisms by which gene mutations dausen diseases.
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CHAPTER SEVEN

CONCLUSIONS

In the present study, several predictive methaaduding machine learning and
structure modeling approaches, have been developethalyzing genes and proteins to
discover biological knowledge hidden in the hetertepus datasets. Machine learning
can be used to automatically recognize hidden mpettand make accurate predictions
based on models derived from complex data. Indtudy, machine learning approaches
were developed for identification of human tisspeesfic genes using microarray gene
expression data and sequence-based prediction®teirp sumoylation sites and protein
stability changes upon amino acid substitutionse Teasults suggest that the use of
relevant biological features for classifier constion can improve the classifier
performance, and the approaches and tools developtb@ study can provide valuable
information for genetic research community. Theudtire-based approaches were
developed to quantitatively assess the effectsnoh@ acid substitutions on protein
stability and protein-protein interaction. It haselp shown that pathogenic mutations can
reduce the folding energy to destabilize the momostreictures and weaken the binding
affinity to make the complex structures less stalflee machine learning approaches
together with the structure-based methods were tseghalyze candidate genes and
proteins associated with human genetic disordexis as intellectual disability.

Genes and proteins play essential roles in almastyébiological process within
the cell. The predictive bioinformatic approachesvaloped in this study may help

understand the molecular mechanisms of tissuefspegene expression, protein
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sumoylation, protein stability and protein-prot@meraction. Tissue-specific genes and
protein sumoylation targets are implicated in maoynplex diseases. The amino acid
substitutions at protein key sites play importaokes in many monogenic diseases.
However, molecular mechanisms underlying the gendisorders are still poorly

understood. The methods developed in the presedy stave been used to analyze
disease candidate genes and proteins for humatigshalies and the findings may help
elucidate the molecular mechanisms of some gerttiorders such as intellectual
disability. The analytical results may also helprbedical scientists to design their
experiments and to interpret the experimental dagathermore, the web servers make
our computational methods available to the broademtific community.

The difficulty of predicting protein stability chgas upon amino acid
substitutions with machine learning approachesifiethe rarity of known positive and
negative examples. Thus, semi-supervised learniathads, such as Self-training, Co-
training, Semi-supervised Support Vector Machined &raph-based methods, can be
used to improve the classifier performance witthdabeled and unlabeled data in future
works. Moreover, feature selection approaches, sciRandom Forests and Support
Vector Machine-based Recursive Feature Eliminatman be used to select relevant
features for classifier construction to enhancedhassifier performance. The predictive
methods developed in this study can be used tyzmahtellectual disability candidate

genes for future studies.
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CHARPTER2
Teng S, Wang L: A machine learning approach fodjsteng human tissue-specific

genes using microarray expression data, in praparat
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Teng S, Luo H, Wang L: Predicting protein sumowylatsites from sequence features,
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Teng S, Luo H, Wang L: Random Forest-Based Prexhicif Protein Sumoylation Sites
from Sequence Features. Proceedings of the 2010 ACM-BCBssociation for

Computing Machinery, 2010:120-126.
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Teng S, Srivastava AK, Wang L: Sequence featureddpsediction of protein stability

changes upon amino acid substitutid®®IC Genomic2010, 11(Suppl 2):S5.
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Protein Stability Changes upon Amino Acid Subsiitus. In:Proceedings of IJICBS'09

IEEE Computer Society, 2009:201-206.
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Teng S, Michonova-Alexova E, Alexov E: Approachad aesources for prediction of
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Appendix B

Additional files for predicting human tissue-spexdenes

Additional file B1. List of brain-specific genargets. (Supplemental 1)

Additional file B2. List of liver-specific genergets. (Supplemental 1)



Appendix C

Additional files for Predicting Protein Sumoylati&ites

Table C.1 The list of 457 experimentally verifiach®ylation sites in 263 proteins

Protein Accession | Sumoylation Site | Core Match Reference
(UniProt Entry) Position Motif | YKXE (Yes/No) (PMI1D)
268 sumoylation sites used by SUMOpre (reportedreed8/10/2006)

Q9H3D4 588 LKIP N 15539951
Q9H3D4 676 IKEE Y 15539951
056136 84 EKGE N 15527853
056136 447 FKFE N 15527853
P19544 73 IKQE Y 15520190
P19544 177 FKHE N 15520190
075030 289 IKRE Y 15507434
075030 423 IKQE Y 15507434
P19532 330 IKRE Y 15507434
P19484 347 VKQE Y 15507434
P37231 107* IKVE Y 15229330
pP37231-2 365 PKFE Y 16127449
Q02447 120 IKDE Y 12419227
Q02447 551 IKEE Y 12419227
Q16665 391 LKKE Y 15465032
Q16665 477 LKLE Y 15465032
P46060 524 LKSE Y 15355965
Q14191 496 LKME Y 15355988
P43694 365 IKTE Y 15337742
Q08211 76 IKSE Y 15312759
Q08211 120 LKAE Y 15312759
P36508 411 VKEE Y 15280358
Q03188 534 VKSE Y 15272016
Q03188 721 PKNR N 15272016
Q03188 746 LKPL N 15272016
P63279 153 AKKF N 15272016
P19419 230 LKSE Y 15210726
P19419 249 VKVE Y 15210726
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P19419 254 PKEE Y 15210726
Q9Y4L2 244> VKTE Y 15208321
Q9Y4L2 263 IKDE Y 15208321
Q13285 119 FKLE N 15192080
Q13285 194 IKSE Y 15192080
P15976 137 LKTE Y 15173587
P15873 127 LKIE Y 12226657
P15873 164 TKET N 12226657
Q05193 376 VKME Y 15123615
Q60591 684 IKTE Y 15117942
Q60591 897 VKQE Y 15117942
P41212 99 TKED N 12626745
013066 517* LKSE Y 15094046
060812 237 VKME Y 15082759
P42858 6 EKLM N 15064418
P42858 9 MKAF N 15064418
P42858 15 LKSF N 15064418
P10275 386 IKLE Y 12177000
P10275 520 VKSE Y 12177000
Q13485 113 VKYC N 12621041
Q13485 159 VKDE Y 12621041
Q03933 82 VKQE Y 11278381
P78347 221 VKTE Y 15016812
P78347 240 VKEE Y 15016812
P78347 456 VKEE Y 15016812
P78347 991 IKQE Y 15016812
Q9BYV9 202 EKEE N 15060166
Q9BYV9 276 IKSE Y 15060166
Q9BYV9 421 CKQE N 15060166
Q9BYV9 580 IKCE Y 15060166
000429 38 GKSS N 14972687
Q9Y6K9 277 AKQE Y 14651848
Q9Y6K9 309 YKAD N 14651848
Q9UPWG 233 IKVE Y 14701874
Q9UPWG6 350 VKPE Y 14701874
P06536 297* VKTE Y 14663148
P06536 313* IKQE Y 14663148
P25963 21 LKKE Y 14613580




P42224 703 IKTE Y 12855578
P43354 91 IKVE Y 14559918
P43354 577 LKLE Y 14559918
Q05516 242 VKTE Y 14527952
QINS56 560 KKEE N 14516784
P08235 89 IKTE Y 14500761
P08235 399 IKPE Y 14500761
P08235 428 IKQE Y 14500761
P08235 494 IKQE Y 14500761
P08235 953 LKVE Y 14500761
Q05397 152 VKSD N 14500712
P06401 388 IKEE Y 12529333
Q09472 1020 LKTE Y 12718889
Q09472 1024 IKEE Y 12718889
P17676 174 LKAE Y 12810706
P11831 147 IKME Y 12788062
Q13363 428 VKPE Y 12679040
P32457 4 LKEE Y 12149243
P32457 11 IKQD N 12149243
P32457 30 IKQE Y 12149243
P32457 63 VKVE Y 12149243
P32457 287 AKSD N 12761287
P32457 443 AKLE Y 12761287
P32457 465 QKSE N 1276128
Q12216 438 VKNE Y 12761287
Q12216 446 VKQE Y 12761287
Q99497 130 AKDK N 12761214
P23769 222 MKME Y 12750312
P23769 389 MKKE Y 12750312
Q924A0 297 VKQE Y 12727872
Q00613 298 VKEE Y 11514557
P10242 503 IKQE Y 12631292
P10242 527 IKQE Y 12631292
P36956 123 IKEE Y 12615929
P36956 418 VKTE Y 12615929
Q12772 464 VKDE Y 12615929
P16220 285 RKRE N 12552083
P16220 304 KKKE N 12552083
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Q15788 732 IKLE Y 12529333
Q15788 774 VKVE Y 12529333
P49715 161 IKQE Y 12511558
P55854 11* VKTE Y 12506199
P56817 275 LKMD N 12506199
P11387 103 IKKE Y 11709553
P11387 117 IKDE Y 11709553
P11387 153 IKTE Y 11709553
P11387 328 IKEE Y 11709553
P11387 436 IKGE Y 11709553
Q13547 444 VKTE Y 11960997
Q13547 476 VKEE Y 11960997
P27540 245 VKKE Y 12354770
015169 857 GKVE N 12223491
015169 860 EKVD N 12223491
QINSC2 1086 IKTE Y 12200128
P49716 120 LKRE Y 12161447
Q9UER7 630 CKKS N 12150977
Q9UER7 631 KKSR N 12150977
P04150 277 VKTE Y 12144530
P04150 293 IKQE Y 12144530
P04150 703 VKRE Y 12144530
P06786 1220 IKLE Y 12086615
P06786 1246 IKKE Y 12086615
P06786 1277 IKKE Y 12086615
P05549 10 IKYE Y 12072434
Q92481 10* VKYE Y 12072434
Q15596 239 IKEE Y 12060666
Q15596 731 IKQE Y 12060666
Q15596 788 EKEE N 12060666
P56524 559 VKQE Y 12032081
Q13569 330* VKEE Y 11889051
P04637 386 FKTE N 11867732
P05627 229 LKEE Y 16055710
P05627 257 IKAE Y 16055710
P46061 526* LKSE Y 11853669
P23497 297 IKKE Y 11792325
P15330-2 382 IKTE Y 11756545
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P27782 25 FKDE N 11731474
P27782 267 VKQE Y 11731474
P29590 65 AKCP N 9756909
P29590 160 LKHE Y 9756909

P29590 487 RKVI N 9756909

P29590 490 IKME Y 9756909

015350 627 IKEE Y 10961991
Q9H2X6 32 LKIE Y 15766567

Q9H2X6 1191 AKVN N 12149243
P32458 412 IKQE Y 12149243
Q07657 426 IKQE Y 12149243
Q07657 437 IKTE Y 12149243
P19893 175 IKQE Y 10684265
P19893 180 IKPE Y 10684265
P03116 514 IKAP N 11005821
P13202 450 VKSE Y 11602710
Q9MOKA4 258 KKQE N 11581165
P03243 104 VKRE Y 11553772
Q64127 724 IKQE Y 11313457
Q64127 742 VKQE Y 11313457
000541 517 LKLE Y 11071894
Q6XA64 802 IKSE Y 15105549
P03206 12 VKFT N 11160742
P03209 19 IKKQ N 15229220
P03209 213 SKTG N 15229220
P03209 517 VKAL N 15229220
P61086 13 FKEV N 15723079
P45448 213 LKLE Y 15713642
P45448 289 IKSE Y 15713642
P33244-2 418 IKQE Y 15713642
P57682 10 VKQE Y 15684403
P57682 198 IKIE Y 15684403
Q15744 121 VKEE Y 15661739
Q16514 19 IKPE Y 15637059
Q15542 14 VKLE Y 15637059
P04591 474 QKQE N 15613319
P00445 18 VKFE Y 15596868
P00445 69 KKTH N 15596868
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P05750 211 PKEE Y 15596868
P16649 270 PKEE Y 15596868
Q07979 322 EKNE N 15596868
Q07979 328 VKQE Y 15596868
P04456 60 YKVI N 15542864

P11978 1128 VKNV N 15542864
Q04322 498 LKMG N 15542864
P21538 807 MKTE Y 15542864
Q14814 439 IKSE Y 15743823
P41970 162 IKRE Y 15580297
Q9U1H5 438 IKSE Y 15788563
Q13422 58 VKVE Y 15767674

Q13422 241 IKEE Y 15767674
P06400 720 LKFK N 15806172
P21063 95 IKIE Y 15800065
000180 274 LKKF N 15820677
P54253 16 KKRE N 15824120
P54253 194 HKAE N 15824120
P54253 610 LKID N 15824120
P54253 697 VKKG N 15824120
P54253 746 LKFP N 15824120
P54132 317 SKCL N 15829507
P54132 331 RKED N 15829507
P54132 344 SKPE N 15829507
P54132 347 EKMS N 15829507
Q8N2W9 35 LKHE Y 15831457

P42575 77 AKVG N 15882978
P41161 89 IKRE Y 15857832
P41161 263 FKQE N 158578372
P41161 293 IKQE Y 15857832
P41161 350 VKQE Y 15857832
060315 391 IKTE Y 16061479
060315 866 IKKE Y 16061479
P01100 265 LKTE Y 16055710
092597 158 VKAE Y 16014952
P14921 15* IKTE Y 16319071
Q90YL1 61 LKKE Y 16256735

Q90YL1 365 IKTE Y 16256735
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Q8AXX8 52 VKKE Y 16256735

QB8AXX8 341 VKTE Y 16256735

P18412 54 VKNE Y 16306045
Q92793 998 MKTE Y 16287980
Q92793 1033 VKEE Y 16287980
Q92793 1056 VKVE Y 16287980
Q16621 368 TKME N 16287851
P40381 103 LKWE Y 16168376
060016 109 VKKE Y 16168376
060016 160 VKEE Y 16168376
042934 198 LKWE Y 16168376
Q8N4C6 1641 LKEE Y 16154161
Q8N4C6 1680 LKDE Y 16154161
Q01543 67 VKRE Y 16148010
Q99683 535 AKQE Y 16142216
Q99683 1083 LKWE Y 16142216
Q99683 1114 LKLE Y 16142216
P55265 418 IKLE Y 16120648
000327 259 VKVE Y 16109848
Q969V6 499 VKEE Y 16098147
Q969V6 576 VKQE Y 16098147
Q969V6 624 VKQE Y 16098147
Q5U0M2 15 IKTE Y 16862185

Q5U0M2 227 IKQE Y 16862185
Q86YP4 30 IKME Y 16738318

Q86YP4 487 AKAE Y 16738318
Q5VUR2 33 LKME Y 16738318

095600 67 IKIE Y 16617055
Q13426 210 IKQE Y 16478998
Q06413 391 IKSE Y 16478538
P10636-8 339 VKSE Y 16464864
Q9NRA1 314 PKTG N 16443219
P49792 2571 SKVE N 16194093
P49792 2592 SKVK N 16194093
P49792 2650 TKLK N 16194093
P49792 2723 EKAK N 16194093
P49792 2725 AKAD N 16194093
P63165 16 DKKE N 16194093
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P63165 37 FKVK N 16194093
P63165 39 VKMT N 16194093
P63165 46 KKLK N 16194093
P61956 5* EKPK N 16194093
P61956 11* VKTE Y 16194093
P61956 42* SKLM N 16194093
P06876 499* IKRE Y 16162816
P06876 523* IKQE Y 16162816
P12004 164* AKDG N 15931174
015151 254 IKVE Y 15907800
015151 379 IKKE Y 15907800
Q07666 96 VKME Y 16568089
139 sumoylation sites (reported between 08/10/20@3./01/2010)

P46060 8 AKLA N 15355965

P63279 14 RKAW N 20424159
P63279 49 KKGT N 20424159
P41212 11 IKQE Y 18212042
000429 532* DKSS N 19638400
000429 535* SKVP N 19638400
000429 558* GKLI N 19638400
000429 568* TKNV N 19638400
000429 594* LKTS N 19638400
000429 597* SKAE N 19638400
000429 606* EKSK N 19638400
000429 608* SKPI N 19638400
Q05516 387 SKLG N 17498654
Q05516 396 MKSE Y 17498654
P55854 41* SKLM N 20029837
Q16621 215 AKPT N 19966288
Q16621 234 MKIP N 19966288
Q16621 241 DKIV N 19966288
P63165 7 AKPS N 20388717
P63165 25 LKVI N 20388717
095365 61 KKLF N 17595526
P17544 118 IKEE Y 17264123
Q8VIM5 573 IKQE Y 17101795

Q13263 554 VKEE Y 17079232
Q13263 575 TKPV N 17298944
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Q13263 676 LKEE Y 17298944
Q13263 750 EKLS N 17298944
Q13263 779 DKAD N 17298944
Q13263 804 TKFS N 17298944
P04618 115 TKE N 17067581
Q5U3M4 341 VKEE Y 17060459
Q99607 657 IKME Y 16904644
P48432 247 VKSE Y 17097055
P00441 76 PKDE Y 16828461
Q13642 144 PKGE Y 17509614
Q13642 300 VKAP N 17509614
P20263 118 VKLE Y 17496161
QI9LSE2 393 VKEE Y 17416732
Q9UHF7 1201 VKTE Y 17391059
P25490 288 IKED N 17353273
P12757 50 VKKE Y 17202138
P12757 383 IKQE Y 17450299
Q14526 333 MKHE Y 17283066
P46099 56 LKSE Y 17938210
Q04110 5 IKTE Y 17888002
Q9Y458 63 PKTE Y 17846996
Q92993 430 LKSE Y 17704809
Q92993 451 IKKE Y 17704809
P11474 14 IKAE Y 17676930
P11474 403 VKLE Y 17676930
P49841 292 FKFP N 189490771
P06748 263 PKVE Y 17951246
P05455 41 IKLD N 17646655
P54841 32 VKKE Y 17548468
P54841 297 VKCE Y 17548468
Q04887 396* IKTE Y 17440973
P08047 16 VKIE Y 18572193
Q9WVS8 6 LKEE Y 18467627
Q9WVSS8 22 VKAE Y 18467627
P43268 96 IKKE Y 18447755
P43268 226 FKQE N 18447755
P43268 260 IKQE Y 18447755
P43268 322 IKQE Y 18447755
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P43268 441 LKAE Y 18447755
P06778 126 KKSA N 18396468
Q64729 391 MKHF N 18469808
P17275 240 FKEE N 18424718
Q01826 744 VKLE Y 18408014
P48552 756 IKSE Y 18211901
P48552 1154 IKKE Y 18211901
Q9CAE3S 287 IKVE Y 18069938
Q9CAE3S 693 PKAD N 18069938
Q9CAE3 770 IKAE Y 18069938
Q9UPGS8 250 IKTE Y 17551969
Q9UPGS8 269 VKEE Y 17551969
Q9UPGS8 356 PKVE Y 17551969
P04050 1487 VKDE Y 19384408
Q63120 949 IKKE Y 19074644
Q8CF90 32 VKKE Y 19029092
Q9UKLO 294 VKKE Y 18854179

P33242 119* FKLE N 18838537
P33242 194 IKSE Y 18726511
P37238 107* IKVE Y 18832723
Q13887 162 IKTE Y 18782761
Q13887 209 IKQE Y 18782761
P05067 662 IKTE Y 18675254
P05067 670 VKMD N 18675254
P70671 152 LKDE Y 18635538
P70434 406 VKLE Y 18635538
Q15022 72 VKKP N 18628979
Q15022 73 KKPK N 18628979
Q15022 75 PKME Y 18628979
P03120 292 LKGD N 18619639
Q00653 90 AKIE Y 18617892
Q00653 298 MKIE Y 18617892
Q00653 689 LKAG N 18617892
Q00653 863 VKED N 18617892
Q71A33 33* VKKE Y 20127678

Q99814 394 LKEE Y 20026589
Q19289-2 460 IKLE Y 19922876
P35187 621 IKRE Y 19906698




Q499N1 163 KKKE N 19850744
Q499N1 168 PKPE Y 19850744
Q499N1 396 LKME Y 19850744
Q917P3 599 IKEE Y 19753306
Q917P3 629 IKHE Y 19753306
Q92786 556 IKSE Y 19706680
P07830 69 LKYP N 19635839
P07830 285 MKCD N 19635839
Q9UBK?2 184 VKTE Y 19625249

Q9UKL3 1813 LKSE Y 19615980

Q07869 185 LKAE Y 19955185
P17655 390 IKLE Y 19422794
Q9SJINO 391 LKEE Y 19276109
A9YTQ3 538 IKME Y 19251700

A9YTQ3 577 LKTE Y 19251700

A9YTQ3 660 VKRE Y 19251700

Qo9QWM1 173 MKLE Y 19125815

Q9QWM1 289* IKSE Y 19125815

P02545 201 MKEE Y 18606848
Q9UQ80 93 LKSD N 19946338
Q9UQ80 298 AKHE Y 19946338
013351 14 DKSA N 19707600
013351 30 VKPS N 19707600
Q9UHP3 99 DKDD N 19440361
Q99856 398 IKKE Y 19436740
088275 63 IKPF N 19339015
088275 107 IKVE Y 19339015
Q12692 126 LKVE Y 19217407
Q12692 133 SKK N 19217407
Q9QXZ7 178 AKLE Y 19186166

Q9QXZ7 315 FKPE N 19186166
Q9QXZ7 322 LKDP N 19186166
P32333 101 VKLE Y 19139279
P32333 109 IKLE Y 19139279
P35398-2 240 IKPE Y 19041634
Q61164 74 MKTE Y 19029252

Q61164 698 VKKE Y 19029252

Q06710 308 IKQE Y 18974227
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50 sumoylation sites (reported between 01/01/261161t01/2010)

Q8R4l1 257 LKST N 19843541
A2RU29 596 MKSE Y 20501696
A2RU29 649 VKKE Y 20501696

A2RU29 650 KKEE N 20501696
A2RU29 739 VKKE Y 20501696

A2RU29 793 VKAE Y 20501696

035426-2 276 VKIE Y 20408817
035426-2 297 VKKE Y 20408817
Q16666 561 LKTE Y 20388717
Q9UPNG6 18 YKPP N 20388717
QoUGO01 4 LKHL N 20388717

Q99518 492 QKQR N 20388717
Q96QD9 140 RKAN N 20388717
Q9UBDO 215 VKSA N 20388717

Q9UBGO 1142 QKPL N 20388717
Q8IYAG6 198 RKPD N 20388717

Q75475 75 RKGF N 20382164,
Q075475 250 DKKE N 20382164
075475 254 GKKE N 20382164
075475 364 LKID N 20382164
043290 94 VKRE Y 20346425
043290 141 IKKE Y 20346425
P40337 171 VKPE Y 20300531,
P20193 839 IKVF N 20299342
P31669 469 IKQE Y 20228053
P06730 36 IKHP N 20228053
P06730 49 FKND N 20228053
P06730 162 DKIA N 20228053
P06730 206 TKSG N 20228053
P06730 212 TKNR N 20228053
014776 503 IKEE Y 20215116
014776 608 IKEE Y 20215116
P58012 114 IKVP N 20209145
P58012 150 MKRP N 20209145
Q92585 217 LKQE Y 20203086
Q92585 299 IKTE Y 20203086
P43351 411 MKKR N 20190268




P43351 412 KKRK N 20190268
P43351 414 RKYD N 20190268
P08069 1055 MKEF N 20145208
P08069 1130 NKFV N 20145208
P08069 1150 VKIG N 20145208
P54843 33 VKKE Y 20127678
Q15843 27 IKER N 20029837
Q15843 33 EKEG N 20029837
Q15843 54 EKTA N 20029837
Q12306 54 AKRQ N 20029837
P17844 53 PKFE Y 19995069
Q92841 50 PKFE Y 19995069
Q08499-6 323 VKTE Y 20196770
* Redundant protein sumoylation site
Table C.2 List of 40 biological features used iapmier three
Class Feature Abbreviation
Biochemica Hydrophobicity H
pKa value K
Molecular weighr M
Size S
Residue volum V
Polarity P
Amino acid compositic Co
Buriability Br
Side chain hydropathy, correctfor salvation S¢
Scaled side chain hydrophobicity val Hs
Structura Conformational parameter falpha helix A
Conformational parameter for beta sh B
Conformational parameter for b-turn T
Conformational parameter for cc C
Buriedaverage are Aa
Bulkines: Bu
Average accessible surface ¢ As
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Thermodynami | Entropy of formatio E
Transfer free enert Et
Partition energ Ep
Short and medium range r-bonded energy p¢ Er
residue
Average no-bonded energy per resid En
Free energy in alpl-helical conformatio g
Free energy in be-strand conformatio Eb
Solvation free ener Es
Hydration free energ Eh

Empirica Stability scale from the knowled-based ator- Si
atom potential
Relative stability scale exicted from mutatiot Sz
experiments
Side-chain contribution to protein stability (kJ/m Sé
Molar fraction of 3220 accessible resid g
Atomic weight ratio of hetero elements in ¢ Rh
group to C in side chain
Mobility on chromatography pag Mc

Othel Interactivity scale obtained by maximizing Is
mean of correlation coefficient over single-domajn
globular proteins
Side chain volumr Vs
Flexibility F
Refractivity R
Number of codor No
Recognition factol Rf
Relative mutabilit Rm
Transmembrane tender Tt
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Appendix D

Additional data regarding the effect of nsSNPs mdling energy with respect to amino

acid characteristics

Four different classes of amino acids were consitié&ased on the amino acids’
physico-chemical properties: polar (S, T, H, N,YQ,charged (E, D, K, R), hydrophobic
(W, I, L, M, F) and small (P, A, G, C, V). Below whustrate the effects of nsSNP
mutations on thelAAG(SNSNP) AA4A4G,quW(NsSNP)and 444G (nsSNP)see main body
of the manuscript for definition of these quansjiseparateljor each class and between
classes (Table E.1). The corresponding distrilbstiare shown in Figure E.1. It can be
seen thamutations that replace either charged or polar amrids result in the largest
energy change, while the effect is much smallethm cases of small or hydrophobic
residue replacement.

Particular attention deserve the 108 cases of ns@Nftions that retain the
physico-chemical properties of the amino acid presa the target protein-protein
complex (case “SAME”, e.gpolar=>polar; charged=>charged, smal?small and
hydrophobic2hydrophobi¢, and another 159 cases in which the nsSNP matatio
changes the physico-chemical properties of ther@igmino acid (case “DIFF”) (Table
B-1). In terms of the means of the distributiom®re is no significant difference between
the “SAME” and “DIFF” distributions. In both casethe mean of the total binding
energy and its electrostatic component are neggtiaatities, which means that in both

of these cases, the target complex is more sthbie the nsSNP variant. At the same
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time, the mean of the van der Waals energy digtdhus positive. The difference is in
the standard deviation. The standard deviatiorhefdistribution in “SAME” cases is
about two times smaller than the distribution ofFB” cases. This indicates that there
are cases within the “DIFF” category that resuldiastic changes in the binding energy.

Table D.1 Parameters of distribution of total bimglenergy difference and its
components

Group No AAANGygt ANAANGygy AANAANGy
mean std mean std mean std

All 264 | -0.8¢ 4.2¢ -0.0t 3.11 -0.7¢ 4.64
OMIM 45 -1.6¢ 3.8C -1.0c 3.3¢2 -2.3E 5.51
Non-OMIM 219 | -0.7C 4.3¢ 0.1¢4 3.0 -0.4¢ 4.3¢
Polar (P) 62 -0.27 3.77 0.3¢ 3.9¢4 -0.8< 4.74
P-C 20 0.0t 5.5¢ 1.9¢ 6.3t -3.0C 7.5¢
P-H 7 -1.7¢ 3.1¢€ 0.5¢4 0.5¢4 -0.6¢€ 1.37
P-P 28 -0.2¢ 2.5¢ -0.5( 1.7¢ 0.3t 2.07
P-S 7 0.37 1.4¢€ -0.7¢ 1.7¢ 0.4« 0.85
Charge (C) 76 -2.01 6.3¢ -0.3¢ 2.2 -1.37 6.5¢
c-C 25 -2.1¢€ 3.5¢ -0.4¢ 1.77 -1.7¢ 3.9¢
C-P 30 -1.0c 7.52 0.2¢4 1.6¢ -0.3¢ 8.53
C-H 3 -5.8¢ 6.2 1.7¢ 2.01 -1.11 10.8¢
C-S 18 -2.8( 6.8( -1.4¢ 0.7¢ -2.51 5.2¢€
Small (S) 94 -0.7¢ 2.3¢ -0.0z 2.4¢ -0.7¢ 2.5¢
S-C 10 0.5¢€ 2.72 2.51 3.5¢ -4.7¢ 4.3¢
S-H 31 0.04 1.57 0.27 1.8 0.3¢ 1.2¢
S-P 20 -0.8¢ 1.5¢ 0.01 1.37 -0.81 2.1€
S-S 33 -1.7¢ 2.9z -1.11 2.61 -0.6E 1.8t
Hydrophobic (H) 32 0.3z 2.5C -0.3¢€ 4.4¢ 0.7¢ 3.2¢
H-C 2 -1.4C 0.51 -0.9C 0.3¢ -3.14 0.07
H-H 19 0.3t 1.72 -0.3¢ 1.7¢C -0.2¢ 1.12
H-P 5 0.5¢€ 3.6 2.1C 9.4t 5.14 5.9
H-S 6 0.6C 4.C1 -2.14 5.61 1.5t 1.4C
SAME 108 | -1.0¢ 297 -0.6¢€ 2.0t -0.57 2.5¢
DIFF 159 | -0.72 4.9¢ 0.3¢ 3.6( -0.91 5.61
Conserved 139 | -0.8t 4.9¢ -0.C7 3.71 -1.0t 5.5
Non-Conserved 88 -0.8¢ 3.51 0.0¢ 2.1¢ -0.72 3.3¢
High Conserved 176 | -0.9< 4.8¢ -0.1C 3.4¢ -1.11 5.1€
L ow Conserved 51 -0.5¢ 2.5¢ 0.27 2.11 -0.2¢ 3.3¢
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Conserved (SI 100%), Non-Conserved (Sl 10%-99%yghHConserved (SI 80%-100%), Low
Conserved (Sl 10%-79%).
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Figure D.1 Distribution 0ofAAAGi(NSSNRE, 444G (NSSNP)and A4A44GqwW(NSSNE in
respect with physico-chemical properties of amioid|T: total, P: polar, C: charged, S:
small, H: hydrophobic. The thick black lines showe tmedian, the boxes are drawn
between upper and down quartiles and the dottes lare extended to upper and down
whiskers (marked with short horizontal lines).
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