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ABSTRACT 
 
 

Since large amounts of biological data are generated using various high-

throughput technologies, efficient computational methods are important for 

understanding the biological meanings behind the complex data. Machine learning is 

particularly appealing for biological knowledge discovery. Tissue-specific gene 

expression and protein sumoylation play essential roles in the cell and are implicated in 

many human diseases. Protein destabilization is a common mechanism by which 

mutations cause human diseases. In this study, machine learning approaches were 

developed for predicting human tissue-specific genes, protein sumoylation sites and 

protein stability changes upon single amino acid substitutions. Relevant biological 

features were selected for input vector encoding, and machine learning algorithms, 

including Random Forests and Support Vector Machines, were used for classifier 

construction. The results suggest that the approaches give rise to more accurate 

predictions than previous studies and can provide valuable information for further 

experimental studies. Moreover, seeSUMO and MuStab web servers were developed to 

make the classifiers accessible to the biological research community. 

Structure-based methods can be used to predict the effects of amino acid 

substitutions on protein function and stability. The nonsynonymous Single Nucleotide 

Polymorphisms (nsSNPs) located at the protein binding interface have dramatic effects 

on protein-protein interactions. To model the effects, the nsSNPs at the interfaces of 264 

protein-protein complexes were mapped on the protein structures using homology-based 

methods. The results suggest that disease-causing nsSNPs tend to destabilize the 
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electrostatic component of the binding energy and nsSNPs at conserved positions have 

significant effects on binding energy changes. The structure-based approach was 

developed to quantitatively assess the effects of amino acid substitutions on protein 

stability and protein-protein interaction. It was shown that the structure-based analysis 

could help elucidate the mechanisms by which mutations cause human genetic disorders. 

These new bioinformatic methods can be used to analyze some interesting genes and 

proteins for human genetic research and improve our understanding of their molecular 

mechanisms underlying human diseases. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

With the development of various genome sequencing projects and high-

throughput technologies, modern biology has entered into a “data explosion” era. 

However, such large amounts of biological data bring the so-called "data rich, 

information poor" problem. On one hand, more and more biological data are generated by 

experimental studies, ranging from genomics to proteomics. On the other hand, it is not 

easy to extract useful information from the biological data, and the underlying molecular 

mechanisms remain elusive. There is a significant need for developing efficient 

computational methods to discover biological knowledge hidden in the massive and 

heterogeneous datasets. 

Machine learning is a broad research field with wide applications in business, 

engineering and science. It focuses on designing and developing computer algorithms to 

improve predictive performance based on training data instances. Machine learning 

approaches such as Bayesian Networks, Hidden Markov Models, Neural Networks and 

Genetic Programming have been applied to various scientific fields including natural 

language processing, computer vision, search engine development, medical diagnosis and 

bioinformatics [1]. Machine learning can be used to recognize hidden patterns in data, 

and thus is particularly appealing for biological knowledge discovery in bioinformatic 

studies. There are different types of learning including unsupervised learning and 

supervised learning. Unsupervised learning can discover unknown clusters or detect 

anomalies from unlabeled data instances. It has been used to analyze genes associated 

1 
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with human diseases. For example, clustering methods have been applied to analyses of 

gene expression data from different cancer samples including breast tumour samples [2], 

prostate cancer samples [3] and colon cancer samples [4]. By contrast, the training data 

instances used for supervised learning are labeled with the known information. 

Supervised learning can recognize hidden patterns in the labeled examples, and the 

resulting model can be used to make predictions for new data instances. It has been 

utilized for analyzing some important protein functions, such as protein secondary 

structures [5], functional residues [6], protein stability [7]  and protein-protein interaction 

networks [8].  

Supervised machine learning algorithms such as Support Vector Machines 

(SVMs) and Random Forests (RFs) have found wide applications in bioinformatic 

studies. SVMs can transform the training data into a feature space using kernel functions 

and then separate the data by a maximum-margin hyperplane [9]. SVMs have been used 

for predicting DNA/RNA-binding residues [10, 11], protein-protein interaction [12], 

subcellular localization [13] and protein stability changes upon mutations [14]. RFs are 

ensemble learning algorithms which can handle a large number of input variables and 

avoid model overfitting. It combines the votes made by the independent decision trees, 

and gives the most popular class as the output. RFs are becoming popular in various 

bioinformatic fields including structure classification [15], protein interaction site 

prediction [16], DNA-binding residues identification [17] and drug sensitivity prediction 

[18].  
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Tissue-specific gene plays a key role in the pathogenesis of many human diseases 

[19]. Several statistical approaches, including Akaike’s information criterion [20], 

Shannon entropy [6] and  hypothesis testing [21], have been utilized for identifying the 

tissue-specific genes using microarray expression data. However, the statistical methods 

assign an equal weight to each observation and do not use biological knowledge for 

predictions. A SVM-based approach has been developed to predict tissue-specific genes 

in Caenorhabditis elegans [22], but whether the machine learning methods can be used 

for predicting human tissue-specific genes is still unknown. Protein sumoylation is 

important for many cellular processes and any alterations in the process may cause 

various human diseases. Several computational methods such as SUMOpre [23], 

SUMOsp [24] and SUMOsp2.0 [25] have been developed for predicting sumoylation 

sites. To understand how a single amino acid substitution changes protein stability can 

help elucidate the molecular mechanism by which the mutations cause human diseases. 

Machine learning approaches such as I-Mutant2.0 [14] and iPTREE-STAB [26] have 

recently been applied to sequence-based prediction of protein stability changes upon 

mutations. However, little domain-specific knowledge in terms of relevant biological 

features was used in the studies for analyzing protein functions. In this study, machine 

learning approaches were developed for predicting human tissue-specific genes (chapter 

two), protein sumoylation sites (chapter three) and protein stability changes upon single 

amino acid substitutions (chapter four). 

Supervised learning algorithms, including RFs and SVMs, have new applications 

in the present study. RFs and SVMs were used to identify human tissue-specific genes 
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with microarray gene expression data and predict protein sumoylation sites from protein 

sequence information. RF classifiers were found to outperform SVM models, and the 

approaches can provide useful information for further experimental studies. Furthermore, 

SVMs were applied to sequence-based prediction of protein stability changes upon amino 

acid substitutions. The supervised learning algorithms were used to develop seeSUMO 

(http://bioinfo.ggc.org/seesumo) and MuStab (http://bioinfo.ggc.org/mustab) web servers 

for predicting protein sumoylation sites and protein stability changes upon single amino 

acid substitutions, respectively. 

The novelty of our approach is that the biological knowledge was used for 

classifier construction. Relevant biological features can be selected to construct 

classifiers and improve the predictive performance of classifiers. For example, the use of 

biochemical features and evolutionary information for input vector encoding can 

significantly improve the predictive performance of DNA-binding site prediction [11]. In 

this study, relevant features representing biological knowledge were used to encode input 

variables for sequence-based predictions of protein sumoylation sites and protein stability 

changes upon single amino acid substitutions. It was shown that the use of relevant 

biological features for classifier construction can significantly improve the predictive 

performances of classifiers.  

The improvement of experimental determination of protein 3D structures and 

computational modeling [27, 28] made it possible to predict the effects of mutations by 

mapping them on the corresponding structures or models. Protein structural information 

has been used in many studies to reveal the role of amino acid substitutions on protein 
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function and stability. Previous studies on human non-synonymous Single Nucleotide 

Polymorphisms (nsSNP) in disease candidate genes revealed that approximately 70% of 

the deleterious mutations are located in the structurally and/or functionally important 

sites [29-32]. A structure-based approach that models residue-residue interaction 

networks was developed recently [33], and graph theoretical measures were used to 

predict the residues that are important for structural stability. The results suggest that 

mutations impact protein function and stability by affecting their structures, which in turn 

may cause changes in protein-protein interactions.  

It has been estimated that each person may have 24,000 - 40,000 nsSNPs, and 

there are a total of 67,000 - 200,000 common nsSNPs in the human population [34]. 

Previous study suggest that approximately 25% of nsSNPs in the human population 

might be deleterious to protein function [35], and 88% of disease-associated nsSNPs are 

located in the voids/pockets important for protein-protein interactions [32]. The nsSNPs 

located at the binding interface or active site cleft may cause a series of changes, such as 

disruption of salt bridges, breakage of hydrogen bonds and alteration of binding affinity. 

In chapter five, we investigated the effects of nsSNPs at the interfaces of 264 protein-

protein complexes using a structure-based method. The nsSNPs were mapped on the 

protein structures and their effects on the binding energy were investigated with 

CHARMM force field and continuum electrostatic calculation. The findings reveal that 

disease-causing nsSNPs tend to destabilize the electrostatic component of the binding 

energy on protein-protein interactions and nsSNPs at conserved positions can lead to a 

large variance of the binding energy changes.  
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The sequence/structure-based computational methods developed in this study can 

be used to analyze proteins, in which mutations may cause human genetic disorders such 

as intellectual disability. Intellectual disability is the most frequent developmental 

disability with an estimated incidence of 1-3% of people worldwide. It is often caused by 

loss-of-function mutations in associated genes. For example, several deleterious 

mutations in the spermine synthase (SMS) gene were found to cause Snyder-Robinson 

syndrome, an X-linked recessive disease with mild-to-moderate intellectual disability 

[36]. Recently, a structure-based approached was utilized to predict the effects of three 

missense SMS mutations causing Snyder-Robinson syndrome on protein stability, 

flexibility and interactions [37]. In chapter six, the structure-based approach is described 

for quantitatively assessing the effects of amino acids on protein stability and protein-

protein interaction using homology modeling and free energy calculation methods. The 

results suggest that the structure-based approach together with sequence-based methods 

can provide useful information for characterizing mutations associated with intellectual 

disability in human genetic studies and elucidating the molecular mechanisms by which 

the mutations cause intellectual disability. 
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CHAPTER TWO 
 

A MACHINE LEARNING APPROACH FOR PREDICTING HUMAN TISSUE-
SPECIFIC GENES USING MICROARRAY EXPRESSION DATA1 

 

ABSTRACT 

Understanding how genes are expressed specifically in particular tissues is a 

fundamental question in developmental biology. Many tissue-specific genes are involved 

in the pathogenesis of complex human diseases. However, experimental identification of 

tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-

specific gene targets could provide useful information for biomarker development and 

drug target identification. In this study, we have developed a machine learning approach 

for predicting the human tissue-specific/selective genes using microarray expression data. 

The lists of known tissue-specific genes for different tissues were collected from UniProt 

database, and the expression data retrieved from the previously compiled dataset 

according to the lists were used for input vector encoding. Random Forests (RFs) and 

Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF 

classifiers were found to outperform SVM models for tissue-specific gene prediction. The 

results suggest that the candidate genes for brain or liver specific expression can provide 

valuable information for further experimental studies. Our approach was also applied for 

identifying tissue-selective gene targets for different types of tissues. The approach 

provides an efficient way to select some interesting genes for developing new biomedical 

markers and improve our knowledge of tissue-specific expression. 

                                                   
1Teng S, Wang L: A machine learning approach for predicting human tissue-specific genes using 

microarray expression data, in preparation. 
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BACKGROUND 

Understanding how different tissues achieve specificity is a fundamental question 

in tissue ontogenesis and evolution. Some genes are highly expressed in a particular 

tissue and lowly expressed or not expressed in other tissues. These genes are generally 

called tissue-selective genes. The genes are responsible for specialized functions in 

particular tissues, and thus can serve as the biomarkers for specific biological processes. 

In addition, many tissue-selective genes are involved in the pathogenesis of complex 

human diseases [1], including insulin signaling pathways in diabetes [2] and tumour–host 

interactions in cancer [3]. Since the majority of disease genes have the tendency to be 

expressed preferentially in particular tissues [4], identifying tissue-selective genes is also 

important for drug target selection in biomedical research. Tissue-specific genes, which 

are expressed specifically in a particular tissue, are regarded as the special case of tissue 

selective genes. The identification of tissue-specific genes could help biologists to 

elucidate the molecular mechanisms of tissue development and provide valuable 

information for identifying candidate biomarkers and drug targets. 

Different methods have been proposed to identify and characterize tissue-specific 

genes. Traditional experimental technologies, including RT-PCR and Northern blot, are 

usually carried out at the single-gene level and thus time-consuming. High-throughput 

technologies, such as Expressed Sequence Tag (EST) sequencing and DNA microarrays, 

have the capacity to perform genome-wide analysis with high efficiency. The DNA 

microarray technology can generate large amounts of gene expression data from various 

tissues, and provide the useful data source for analyzing tissue-specific genes. Several 
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statistical methods have been applied for identifying tissue-specific genes using gene 

expression data.  Kadota and co-workers [5] described an unsupervised method to select 

the tissue-specific genes using Akaike’s information criterion (AIC) approach. Another 

method called ROKU [6] has been developed by the same group for detecting tissue-

specific gene expression patterns. The approach used Shannon entropy and outlier 

detection to scan expression profiles for ranking tissue-specific genes. Liang et al. [7] 

developed a statistical method based on hypothesis testing procedures to profile and 

identify the tissue-selective genes. However, the statistical methods for tissue-specific 

gene prediction suffer from drawbacks. The microarray expression data are generated 

from different experiments, both biological variations and experimental noise result in 

significant variations in data quality. The statistical methods usually assigned an equal 

weight to each observation for prediction. Thus, the methods do not work well for non-

linear models and may not detect the hidden expression patterns from the noisy 

microarray data. Moreover, the statistical methods do not use biological knowledge for 

prediction. The simple data-driven analysis may produce some misleading results for 

further experimental studies. 

Machine learning can automatically recognize hidden patterns in complex data. It 

has been shown that machine learning can be used to construct accurate classifiers for 

tissue-specific gene prediction. Chikina et al [8] used Support Vector Machines (SVMs) 

to predict tissue-specific gene expression in Caenorhabditis elegans with whole-animal 

microarray data. The SVM classifiers reached high predictive performances in nearly all 

tissues. It was shown that the approach outperformed clustering methods and provided 
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valuable information for further experimental studies. However, it is still unknown 

whether machine learning methods can be used to predict tissue-specific genes in human. 

In a previous study [9],  a large dataset has been compiled from a compendium of 

microarray expression profiles collected from 131 microarray datasets in different 

studies. The integrated dataset contained 2,968 expression profiles for various human 

tissues including brain (616 profiles) liver (117 profiles), testis (36 profiles), blood (409 

profiles) and kidney (73 profiles). A computational method was developed for predicting 

tissue-selective genes with the integrated dataset using both microarray intensity values 

and detection calls. However, the method assigned an equal weight to each expression 

profile for prediction. In this study, a machine learning approach was developed for 

human tissue-specific gene prediction using the available dataset. According to the lists 

of known tissue-specific genes, the gene expression data were extracted from the 

compiled dataset and used for classifier construction. Random Forests (RFs) and Support 

Vector Machines (SVMs) were trained with the expression data to construct accurate 

classifiers. The results indicate that the RF classifiers achieved better predictive 

performance for tissue-specific gene prediction. The approach generated large numbers 

of candidate genes for brain and liver-specific expression. The examinations of high 

scoring genes suggest that our approach can be used to select candidate genes for 

experimental studies. 
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METHODS 

A schematic diagram of the approach used in this study is shown in Figure 2.1. 

The microarray expression profiles of various human tissues were collected from NCBI 

GEO database [9]. The selected profiles were integrated into a single dataset through 

normalization and transformation. The lists of known tissue-specific genes were 

manually collected from UniProt database. The tissue-specific gene expression data were 

extracted from the integrated single dataset and labelled as positive training instances.  

The remaining expression data were randomly divided into two subsets. The negative 

dataset contained tenfold number of data instances as the positive instances. Random 

Forests (RFs) and Support Vector Machines (SVMs) were trained with the training 

instances to construct classifiers. The tenfold cross-validation method was performed to 

evaluate the classifier performance. The models were then used to score the remaining 

data instances for prediction. The classifier construction and prediction were repeated ten 

times, and the candidate genes were prioritized according to their average classifier 

outputs from ten predictions. 
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Figure 2.1 Schematic diagram of the approach for predicting tissue-specific genes. 
 

Microarray data collection and integration 

The approach for compiling human microarray expression profiles was described 

previously [9].  The microarray gene expression profiles of various human tissues from 

131 microarray studies were compiled from NCBI GEO database. The expression 

profiles were generated using the Affymetrix HG-U133 Plus 2.0 Array and obtained from 

normal tissue samples. The raw data in CEL file format were organized into different 

normalization groups and normalized using the dChip tool with the invariant set method 

[10]. The outlier array exclusion and global median transformation were used to integrate 
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the normalized microarray profiles into a single dataset. The dataset used in this study 

contained 54,613 probe sets and 2,968 expression profiles. 

 

Training data preparation 

Tissue-selective genes are defined as the genes whose expression is enriched for 

one or a few similar tissue types. The genes were manually collected from the UniProt 

database. The particular tissue name was used as a query and the reviewed human genes 

were selected for preparation. The tissue-selective genes are defined as the genes that are 

expressed preferentially in a particular tissue from the descriptions of their annotations. 

Most of the genes are identified by the experimental methods, which are independent 

from the microarray expression data in the list. In this study, 408 brain-selective genes, 

96 liver-selective genes, 326 testis-selective genes, 324 blood-selective genes and 45 

kidney-selective genes were collected from UniProt database.  Tissue-specific genes, 

whose expression is specific to only one particular tissue type, are considered as the 

special case of tissue-selective genes. 289 brain-specific genes and 69 liver-specific genes 

were selected from the corresponding tissue-selective genes with the annotation that their 

expression is specific to only brain or liver. Tissue specific-genes are the focus of the 

present study.  

According to the known tissue-specific/selective gene lists, the tissue-

specific/selective gene expression data was retrieved from the integrated microarray 

dataset and labelled as the positive training instances. The probe sets with detectable 

expression signals in corresponding tissue samples were selected for classifier 
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construction. For tissue-specific gene prediction, the expression values for 403 probe sets 

of brain-specific genes and 90 probe sets of liver-specific genes were used for input 

vector encoding. 692 probe sets of brain-selective genes, 150 probe sets of liver-selective, 

430 probe sets of testis-selective genes, 456 probe sets of blood-selective genes and 76 

probe sets of kidney-selective genes were used for tissue-selective gene prediction. 

The negative examples were defined as the genes that do not have preferential 

expression in particular tissues. For this study, we randomly selected the data instances 

from the remaining data and labelled as the negative training instances. The number of 

negative instances was set as tenfold with positive instances to make enough data 

instances for training. The negative and positive data instances were combined as the 

training dataset to construct classifiers using machine learning algorithms. The remaining 

probes were used as the candidate genes for prediction with the classifiers constructed 

from the training dataset. 

 

Random Forests 

The use of 2,968 expression profiles for input vector encoding gives the same 

number of input variables. One potential problem is model overfitting since there were 

only a small number of positive instances (probe sets of known tissue-specific genes) 

available for this study. The problem could be solved using the Random Forests (RFs) 

learning algorithm. A typical RF model is made up many independent decision trees 

constructed using bootstrap samples from the training data. During tree construction, m 

variables out of all the n input variables (m << n) are randomly selected at each node, and 
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the tree node are split using the selected m variables. The RF classifier then combines the 

votes made by the decision trees, and gives the most popular class as the output of the 

ensemble for classification. Because of the random feature selection, RFs could handle a 

large number of input variables and avoid model overfitting. In the present study, the 

randomForest package in R was used for classifier construction. The number of variables 

selected to split each node (mtry) was set to 6, and the number of trees to grow (ntree) 

was set to 1000. Other values of the mtry and ntree parameters for training were also 

examined, but did not result in significant improvement of classifier performance. 

 

Support vector machine training 

Support Vector Machines (SVMs) are computational algorithms that can learn 

from training examples for binary classification. SVM classifiers were constructed and 

compared with RF classifiers for identifying human tissue-specific genes. The SVM 

learning algorithm can be described by four basic concepts, including the separating 

hyperplane, the maximum-margin hyperplane, the soft margin, and the kernel function 

[11]. For a linear classification, the data instance in classifier is represented as an n-

dimensional vector, and an (n – 1) dimensional hyperplane is used to separate the positive 

instances from the negative ones. The SVMlight software package 

(http://svmlight.joachims.org/) was utilized to construct the SVM classifiers using the 

linear function in this study.  The polynomial and radial basis function (RBF) kernel 

functions were also examined for classifier constructions, but the classifiers did not 

achieve high predictive performances in cross-validation tests. 
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Classifier evaluation and prediction 

This study used a tenfold cross-validation method to evaluate classifier 

performance. Positive and negative instances were randomly distributed into ten folds. In 

each of the ten iterations, nine of the ten folds were used to train a classifier, and then the 

remaining one fold was used as the test data to evaluate the classifier. Since the dataset 

was imbalanced, the positive instances of training data were replicated to get the 

approximately equal number with the negative instances. However, the positive instances 

in the test data were not replicated. The predictions made for the test instances in all the 

ten iterations were combined and used to compute the following performance measures: 
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where TP is the number of true positives; TN is the number of true negatives; FP is the 

number of false positives; and FN is the number of false negatives. For imbalanced 

datasets, above measures could be misleading. Thus, the Receiver Operating 

Characteristic (ROC) curve [12], which generated by varying the output threshold of a 

classifier and plotting the true positive rate (sensitivity) against the false positive rate (1 – 

specificity) for each threshold value, was used for classifier evaluation and comparison. 

Since the ROC curve of an accurate classifier is close to the left-hand and top borders of 
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the plot, the area under the curve (AUC) can be used as a reliable measure of classifier 

performance [13]. The good classifiers have AUC values close to 1, whereas weak 

classifiers have AUC values near to 0.5.  

The classifier construction and prediction were repeated ten times. In each run, 

the performance of classifier was computed by above measures. The mean value and 

standard deviation of the measures in ten runs were calculated to check the average levels 

and variations of classifier performances, respectively. The classifier was used to 

evaluate the candidate genes for prediction. The tissue-specific gene targets were sorted 

according to the decreasing average value of classifier outputs from ten predictions, and a 

higher value indicates a higher probability of being expressed predominantly in a 

particular tissue.  

 

RESULTS AND DISCUSSION 

Dataset validation 

The known tissue-specific genes are expressed predominantly in particular 

tissues, so the transcripts of the genes were expected to be detected in corresponding 

tissue samples in the integrated microarray dataset. To visualize the expression patterns 

of the known tissue-specific genes, TM4 MeV [14] was used to generate the heat maps 

for brain and liver-specific genes. As shown in Figure 2.2, the known brain-specific 

genes have expression patterns in brain as well as retina samples. Since retina shares the 

common embryonic origins with brain and translates the visual images into nerve signals 
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for brain, the retina is considered as the sensory part of the brain. Thus, the known brain-

specific genes may also have some expression levels in retina samples. 

The transcripts of known liver-specific genes are detected clearly in liver samples 

(Figure 2.2). The results suggest that the expression data according to our lists of known 

tissue-specific genes can provide useful information for classifier construction using 

machine learning methods. It is noteworthy that some probe sets of known tissue-specific 

genes have high expression or no expression for all tissue samples. To improve the 

quality of classifiers, the probes without detectable expression signals in all the samples 

are excluded from the training dataset. 

 

 

Figure 2.2 Visualization of known tissue-specific gene expression patterns. 
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Prediction of tissue-specific genes 

Random Forests (RFs) and Support Vector Machines (SVMs) were used to 

construct classifiers for predicting brain and liver-tissue specific genes. The results 

suggest that RF classifiers reached better predictive performance than SVM models 

(Table 2.1 and Figure 2.3). We identified 1,408 brain-specific gene targets and 493 liver-

specific gene targets using RF classifiers (Appendix B), which are even more than tissue-

selective genes identified in the  previous study (222 brain-selective targets and 69 liver-

selective targets) [9]. It was shown that the transcripts of candidate genes could be 

detected clearly in corresponding tissue samples (Figure 2.4), and the functions of 

predicted targets were consistent with tissue origins in GO enrichment analysis (Table 2.2 

and 2.4). High scoring gene targets with brain or liver-specific expression have been 

examined (Table 2.3 and 2.5), and the results suggest that the approach can provide 

useful information for identification of novel gene targets in biomedical research.  

In this study, we constructed both RF and SVM classifiers for predicting brain 

and liver-specific genes. 403 probe sets of brain-specific genes and 90 probe sets of liver-

specific genes were used for classifier construction. For brain-specific gene prediction, 

the RF classifier achieved the AUC value at 0.9488 (Table 2.1), which is significantly 

higher than the AUC value of SVM classifier (AUC = 0.8937). The RF classifier reached 

53.73% sensitivity and 97.43% specificity, and MCC = 0.5676.  For liver-specific gene 

prediction, the SVM classifier gave MCC = 0.8350 and ROC AUC = 0.9854. The RF 

classifier achieved a similar level of performance with MCC = 0.8290 and ROC AUC = 
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0.9777. Thus, the results suggest that the RF algorithm performs better for predicting 

tissue-specific genes in this study. 

 
Table 2.1 Comparison of Random Forest and Support Vector Machine classifiers for 
predicting tissue-specific genes. The values outside and inside brackets are the average 
value and standard deviation of measures in ten classifier evaluations, respectively. 

Tissue Method  
AC 
(%) 

SN 
(%) 

SP 
(%) MCC 

ROC 
AUC 

Brain 
SVM 92.07  

(±0.302) 
54.23  

(±1.227) 
95.82 

(±0.263) 
0.5091 

(±0.015) 
0.8937 

(±0.003) 

RF 93.48  
(±0.240) 

53.73  
(±1.485) 

97.43 
(±0.153) 

0.5676 
(±0.016) 

0.9488 
(±0.002) 

Liver 
SVM 

97.29 
(±0.421) 

84.11  
(±2.281) 

98.61 
(±0.309) 

0.8350 
(±0.025) 

0.9854 
(±0.004) 

RF 
97.29  

(±0.341) 
79.00  

(±1.355) 
99.12 

(±0.255) 
0.8290 

(±0.0213) 
0.9777 

(±0.002) 
 

The ROC curves of RF and SVM classifiers for predicting brain-specific genes 

and live-specific genes have been compared in Figure 2.2. The ROC curves of RF and 

SVM classifiers are not significantly different for the prediction of liver-specific genes 

(Figure 2.2b). However, The ROC curve of RF classifier was clearly better than the SVM 

classifier for the prediction of brain-specific genes (Figure 2.2a). The results confirm that 

RF classifier outperforms the SVM models for tissue-specific gene prediction. The 

possible reason is that RFs can handle a large number of input variables and avoid model 

overfitting. The use of 2,968 expression profiles for input vector encoding results in the 

same large number of input variables, which may lead to model overfitting. Interestingly, 

the RF algorithm can handle the situation and show better predictive performance in the 

present study.  
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Figure 2.3 ROC curves to compare the performances of Random Forest (RF) and Support 
Vector Machine (SVM) classifiers for predicting tissue-specific genes. 

 

Brain-specific gene expression 

The human brain gives us the ability to think and sets us apart from other animals. 

It has a highly complex structure which contains different regions with specific functions. 

For example, the hippocampus is involved in spatial navigation and long-term memories, 

whereas the cerebral cortex plays key roles in language, attention and consciousness. Any 

damage in these regions results in various mental disorders including Alzheimer disease, 

Parkinson's disease and Mood disorder. In this study, the predicted brain-specific genes 

are expected to have preferential expression in the brain, and may play important roles in 

neuron functions such as synaptic transmission and neuronal migration.  

In the study, 1,408 candidate targets with positive scores (the average value of 

classifier outputs from ten predictions) were predicted as the brain-specific genes 

(Additional file B1). In Figure 2.4, the expression patterns of candidate gene targets using 

RF classifier are visualized with the heat maps generated using TM4 MeV. The predicted 
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targets show clear expression patterns in brain samples, which indicates that our approach 

is useful for brain-specific gene prediction. Similar to the known brain-specific genes, the 

transcripts of the predicted targets are also detected in retina samples. GO enrichment 

analysis of the candidate targets demonstrates that many candidate genes have basic 

neuron functions (Table 2.2).  For example, neurotransmission is an electrical or 

chemical signal motion within synapses caused by transmission of a nerve impulse. The 

predictions are enriched for neurotransmission-related GO terms such as “synapse”, 

“synapse part”, “transmission of nerve impulse”, “neuron projection”, “synaptic 

transmission” and “passive transmembrane transporter activity”. Some channel-related 

GO terms including “ion channel activity”, “substrate specific channel activity”, “gated 

channel activity” and “channel activity” are detected in the enrichment analysis of our 

predictions. 

 
Table 2.2 GO term enrichment analysis of predicted brain-specific genes.  

*Count: the number of genes involved in the given GO term; %: the percentage of 
involved genes in total genes; P-Value: the modified Fisher Exact P-Value. 

Category Term Count* %* P-Value* 

GOTERM_CC_FAT GO:0045202~synapse 103 11.41 1.37E-49 
GOTERM_CC_FAT GO:0044456~synapse part 83 9.19 2.68E-45 

GOTERM_BP_FAT 
GO:0019226~transmission of nerve 
impulse 

80 8.86 5.25E-36 

GOTERM_CC_FAT GO:0043005~neuron projection 85 9.41 4.00E-35 
GOTERM_BP_FAT GO:0007268~synaptic transmission 73 8.08 6.82E-35 
GOTERM_MF_FAT GO:0005216~ion channel activity 76 8.42 2.29E-30 

GOTERM_MF_FAT 
GO:0022838~substrate specific 
channel activity 

77 8.53 3.03E-30 

GOTERM_MF_FAT GO:0022836~gated channel activity 68 7.53 4.80E-30 
GOTERM_MF_FAT GO:0015267~channel activity 77 8.53 3.28E-29 

GOTERM_MF_FAT 
GO:0022803~passive transmembrane 
transporter activity 

77 8.53 3.87E-29 
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Figure 2.4 Visualization of predicted tissue-specific gene expression patterns. 
 

Table 2.3 shows the top 20 high-scoring predictions from RF classifiers. The 

predicted targets were not shown to have brain-specific expression from the annotations 

of UniProt, thus the genes are excluded from the training datasets. However, recent 

studies suggest that some predicted targets, including BRUNOL4, ANKS1B, TRIM9, 

NCAN, FAIM2, OPCML and FXYD7, are expressed predominantly in the brain. For 

example, the RNA-binding protein encoded by BRUNOL4 plays an important role in 

many cellular processes including RNA stability, pre-mRNA alternative splicing, mRNA 

editing and translation [15, 16]. It was shown that the protein was predominantly 

expressed in the brain with enrichment in the hippocampus [17]. In this study, the probes 
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of BRUNOL4 have the highest (223654_s_at, 0.8753) and fourth-ranked (238966_at, 

0.8600) scores. ANKS1B encodes an Amyloid-beta protein which can regulate the 

nucleoplasmic coilin protein interactions in neuronal cells. Previous studies showed that 

the protein was mainly expressed in brain and may be implicated in Alzheimer’s disease 

[18]. Brain-specific E3 ligase encoded by TRIM9 has a high level of expression in the 

cerebral cortex and may be involved in the pathogenesis of Parkinson's disease [19]. 

Neurocan (NCAN) modulates neuronal adhesion and migration and is expressed 

preferentially in the brain [20]. The protein encoded by FAIM2 could protect cells from 

Fas-mediated apoptosis and shows a high level of expression in the hippocampus [21]. It 

was shown that OPCML was predominantly expressed in cerebellum and cerebral cortex 

[22], whereas FXYD7 was preferentially expressed in the brain [23]. 

Other predicted targets have not been previously suggested to have brain-specific 

expression, but some candidate genes, including GNAO1, SV2A, SYN2, UNC13A and 

NTRK2, are involved in basic neuron functions (Table 2.3). Guanine nucleotide binding 

protein (GNAO1)  mediates the physiological effects of various neuronal receptors [24]. 

SV2A, SYN2 and UNC13A encode proteins which are important for synaptic transmission 

in the central and peripheral nervous system [25, 26]. NTRK2 encodes a neurotrophic 

tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF) and is implicated 

in childhood mood disorder [27]. By contrast, the functions of some high scoring genes in 

brain remain to be characterized. HS6ST3 encodes a Heparan sulphate sulfotransferase 

which plays a key role in the modulation of fibroblast growth factor signalling [28]. The 

protein encoded by SCN2A forms a voltage-dependent sodium channel and is associated 
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with generalized epilepsy with febrile seizures plus [29]. The corresponding genes of 

three cDNA sequences (LOC389073, AA879409, AI186173) were not determined, and 

their functions in the brain are not clear. The results suggest that the machine learning 

approach developed in the present study can be used to identify some interesting targets 

for further experimental studies. 

 
Table 2.3 List of high-scoring genes with specific expression in the brain. 

Probe Gene Description Score* 

223654_s_at BRUNOL4 Bruno-like 4, RNA binding protein (Drosophila) 0.8753 

227440_at ANKS1B 
Ankyrin repeat and sterile alpha motif domain 
containing 1B 

0.8685 

230280_at TRIM9 Tripartite motif-containing 9 0.866 

238966_at BRUNOL4 Bruno-like 4, RNA binding protein (Drosophila) 0.8345 

205143_at NCAN Neurocan 0.832 

204762_s_at GNAO1 
Guanine nucleotide binding protein (G protein), 
alpha activating activity polypeptide O 

0.8201 

232276_at HS6ST3 Heparan sulfate 6-O-sulfotransferase 3 0.8186 

203619_s_at FAIM2 Fas apoptotic inhibitory molecule 2 0.8124 

241998_at LOC389073 Similar to RIKEN cDNA D630023F18 0.8074 

206381_at SCN2A Sodium channel, voltage-gated, type II, alpha subunit 0.8021 

203069_at SV2A Synaptic vesicle glycoprotein 2A 0.7998 

1557256_a_at AA879409 CDNA FLJ37672 fis, clone BRHIP2012059 0.797 

229039_at SYN2 Synapsin II 0.7956 

242651_at AI186173 Transcribed locus 0.7951 

227453_at UNC13A unc-13 homolog A (C. elegans) 0.7888 

203618_at FAIM2 Fas apoptotic inhibitory molecule 2 0.7744 

229463_at NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 0.7728 

214111_at OPCML Opioid binding protein/cell adhesion molecule-like 0.7722 

214376_at AI263044 Clone 24626 mRNA sequence  0.7668 

220131_at FXYD7 FXYD domain containing ion transport regulator 7 0.7662 

* Score: the average value of RF classifier outputs from ten predictions. 
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Liver-specific gene expression 

The liver is a vital organ for human metabolism, and plays key roles in detoxification, 

plasma protein synthesis, glycogen storage and hormone production. For example, liver is 

the source and target organ of inflammatory mediators in the pathogenesis of 

inflammatory response syndrome [30], and it is responsible for the production of 

coagulation factors. Thus, the liver-specific targets identified in this study might be 

involved in basic liver functions. We identified 493 liver-specific gene targets with 

positive scores in the analysis (Additional file B2). The functional analysis of the liver-

specific gene targets using RF classifier confirms that many of the predicted targets are 

enriched for liver-related GO terms (Table 2.4). For example, the GO terms for 

inflammatory response contained “acute inflammatory response”, “response to 

wounding” and “activation of plasma proteins involved in acute inflammatory response”; 

the coagulation-related GO terms included “blood coagulation”, “coagulation” and 

“hemostasis”. The expression patterns of the predicted liver-specific genes are visualized 

with the heat map (Figure 2.3). Clearly, the transcripts of the predicted targets are 

predominantly detected in liver samples. 
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Table 2.4 GO term enrichment analysis of predicted liver-specific genes.  

*Count: the number of genes involved in the given GO term; %: the percentage of 
involved genes in total genes; P-Value: the modified Fisher Exact P-Value. 

 

As listed in Table 2.5, 17 of the top 20 high-scoring genes are involved in the 

metabolism of human liver. The genes include F11, F9, SERPINC1, APOA2, AKR1D1, 

ACSM2, ITIH2, PON1, CPB2, AFM, NR0B2, ALB, CYP4A11, PGLYRP2 and SLC22A7. 

For example, F11, F9 and SERPINC1 are involved in the regulation of blood coagulation 

cascade [31]. APOA2 encodes apolipoprotein which is synthesized mainly in liver and 

involved in the metabolism of high density lipoprotein [32]. AKR1D1 encodes the aldo-

keto reductase catalyzing the reduction of steroid hormones [33],  whereas ACSM2 

encodes enzyme catalyzing the activation of medium-chain length fatty acids [34].  The 

genes were not shown to have liver-specific expression in UniProt annotations, but recent 

studies suggest that the genes are expressed preferentially in the liver. The expression and 

functions of other three predictions (BG398937, C6 and LPA) have not been well 

documented in the literature. 

Category Term Count* %* P-Value* 

GOTERM_BP_FAT 
GO:0002526~acute inflammatory 
response 

29 8.41 1.65E-24 

GOTERM_BP_FAT GO:0009611~response to wounding 55 15.94 8.55E-23 
GOTERM_CC_FAT GO:0005615~extracellular space 63 18.26 8.65E-23 

GOTERM_CC_FAT GO:0005576~extracellular region 109 31.59 1.35E-21 
GOTERM_BP_FAT GO:0007596~blood coagulation 25 7.25 5.55E-19 
GOTERM_BP_FAT GO:0050817~coagulation 25 7.25 5.55E-19 

GOTERM_BP_FAT GO:0007599~hemostasis 25 7.25 2.33E-18 
GOTERM_BP_FAT GO:0055114~oxidation reduction 54 15.65 2.46E-18 
GOTERM_BP_FAT GO:0006956~complement activation 18 5.22 2.70E-18 

GOTERM_BP_FAT 
GO:0002541~activation of plasma 
proteins involved in acute 
inflammatory response 

18 5.22 4.37E-18 
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Table 2.5 List of high-scoring genes with specific expression in the liver. 

Probe Gene Description Score* 

206610_s_at F11 
Coagulation factor XI (plasma thromboplastin 
antecedent) 

0.7869 

1554491_a_at SERPINC1 Serpin peptidase inhibitor, clade C member 1 0.7737 

219465_at APOA2 Apolipoprotein A-II 0.7609 

217512_at BG398937 Unknown 0.7559 

207102_at AKR1D1 Aldo-keto reductase family 1, member D1  0.7466 

207218_at F9 Coagulation factor IX  0.725 

210168_at C6 Complement component 6 0.7239 

204987_at ITIH2 Inter-alpha (globulin) inhibitor H2 0.7191 

209978_s_at LPA/PLG Lipoprotein, Lp(a) / plasminogen 0.7191 

214069_at ACSM2 Acyl-CoA synthetase medium-chain family member 2 0.7099 

206345_s_at PON1 Paraoxonase 1 0.7004 

206651_s_at CPB2 Carboxypeptidase B2 (plasma) 0.6959 

241914_s_at ACSM2 Acyl-CoA synthetase medium-chain family member 2 0.6945 

206840_at AFM Afamin 0.6846 

206410_at NR0B2 Nuclear receptor subfamily 0, group B, member 2 0.6837 

214842_s_at ALB Albumin 0.6809 

217319_x_at CYP4A11 
Cytochrome P450, family 4,subfamily A, polypeptide 
11 

0.6772 

242817_at PGLYRP2 Peptidoglycan recognition protein 2 0.6765 

207407_x_at CYP4A11 
Cytochrome P450, family 4, subfamily A, polypeptide 
11 

0.6752 

231398_at SLC22A7 Solute carrier family 22, member 7 0.6746 

* Score: the average value of RF classifier outputs from ten predictions. 
 

Tissue-selective gene prediction 

Tissue-specific genes are considered as the special case of tissue-selective genes. 

Our approach was developed for tissue-specific gene predictions, but its application to 

tissue-selective gene predictions is straightforward. In this study, the RF classifiers were 

used to predict the genes that are expressed preferentially in the brain, liver, testis, blood 
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and kidney. As shown in Table 2.6, The RF classifiers reached high predictive 

performance for tissue-selective gene prediction.  For example, the classifier for brain-

selective gene prediction shows overall accuracy (AC) at 92.70% with Matthews 

Correlation Coefficient (MCC) = 0.4925.  The classifier for liver-selective gene 

prediction gave predictive performance with the overall accuracy at 96.02% and MCC = 

0.7378. It is noteworthy that the classifiers used for tissue-specific gene prediction 

achieved higher predictive performance than those for tissue-selective gene prediction. 

For instance, the AUC value of RF classifier for brain-specific gene prediction (AUC = 

0.9488, Table 2.1) is higher than that for brain-selective gene prediction (AUC = 0.9178, 

Table 2.6), whereas the RF classifier gave better predictive performance for liver-specific 

gene prediction (AUC = 0.9777, Table 2.1) than liver-selective gene prediction (AUC = 

0.9547, Table 2.6). The possible explanation is that the tissue-specific genes are 

expressed specifically in only one particular tissue type, thus the clear expression patterns 

of the genes may improve the quality of classifiers and result in high predictive 

performance for predictions. 

The RF classifiers gave high predictive performance for predicting genes that 

have preferential expression in other tissue types. The testis is the male sex gland, which 

produces sperm, male reproductive cell and sex hormones. The classifier for testis-

selective gene prediction reached predictive performance with overall accuracy at 

91.00% and ROC AUC = 0.8433. The blood transports oxygen and nutrients to other 

tissues and carries away waste products from cells. The classifier for blood-selective gene 

prediction showed overall accuracy at 93.29% with MCC = 0.5109 and ROC AUC = 
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0.9170. The kidneys play key roles in urinary system.  The organs filter waste products 

from the blood and excrete them in urine. The classifier for kidney-selective gene 

prediction achieved predictive performance with overall accuracy at 93.62% with MCC = 

0.4648 and ROC AUC = 0.9300. The results suggest that our approach can be used to 

identify the genes that have preferential expression in different types of tissues. 

 
 
Table 2.6 Random Forest classifiers for predicting tissue-selective genes. The values 
outside and inside brackets are the average value and standard deviation of measures in 
ten classifier evaluations, respectively. 

 

CONCLUSION 

A machine learning approach has been developed in this study for identifying the 

human tissue/specific gene targets. Random Forests (RFs) and Support Vector Machines 

(SVMs) were trained separately with the microarray gene expression data to construct 

classifiers for prediction. It was shown that the RF classifiers outperform SVM models 

for tissue-specific gene prediction. 1,408 brain-specific gene targets and 493 liver-

specific gene targets were identified using RF classifiers. The predicted targets show 

Tissue AC 
(%) 

SN 
(%) 

SP 
(%) MCC ROC 

AUC 

Brain 
92.70 

(±0.273) 
43.55 

(±1.212) 
97.60 

(±0.211) 
0.4925 

(±0.018) 
0.9178 

(±0.002) 

Liver 
96.02 

(±0.341) 
65.6 

(±2.499) 
99.07 

(±0.191) 
0.7378 

(±0.024) 
0.95467 
(±0.003) 

Testis 
91.00 

(±0.033) 
1.49 

(±0.405) 
99.95 

(±0.038) 
0.0980 

(±0.014) 
0.8433 

(±0.004) 

Blood 93.29 
(±0.190) 

40.20 
(±1.291) 

98.53 
(±0.108) 

0.5109 
(±0.016) 

0.9170 
(±0.002) 

Kidney 93.62 
(±0.508) 

26.43 
(±5.355) 

99.73 
(±0.159) 

0.4648 
(±0.062) 

0.9300 
(±0.003) 
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clear expression patterns in corresponding tissue samples and have functions consistent 

with the tissues in GO enrichment analysis. The analysis of high-scoring candidate genes 

for brain and liver specific expression suggests that our approach can select some 

interesting targets for further experimental studies. Our approach could also provide 

useful information for tissue-selective gene prediction. The approach can be used to 

develop new drug targets for biomedical research and expand our knowledge of tissue-

specific expression. 
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CHAPTER THREE 
 

PREDICTING PROTEIN SUMOYLATION SITES FROM SEQUENCE FEATURES2 
 

ABSTRACT 

Protein sumoylation is a post-translational modification that plays an important 

role in a wide range of cellular processes. Small ubiquitin-related modifier (SUMO) can 

be covalently and reversibly conjugated to the sumoylation sites of target proteins, many 

of which are implicated in various human genetic disorders. The accurate prediction of 

protein sumoylation sites may help biomedical researchers to design their experiments 

and understand the molecular mechanism of protein sumoylation. In this study, a new 

machine learning approach has been developed for predicting sumoylation sites from 

protein sequence information. Random Forests (RFs) and Support Vector Machines 

(SVMs) were trained with the data collected from the literature. Domain-specific 

knowledge in terms of relevant biological features was used for input vector encoding. It 

was shown that RF classifier performance was affected by the sequence context of 

sumoylation sites, and twenty residues with the core motif ΨKXE in the middle appeared 

to provide enough context information for sumoylation site prediction. The RF classifiers 

were also found to outperform SVM models for predicting protein sumoylation sites from 

sequence features. The results suggest that the machine learning approach gives rise to 

more accurate prediction of protein sumoylation sites than previous studies. The RF and 

SVM models were used to develop a new web server, called seeSUMO (freely available 

                                                   
2Teng S, Luo H, Wang L: Predicting protein sumoylation sites from sequence features, submitted. 
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at http://bioinfo.ggc.org/seesumo), for sequence-based prediction of protein sumoylation 

sites. 

 

BACKGROUND 

Post-translational modifications regulate protein functions, and orchestrate a 

variety of cellular processes. Protein sumoylation, an important reversible post-

translational modification, is essential for many eukaryotic cellular processes, including 

DNA damage recovery regulation, subcellular transport, transcription factor 

transactivation, protein stability, cell cycle progression and chromosome segregation [1]. 

Small ubiquitin-related modifier (SUMO) can be covalently attached to and detached 

from specific lysine residues in target proteins [2]. Many sumoylated proteins, including 

huntingtin, DJ-1, ataxin-1 and tau, play key roles in disease states. For instance, the 

stability and correct targeting of huntingtin are controlled by sumoylation, and any 

alternations of the process may cause Huntington's disease [3]. Sumoylation is also 

involved in the pathogenesis of Parkinson's disease, Alzheimer's disease, neuronal 

intranuclear inclusion disease, amyotrophic lateral sclerosis, spinobulbar muscular 

atrophy, spinocerebellar ataxia type 1 and several human cancers [4]. 

Only one or a few lysine residues in a protein may be involved in sumoylation.  It 

is rather difficult and time-consuming to identify the sumoylated lysine among many 

candidate lysine residues through experimental approaches. Accurate computational 

prediction of protein sumoylation sites can help biologists better design their experiments 

and interpret the experimental data. A core consensus motif ΨKXE has been identified 
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for sumoylation sites, in which Ψ represents an aliphatic amino acid (I, V, L, A, P or M), 

K is the sumoylation site, X indicates any amino acid, and E is glutamic acid. Extended 

sumoylation motifs have also been reported [5], such as NDSM (negatively charged 

amino acid-dependent sumoylation motif: ΨKXE + downstream cluster of [D/E]) [6], 

PDSM (phosphorylation-dependent sumoylation motif: ΨKXEXXSP) [7] and SUMO-

acetyl switch (ΨKXEP) [8]. These findings suggest that the sequence flanking the core 

motif (ΨKXE) may also contribute to the specific recognition of the sumoylation sites. 

Moreover, it is noteworthy that some sumoylation sites do not follow the above motifs, 

and not all lysine residues matched to these motifs are sumoylated. It is still challenging 

to accurately predict the true sumoylation sites recognized by the cellular machinery. 

Accurate prediction of sumoylation site could help understand the mechanism of 

protein sumoylation underlying human genetic disorders. Several computational methods 

have been reported for predicting sumoylation sites. A statistical method used by the 

SUMOpre web server [9] can predict sumoylation sites at the overall accuracy of 96.71% 

and Matthews Correlation Coefficient of 0.6364 in cross-validation tests. Xue et al. [10] 

developed the SUMOsp 1.0 web server, which used the Group-based Phosphorylation 

Scoring (GPS) algorithm with the pattern recognition strategy MotifX for sumoylation 

site prediction. SUMOsp 2.0 [11] was developed with the upgraded GPS algorithm. It has 

been shown that SUMOsp 2.0 reached better predictive performance than SUMOsp 1.0. 

However, the previous studies did not utilize the domain-specific knowledge for classifier 

construction. 
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Domain-specific knowledge in terms of relevant biological features can be used to 

enhance classifier performance for predicting DNA-binding residues and protein stability 

changes upon amino acid substitutions [12-14]. For example, the predictive performance 

of  DNA-binding site prediction could be significantly improved by using biochemical 

features [14] and evolutionary information [15] for input vector encoding. In this study, 

we have developed a new approach for sequence-based prediction of protein sumoylation 

sites using Random Forests (RFs) and Support Vector Machines (SVMs). The biological 

knowledge in terms of forty sequence features were used for input encoding. It was found 

that the RF classifier performance was affected by sequence context of sumoylation sites. 

The results obtained in this study indicate that the RF classifiers achieved better 

predictive performance than the SVM classifiers and previous predictors. To make our 

classifiers publicly accessible to the biological research community, we have developed a 

new web server called seeSUMO (freely available at http://bioinfo.ggc.org/seesumo). 

 

METHODS 

Data 

We collected 457 experimentally verified sumoylation sites in 263 proteins, by 

searching the research articles in NCBI PubMed using ‘SUMO’ and ‘sumoylation’ as 

keywords (Appendix C, Table C.1). This dataset contained all the instances used by 

SUMOpre [9], including 268 sumoylation sites in 159 proteins from research articles 

reported before August 10, 2006. The other 189 sumoylation sites have been manually 

collected from research articles published between August 10, 2006 and June 1, 2010. 
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The amino acid sequences of these proteins were extracted from the SwissProt database. 

In order to remove redundancy in the dataset, the blastclust program in the BLAST 

software package (http://blast.ncbi.nlm.nih.gov/) was used for clustering analysis with a 

25% sequence identity threshold, and ClustalX [16] was used for multiple sequence 

alignment of the sequences in each cluster. The redundant sumoylation sites were 

manually removed from the dataset. The final dataset contains 9,952 lysine residues in 

247 proteins, including 425 non-redundant sumoylation sites used as positive data 

instances and 9,527 non-sumoylated lysine sites used as negative data instances. 

To compare the predictive performance of our classifiers with previous predictors, 

the final dataset was divided into two subsets.  The training dataset included 377 

sumoylation sites and 8,237 non-sumoylated lysine residues in 221 proteins from 

publications before January 2010. The remaining 48 sumoylation sites and 1,290 non-

sumoylation sites in 26 proteins reported after January 2010 were used as the test dataset 

for classifier evaluation and comparison. 

 

Sequence logos 

Protein Sequence Logos (http://www.cbs.dtu.dk/~gorodkin/appl/plogo.html) was 

used to generate the sequence logo for visualizing the sequence pattern of sumoylation 

motifs. The twenty eight residues with the core motif ΨKXE in the middle of 388 known 

sumoylation sites was used as the inputs, and the frequencies of residues at each position 

were measured in bits of information as described in previous studies [17, 18].  The 
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height of residue k at position i (dik) is proportional to its frequency relative to the 

expected frequencies, which is computed as follows: 
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where qik represents the fraction of residue k at position i, and pk indicates the priori 

amino acid distribution, which was set to the amino acid composition obtained from 

UniProtKB/Swiss-Prot Release 57.15 in this study. I i is the information content of 

position i as described below: 
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where A is the set of residues including gaps. 

 

Sequence features 

Forty biological features, including ten biochemical features, seven structural 

features, nine thermodynamic features, six empirical features and eight other biological 

features, selected from Protscale [19] and AAindex [20], were used to encode each amino 

acid residue in a data instance (Appendix C, Table C.2). These features represent 

different types of biological knowledge such as biochemical properties, structural 

information, protein stability, folding energy, etc. For example, the biochemical feature, 

polarity (P), represents the dipole-dipole intermolecular interactions between the 

positively and negatively charged residues, and the structural feature, conformational 

parameter for alpha-helix (A), indicates the tendency of an amino acid to form the 

secondary structures, alpha-helix. Some of these features were used for predicting DNA-
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binding residues and protein stability changes upon amino acid substitutions in previous 

studies [12-14]. 

 

Evolutionary Information 

It was shown that utilizing the evolutionary information in terms of position-

specific scoring matrix (PSSM) scores could improve the performance of Random 

Forests for DNA-binding site prediction [21].  The PSSM scores generated by PSI-

BLAST in this study indicated how well each position of a sequence was conserved 

among its homologues. The protein sequences downloaded from UniProtKB/Swiss-Prot 

(http://www.pir.uniprot.org/, release 57.15) were used as the reference database, and PSI-

BLAST was run for three iterations with the E-value threshold set to 1e-5. 

 

Random Forests 

The use of forty biological features and evolutionary information for input vector 

encoding gives rise to a large number of input variables, especially with a large window 

size. Considering the relatively small number of positive instances (experimentally 

identified sumoylation sites) available for this study, this might result in model 

overfitting. To avoid model overfitting, the Random Forest (RF) learning algorithm was 

used in this study.  A typical RF model is made up of many independent decision trees 

constructed using bootstrap samples from the training data. During tree construction, m 

variables out of all the n input variables (m << n) are randomly selected at each node, and 

the tree nodes are split using the selected m variables. For classifying a data instance, a 
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RF classifier combines the votes made by the decision trees, and gives the most popular 

class as the output of the ensemble. Because of the random feature selection, RFs have 

the capability of handling a large number of input variables and avoid model overfitting.  

In this study, the RF algorithm is implemented using the randomForest package in 

R. The number of variables selected to split each node (mtry) was set to 6, and the 

number of trees to grow (ntree) was set to 1000. Other values of the mtry and ntree 

parameters for training were also examined, but did not result in significant improvement 

of classifier performance. 

 

Support vector machine training 

Support Vector Machine (SVM) classifiers were also constructed, and compared 

with RF classifiers for protein sumoylation site prediction. The SVM method is a data-

driven approach for binary classification. The SVM learning algorithm can be described 

by four basic concepts, including the separating hyperplane, the maximum-margin 

hyperplane, the soft margin, and the kernel function [22]. For a linear classification, data 

instances are represented as n-dimensional vectors, and an (n – 1) dimensional 

hyperplane is used to separate the positive instances from the negative ones. Non-linear 

classifications are generally used for the analysis of complex biological data. In these 

cases, a kernel function can be used to measure the distance between data points in a 

higher dimensional space, which allows the SVM algorithm to fit the maximum-margin 

hyperplane in the transformed space. The SVMlight software package 
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(http://svmlight.joachims.org/) was utilized to construct the SVM classifiers using the 

radial basis function (RBF) kernel in this study. 

In this study, forty biological features were used to build the SVM models. 

However, the features used for classifier construction might contain redundant or 

correlated information. Thus, feature selection was performed to choose an optional 

subset of relevant features for constructing simple, efficient models. The five relevant 

features were selected by Random Forests, and then used to construct SVM classifiers. 

 

Classifier evaluation 

The predictive performance of classifier was evaluated by tenfold cross-

validation. The whole dataset were randomly distributed into ten folds. In each of the ten 

iterations, the classifier was trained in nine of the ten folds and tested in the remaining 

one fold. Since the dataset was imbalanced with only 4% of lysine residues as 

sumoylation sites, the positive instances of training data were replicated to get the 

approximately equal number with the negative instances. However, the positive instances 

in the test data were not replicated. The prediction results made for the test data instances 

in all the ten iterations were combined and evaluated by various performance measures, 

including Accuracy (AC), Sensitivity (SN), Specificity (SP), Strength (ST) and Matthews 

Correlation Coefficient (MCC): 
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where TP is the number of true positives; TN is the number of true negatives; FP is the 

number of false positives; and FN is the number of false negatives. For imbalanced 

datasets, the accuracy alone could be misleading. Thus, sensitivity, specificity and their 

average (strength) were also computed from prediction results. MCC was used to 

measure the correlation between predictions and the actual class labels. However, 

different trade-offs of sensitivity and specificity may give rise to different MCC values 

for a classifier.  

The Receiver Operating Characteristic (ROC) curve [23] is probably the most 

robust approach for classifier evaluation and comparison. In the present study, the ROC 

curve was generated by varying the output threshold of a RF classifier and plotting the 

true positive rate (sensitivity) against the false positive rate (1 – specificity) for each 

threshold value. Since the ROC curve of an accurate classifier is close to the left-hand 

and top borders of the plot, the area under the curve (AUC) can be used as a reliable 

measure of classifier performance [24]. The range of AUC value is 0.5 (random 

guessing) to 1 (perfect classifier).  
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RESULTS AND DISCUSSION 

Sequence patterns of protein sumoylation sites 

Protein sumoylation sites are often identified with the consensus motif ΨKXE, 

where Ψ represents an aliphatic amino acid (I, V, L, A, P or M), and X indicates any 

residue. However, 159 (~35%) of 457 known sumoylation sites in this study do not 

contain the core motif (ΨKXE), whereas the dataset contains 228 non-sumoylated lysine 

residues that match this motif. To visualize the sequence patterns in sumoylation sites and 

their flanking sequences, the sequence logo was generated using the 28-residue sequences 

from 388 experimentally identified sumoylation sites (Figure 3.1). The result suggests 

that certain positions outside of the core motif (ΨKXE), such as the positions -7, 1, 3, 4 

and 9, may contain some information for the specific recognition of sumoylation sites in 

the cell. For instance, the most abundant residue at positions 1 is Proline (P), which 

agrees well with the SUMO-acetyl switch (ΨKXEP). Interestingly, glutamine (Q), 

Methionine (M) and Threonine (T) appear to be more abundant than any other residues in 

the X position of the core motif ΨKXE, suggesting that there may be subtle amino acid 

preference at the X position. 

The above observations suggest that the flanking sequences of protein 

sumoylation sites have some subtle patterns. However, these patterns may not be 

modelled completely by consensus motifs or sequence logos, which do not consider the 

dependence among neighboring residues. Thus, a machine learning approach has been 

developed in this study to model the sequence patterns of protein sumoylation sites. 
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Figure 3.1 The sequence logo of the protein sumoylation motif (ΨKXE) and its flanking 
residues. 

 

Effect of sequence context on classifier performance 

We first constructed Random Forest (RF) classifiers using the forty biological 

features for input vector encoding. The RF classifiers were trained with data instances of 

various window sizes. The results suggest that RF classifier performance was affected by 

the sequence context of sumoylation sites (Table 3.1). The classifier constructed with KX 

(window size w = 2) gave predictive performance with the prediction strength (ST) = 

57.07%, Matthews Correlation Coefficient (MCC) = 0.0590 and ROC AUC = 0.6107. 

The classifier performance was improved significantly when the core motif ΨKXE (w = 
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4) was used for input encoding. The classifier gave the prediction strength at 82.04% with 

MCC = 0.5379 and AUC = 0.9024. When the neighboring residues of the core motif 

were used to construct the classifiers, the predictive performance was further improved. 

For example, the classifier constructed with ΨKXE+/-5 (w = 14) achieved the highest 

MCC at 0.6786. Since the dataset was imbalanced with only 4% of lysine residues as the 

sumoylation sites, the ROC AUC is probably the most reliable performance measure for 

the present study. The classifier using the twenty residues with the core motif ΨKXE in 

the middle (ΨKXE+/-8, w = 20) reached the highest ROC AUC at 0.9200. The classifier 

also shows the highest overall accuracy at 97.68% with 56.00% sensitivity and 99.50% 

specificity, and high MCC = 0.6711. Thus, this RF classifier is considered as the best 

classifier in Table 3.1.  

 
Table 3.1 Effect of sequence context on predictive performance of Random Forest 
classifiers. 
Sequence context AC 

(%) 
SN 
(%) 

SP 
(%) 

ST 
(%) MCC ROC 

AUC 
KX 61.80 51.89 62.25 57.07 0.0590 0.6107 
ΨKXE 95.27 67.57 96.52 82.04 0.5379 0.9024 
ΨKXE+/-1 97.28 61.35 98.90 80.13 0.6489 0.9038 
ΨKXE+/-2 97.42 59.73 99.12 79.42 0.6582 0.9145 
ΨKXE+/-3 97.45 60.00 99.15 79.58 0.6638 0.9172 
ΨKXE+/-4 97.54 60.28 99.20 79.74 0.6688 0.9074 
ΨKXE+/-5 97.63 60.00 99.31 79.65 0.6786 0.9103 
ΨKXE+/-6 97.57 57.78 99.34 78.56 0.6668 0.9048 
ΨKXE+/-7 97.54 54.86 99.40 77.13 0.6508 0.9188 
ΨKXE+/-8 97.68 56.00 99.50 77.75 0.6711 0.9200 
ΨKXE+/-9 97.59 51.71 99.60 75.66 0.6522 0.9133 
ΨKXE+/-10 97.57 47.65 99.70 73.67 0.6340 0.9149 
ΨKXE+/-11 97.46 43.82 99.75 71.79 0.6115 0.9136 
ΨKXE+/-12 97.43 42.35 99.79 71.07 0.6056 0.9124 
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The ROC analysis for investigating the effect of sequence context information on 

RF classifier performance has been shown in Figure 3.2. The classifier constructed with 

ΨKXE is clearly better than the classifier constructed with KX. Furthermore, the 

classifier using twenty residues with the core motif in the middle (ΨKXE+/-8) appears to 

be slightly better than the classifier constructed with ΨKXE. The results suggest that the 

context information in the flanking sequences may be useful for sumoylation site 

prediction.  

 

 

Figure 3.2 ROC curves to show the effect of context information for sumoylation site 
prediction. 
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RF versus SVM classifiers 

Support Vector Machines (SVMs) have been widely used for biological pattern 

classification. In this study, we constructed SVM classifiers using the forty biological 

features, and compared their ROC AUC values with those of the RF classifiers over 

various window sizes. As shown in Figure 3.3, the RF classifiers using the forty features 

(RF40) achieved comparable performance measures over various window sizes with the 

highest AUC at w = 20 (ΨKXE+/-8). However, SVM classifiers using the forty features 

(SVM40) showed significantly degraded performances with large window sizes. For 

example, the AUC value of SVM40 decreased from 0.8090 to 0.5254 when the window 

size was increased from w = 4 (ΨKXE) to w = 8 (ΨKXE+/-2). Thus, the SVM classifiers 

did not achieve the same level of predictive performance as the RF classifiers. The 

possible explanation is that some of the forty features may contain redundant or 

correlated information for sumoylation site prediction, which may have caused the 

degradation of SVM classifier performance.  

To enhance the predictive performance of SVM classifiers, feature selection was 

performed using Random Forests (RFs).  Five highly relevant features selected by RFs, 

including polarity (P), conformational parameters for alpha helix (A) and coil (C), short 

and medium range non-bonded energy per residue (Er) and free energy in alpha-helical 

conformation (Ea), were used to construct the SVM classifiers (SVM5). As shown in 

Figure 3.3, the ROC AUC values of the SVM5 classifiers were higher than those of the 

SVM40 classifiers over various window sizes. For example, the SVM5 classifier 

constructed using eight residues (ΨKXE+/-2, w = 8) achieved the highest AUC value of 
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0.8917 over various window sizes (Figure 3.3), which was significantly higher than the 

AUC value of the SVM40 classifier (AUC = 0.5254 at w = 8). This classifier reached the 

prediction strength at 78.42% (58.38% sensitivity and 98.46% specificity) and MCC = 

0.5902 (Table 3.2). The SVM5 classifier constructed with ΨKXE+/-2 was regarded as the 

best SVM classifier in this study. 

 

 

Figure 3.3 Performance comparisons of Random Forest (RF) and Support Vector 
Machine (SVM) classifiers. 
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However, the RF40 classifiers still outperformed the SVM5 models (Figure 3.3). 

As shown in Table 3.2, The RF40 classifier constructed using eight residues (ΨKXE+/-2) 

achieved the prediction strength of 79.42% with MCC = 0.6582 and AUC = 0.9145, 

which were higher than those of the SVM5 classifier in the same window size. Thus, the 

RF algorithm appears to be better for predicting protein sumoylation sites from sequence 

features. The possible explanation is that RFs can handle a large number of input 

variables and avoid model overfitting. The feature-encoded input vector has a large 

number of variables, especially with a large window size. For example, when twenty 

residues (w = 20) are used for classifier construction, the number of input variables is 800 

for classifiers using forty features and 100 for classifiers using five features. The large 

number of input variables, together with the small number of positive instances, may lead 

to model overfitting. 

 

Table 3.2 Comparison of Random Forest and Support Vector Machine classifiers 
constructed with ΨKXE+/-2 (w = 8). 

Features AC 
(%) 

SN 
(%) 

SP 
(%) 

ST 
(%) MCC ROC 

AUC 

RF40 97.42 59.73 99.12 79.42 0.6582 0.9145 

SVM5 96.73 58.38 98.46 78.42 0.5902 0.8917 
SVM40 95.66 0.00 99.99 49.99 -0.0023 0.5254 

 

Use of evolutionary information 

Evolutionary information in terms of position-specific scoring matrix (PSSM) 

scores was previously shown to improve classifier performance [21, 25, 26]. To 

determine whether or not sumoylation site prediction could be further improved by using 
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evolutionary information, the PSSM scores of twenty residues with the core motif ΨKXE 

in the middle were used to construct the RF classifiers. The scores in a PSSM represent 

how well each position of a protein sequence was conserved among its homologues. As 

shown in Table 3.3, the RF classifier constructed with PSSMs (PSSM, Table 3.3) reached 

the prediction strength of 51.96% with MCC = 0.1566 and AUC = 0.8672. By using both 

PSSMs and the forty biological features for input vector encoding, the RF classifier (Bio 

+ PSSM, Table 3.3) gave a relatively high classifier performance (74.82% prediction 

strength, MCC = 0.6443 and AUC = 0.9181). However, these performance measures 

were not significantly different from those of the RF classifier using the biological 

features only (Bio, Table 3.3). 

 

Table 3.3 Effect of evolutionary information on protein sumoylation site prediction. 

Features AC 
(%) 

SN 
(%) 

SP 
(%) 

ST 
(%) MCC ROC 

AUC 

PSSM 95.90 4.00 99.91 51.96 0.1566 0.8672 

Bio 97.68 56.00 99.50 77.75 0.6711 0.9200 
Bio + PSSM 97.56 50.00 99.64 74.82 0.6443 0.9181 

 

The ROC curves of the three RF classifiers are compared in Figure 3.4. The 

results confirm that classifier performance is not improved by adding the evolutionary 

information to the biological features for input encoding. The possible explanation is that 

the PSSM, which is designed for PSI-BLAST searches, may not capture the evolutionary 

information for sumoylation site prediction. Another possibility is that the forty 

biological features may already contain the evolutionary information necessary for 

predicting protein sumoylation sites. 
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Figure 3.4 ROC curves to show the effect of evolutionary information on classifier 
performance. 
 

Comparison with previous studies 

The existing computational methods for protein sumoylation site prediction 

include SUMOplot (http://www.abgent.com//tools/toSumoplot), SUMOsp2 

(http://sumosp.biocuckoo.org/online.php) and SUMOpre [9]. The datasets used in these 

previous studies are smaller than the dataset used in the present work. We manually 

collected additional instances of experimentally identified sumoylation sites from the 

latest publications. To further demonstrate the improved performance of our classifiers, 
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the most accurate RF classifier (ΨKXE+/-8, Table 3.1) and SVM classifier (SVM5, Table 

3.2) have been compared with the previous classifiers, SUMOplot and SUMOsp2, using 

an independent test dataset with 48 sumoylation sites reported after January 2010. 

SUMOplot predicts the probability of sumoylation sites based on the SUMO consensus 

sequence and hydrophobicity, whereas SUMOsp2 [11] uses two pattern recognition 

strategies (GPS and MotifX) for sumoylation site prediction. The two types of prediction 

in SUMOplot were low (motifs with low probability) and high (motifs with high 

probability), whereas the three levels of stringency in SUMOsp2 were low, medium and 

high. The corresponding thresholds of classifier output in our approach (seeSUMO) were 

set to -0.2 (low), 0 (medium) and 0.2 (high). 

As shown in Table 3.4, the overall accuracy (AC), specificity (SP) and MCC of 

our SVM classifier (seeSUMO-SVM) and RF classifier (seeSUMO-RF) are considerably 

higher than those of SUMOsp2 and SUMOplot in the low-threshold predictions. 

SUMOsp2 with its medium threshold gave the prediction strength at 68.31% (43.75% 

sensitivity and 92.87% specificity) and MCC = 0.2449. Our SVM classifier achieved a 

similar level of performance with 67.36% prediction strength, 41.67% sensitivity, 

93.06% specificity and MCC = 0.2361. The RF classifier with the medium threshold 

reached higher performance with 71.60% prediction strength, 51.16% sensitivity, 92.04% 

specificity and MCC = 0.2639. For the high-threshold predictions, the overall accuracy 

and MCC of our RF classifier are also higher than those of SUMOsp2 and SUMOplot. It 

is noteworthy that the MCC values of our RF classifier are the highest in any level of 

threshold predictions. Therefore, the performance of the RF classifier developed in this 
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study compares favorably with SUMOsp2 and SUMOplot for protein sumoylation site 

prediction. 

SUMOpre [9] uses a statistical method for predicting protein sumoylation sites. It 

was not included in the direct comparisons because a web-based tool was not available 

for the classifier. However, our classifier uses a larger dataset and shows better predictive 

performance. For example, the dataset used by SUMOpre [9] contains 268 sumoylation 

sites, and the predictor reached 96.71% overall accuracy and MCC = 0.6364. In the 

present study, the dataset includes 377 sumoylation sites, and the best RF classifier 

(ΨKXE+/-8, Table 3.1) achieved 97.68% overall accuracy and MCC = 0.6711 

 
 
Table 3.4 Comparison of classifier performance using an independent test dataset. 

Threshold  Methods AC 
(%) 

SN 
(%) 

SP 
(%) 

ST 
(%) MCC 

Low SUMOplot 79.55 68.75 79.95 74.35 0.2196 

 SUMOsp2 83.63 50.00 84.88 67.44 0.1753 

 seeSUMO-SVM 89.48  47.92  91.04  69.48  0.2382 

 seeSUMO-RF 90.09 53.49 91.33 72.41 0.2644 

Medium SUMOsp2 91.11 43.75 92.87 68.31 0.2449 

 seeSUMO-SVM 91.21  41.67  93.06  67.36  0.2361 

 seeSUMO-RF 90.70 51.16 92.04 71.60 0.2639 

High SUMOplot 91.69 50.00 93.24 71.62 0.2916 

 SUMOsp2 94.24 39.58 96.27 67.93 0.3058 

 seeSUMO-SVM 92.49  39.58  94.47  67.02  0.2528 

 seeSUMO-RF 94.36 44.19 96.06 70.12 0.3210 
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seeSUMO web server 

To make our classifiers accessible to the biological research community, we have 

developed the seeSUMO web server (http://bioinfo.ggc.org/seesumo/). Users can enter an 

amino acid sequence in the FASTA format, specify the methods, and input the proper 

threshold for prediction of protein sumoylation site.  For prediction using the RF 

classifier, the system encodes the input sequences with the 40 biological features, and 

then calls the randomForest program of the R software package to classify the protein 

sumoylation sites using the most accurate RF model (ΨKXE+/-8, Table 3.1). For 

prediction using the SVM classifier, the system encodes the input sequences with the five 

highly relevant features, and then the best SVM classifier (SVM5, Table 3.2) constructed 

in this work is used to predict sumoylation sites in the query sequence. The seeSUMO 

web server will return the prediction results, including the protein name, potential 

sumoylated sites, classifier outputs and the prediction confidence levers (Figure 3.5). The 

prediction confidence lever is calculated as (1 - sensitivity) for positive predictions, and 

(1 - specificity) for negative predictions [12, 14]. The help documents are available at the 

website. 

. 
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Figure 3.5 Sample output from the seeSUMO web server. 
 

 

CONCLUSION 

A new machine learning approach has been developed in this study for predicting 

protein sumoylation sites from protein sequence information. Domain-specific 

knowledge in terms of relevant biological features was used for input vector encoding. 

The results suggest that classifier performance is affected by the sequence context of 

sumoylation sites. The highest predictive performance (ROC AUC = 0.9200) has been 

achieved by the Random Forest classifier using twenty residues with the core motif 

ΨKXE in the middle. Moreover, the Random Forest classifiers were found to outperform 
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Support Vector Machine models on the imbalanced dataset. The classifiers developed in 

this study compare favourably in performance with the previous predictors for protein 

sumoylation site prediction. A web server, seeSUMO (http://bioinfo.ggc.org/seesumo/), 

has been developed to make our classifiers accessible to the biological research 

community. 
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CHAPTER FOUR 
 

SEQUENCE FEATURE-BASED PREDICTION OF PROTEIN STABILITY 
CHANGES UPON AMINO ACID SUBSTITUTIONS3 

 

ABSTRACT 

Protein destabilization is a common mechanism by which amino acid 

substitutions cause human diseases. Although several machine learning methods were 

reported for predicting protein stability changes upon amino acid substitutions, these 

previous studies did not utilize relevant sequence features representing biological 

knowledge for classifier construction. In this study, a new machine learning method has 

been developed for predicting protein stability changes upon amino acid substitutions 

from sequence features. Support vector machines were trained with data from 

experimental studies on the free energy change of protein stability upon mutations. To 

construct accurate classifiers, twenty sequence features were examined for input vector 

encoding. It was shown that classifier performance varied significantly by using different 

features. The most accurate classifier in this study was constructed using a combination 

of six sequence features. The classifier achieved an overall accuracy of 84.59% with 

70.29% sensitivity and 90.98% specificity. Protein stability changes upon amino acid 

substitutions can be predicted accurately from relevant sequence features. Since 

predictive results at this level of accuracy may provide useful information to distinguish 

between deleterious and tolerant alterations in disease candidate genes, we have 

                                                   
3Teng S, Srivastava AK, Wang L: Sequence feature-based prediction of protein stability changes 

upon amino acid substitutions. BMC Genomics 2010, 11(Suppl 2):S5. 
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developed a new web server, called MuStab (http://bioinfo.ggc.org/mustab/), to make the 

classifier accessible to the genetics research community. 

 

BACKGROUND 

Amino acid substitutions may cause a series of changes to normal protein 

function, such as geometric constraint changes, physico-chemical effects, and disruption 

of salt bridges or hydrogen bonds [1]. These changes may lead to protein destabilization 

or some abnormal biological functions. Previous studies suggest that each person may 

have 24,000 – 40,000 non-synonymous Single Nucleotide Polymorphisms (nsSNPs), and 

there are a total of 67,000 – 200,000 common nsSNPs in the human population [2]. These 

nsSNPs give rise to amino acid substitutions in proteins. While most nsSNPs appear to be 

functionally neutral, the others affect protein function and may cause diseases. Yue and 

Moult [3] investigated the effect of amino acid substitutions on protein stability, and 

estimated that approximately 25% of nsSNPs in the human population might be 

deleterious to protein function. Of the known disease-causing missense mutations, the 

vast majority (up to 80%) resulted in protein destabilization [4]. However, it is not 

feasible to experimentally determine the effect of each human nsSNP on protein stability. 

Rather, computational methods are needed to provide fast and efficient tools for 

examining a large number of nsSNPs for potential disease-causing mutations. 

Machine learning has recently been applied to sequence-based prediction of 

protein stability changes upon amino acid substitutions [5]. The machine learning 

problem can be specified as follows: given the amino acid sequence of a protein and a 
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single amino acid substitution, the task is to predict whether the substitution may alter 

protein stability. By using the available data from experimental studies, classifiers can be 

constructed for predicting either the free energy change (∆∆G) of protein stability upon 

mutations or the direction of the change (increased stability if ∆∆G > 0, or decreased 

stability if ∆∆G < 0). Nevertheless, for many biological applications, correctly predicting 

the direction of the stability change (a binary classification problem) is more relevant 

than estimating the magnitude of the free energy change (a regression problem) [5]. 

Capriotti et al. [5] reported an artificial neural network-based method for 

predicting the direction of protein stability changes upon point mutations. The predictor 

was trained with protein sequence alone. It was shown that the sequence-based system 

could be used to complement the available energy-based methods for improving protein 

design strategies. The same research group also developed support vector machine 

(SVM) models for sequence-based prediction of both the free energy change and the 

direction of the change upon mutations [6]. These SVM models were used to develop the 

I-Mutant2.0 web server, which could predict protein stability increase or decrease at the 

overall accuracy of 77% (based on cross-validation). Interestingly, it was found that the 

sequence-based system was almost as accurate as the structure-based method (80% 

overall accuracy) on the same dataset [6]. This observation was further confirmed by 

Cheng et al., who trained SVMs for predicting protein stability changes from amino acid 

sequence and structural information [7]. More recently, Huang et al. [8] developed the 

iPTREE-STAB web server, which used decision trees with an adaptive boosting 

algorithm to discriminate stabilizing and destabilizing substitutions in protein sequences. 
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Among all the existing methods, iPTREE-STAB achieved the best classifier performance 

in cross-validation tests (82.1% overall accuracy with 75.3% sensitivity and 84.5% 

specificity). 

The above-mentioned studies suggest that protein stability changes can be 

predicted directly from primary sequence data with similar prediction accuracy as 

structure-based methods. The sequence-based approach is particularly appealing since 

structural information is still not available for most proteins. However, little domain-

specific knowledge in terms of biological features was used for classifier construction in 

the previous studies [5]. In the present study, we have examined twenty sequence features 

for classifier construction. Support vector machines (SVMs) have been trained with the 

feature-encoded data instances of protein stability changes upon amino acid substitutions. 

Our results indicate that accurate SVM classifiers can be constructed using relevant 

sequence features for input vector encoding. 

 

METHODS 

Data 

The dataset used in this study was derived from two previous studies [6, 8], in 

which experimental data for the free energy changes of protein stability upon mutations 

were collected from the ProTherm database [9] . To construct a robust classifier, data 

redundancy was removed and the dataset had less than 25% identity among the amino 

acid sequences. Each data instance in the dataset had the following attributes: amino acid 

sequence, wide-type amino acid identity and sequence position, mutant amino acid 
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identity, pH value, and free energy change. If the free energy change was negative 

(protein destabilization), the instance was labelled as a negative example. Otherwise, the 

instance was labelled as a positive example. The dataset contained 464 positive instances 

and 1,016 negative instances. 

 

Sequence features 

Twenty sequence features were used to code each amino acid residue in a data 

instance. The sequence features were obtained from Protscale [10] 

(http://expasy.org/tools/protscale.html) and AAindex [11] 

(http://www.genome.jp/aaindex/). These features fall into the following four classes: 

1) Biochemical features: including molecular weight (feature M); side-chain pKa value 

(K); hydrophobicity index (H); polarity (P); and overall amino acid composition (Co). 

Each amino acid has a unique molecular weight (M), which is related to the volume of 

space that a residue occupies in protein structures. Side-chain pKa (K) is related to the 

ionization state of a residue, and thus plays a key role in pH-dependent protein stability. 

Hydrophobicity (H) is important for amino acid side chain packing and protein folding. 

Hydrophobic interactions make non-polar side chains to pack together inside proteins, 

and disruption of these interactions may cause protein destabilization. Polarity (P) is the 

dipole-dipole intermolecular interactions between the positively and negatively charged 

residues. The amino acid composition (Co) was previously shown to be related to the 

evolution and stability of small proteins [12]. 
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2) Structural features: including the conformational parameters for alpha-helix (A), beta-

sheet (B), and coil (C); average area buried on transfer from standard state to folded 

protein (Aa); and bulkiness (Bu). Protein secondary structures can be divided into alpha-

helix, beta-sheet, and coil conformations. An amino acid often has a different tendency to 

form one of the three types of secondary structures. For instance, amino acids A, I, E, L 

and M tend to be in the alpha-helical conformation, whereas K, N and D are often found 

in beta-sheets. In this study, the conformational parameters reported by Deléage and 

Roux [13] were used for features A, B and C. Feature Aa is another structural parameter, 

which estimates a residue’s average area buried in the interior core of a globular protein 

[14]. Bulkiness (Bu), the ratio of the side chain volume to the length of an amino acid, 

may affect the local structure of a protein [15]. 

3) Empirical features: the protein stability scale based on atom-atom potential (S1); the 

relative protein stability scale derived from mutation experiments (S2); and the side-chain 

contribution to protein stability (S3). Zhou et al. [16] derived two protein stability scales 

from atom-atom potential of mean force based on Distance scaled Finite Ideal-gas 

REference (DFIRE) state (S1) and a large database of mutations (S2). Takano and Yutani 

[17] calculated the transfer Gibbs energy of mutant proteins, and derived the amino acid 

scale for the side-chain contribution to protein stability (S3) based on data from protein 

denaturation experiments.  

4) Other biological features: including the average flexibility index (F); the mobility of an 

amino acid on chromatography paper (Mc); the number of codons for an amino acid 

(No); refractivity (R); recognition factor (Rf); the relative mutability of an amino acid 
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(Rm); and transmembrane tendency (Tt). The average flexibility index of an amino acid 

(F) was derived from structures of globular proteins  [18]. Feature Mc was derived from 

experimental data by Aboderin [19]. Refractivity (R) refers to protein density and folding 

characteristics [20]. Recognition factor (Rf) is the average of stabilization energy for an 

amino acid [21]. The relative mutability (Rm) indicates the probability that a given amino 

acid can be changed to others during evolution. Feature Tt is the transmembrane tendency 

scale described by Zhao and London [22]. 

 

Support vector machine training 

Support vector machines (SVMs) are computational algorithms that can learn from 

training examples for binary classification problems. The SVM learning algorithm can be 

described by four basic concepts, including the separating hyperplane, the maximum-

margin hyperplane, the soft margin, and the kernel function [23]. For a typical linear 

classifier, a data instance is represented as an n-dimensional vector, and an (n – 1) 

dimensional hyperplane is used to separate the positive instances from the negative ones. 

However, for non-linear classifiers that are generally applicable to biological problems, a 

kernel function can be used to measure the distance between data points in a higher 

dimensional space. This allows the SVM algorithm to fit the maximum-margin 

hyperplane in the transformed space. In this study, we used the radial basis function 

(RBF) kernel: 

)||||exp(),( 2yxyxK
rrrr

−−= γ                                              (4.1) 
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where x
r

 and y
r

 are two data vectors, and γ is a training parameter. A smaller γ value 

makes decision boundary smoother. The regularization factor C, another parameter for 

SVM training, controls the tradeoff between low training error and large margin. 

The SVMlight software package (available at http://svmlight.joachims.org/) was 

used to construct the SVM classifiers in this study. Each training instance was a 

subsequence of w consecutive residues, where w was also called the window size. The 

amino acid substitution site was positioned in the middle of the subsequence, and the 

other (w – 1) neighbouring residues provided context information for the substitution site. 

The input vector was then obtained by encoding each residue with one or more biological 

features. The input vector also included the pH value at which the free energy change was 

measured experimentally. In this study, various values of w, γ and C parameters were 

examined to optimize SVM classifier performance. 

 

Classifier evaluation 

This study used a fivefold cross-validation method to evaluate classifier 

performance. Positive and negative instances were randomly distributed into five folds. 

In each of the five iterations, four of the five folds were used to train a classifier, and then 

the remaining one fold was used as the test data to evaluate the classifier. The predictions 

made for the test instances in all the five iterations were combined and used to compute 

the following performance measures: 

 
FNFPTNTP

TNTP

+++

+
=(AC)Accuracy  (4.2) 
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where TP is the number of true positives; TN is the number of true negatives; FP is the 

number of false positives; and FN is the number of false negatives. In addition to the 

commonly used performance measures (overall accuracy, sensitivity and specificity), the 

average of sensitivity and specificity or the so-called prediction strength [24, 25] was also 

used for classifier comparison in this study. Matthews Correlation Coefficient (MCC) 

measures the correlation between predictions and the actual class labels. Nevertheless, for 

imbalanced datasets, different tradeoffs of sensitivity and specificity may give rise to 

different MCC values for a classifier.  

We also used the Receiver Operating Characteristic (ROC) curves [26] for 

classifier evaluation and comparison. In this study, the ROC curve was generated by 

varying the output threshold of an SVM classifier and plotting the true positive rate 

(sensitivity) against the false positive rate (1 – specificity) for each threshold value. Since 

the ROC curve of an accurate classifier is close to the left-hand and top borders of the 

plot, the area under the curve (AUC) can be used as a reliable measure of classifier 

performance [27]. The maximum value of AUC is 1, which indicates a perfect classifier. 

Weak classifiers and random guessing have AUC values close to 0.5.  
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RESULTS AND DISCUSSION 

Effect of sequence context on classifier performance 

We first constructed a classifier using the three biochemical features, including 

the hydrophobicity index (H), side-chain pKa value (K), and molecular weight (M) of an 

amino acid. These features were previously selected for DNA and RNA-binding site 

prediction [24, 25]. In the initial attempt to construct a classifier for protein stability 

prediction, the window size was set to eleven (w = 11). Different values of SVM training 

parameters were tested, and the optimal parameter settings were found to be γ = 0.8 and 

C = 1.0. As shown in Table 6.1, the classifier achieved the overall accuracy (AC) of 

81.82% with 74.48% sensitivity (SN) and 85.11% specificity (SP). The prediction 

strength (ST) reached 79.79% with MCC = 0.5843 and ROC AUC = 0.8804. Therefore, 

this SVM achieved similar performance measures as the best existing classifier (iPTREE-

STAB with 82.1% overall accuracy, 75.3% sensitivity and 84.5% specificity) [8]. 

To determine whether classifier performance was affected by the sequence 

context of the substitution site, SVMs were trained with data instances of various window 

sizes. As shown in Table 4.1, protein stability prediction was affected by window sizes. 

The classifier constructed without any context information (w = 1) gave 67.94% 

prediction strength (70.69% sensitivity and 65.20% specificity), MCC = 0.3349 and AUC 

= 0.7425. The prediction strength, MCC and AUC were improved when neighbouring 

residues of the substitution site were included for input encoding. The use of w = 11 gave 

the highest prediction strength (79.79%), MCC (0.5843) and AUC (0.8804), and 
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classifier performance was not further improved by including more neighbouring residues 

(Table 4.1). 

 
Table 4.1 Effect of window sizes on sequence-based prediction of protein stability 
changes. 
Window 
size 

AC 
(%) 

SN 
(%) 

SP 
(%) 

ST 
(%) MCC ROC 

AUC 
1 66.92 70.69 65.20 67.94 0.3349 0.7425 
3 73.91 74.83 73.49 74.16 0.4554 0.7996 
5 77.51 76.67 77.90 77.28 0.5194 0.8512 
7 80.80 76.43 82.83 79.63 0.5750 0.8737 
9 81.28 75.66 83.78 79.72 0.5774 0.8755 
11 81.82 74.48 85.11 79.79 0.5843 0.8804 
13 82.10 71.84 86.67 79.26 0.5824 0.8797 
15 81.45 69.71 86.75 78.23 0.5665 0.8775 
17 81.88 69.50 87.58 78.54 0.5779 0.8799 
19 81.21 68.80 86.98 77.89 0.5627 0.8779 
21 81.29 68.98 86.98 77.98 0.5645 0.8735 
 

 

The effect of sequence context information on SVM classifier performance was 

also demonstrated by using ROC curves. As shown in Figure 4.1, the ROC curve of the 

classifier constructed with w = 11 was clearly better than the SVM trained without any 

context information (w = 1). However, the use of w = 21 did not further improve 

classifier performance. Thus, eleven residues with the substitution site in the middle 

position (w = 11) appeared to provide enough context information for sequence-based 

prediction of protein stability changes. 



 76

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
False positive rate

T
ru

e 
p

o
si

tiv
e 

ra
te

w = 1

w = 11

w = 21

 

Figure 4.1 ROC curves to show the effect of context information on prediction of protein 
stability changes upon amino acid substitutions. 

 

Relevant sequence features for classifier construction 

Many sequence features are available for encoding amino acid residues. To 

determine which features were relevant for protein stability prediction, we constructed 

SVM classifiers using each of the twenty sequence features listed in Table 4.2 for input 

encoding (w = 11). The results were obtained with the training parameters, γ = 0.8 and C 

= 1.0. It was found that classifier performance varied significantly by using different 

features. As shown in Table 6.2, the highest level of AUC (0.8835) was achieved by 
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using the empirical feature S3 for input encoding. This classifier reached the prediction 

strength at 79.67% (72.19% sensitivity and 87.15% specificity) and MCC = 0.5922. 

However, the highest prediction strength at 80.28% (75.62% sensitivity and 84.94% 

specificity) with MCC = 0.5919 and AUC = 0.8777 was achieved by using amino acid 

bulkiness (Bu) for input encoding. In contrast, the use of the average flexibility index (F) 

for input encoding resulted in the lowest prediction strength at 62.02%, MCC = 0.2226 

and AUC = 0.6728 (Table 4.2).  

 

Table 4.2 Predictive performance of classifiers constructed using single sequence 
features. 

Features AC 
(%) 

SN 
(%) 

SP 
(%) 

ST 
(%) 

MCC ROC 
AUC 

H 75.88 71.62 77.79 74.70 0.4728 0.8237 
K 73.29 73.90 73.02 73.46 0.4402 0.7925 
M 68.06 73.52 65.62 69.57 0.3629 0.7480 
P 75.94 71.24 78.04 74.64 0.4718 0.8234 
Co 70.18 71.62 69.53 70.58 0.3838 0.7586 
A 76.41 74.29 77.36 75.82 0.4904 0.8206 
B 78.18 74.48 79.83 77.15 0.5199 0.8503 
C 72.18 71.05 72.68 71.86 0.4116 0.7847 
Aa 79.12 76.57 80.26 78.41 0.5431 0.8459 
Bu 82.06 75.62 84.94 80.28 0.5919 0.8777 
S1 69.82 70.86 69.36 70.11 0.3756 0.7754 
S2 70.24 72.19 69.36 70.78 0.3875 0.7665 
S3 82.53 72.19 87.15 79.67 0.5922 0.8835 
F 61.41 63.62 60.43 62.02 0.2226 0.6728 
R 66.47 65.14 67.06 66.10 0.3008 0.7140 
Mc 78.35 73.52 80.51 77.02 0.5202 0.8417 
No 69.82 74.86 67.57 71.22 0.3944 0.7656 
Rf 62.06 73.71 56.85 65.28 0.2831 0.6889 
Rm 75.94 69.90 78.64 74.27 0.4672 0.8118 
Tt 83.59 66.48 91.23 78.86 0.6035 0.8704 
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Figure 4.2 shows the ROC curves of the best and worst classifiers (based on 

AUC) that were constructed using the individual sequence features. Also shown in Figure 

6.2 is the ROC curve of the SVM classifier constructed with the K feature, which gave 

approximately the average performance among the sequence features. 
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Figure 4.2 ROC curves to show the different performance levels of classifiers constructed 
using individual sequence features. 
 

The results suggest that a variety of sequence features are relevant for predicting 

protein stability changes upon amino acid substitutions. Of the five biochemical features 
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(H, K, M, P and Co), the hydrophobicity index (H) gave the best predictive performance 

at 74.70% prediction strength (71.62% sensitivity and 77.79% specificity), MCC = 

0.4728 and AUC = 0.8237 (Table 4.2). Hydrophobicity is a key factor in amino acid side 

chain packing and protein folding. Hydrophobicity changes owing to amino acid 

substitutions may cause proteins not to fold into stable conformation, and thus result in 

protein destabilization. 

Of the structural features (A, B, C, Aa and Bu), bulkiness (Bu) gave rise to the 

highest prediction strength at 80.28% with MCC = 0.5919 and AUC = 0.8777. In 

contrast, the classifier using the conformational parameter for coil (C) had the relatively 

low performance with 71.86% prediction strength, MCC = 0.4116 and AUC = 0.7847 

(Table 4.2). The possible explanation is that since coils are often unstructured and 

flexible, amino acid substitutions in the coil region may not cause significant changes in 

protein structure and stability. 

The empirical features (S1, S2 and S3) are protein stability scales based on 

experimental data. Interestingly, when used for SVM classifier construction, these 

features did not give significantly better performance than the other sequence features. 

While the use of the S3 feature (side-chain contribution to protein stability) resulted in 

the highest level of AUC (0.8835) with 79.67% prediction strength and MCC = 0.5922, 

the other two empirical features (S1 and S2) were much less accurate for predicting 

protein stability changes (Table 4.2). Thus, it is possible that the empirical features do not 

capture all the information about the determinants of protein stability. 
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Of the other biological features, transmembrane tendency (Tt) achieved the 

highest level of MCC (0.6035) with 78.86% prediction strength and AUC = 0.8704 

(Table 4.2). The feature Mc (the mobility of an amino acid on chromatography paper) 

also gave rise to relatively high classifier performance (77.02% prediction strength, MCC 

= 0.5202 and AUC = 0.8417). Therefore, multiple features from each of the four feature 

classes achieved high performance for predicting protein stability changes upon amino 

acid substitutions. It might be possible that classifier performance could be further 

improved by combining several sequence features for input encoding. 

 

Use of multiple sequence features to improve classifier performance 

To examine whether classifier performance could be further improved, we first 

used all the 20 sequence features for input encoding. Surprisingly, the resulting classifier 

was not as accurate as some of the SVMs trained with single features (Table 4.3). While 

the best single feature S3 gave rise to 79.67% prediction strength with MCC = 0.5922 

and AUC = 0.8835, the classifier using all the 20 features achieved only 75.45% 

prediction strength with MCC = 0.5791 and AUC = 0.8690. The possible explanation is 

that some of the 20 features contain redundant or correlated information, which may 

cause classifier performance degradation. 

We then constructed SVM classifiers by combining some of the best single 

features for input encoding. Interestingly, none of these feature combinations gave rise to 

better classifier performance than the best single feature S3 (Table 4.3). For example, the 
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classifier constructed using the best six single features (S3, Bu, Tt, B, Aa, and Mc) 

achieved only 77.54% prediction strength with MCC = 0.5993 and AUC = 0.8737. 

 

Table 4.3 Predictive performance of classifiers constructed by combining the best single 
features. 

Features 
AC 
(%) 

SN 
(%) 

SP 
(%) 

ST 
(%) MCC 

ROC 
AUC 

S3 82.53 72.19 87.15 79.67 0.5922 0.8835 
S3, Bu 83.41 68.00 90.30 79.15 0.6019 0.8821 
S3, Bu, Tt  82.88 61.90 92.26 77.08 0.5822 0.8725 
S3, Bu, Tt, B 83.65 62.10 93.28 77.69 0.6009 0.8768 
S3, Bu, Tt, B, Aa 83.65 61.90 93.36 77.63 0.6009 0.8743 
S3, Bu, Tt, B, Aa, Mc 83.59 61.71 93.36 77.54 0.5993 0.8737 

All 20 features 82.88 56.00 94.89 75.45 0.5791 0.8690 

 

To determine whether any combinations of the sequence features could improve 

classifier performance, we performed a brute-force search for the optimal feature subset. 

As shown in Table 4.4, classifier performance based on AUC was improved slightly but 

steadily when more features were used for input encoding. Among all the two-feature 

combinations, the biochemical feature Co (overall amino acid composition) together with 

the structural feature Bu (bulkiness) achieved the best classifier performance based on 

AUC (0.8872) with 80.54% prediction strength and MCC = 0.6057. These performance 

measures are slightly better than those of the empirical feature S3, a protein stability scale 

based on experimental data [17]. Significantly, the feature Co is also included in all the 

other feature subsets shown in Table 4.4, suggesting that the overall amino acid 

composition is highly relevant for sequence-based prediction of protein stability changes. 

For instance, the best four-feature subset contains the biochemical features Co and H 
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(hydrophobicity index), the structural feature B (conformational parameter for beta-

sheet), and the empirical feature S3. The classifier achieved 80.16% prediction strength 

with MCC = 0.6231 and AUC = 0.8940 (Table 4.4). 

 

Table 4.4 Predictive performance of classifiers constructed using the optimal subsets of 
sequence features. 

Features 
AC 
(%) 

SN 
(%) 

SP 
(%) 

ST 
(%) MCC 

ROC 
AUC 

S3 82.53 72.19 87.15 79.67 0.5922 0.8835 

Bu, Co 83.00 74.10 86.98 80.54 0.6057 0.8872 

B, Co, S3 84.12 69.33 90.72 80.03 0.6194 0.8924 

B, Co, H, S3 84.29 69.33 90.98 80.16 0.6231 0.8940 

A, Aa, B, Co, P 84.47 70.48 90.72 80.60 0.6287 0.8954 

A, Aa, B, Co, No, P 84.59 70.29 90.98 80.63 0.6310 0.8961 

 
As shown in Table 4.4, the highest performance measures were obtained by using 

the optimal subset of six features, including the biochemical features Co and P (polarity), 

the structural features A (conformational parameter for alpha-helix), B and Aa (average 

area buried on transfer from standard state to folded protein), and the other biological 

feature No (number of codons for an amino acid). Classifier performance was not further 

improved significantly by including additional sequence features (data not shown). 

Interestingly, the optimal feature subset did not include the best single feature S3. The 

classifier constructed using the optimal feature subset achieved 80.63% prediction 

strength with MCC = 0.6310 and AUC = 0.8961. In Figure 6.3, this classifier’s ROC 

curve is compared with those of two other classifiers, one constructed using the best 

single feature S3, and the other trained with all the 20 features. 
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Figure 4.3 ROC curves for sequence-based prediction of protein stability changes using 
multiple sequence features. 
 

The results suggest that classifier performance can be enhanced by combining 

certain sequence features for input encoding. The optimal six-feature subset contains 

sequence features from different classes, especially biochemical features and structural 

features. Each of these features may not be an accurate scale of protein stability, but 

when combined, they can outperform the best empirical feature (S3) for predicting 

protein stability changes upon amino acid substitutions. 

 



 84

Web server description 

To make the accurate SVM classifier accessible to the biological research 

community, we have developed the MuStab web server (http://bioinfo.ggc.org/mustab/). 

Users can enter an amino acid sequence in FASTA format, and specify the position and 

the identity of the substituting residue. The system encodes the input sequence with the 

optimal feature subset, and then calls the svm_classify program of the SVMlight software 

package to classify the protein stability changes upon the amino acid substitution using 

the best SVM model developed in this study. 

The output report returned from the MuStab web server includes the information 

about the query sequence and amino acid substitution, the prediction result, and the 

prediction confidence. The prediction result indicates either decreased or increased 

protein stability. The prediction confidence is based on the SVM output and computed as 

(1 – s), where s is the expected sensitivity for positive predictions or the expected 

specificity for negative predictions if the SVM output is used as the threshold in the ROC 

analysis (Figure 4.3). An example output report returned from the MuStab web server is 

shown in Figure 4.4 for the G56S substitution of spermine synthase (PDB: 3C6K), which 

causes X-linked Snyder-Robinson syndrome [28]. The substitution is predicted to 

decrease protein stability, and the prediction confidence is 82.32%.  
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Figure 4.4 Sample output from the MuStab web server. 
 

 

CONCLUSION 

In this study, we have developed a machine learning method for predicting 

protein stability changes upon amino acid substitutions. The novelty of our method lies in 

the use of sequence features representing biological knowledge for input encoding. 

Twenty sequence features were examined for SVM classifier construction, and several of 

them were shown to be highly relevant for protein stability prediction. However, the 

SVM classifier constructed using all the twenty features did not show high predictive 

performance. We thus used a wrapper approach for feature selection, and identified the 

optimal subset of six sequence features for input encoding. The best classifier achieved 
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the overall accuracy of 84.59% with 70.29% sensitivity and 90.98% specificity. This 

SVM classifier is compared favorably in performance with the previously published 

models for protein stability prediction. Since the previous studies did not utilize the 

biological knowledge for classifier construction, our method can be used to complement 

the existing methods to predict the consequences of amino acid alterations in disease 

candidate genes and may provide useful information for elucidating the molecular 

mechanisms of human genetic disorders. We have thus developed the MuStab web server 

(http://bioinfo.ggc.org/mustab/) to make our classifier accessible to the genetics research 

community. 
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CHAPTER FIVE 
 

MODELING EFFECTS OF HUMAN SINGLE NUCLEOTIDE POLYMORPHISMS 
ON PROTEIN-PROTEIN INTERACTIONS4 

 

ABSTRACT 

A large set of 3D structures of 264 protein-protein complexes with known non-

synonymous SNPs (nsSNPs) at the interface was built using homology-based methods. 

The nsSNPs were mapped on the proteins’ structures and their effect on the binding 

energy was investigated with CHARMM force field and continuum electrostatic 

calculations. Two sets of nsSNPs were studied: disease annotated (OMIM) and non-

annotated (non-OMIM). It was demonstrated that OMIM nsSNPs tend to destabilize the 

electrostatic component of the binding energy, in contrast with the effect of non-OMIM 

nsSNPs. In addition, it was shown that the change of the binding energy upon amino acid 

substitutions is not related to the conservation of the net charge, hydrophobicity or 

hydrogen bond network at the interface. The results indicate that, generally, the effect of 

nsSNPs on protein-protein interactions cannot be predicted from amino acids’ physico-

chemical properties using the structure-based methods alone, since in many cases a 

substitution of a particular residue with another amino acid having completely different 

polarity or hydrophobicity had little effect on the binding energy. Analysis of sequence 

conservation showed that nsSNP at highly conserved positions resulted in large variance 

of the binding energy changes. In contrast, amino acid substitutions corresponding to 

nsSNPs at non-conserved positions, on average, were not found to have a large effect on 

                                                   
4Teng S, Kundrotas P, Madej T, Panchenko A, Alexov E: Modeling effects of human SNPs on 

protein-protein interactions. Biophysics. J. 2009, 96(6):2178-2188. 
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binding affinity. pKa calculations were performed and showed that amino acid 

substitutions could change the wild type proton uptake/release and thus resulting to 

different pH-dependence of the binding energy.  

 

INTRODUCTION 

Each individual possesses unique characteristics reflecting their genotype, i.e. the 

uniqueness of the individual’s DNA [1]. For example, almost all nucleotide bases 

(99.9%) are exactly the same in all people; however, the remaining 0.1% account for 

about 1.4 million individual-specific differences (single nucleotide polymorphism: SNP) 

that occur in humans. These differences may be within the coding or non-coding regions 

of DNA and may or may not result in amino acid changes, which, in turn, can either be 

harmless or disease causing [2]. From a computational biophysics point of view, SNPs 

resulting in amino acid changes (non-synonymous SNP: nsSNP) are of particular interest 

because such changes should affect the stability of proteins and protein-protein 

complexes. 

From a biological perspective, the major factor contributing to the complexity of 

biological systems is the high degree of connectivity on the molecular scale. In particular, 

many proteins responsible for cellular functions rely on interactions with other proteins to 

perform these functions. If the structures of the corresponding protein-protein complexes 

are available, then we will have the opportunity to apply theoretical biophysical methods 

to model the energetics of protein-protein complexes [3-9] and apply the results in 

structure-based drug design [10]. Thus, understanding protein-protein interactions and 
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their roles in cell function will help reveal the molecular mechanisms of protein 

recognition and model of the effect of perturbations on biological network, in particular, 

the effects of nsSNPs on protein-protein interactions [11-14].   

The effects caused by nsSNPs can be broadly grouped into four distinctive 

categories [15] (although the effects may be mutually dependent) depending on what type 

of system or process have been affected by nsSNPs: (a) protein folding, stability, 

flexibility and aggregation; (b) functional sites, reaction kinetics and dependence on the 

environmental parameters, such as pH, salt concentration and temperature; (c) protein 

expression and subcellular localization and; (d) protein-small molecule, protein-protein, 

protein-DNA and protein-membrane interactions (see review and references within [15]). 

Among these categories, the effect of nsSNPs on protein stability [16-18] attracted most 

of the attention of scientific community. The mechanisms of the effect of nsSNPs on 

protein stability could vary from geometrical constraints (the mutation of a small side 

chain to a bulky side chain in the protein interior), to physico-chemical effects 

(replacement of hydrophobic residue with polar residue), to the reversal of a charge 

within a salt bridge, or to the disruption of hydrogen bonds [19]. For example, the 

nsSNPs resulting in changes of functionally important residues should be almost always 

deleterious as they would block protein function [20] [21]. However, since there are only 

a few functional residues within an entire protein sequence, the probability for such 

mutations is low [22]. The possibility of a nsSNP affecting the subcellular location of a 

corresponding protein was reported in a recent study which showed that in about one 

percent of the cases the disease is caused by protein subcellular delocalization [23]. In 
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addition to the above mentioned effects, nsSNPs can change the kinetics of the 

corresponding reactions as it was experimentally shown in case of patients with chronic 

lymphocytic leukemia [24],  inflammatory diseases [25] or to affect the pharmacokinetics 

[26], however modeling these effects is computationally difficult. However, although the 

studies of consequences of nsSNPs on proteins have drawn much attention recently, the 

effect of nsSNPs on protein-protein interactions has not been extensively investigated. 

Perhaps this is due to the lack of sufficiently many 3D structures of protein-protein 

complexes for which nsSNPs are known.  

The progress recently made in experimental 3D structure determination, led by 

the Structural Genomic Initiatives [27], in addition to advances in computational 

modeling [28, 29] made it possible to predict the effects of nsSNPs by mapping them on 

the corresponding structures or on the protein and protein-protein models. Indeed, 

structural information was used in many studies to reveal the role of SNPs on protein 

function and stability. A recent study on human nsSNPs and disease-associated mutations 

in orthologous genes revealed that approximately 70% of disease-associated mutations 

were in protein sites that most likely affect protein function [30-33]. Moreover, it was 

found that disease mutations are much more likely to occur at sites with low solvent 

accessibility [32]. Recently, a structure-based approach that models residue-residue 

interaction networks was reported [34]. It applied graph theoretical measures to predict 

the residues that are important for structural stability. These results imply that nsSNPs 

impact protein function and stability by affecting their structures, which in turn might 

cause changes in protein-protein or protein-ligand interactions. 
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It should be mentioned that most of the efforts in the field so far have been aimed 

at predicting deleterious mutations, since such predictions could be used for early 

diagnostics and potential drug discovery [23, 31, 32, 35-38]. However, the goals of our 

study are: (a) to investigate the possibility that disease-causing and harmless nsSNPs 

affect protein-protein interactions differently, and (b) to reveal the basic principles of the 

effects of naturally occurring interfacial nsSNPs on protein-protein interactions. The 

rationale behind our approach is that any mutation at a protein-protein complex interface 

should, in principle, affect somehow the binding energy and even harmless nsSNPs can 

also cause dramatic changes in the phenotype resulting in natural differences among 

individuals. To deduce the effect of nsSNPs on protein function, further investigation of 

the effect of nsSNPs on protein-protein interaction network is needed, combined with 

detailed analysis of the importance of the perturbed interactions for normal cellular 

function.  

In this study, we use homology modeling to construct 3D models of a large 

number of protein-protein complexes (264) with known nsSNPs at their interfaces.  The 

effect of amino acid substitution resulted from nsSNPs on the protein-protein binding 

energy was calculated using a standard force field (CHARMM [39]), in contrast to 

previous studies that applied descriptors or semi-empirical functions. In addition, specific 

attention was paid to possible ionization changes and charge reorganization caused by the 

nsSNP mutations. The calculated effects are grouped into categories that describe several 

distinctive mechanisms of nsSNPs affecting the energetics of protein-protein interactions. 

The role of charge relaxation is also investigated. 



 94

METHODS 

Sequence alignment, template detection and model building 

The first task was to extract query amino acid sequences associated with nsSNPs 

and to search for available 3D structures or for 3D structures that are homologous to the 

query sequences. The locus-id files for humans were downloaded from build 126 of the 

dbSNP database, which contains the SNPs associated with gene names and locations on 

genes. These files also included accessions for protein sequences associated with the 

SNPs. The protein sequences, which were found to be associated with SNPs, were 

compared against the set of human protein structures (potential structural templates) 

(NCBI MMDB) [40], using Blast algorithm [41]. Those human structures which were 

found at an E-value of 10e-5 or better were kept resulting in 5.6 millions alignments. If a 

3D structure of a query protein was available, no modeling was required. Query proteins 

that matched any of the entries in the OMIM database [42-44] were marked as 

“annotated” disease-causing. The rest of the entries were considered undetermined with 

respect to possible disease association and are referred to in the manuscript as “non-

annotated” or “non-OMIM”.   

At the second stage of processing, additional criteria were used requiring that 

80% of the query sequence to be mutually aligned with the structural template (nsSNPs 

that were not mapped in the alignment were discarded). Only templates corresponding to 

protein-protein (or domain-domain) complexes were used for modeling 3D structures of 

nsSNP containing sequences. During this procedure, we recorded whether or not the SNP 

was on the interface for each chain/domain pair. It was done using query-template Blast 
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alignments. Interface residues were defined as those being 8Å from each other (distance 

was measured between C-alpha atoms) on different chains/domains[45]. These positions 

were flagged as interfacial residues. 

The detected templates and corresponding sequence alignments were used as 

input for the homology modeling. The 3D models were built with program NEST using 

the sequence alignment between queries and structural templates  [46]. Identical 

alignments were discarded. The number of models built for different degrees of modeling 

difficulty were as follows: (1) 1257 models were built by side chain replacement where 

query and template sequences differed only by a few residues and the models were built 

by mutating corresponding residues in the original chain and (2) 5274 models were built 

with the NEST program. Because of the restrictive alignment criteria applied above, in 

most of the cases, the alignment had very few gaps/insertions, and thus the models were 

very close to the template structures. In total, 6531 protein models were constructed 

which corresponded to the first allele (the first allele in case of OMIM is the dominant 

allele, while in case of non-OMIM it is simply the first allele in the list). Then the 

monomeric proteins models were joined to the corresponding partners using the 3D 

structure of template protein-protein complex. The models of complexes were then 

evaluated according to the flagged interfacial positions, and only models with nsSNPs 

occurring at the interface of protein-protein complexes were retained for our study, 

resulting in 264 model structures.   
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Energy minimization 

The structures of the 264 complexes were subjected to the TINKER package [47] 

using the CHARMM27 force field parameters [39]. The minimization was done running 

the TINKER’s minimize.x module. The minimize.x module performs energy minimization 

using the Limited Memory BFGS Quasi-Newton Optimization algorithm [47]. The 

implicit solvent was modeled using the Still Generalized Born model [48], and the 

internal dielectric constant was set to 1.0 to be consistent with the CHARMM27 force 

field parameters [49].  The convergence criteria applied was RMS gradient per atom = 

0.01. For energy minimization calculations, we utilized a High Throughput Distributed 

Computing Resource, CONDOR, originally developed at the University of Wisconsin-

Madison (www.cs.wisc.edu/condor), which is now available at Clemson University with 

more than 1,080 single CPUs of computational power.  

The minimized 3D structures of the complexes with amino acids corresponding to 

the first reported allele in the dbSNP database were then used to generate the 

corresponding nsSNP mutations. Utilizing the SCAP program [50], the mutations, 

corresponding to either the second allele in the dbSNP database or the disease-causing 

nsSNP in OMIM database, were introduced using the above minimized model 3D 

structures, while keeping the rest of the structure rigid, including the hydrogen atoms. In 

case of homooligomeric-complexes, the nsSNP mutations were introduced on both 

monomers. Then, the resulting 3D structures were minimized again with TINKER using 

the same protocol that was described above.  
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Binding energy calculations 

The binding energy was calculated with the so-called rigid body approach 

keeping the structures of the monomers as they were in the complexes. Such an approach 

is advantageous because the internal mechanical energies of the unbound and bound 

monomers are the same and do not have to be included in the calculations of the binding 

energy. Thus, the single point calculations result in binding energy: 

 
 )()()()( BGAGcomplexGbindingG ∆−∆−∆=∆∆     (5.1) 
 
where ∆G(complex), ∆G(A) and ∆G(B) are the unfolding free energy for the complex, 

monomer A and monomer B, respectively. The total binding energy and its two 

components (electrostatics and van del Waals) were analysed. The electrostatic 

component of the binding energy is the sum of the Coulombic and reaction field energies 

as described in detail in [51, 52]: 

 
)()()( rxnGcoulGXGel ∆+=∆      (5.2) 

 
where X stands for the complex, A and B monomers, respectively. G(Coul) is the 

Coulombic interaction energy, and G(rxn) is the reaction field energy, which is calculated 

with Delphi program [51, 52].  

The total binding energy is: 
 

)()()()( elGvdWGbondsGXGtot ∆+∆+∆=∆    (5.3) 
 
where ∆G(bonds) are the bonded energy terms, ∆G(vdW) is the van der Waals energy and 

∆G(el) is the Coulombic interactions and solvation energy calculated with the 

Generalized Born (GB) model. However, since we adopted the rigid body approach, 
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∆G(bonds) for the complexes and free monomers is the same and cancels in eq. (5.3). All 

of the above energy terms were calculated with the analyze.x module in TINKER. The 

non-polar component of the binding energy was not included in the calculations because 

the single point mutation is not expected to change the binding interface significantly. 

Changes in protein stability caused by the nsSNP mutation were calculated with 

respect to the energy of the target (the first reported allele or wild type allele in case of 

OMIM nsSNPs) protein. The corresponding quantity is ∆∆∆G(snSNP), as described 

below:  

):():()( bindingsnSNPGbindingtargetGsnSNPG ∆∆−∆∆=∆∆∆    (5.4) 

The changes of the total binding energy (∆∆∆Gtot(nsSNP)), as well as the change 

of its vdW (∆∆∆Gvdw(nsSNP)) and electrostatic (∆∆∆Gel(nsSNP)) components are 

analyzed in this work. If the change is negative, this indicates that the nsSNP mutation 

weakens the affinity and destabilizes the complex, while if the change is positive then the 

mutant binding is tighter.  

 

Multiple sequence alignment 

Protein sequences from different species were downloaded from the NCBI Entrez 

database, using GENE search option and submitting each of the gene’s ID as a query. 

Only cases for which a protein was found in more than four species were considered, and 

the MSAs were built resulting in 227 out of the total 264 sequences. We used EBI’s 

ClustalW2 web service (http://www.ebi.ac.uk/Tools/clustalw2/index.html) to perform 

multiple sequence alignments (MSA). 
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pKa calculations of the ionizable states and proton uptake/release  

The pKa values of the ionizable groups were calculated using the Multi 

Conformation Continuum Electrostatics (MCCE) method as previously described [53-

55]. Recently, we demonstrated that MCCE can be utilized to calculate pKa’s using 3D 

structures that were built by homology [56]. Calculations were performed for all 264 

protein complexes corresponding to the first allele, and another set of pKa calculations 

were done for the protein complexes with corresponding nsSNP mutation. The 

calculations were also performed on the corresponding unbound monomers, which 

structures were taken from the corresponding protein-protein complex. These results 

were used to predict the changes of the titratable groups’ ionization states caused by 

complex formation. For each complex, we calculated the difference of the net charge 

(∆q(X)) of the complex and of the unbound monomers, called proton uptake/release: 

 
 ):():():()( BXqAXqcomplexXqXq −−=∆     (5.5) 
 

where X is the first allele or nsSNP variant, and q is the net charge of the complex 

and of monomer A and B, respectively, calculated with MCCE at a pH of 7.0. We chose 

a pH of 7.0 because there was no information of what is the physiological pH for each of 

the proteins studied in this manuscript. In addition, we analyzed the proton uptake/release 

difference between complexes with the first allele and the nsSNP variant: 

nsSNP))( - allele)dominant (( qqabsq ∆∆=∆∆     (5.6) 
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P-value calculations 

 The P-values were calculated performing t-test [57-59]. The distributions of the 

corresponding changes of the binding energy and its components in case of OMIM and 

non-OMIM sets were checked against the null hypothesis. Large P-value indicates that 

the corresponding distribution is similar to the normal distribution (null hypothesis), 

while small P-value points out a deviation from random distribution. Typical cut-off for 

P-value is 0.01, i.e. distribution with P-value smaller than 0.01 is considered significantly 

different from random. The distribution of the variance of ∆∆∆Gtot(nsSNP) and 

∆∆∆Gel(nsSNP) was checked against the null hypothesis that assumes equal variances. 

The SI% scale was divided into five bins, corresponding to cases with SI% smaller than 

20%, 20% < SI% <40%, 40% < SI% < 60%, 60% < SI% < 80, and 80% < SI% < 100%. 

The variance of the corresponding energies was calculated within each of the bins and the 

resulting P-value evaluated. In case of ∆∆q, six bins were considered: 0.00 < ∆∆q < 0.05, 

0.05 < ∆∆q < 0.10, 0.10 < ∆∆q < 0.15, 0.15 < ∆∆q < 0.20, 0.20 < ∆∆q < 0.25 and ∆∆q > 

0.25.  Then, the variance of the corresponding energies within these bins and the P-value 

were calculated.  

 

RESULTS AND DISCUSSION 

Distribution of binding energy 

The changes in the total binding energy and its electrostatic and vdW components 

due to the nsSNPs were calculated for all complexes in the dataset (Figure 5.1, Table 

5.1). The distributions of ∆∆∆Gtot(snSNP) for OMIM and non-OMIM cases are shown in 
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Figure 5.1a. It can be seen that the distributions have similar shapes, showing slight 

tendency toward negative values. The mean values of electrostatic (∆∆∆Gel(snSNP)) and 

vdW (∆∆∆Gvdw(snSNP)) components of the binding energy changes are statistically 

different for OMIM and non-OMIM cases (P-values are less than 0.006 and 0.01 

respectively), although this is not the case for the total binding energy. Figure 5.1b shows 

the distribution of ∆∆∆Gel(snSNP) for both OMIM and non-OMIM cases. One can see 

the long negative tail of the distribution of OMIM cases for which nsSNP substitutions 

destabilize binding. Moreover, the mean of OMIM distribution of electrostatic energy is 

significantly different from zero and shifted towards negative values although this is not 

the case for non-OMIM distribution of electrostatic component (Table 5.1). This 

indicates that, overall, there is a tendency for OMIM nsSNP substitutions to weaken 

electrostatic component of the binding energy, although there are many examples where 

disease nsSNPs make binding tighter as well. The effect is less pronounced for the total 

binding energy.   

 
Table 5.1: Parameters of distributions of total binding energy difference and its 
components together with the corresponding P-values (the null hypothesis that mean 
value is greater or equal to zero is rejected if P-value is less than 0.01) 
 

Group No ∆∆∆Gtot ∆∆∆Gvdw ∆∆∆Gel 
mean std P-value mean std P-value mean std P-value 

OMIM 45 -1.65 3.80 0.003 -1.03 3.32 0.02 -2.35 5.51 0.003 
Non-OMIM 219 -0.70 4.36 0.009 0.14 3.03 0.75 -0.45 4.39 0.06 
Polar (P) 62 -0.27 3.77 0.28 0.38 3.94 0.77 -0.83 4.74 0.09 
Charge (C) 76 -2.01 6.38 0.004 -0.33 2.25 0.1 -1.37 6.59 0.04 
Small (S) 94 -0.74 2.39 0.002 -0.03 2.49 0.45 -0.78 2.58 0.002 
Hydrophobic 
(H) 

32 0.32 2.50 0.77 -0.36 4.46 0.32 0.74 3.23 0.09 
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Figure 5.1: ROC Distribution of ∆∆∆Gel(nsSNP) and ∆∆∆Gtot(nsSNP) for OMIM and  
non-OMIM cases. OMIM: black bars, non-OMIM: white bars. 
 
  From an electrostatic point of view, replacing the wild type amino acid (dominant 

allele) at a protein-protein interface with another amino acid (amino acid which 

corresponds to nsSNP) is expected to be a destabilizing event. Indeed, in our previous 

study of 654 protein-protein and domain-domain complexes, we demonstrated that the 

electrostatic component of the binding energy tend to be optimized [60] with respect to 

random shuffling of the amino acid sequences of the corresponding binding partners. 

Thus, since wild type (dominant allele) interactions across the interface are optimized, 

any change should make the binding affinity weaker. Indeed, the destabilization effect 

upon disease substitutions is the most pronounced in case of electrostatic component of 

binding energy (∆∆∆Gel distributions is shifted toward negative values with P-value of 

less than 0.003). However, the tendency of OMIM mutations to destabilize electrostatic 

component of the binding energy is not very strong which perhaps stems from the fact 

that nsSNP substitutions are not random, rather they are constrained mutations accepted 
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by the cell. At the same time, for non-OMIM substitutions the electrostatic component 

should be optimized for both alleles and consequently the mean of ∆∆∆Gel(nsSNP) is not 

statistically significant different from zero (P-value is 0.06). 

  Despite the differences, in majority of the cases, both OMIM and non-OMIM 

substitutions were calculated to have little effect on the binding. Since we investigate 

nsSNP substitutions at the interface of protein complexes, such an observation deserves 

further investigation. The next sections investigate possible patterns and correlations 

between different types of amino acid substitutions and their calculated effects on the 

binding energy.  

 

Effect of nsSNPs on binding energy with respect to amino acid characteristics 

In this section, four different classes of amino acids were considered based on the amino 

acids’ physico-chemical properties: polar (S, T, H, N, Q, Y), charged (E, D, K, R), 

hydrophobic (W, I, L, M, F) and small (P, A, G, C, V). We adopt such a simplified 

classification to ensure that each class has enough representatives in our dataset. Of 

course, many other classifications exist, including more detailed definitions of the 

subgroups. Below we investigate the effects of nsSNP mutations on the ∆∆∆Gtot(snSNP), 

∆∆∆Gvdw(nsSNP) and ∆∆∆Gel(nsSNP) separately for each class (more detailed analysis 

including analysis of the effects of substitutions between classes is given in the 

supplementary results).  
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Figure 5.2: Illustration of nsSNPs at interface of protein-protein complexes. (a) TTR 
(transthyretin, Gene ID: 4507725)   Red: A Chain, Blue: E Chain. Green: Ser in A85, 
Yellow: F in A85, Magenta: N in E63. (b) DYNLRB1 (Roadblock-1, Gene ID: 7661822) 
Red: A Chain of target, Light Red: A Chain of SNP variants. Blue: B Chain of target, Sky 
Blue: B Chain of SNP variant, Green: K in A75, Yellow: E in A75, Magenta: D in B61 of 
target, Pink: D in B61 of  SNP variant.  (c) HBB (beta globin, Gene ID:  4504349)     
Red: B Chain, Blue: C Chain. Green: V in B34, Yellow: L in B34. (d) GSTM2 
(glutathione S-transferase M2, Gene ID: 4504175)     Red: A Chain, Blue: B Chain. 
Green: M in A130, Yellow: K in A130, Magenta: M in B50 
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Binding energy changes caused by a substitution of a polar amino acid 

There are 62 cases in our dataset for which a polar residue corresponding to the 

first allele and located at the interface of the protein-protein complex is substituted by 

other variant (Table 5.1). Overall, there is no statistically significant bias for energy to be 

shifted upon substitution towards lower or higher values.   

From an electrostatic point of view, a polar�another amino acid substitution 

tends to be an unfavorable event in the majority of cases (P-value=0.09). In another 

words, removal of a polar group at the interface, despite structural refinement, makes 

electrostatic binding energy less favorable. Further analysis of such cases showed that a 

removal of a polar residue disturbs the hydrogen bond network at the interface. 

Substitution of a polar residue with either a small, charged or hydrophobic groups tends 

to make electrostatic component of binding weaker. A small residue will create 

energetically unfavorable cavities, a charged residue will pay large desolvation penalty 

and a hydrophobic residue will not be able to provide the required hydrogen bonds. 

However, exceptions are cases when a polar group is replaced by another polar residue 

whose side chain can satisfy the required geometry. In the last case, the electrostatics may 

not change or even become more favorable.  

A particular example of polar�hydrophobic substitution is shown in Figure. 2a. 

It demonstrates that removal of a polar residue and substitution with a hydrophobic 

residue results in the placement of the hydrophobic side chain in a polar environment, an 

event that weakens the binding affinity. A typical case is Transthyretin (TTR), which is a 

plasma protein that binds retinol and thyroxine. Many distinct forms of amyloidosis are 
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related to different nsSNPs in TTR. For example, the nsSNP (refSNP ID: rs11541784) 

results in a change of the polar (Ser) residue into a hydrophobic residue (Phe). The 

nsSNP Phe residue is located in a polar environment and reduces the binding affinity by 

0.717 kcal/mol. 

 

Binding energy changes caused by a substitution of a charged amino acid 

 There are 76 cases in our dataset in which a charged residue located at the 

interface of the target protein-protein complex is substituted in the nsSNP variant (Table 

1). The values of the means of ∆∆∆Gtot(nsSNP) and its electrostatic component 

∆∆∆Gel(nsSNP) are negative and this bias is statistically significant (P-values 0.004 and 

0.04, respectively) which means that the target protein-protein complexes are more stable 

compared to the nsSNP variants.  

 Substituting a charged with another residue is, overall, an unfavorable event with 

respect to protein-protein association (Table 5.1). Removal of a charged residue that 

forms a salt bridge across the interface in the target complex leaves the charged partner 

without favorable pair-wise interactions. The remaining charged residue pays a huge 

desolvation penalty upon complex formation, which in the nsSNP variant may not be 

compensated by favorable pair-wise interactions. This provides an intuitive explanation 

why distributions of both the ∆∆∆Gtot(nsSNP) and ∆∆∆Gel(nsSNP) are shifted toward 

negative values .  

 The mutation of a charged amino acid to another charged amino acid 

(charged�charged) is an interesting case. The mutation could preserve the charge (Asp 
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� Glu; Lys � Arg) or invert the charge (Asp,Glu � Lys, Arg). Presumably, a mutation 

that preserves the charge should have a lesser effect on the binding energy as compared 

with charge-reversal mutations. However, our analysis showed that this is not always the 

case. Overall, all mutations of the target charged residue to another charged residue were 

found to be unfavorable events (Table 5.1). Even in the case of Glu to Asp substitutions, 

like aldolase B (s2525, Glu to Asp in position 64), which is a mutation (refSNP ID: 

2854709) that preserves the net charge of the complex, the change of the binding energy 

is huge: ∆∆∆Gtot(nsSNP) = -9.06 kcal/mol, ∆∆∆Gvdw(nsSNP ) = -1.58 kcal/mol and 

∆∆∆Gel(nsSNP) = -11.30 kcal/mol. This is due to the fact that the side chain of Asp is 

shorter than the Glu side chain, and the nsSNP introduced Asp cannot form a strong salt 

bridge with the original partner Lys in position 270 of the other chain in this homo-dimer 

complex. Another example (Figure 5.2b) is the case of charge reversal in Roadblock-1 

(DYNLRB1), which is a homo-dimeric protein that may be involved in tumor 

progression, as the up-regulation of this gene is associated with hepatocellular 

carcinomas. The corresponding nsSNP (refSNP ID: rs11537531) of this protein results in 

the change of a Lys amino acid to a Glu amino acid at the complex’s interface. In the 

target protein complex, the distance between Lys75 from chain A and its partner Asp61 

from chain D is only 1.62 Å, resulting in a very strong hydrogen bond and pair-wise 

electrostatic interactions.  However, in the nsSNP variant, the positively charged Lys is 

replaced by Glu, a negatively charged residue. Due to minimization, the distance between 

the nsSNP residue and the original Asp61 from chain D increases to 9.99Å due to the 

repulsive charge-charge interaction between the two negatively charged groups (Figure 
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5.2b). This reduces the effect, but the binding energy is still much less favorable as 

compared with the dominant allele. The corresponding energy changes are 

∆∆∆Gtot(nsSNP) = -11.13 kcal/mol, ∆∆∆Gvdw(nsSNP) = -4.42 kcal/mol and 

∆∆∆Gel(nsSNP) = -3.08 kcal/mol. This is an example of a structural relaxation that 

reduces the effects of charge reversal.  

 

Binding energy changes caused by a substitution of a small amino acid 

 There are 94 cases in our dataset for which a small residue located at the interface 

of the target protein-protein complex is substituted into the nsSNP variant (Table 1). 

Overall, the total binding energy and electrostatic components are statistically significant 

(both P-values are 0.002) shifted toward negative values which indicates that nsSNP 

destabilizes the complex.  

 Substitution of a small with another amino acid almost always will result in 

sterical clashes. The volume of a small amino acid is much smaller that the volume of the 

other residues. Thus, there will be no room for bulky amino acid side chain at the 

interface. Such a replacement will cause distortion of the interface and will weaken the 

binding (Table 5.1). A typical example is the histidine triad nucleotide binding protein 1 

(HINT1), Gene ID: 4885413. The nsSNP codes for Gly to Arg substitution in position 92 

of B chain. The substitution introduces a new charged residue, which pays large 

desolvation penalty and the resulting change in the electrostatic component of the binding 

energy ∆∆∆Gel(nsSNP) is -9.23 kcal/mol).  
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 However, there are also opposite examples, indicating that protein complexes can 

tolerate small amino acid substitutions at the interfaces. A typical example is Human β-

globin (HBB), which regulates developmental expression. The corresponding nsSNP 

(refSNP ID: rs1141387) in this protein replaces a Val residue with a Leu amino acid.  

Despite the difference in these two amino acids’ volumes, the structure of the complex 

does not change by much, resulting in very small energy differences: ∆∆∆Gtot(nsSNP) = -

0.16 kcal/mol ∆∆∆Gvdw(nsSNP) = -0.44 kcal/mol and ∆∆∆Gel(nsSNP) = -0.00 kcal/mol 

(Figure 5.2c). The main reason for this is that both side chains are partially exposed to the 

solution, and there is room for a larger Leu side chain. 

 

Binding energy changes caused by a substitution of a hydrophobic amino acid 

 There are 32 cases in our dataset in which a hydrophobic residue located at the 

interface of the target protein-protein complex is substituted by the nsSNP variant (Table 

1). The mean values of all energy distributions are not significantly different from zero. 

In general, substituting a hydrophobic residue at the interface with another residue does 

not have large effect on protein-protein binding. Perhaps this is due to the fact that 

hydrophobic groups do not form specific interactions. Thus, the effect of a replacement 

of a particular hydrophobic side chain with another residue depends on geometry of the 

interface and the ability of the substituted side chain to form new interactions.  For 

example, a polar or charged residue, substituting a hydrophobic one, could increase the 

binding affinity only if the corresponding residue manages to create new favorable 

interactions across the interface. If this does not occur, then the mutation should weaken 
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the binding. Such a case is shown in Figure. 2d. Glutathione S-transferase M2 (GSTM2) 

is an important enzyme that contributes to the metabolism of phase II biotransformation 

of xenobiotics. The corresponding nsSNP (refSNP ID: rs1056799) changes the target 

amino acid Met to Lys in position A130. However, the new charged residue cannot form 

favorable interactions with any other residue across the interface since it is in a 

hydrophobic environment. As a result, the solvation loss cannot be compensated for, and 

the mutation weakens the binding.  

 

Correlation of the calculated effect on the binding affinity and residue conservation 

 Multiple sequence alignments (MSA) were used for phylogenetic analysis and for 

determining the evolutionary relationships between different species. Only positions 

corresponding to interfacial sites were considered. A position in the MSA that is totally 

or highly conserved indicates strong evolutionary constraints, and the substitution of such 

a highly-conserved amino acid is expected to have significant effects on protein structure, 

function and interactions. In contrast, an amino acid that is not conserved among different 

species is, perhaps, not crucial for the structure, function and interactions of that 

particular protein complex.  

 We began our analysis with a case corresponding to a highly conserved site. 

Position B34 in Human β-globin (HBB) is totally conserved among the species (Figure 

5.3a). The nsSNP causes a mutation that changes Val residue to Leu. As result, the total 

binding energy, van der Waals and electrostatic components are more favorable in the 

target complex compared with the nsSNP variant. The corresponding changes of the 
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binding energy are ∆∆∆Gtot(nsSNP) = -0.94 kcal/mol, ∆∆∆Gvdw(nsSNP) = -0.10 kcal/mol 

and ∆∆∆Gel(nsSNP) = -1.12 kcal/mol. 

 Another example is GSTM2, glutathione S-transferase M2 (Figure 5.3b). Position 

A130 is not conserved; in humans it is a Met residue, however, in other species the same 

position is a Lys amino acid. The nsSNP induces a Met � Lys change in the human 

protein, a mutation that is already seen in other species. Perhaps this explains why such a 

drastic change (a hydrophobic to a charged group) has little effect on the binding affinity. 

The corresponding changes of the binding energy are ∆∆∆Gtot(nsSNP) = -0.53 kcal/mol, 

∆∆∆Gvdw(nsSNP) = 0.28 kcal/mol and ∆∆∆Gel(nsSNP) = -0.26 kcal/mol.  

 

 

Figure 5.3: Multiple sequence alignment (MSA). The blank frame is nsSNP position. (a) 
HBB (beta globin, Gene ID:  4504349). (b) GSTM2 (glutathione S-transferase M2, Gene 
ID: 4504175) 
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 The magnitude of the binding energy change as a function of the degree of 

conservation is shown in Figure 5.4. It can be seen that as the degree of conservation 

increases (calculated in terms of percent identity, SI%) the maximal amplitude of both the 

∆∆∆Gtot(nsSNP) and the ∆∆∆Gel(nsSNP) increases as well (illustrated by the broken lines 

in Figure 5.4). The effect culminates at high SI% (SI% > 80%) where the variance of the 

magnitude of both the ∆∆∆Gtot(nsSNP) and the ∆∆∆Gel(nsSNP) is significantly different, 

i.e. the null hypothesis about the equality of variances between the bins was rejected with 

P-value<0.00001 (see Methods section). Note that this corresponds to significant variance 

of the binding constant resulting to either increase/decrease or no change of the affinity. 

The points located close to the horizontal axis and corresponding to highly conserved 

positions (Figure 5.4) indicate that in some cases, a mutation of a highly conserved amino 

acid may not affect the binding affinity. In these cases, the effect depends on the 

geometry of the interface and where the site is situated. These highly conserved sites are 

predominantly located at the periphery of the binding interface and apparently are not 

important for the binding affinity. Figure 5.4 provides indirect support demonstrating that 

the calculated effects are reasonable, since no large binding energy change was calculated 

to be associated with nonconserved positions in the MSA.  
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Figure. 5.4: The change of the binding energy as a function of the amino acid 
conservation (SI%). The broken lines are guides for the eye and follow the maximal 
amplitude of binding energy change). (a) ∆∆∆Gtot(nsSNP). (b) ∆∆∆Gel(nsSNP)  
 

 

Effect of nsSNPs on proton uptake/release 

  Figure 5.5 shows the change of the corresponding binding energy as a function of 

the absolute difference of the proton uptake/release for target complexes and an nsSNP 

variant calculated at pH = 7.0. No correlation between either the magnitude or variance of 

the binding energy change and ∆∆q was found. At the same time, it can be seen that most 

∆∆q are close to zero, indicating that at least around a pH of 7.0 the pH-dependences of 

the binding energy are the same for the target complex and the nsSNP variant. However, 

this is not necessarily the case for the entire pH-dependence. At the same time, there is 

significant percentage of cases in which the ∆∆q is different from zero. This indicates 

that nsSNP mutations not only change the binding energy but also result in a different 
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pH-dependence of the binding. This could have a significant physiological importance; 

however, there is practically no experimental data available for comparison.  

 

 

Figure 5.5: The change of the binding energy as a function of calculated proton  
uptake/release (absolute value of ∆∆q). (a) ∆∆∆Gtot(nsSNP). (b) ∆∆∆Gel(nsSNP)  
  

 In general any substitution can lead to ionization changes. The above results indicate 

that an amino acid substitutions corresponding to nsSNPs not only change the binding 

energy but could also result in changes in the ionization states of the titratable groups. 

Such an effect could occur not only when a titratable group is involved in the target� 

nsSNP mutation but could also occur in each of the other cases as well. This is because 

any substitution changes the geometry of the interface and thus affects the electrostatic 

potential of all ionizable residues. However, in this study we did not perform charge 

relaxation, i.e., no attempt was made to adjust the residues’ ionization states according to 

the pKa calculations because the calculated proton uptake/release is a fractional number. 

Modeling fractional ionization in single point calculations is impossible and any attempt 
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would be an error (see for details [61]). However, a more sophisticated approach 

involving ensemble presentation could take into account these ionization changes and 

will result in a reduction of the magnitude of the energy change caused by the nsSNP 

mutation. Thus, all of the data points (Figure. 5.5) corresponding to ∆∆q that are 

significantly different from zero may get closer to ∆∆∆G (nsSNP) = 0, i.e., closer to the 

horizontal axis. Perhaps this is an effect that occurs in vivo and results in toleration of 

nsSNP mutations. Site-directed mutagenesis experiments and complementary numerical 

calculations have proven the charge-compensatory effect [62-64]. Perhaps, the charge-

compensatory is the reason that maximal ∆∆q (Figure. 5.5) is only about 0.6 units, 

despite that some nsSNPs cause charge reversal.  

 

CONCLUSION 

 This analysis is focused on nsSNPs located at protein-protein interfaces. Protein-

protein interactions are essential for cell function, and nsSNPs affecting these interactions 

are expected to have significant impacts on the protein interaction network. Indeed, our 

analysis showed that OMIM and some non-OMIM nsSNP might have a significant effect 

on binding energy especially on the electrostatic component. Although the effect is 

statistically significant, the majority of amino acid substitution corresponding to nsSNP 

does not affect the binding affinity by much. This observation should be taken with 

caution. A small change of the binding affinity by a kcal/mol or even less could still 

disrupt the functionality of the interaction network or change the kinetics of the 



 116 

corresponding reaction [24, 25]. However, investigating this effect requires modeling 

protein-protein networks, a task that is far beyond the goals of the present study. 

  Two data sets were considered in this study: nsSNPs that are known to be disease-

causing (OMIM dataset) and nsSNPs that were not annotated to be disease-causing (non-

OMIM). The distributions of the change in the binding energy and its components in both 

the OMIM and non-OMIM cases were found to be different although the difference is 

small. However, looking at the electrostatic component of the free energy we found that it 

is significantly shifted toward negative values for OMIM nsSNP, this is not the case for 

non-OMIM nsSNPs.  This indicates that disease-causing nsSNPs tend to destabilize 

electrostatic component of protein binding energy, in contrast with non-OMIM nsSNPs.  

  Although large number of nsSNPs did not affect protein interactions by much 

(perhaps this shows the plasticity of protein interfaces and their ability to tolerate amino 

acid changes), an even larger fraction of the nsSNPs did affect the affinity. In fact, about 

a half of nsSNPs destabilize/stabilize the complexes by more than 1kcal/mol. In addition, 

we find that 31.8% of nsSNPs affect protein-protein binding by more than 2kcal/mol and 

23.9% by more than 3kcal/mol.  

  As was mentioned before, in the case of non-OMIM complexes there is no 

information about which nsSNP is the dominant allele. However, our numerical protocol 

builds a 3D model of the first allele in the list, minimizes the structure and then 

introduces a side chain mutation at the nsSNP position and minimizes the mutant 

structure. Could this bias the calculations? Since ∆∆∆G(nsSNP) is a difference between 
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two binding energies, the change of the order will simply change the sign of the 

∆∆∆G(nsSNP). If the numerical protocol is not biased, then we should see that the effect 

of, for example, a P�C mutation is opposite to the effect of a C�P variation. Comparing 

the means reported in the supplementary results, Table D.1, we can see that this is the 

case, except for C�H and H�C. (in both cases the means of the distributions of 

∆∆∆Gtot(nsSNP) were found to be negative). However, this is the smallest subset in our 

study comprised of only 5 cases and many more examples are needed to draw a 

conclusion.  

  Another important issue to address is how sensitive the results are in respect to the 

computational protocol and force field used. Recently we have demonstrated that the 

calculations of absolute value of the binding energy are very sensitive to both 

computational protocol and force fields [65]. The same study [65], however, found that 

the distribution of the binding energy and the general trends are almost insensitive to 

force field and protocol used. Since the present study is not aimed at computing the 

absolute binding energy, but rather the change of the binding energy upon single amino 

acid substitution, the effects of force field and computational algorithm are expected to 

largely cancel out.      

  It is expected that a mutation that changes the physico-chemical property of a 

position at the interface of the corresponding protein-protein complex should affect 

binding affinity. However, our results indicate that this is not necessarily the case. The 

outcome of the mutation depends on a variety of factors, whose interplay determines the 

effects of the substitution. In addition, some positions are located in structural regions 



 118 

that allow for structural relaxations. From an energetics perspective, an amino acid 

substitution may not always affect the binding affinity. An example includes a charged 

residue for which the favorable pair-wise interactions are almost entirely cancelled by an 

unfavorable desolvation penalty. Another example is weak hydrogen bonds formed at the 

interface. A third example is a partially exposed hydrophobic residue at the periphery of 

the interface. Substitution of such residues with another may not affect the binding 

affinity; in fact, the nsSNP mutation could strengthen the binding. 

  A highly conserved position within the protein sequence is often related to an 

important biological function. Multiple sequence alignment analysis showed that most of 

the positions corresponding to interfacial nsSNPs in our dataset are highly conserved. It 

was shown that the variance of the total binding energy and its components of the highly 

conserved positions is larger as compared with the variance of positions with lower 

conservation. However, significant fraction of nsSNP occurring at conserved positions 

was calculated not to change the binding energy by much. This indicates that 

conservation of amino acids in certain interface positions does not occur to preserve 

binding affinity. Rather, such conservation may reflect the preservation of the binding 

mode or specificity. An interesting case is an nsSNP mutation that introduces an amino 

acid found in another species. Since such a mutation was evolutionarily accepted in the 

other species, the overall effect on protein-protein affinity is expected to be small. In 

further work, we will explore this observation and will determine the effects of 

introducing mutations to any other 20 amino acids. 
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  In this paper, we showed that that the change of the binding energy from the 

target complex to the nsSNP variant is not related to the conservation of the net charge, 

hydrophobicity or hydrogen bond network. This implies that one cannot simply use the 

physical-chemical properties of amino acids to evaluate the effects an nsSNP has on 

protein-protein interactions. Rather detailed structure-based energy calculations must be 

performed in order to predict these effects, as it was done in the present work.  
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CHAPTER SIX 
 

STRUCTURAL ASSESSMENT OF THE EFFECTS OF AMINO ACID 
SUBSTITUTIONS ON PROTEIN STABILITY AND  

PROTEIN-PROTEIN INTERACTION5 
 

ABSTRACT 

A structure-based approach is described for predicting the effects of amino acid 

substitutions on protein function. Structures were predicted using a homology modelling 

method. Folding and binding energy differences between wild-type and mutant structures 

were computed to quantitatively assess the effects of amino acid substitutions on protein 

stability and protein–protein interaction, respectively. We demonstrated that pathogenic 

mutations at the interaction interface could affect binding energy and destabilise protein 

complex, whereas mutations at the non-interface might reduce folding energy and 

destabilise monomer structure. The results suggest that the structure-based analysis can 

provide useful information for understanding the molecular mechanisms of diseases. 

 

INTRODUCTION 

Revealing the effects of amino acid substitutions on protein structure and function 

is critical for understanding the complex mechanisms of human disease caused by single 

amino acid mutations. There are 67,000 - 200,000 non-synonymous Single Nucleotide 

Polymorphisms (nsSNPs) in the human population [1], which give rise to a large number 

of amino acid substitutions in proteins. The residue changes at key sites within a protein 

                                                   
5Teng S, Srivastava AK, Schwartz CE, Alexov E, Wang L: Structural assessment of the effects of 

amino acid Substitutions on protein stability and protein-protein interaction, Int. J. Computational Biology 
and Drug Design 2010, 3(4):334-349. 
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may result in a series of conformation changes, including the breakage of salt bridges, 

alteration of interaction network, disruption of hydrogen bonds, which in turn may 

perturb the energy landscape. These changes can affect the kinetics of protein folding or 

cause protein aggregation and destabilisation [2]. More than half of monogenic diseases 

are caused by single mutations, and a common mechanism by which amino acid 

substitutions cause human disease is protein stability change. Yue and Moult investigated 

the effect of amino acid substitutions on protein stability, and estimated that 

approximately 25% of nsSNPs in the human population might be deleterious to protein 

function [3]. Of the known disease-causing missense mutations, the majority (83%) 

resulted in alternation of protein stability [4].  

Amino acid substitutions can also affect protein-protein interactions. 

Approximately 88% of disease-associated nsSNPs are found to be located in the 

voids/pockets important for protein-protein interactions [5]. The amino acid substitutions 

located at the binding interface or active site cleft could block the entrance to the active 

site, change the recognition, alter the specificity, or affect the binding affinity. For 

example, the substitution G2019S in leucine-rich repeat kinase 2 (LRRK2) was shown to 

be associated with familial and sporadic Parkinson's disease [6]. Structure analysis 

indicates that this mutation is located at the interface of LRRK2’s N-terminal and C-

terminal domains which is important for positioning of Mg2+ within the active site of the 

kinase [7, 8]. This finding is in agreement with the experimental result that G2019S 

enhances kinase activity in vitro [9]. Recently, Teng et al. [10] examined the effects of 

nsSNPs at the interaction interfaces of 264 protein complexes using a homology 
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modeling method and all atoms energy calculations. The results suggest that disease-

causing mutations tend to destabilise protein-protein interactions. Therefore, 

understanding how amino acid substitutions affect protein stability and protein-protein 

interactions can provide new insights into the molecular mechanisms of human genetic 

diseases. 

Protein structure modeling methods have been widely used for predicting the 

effects of disease-causing mutations on protein stability and protein-protein interaction. 

For instance, to predict the effects of the mutations related to the genetic disorder 

galactosemia, more than one hundred mutant structures of galactose-1-phosphate 

uridyltransferase were constructed using the homology modeling method, and the results 

suggested that most mutations might alter protein stability [11]. By mapping disease-

causing mutations onto known three-dimensional protein structures, Dimmic and 

coworkers [12] have shown that about 70% of the deleterious mutations are located in the 

structurally and/or functionally important sites. However, the effects of mutations were 

analyzed statically in these studies. The free energy perturbation (FEP) calculation has 

been used to quantitatively assess the effects of amino acid substitutions on protein 

stability. Dixit et al. [13] used the AMBER force field and solvent-accessible surface area 

solvation methods to calculate the protein stability changes in terms of free energy 

differences caused by cancer-associated mutations in the RET and MET kinases, and 

showed that the amino acid substitutions could decrease the thermodynamical stability of 

the mutant structures. The FEP calculation was also used to assess the protein stability 

changes upon single amino acid substitutions in membrane proteins [14]. Nevertheless, 
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these studies on FEP calculation did not take into account the effects of amino acid 

substitutions on protein-protein interactions. 

The advent of high-throughput sequencing technology makes it possible to 

identify a large number of nsSNPs in the human genome. The dbSNP database, one of 

the primary data resources for genetic studies, contains the information of more than 23 

million human SNPs [15]. The records in the dbSNP database are linked to the Online 

Mendelian Inheritance in Man (OMIM) database, which contains disease gene 

information, including genetic polymorphisms, map locations, inheritance patterns and 

clinical descriptions [16]. Computational analyses provide an efficient way for examining 

the effects of nsSNPs on protein stability and function, and for identifying potential 

disease-causing mutations. Ng and Henikoff [17] used a position-specific scoring matrix 

(PSSM) based method called Sorting Intolerant From Tolerant (SIFT) to predict whether 

an amino acid substitution affects protein function. We have recently developed the 

MuStab web server for predicting protein stability changes upon amino acid substitutions 

from sequence features [18]. MuStab uses a support vector machine (SVM) model to 

discriminate between destabilizing and stabilizing amino acid substitutions in proteins. 

iPTREE-STAB [19] and I-Mutant 3.0 sequence version [20] are also available for 

sequence-based prediction of protein stability changes caused by point mutations. 

Structure-based methods, including PoPMuSiC-2.0 [21], Dmutant [22], Eris [23], I-

Mutant 3.0 structure version [20] and FoldX [24], are available for examining the effects 

of mutations on protein stability and protein-protein interactions. In particular, the FoldX 

software tool can be used to provide quantitative estimations about the effects of amino 
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acid substitutions on the stability of proteins or protein complexes using the empirical 

force field calculation [24]. Among these protein stability predictors, I-Mutant3.0 

structure version, Dmutant and FoldX gave the best predictive performances [25].  

The experimental approach for determining the effects of amino acid substitutions 

on protein stability is to obtain the mutant proteins and measure their thermal stability 

changes by melting experiments. However, the experimental approach is time-consuming 

and thus may not be applied to a large number of amino acid substitutions. In the present 

study, a structure-based approach was performed for predicting the effects of amino acid 

substitutions on protein stability and protein-protein interaction. The differences of 

folding energy and binding energy between the wild-type and mutant structures were 

calculated to predict the protein stability and protein-protein interaction changes caused 

by the mutations. The predictions were evaluated by using other bioinformatic methods. 

The results suggest that the structure-based approach can provide useful information for 

characterizing disease-causing mutations in human genetic studies. 

 

METHODS 

The schematic diagram of the structure-based approach is shown in Figure 6.1. 

The methodology was also investigated in two previous studies [26, 27]. For a specific 

gene with mutations, the related sequence and disease information were extracted from 

the dbSNP and OMIM databases. If the structure of the target protein was available in the 

Protein Data Bank (PDB), no structure modeling was needed. Otherwise, target structures 

were constructed using the homology modeling method [28]. The suitable templates were 
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identified in the PDB database using the PSI-BLAST program [29], and then used to 

construct the target structures with the NEST program [30]. Energy minimization was 

performed to obtain the optimal structure with the TINKER program [31], and the mutant 

structure was constructed using the SCAP program [32]. The folding energy of the wild-

type or mutant structure was calculated using TINKER to estimate the effects of the 

mutations on protein stability. For amino acid substitutions located at the interface, the 

binding energy changes were also computed to predict the effects of the mutations on 

protein-protein interaction. At the end, the predictions were compared with several 

bioinformatics tools, including FoldX [24], PoPMuSiC-2.0 [21], Dmutant [22], Eris [23], 

MuStab [18], iPTREE-STAB [19] and I-Mutant 3.0 (both sequence and structure 

versions) [20]. 

 

 

Figure 6.1 Schematic diagram of the approach for assessing the effects of amino acid 
substitutions on protein stability and protein-protein interaction. Underlined are the 
software tools used in this study. 
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Protein structure modeling 

Homology modeling was applied to the proteins with no structures available in the PDB 

database. The structures were modeled as follows:  

1) Template searching: The suitable templates were selected from the PDB database for 

the target protein. Position-Specific Iterated BLAST (PSI-BLAST) [29] was used for the 

template searching. The structures with significant E-value (< 10-5) were selected as the 

suitable templates. 

2) Structure building:  The program NEST was used to the build structure models 

according to the sequence alignment between the target protein and its structural template 

[30]. NEST is an integrated model-building program, including the program LOOPY9 for 

loop prediction and SCAP10 for side-chain modeling.  

3) Energy minimization:  To generate the optimal structure, energy minimization was 

performed by using the TINKER package [31] with the CHARMM27 force field 

parameters [33]. The MINIMIZE program in TINKER was used to minimize structures 

with the algorithm of Limited Memory BFGS Quasi-Newton Optimization [31].  

 The mutant structures were derived in silico from the wild-type structure using the 

SCAP program [32]. The amino acid substitutions were introduced by side-chain 

replacements with the rest of the structure kept rigid. The MINIMIZE program in the 

TINKER package was used to minimize the mutant structures. 
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Folding energy calculation 

The effects of amino acid substitutions on protein stability were assessed by the 

folding energy changes. The energy calculation was based on the monomer structure of 

the target protein, and was performed as described in the recent publication [27]. The 

folding energy is the energy difference between the folded and unfolded states: 

    )()()( unfoldedGfoldedGfoldingG −=∆                                     (6.1) 

where G(folded) or G(unfolded) is the total potential energy of the target protein in the 

folded or unfolded state, respectively.  

The protein stability change (∆∆Gstability) is the folding energy difference between 

the wild-type (WT) structure and the structure with the amino acid substitution (AAS). It 

can be calculated using the following equation: 

 
)]:():([)]:():([
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∆−∆=∆∆  (6.2) 

However, the energy difference between the wild-type and mutant proteins in the 

unfolded state, G(unfolded: WT) - G(unfolded: AAS), is difficult to calculate. In the 

present study, we assume that the difference of energy in the unfolded state can be 

estimated by using the substitution site and its neighboring residues. The total potential 

energy of the eleven-residue segment (S11) with the substitution site in the middle 

position was used to represent the folding energy of the full-length protein in the 

unfolded state. Equation (2) can thus be rewritten as: 

)]:():([)]:():([ 1111 ssstability AASfoldedGWTfoldedGAASfoldedGWTfoldedGG −−−=∆∆  (6.3) 
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All of the above total potential energy terms were calculated using the 

ANALYZE program in the TINKER package. A positive value of ∆∆Gstability indicates 

that the amino acid substitution may make the protein more stable, whereas a negative 

value of ∆∆Gstability suggests that the mutation can destabilise the protein. 

 

Binding energy calculation 

For an amino acid substitution located at the interaction interface, the binding 

energy difference of the protein complex between the wild-type and mutant structures 

was used to assess the effect of the mutation on protein-protein interaction. As described 

in the previous study [10], the binding energy was calculated using the rigid body 

approach, in which the structures of the monomers were kept as they were in the dimer 

complex. The binding energy, ∆∆G(binding), was the difference between the total 

potential energy of the dimer complex and the individual monomers: 

):():():()( BfoldingGAfoldingGcomplexfoldingGbindingG ∆−∆−∆=∆∆ (6.4) 

where ∆G(folding: complex), ∆G(folding: A) and ∆G(folding: B) are the folding free 

energy values of the dimer complex, monomer A and monomer B, respectively. Since the 

internal mechanical energy values of the unbound and bound monomers are the same, the 

energy terms in the unfolded state can be canceled out in equation (4). Thus, the binding 

free energy can be calculated as below: 

):():():()( BfoldedGAfoldedGcomplexfoldedGbindingG −−=∆∆   (6.5) 

where G(folded: complex), G(folded) and G(folded) are the total potential energy values 

of the dimer complex, monomer A and monomer B in the folded state, respectively.  
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In this study, the total potential energy was computed using the ANALYZE 

program in the TINKER package. The effect of an amino acid substitution on protein-

protein interaction was assessed by using the binding energy difference between the wild-

type (WT) structure and the structure with the amino acid substitution (AAS): 

):():( )G( AASbindingGWTbindingGbinding ∆∆−∆∆=∆∆∆    (6.6) 

A positive value of the binding energy change (∆∆∆Gbinding) indicates that the amino acid 

substitution may strengthen the binding affinity and make the protein dimer complex 

more stable. In contrast, a negative value of ∆∆∆Gbinding suggests that the mutation can 

weaken the binding affinity and destabilise the dimer complex. 

 

Prediction evaluation 

Several bioinformatic tools were used to evaluate the predictive power of the 

structure-based approach used in this study, and the predictions were considered to be 

reliable if a consensus was reached by most of the predictors. Sequence-based prediction 

of the direction of protein stability change could give useful information. Three 

sequence-based tools were used to predict the directions of protein stability changes 

caused by amino acid substitutions from primary sequence data, including iPTREE-

STAB (http://210.60.98.19/IPTREEr/iptree.htm), MuStab 

(http://bioinfo.ggc.org/mustab/) and I-Mutant3.0 (sequence version) 

(http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi). 

Structure-based prediction methods could provide quantitative assessment of the 

effects of amino acid substitutions on protein stability. Khan and Vihinen [25] compared 
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the predictive performances of different protein stability predictors, and showed that three 

structure-based tools, including I-Mutant3.0 (structure version) 

(http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi), Dmutant 

(http://sparks.informatics.iupui.edu/hzhou/mutation.html) and FoldX [24] were the most 

reliable predictors. These three tools were used in this study. Other two structure-based 

predictors, including PoPMuSiC-2.0 (http://babylone.ulb.ac.be/popmusic/) and Eris 

(http://eris.dokhlab.org), were also used to calculate the folding energy for monomer 

structures, respectively. The difference of the folding energy between the wild-type and 

mutant structures was used to assess the protein stability change caused by an amino acid 

substitution, and compared with the ∆∆Gstability value calculated using the approach 

applied in this paper. Furthermore, FoldX was also used to determine the interaction 

energy of complex protein. The effect of an amino acid substitution on protein-protein 

interaction was estimated by the interaction energy difference of the protein complex 

between the wild-type and mutant structures (∆∆∆GFoldX), which was compared with 

∆∆∆Gbinding computed using the method utilized in this study. 

In addition, ClustalX [34] was used to perform the multiple sequence alignment 

for conservation analysis. Protein sequences from different species were downloaded 

from the NCBI Entrez database using the GENE search option with the gene name as the 

query. 
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RESULTS AND DISCUSSION 

To evaluate the usefulness of the structure-based approach utilized in this paper, 

three case studies were carried out for four pathogenic mutations and one neutral nsSNP 

in three human genes (Table 6.1). One disease-causing mutation, A111V (dbSNP ID: 

rs28928889, OMIM ID: 141850.0029), and one neutral nsSNP, T119N (dbSNP ID: 

rs1058069), in the human HBA2 gene (haemoglobin subunit alpha) were used to show 

their different effects on protein stability and protein-protein interaction. Two pathogenic 

mutations, Q61K (dbSNP ID: rs28933406, OMIM ID: 190020.0002) and A146T (dbSNP 

ID: rs104894231, OMIM ID: 190020.0008), in the human HRAS gene (v-Ha-ras Harvey 

rat sarcoma viral oncogene homolog) were analyzed to assess the effects of mutations on 

different structural regions (interface or non-interface). The computational approach was 

also used to investigate the substitution, A693V, in the human ZBTB20 gene (zinc finger 

and BTB domain containing 20). As discussed in the following sections, the results 

suggest that the pathogenic mutations make the monomer structures less stable 

(∆∆Gstability < 0), and/or weaken the binding affinity to destabilise the dimer structures 

(∆∆∆Gbinding < 0). In contrast, the neutral nsSNP has only slight effects on protein 

stability and protein-protein interaction (∆∆Gstability and ∆∆∆Gbinding close to 0).  

It was shown that the predictions agree well with the results gave by the most of 

structure-based methods. However, the sequence-based tools often did not agree with the 

consensus predictions from the structure-based methods (Table 6.1). The structure-based 

predictors (I-Mutant3.0 structure version, Dmutant and FoldX) appeared to be more 
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reliable for predicting protein stability changes caused by mutations [25]. Thus, this study 

focused on the structure-based analyses.  

 

Table 6.1 The effects of five amino acid substitutions on protein stability. The unit of 
energy change is kcal/mol. 

Amino acid substitution A111V 
(HBA2) 

T119N 
(HBA2) 

Q61K 
(HRAS) 

A146T 
(HRAS) 

A693V 
(ZBTB20) 

Structure 
-based 
Tools 

∆∆Gstability -0.75 0.06 -4.42 -1.39 -2.69 
FoldX -4.19 10.54 -2.74 -0.22 -0.68 
PoPMuSiC-
2.0 

-0.49 -0.50 -0.24 -0.38 -0.05 

Dmutant -0.48 0.32 -0.38 -0.24 -0.34 
Eris 4.28 2.29 -2.63 -1.24 -0.72 
I-Mutant 3.0 
(structure 
version) 

0.13 -0.30     0.29     -0.79 -0.03 

Consensus Decreased Increased Decreased Decreased Decreased 
Sequence 
-based 
Tools 

I-Mutant 3.0 
(sequence 
version) 

Increased Increased Increased Decreased Increased 

MuStab Increased Decreased Increased Decreased Increased 
iPTREE-
STAB 

Increased Decreased Increased Decreased Decreased 

Consensus Increased Decreased Increased Decreased Increased 
 

Pathogenic mutation and neutral nsSNP in haemoglobin 

Haemoglobin molecules in red blood cells transport oxygen from the lung to the 

peripheral tissues, and thus are important for maintaining cell viability. Human 

haemoglobin is made up of symmetric dimers of polypeptide chains, the α/β-globin 

dimers [35]. Several point mutations in α-globin have been shown to cause α-thalassemia, 

which can result in Hydrops fetalis [36]. In this study, the two amino acid substitutions of 

human haemoglobin subunit alpha (HBA2), A111V and T119N, were analyzed to show 

the different effects of disease-causing and neutral amino acid substitutions on protein 
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stability and protein-protein interaction. The homodimer structure of HBA2 was built 

using the crystal structure of human deoxy haemoglobin (PDB: 1O1P) as the template. 

The majority of disease-causing mutations cause protein destabilisation, whereas 

most neutral nsSNPs have limited effect on protein stability [4]. In the present study, the 

predicted effects of A111V (disease-causing) and T119N (neutral) on protein stability 

agree well with the previous observations. As shown in Table 6.1, the folding energy 

change (∆∆Gstability) caused by A111V is -0.75 kcal/mol, suggesting that the mutation 

may destabilise haemoglobin monomer structure. The decreased protein stability is also 

predicted for the A111V mutation by three structure-based tools including FoldX, 

PoPMuSiC-2.0 and Dmutant (Table 6.1). In contrast, the neutral nsSNP (T119N) is 

predicted by our calculations and three structure-based tools (FoldX, Dmutant and Eris) 

to stabilize the protein monomer. PoPMuSiC-2.0 and I-Mutant3.0 (structure version) give 

the opposite predictions. The results suggest that T119N may not cause destabilisation of 

the monomer structure. 

Amino acid substitutions at the interaction interface may result in binding affinity 

changes, and thus affect the structure of the protein complex. As shown in Figure 6.2a, 

the pathogenic mutation, A111V, is located in the α-helix of the HBA2 binding interface. 

Although most regions of the wild-type and mutant structures are similar, the structures 

are not overlapped in the α-helix interface region. This structural change may 

significantly affect the binding energy, and make the protein complex unstable. The 

observation has been confirmed by the binding energy calculation using both TINKER 

and FoldX (∆∆∆Gbinding = -11.56 kcal/mol and ∆∆∆GFoldX = -1.41 kcal/mol) (Table 6.2). 
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In contrast, the neutral nsSNP (T119N) is located in the flexible loop region (Figure 

6.2b). Since T119N is not located in the inner region of the interface, it may not 

significantly affect protein-protein interaction. The binding energy change caused by 

T119N is ∆∆∆Gbinding = 0.90 kcal/mol (Table 6.2), which is smaller than the absolute 

value of binding energy change caused by A111V. 

In addition, the multiple sequence alignment shown in Figure 6.2c suggests that 

the residue, Ala 111, is well conserved, but Thr 119 is not conserved in Xenopus laevis 

and Xenopus tropicalis. The result agrees with the previous observation that pathogenic 

mutations tend to be located at evolutionarily conserved positions [37]. 
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Figure 6.1 Illustration of two amino acid substitutions (A111V and T119N) in human 
HBA2. a) Structural representation of the A111V mutation. The wild-type chain A is 
shown in green color, mutant chain A in cyan, wild-type chain B in yellow, and mutant 
chain B in orange. The amino acid residue Ala 110 (wild-type) is shown in magenta, and 
Val 110 (mutant) in white. b) Structural representation of T119N. Chains A and B are 
shown in green and yellow, respectively. The residue Asn 119 (wild-type) is shown in 
pink, and Thr 119 (mutant) in blue. c) Multiple sequence alignment of HBA2 with the 
amino acid substitution sites indicated. 
 
 
Table 6.2 The effects of five amino acid substitutions on protein-protein interaction. The 
unit of energy change is kcal/mol. 

Amino acid 
substitution 

A111V 
(HBA2) 

T119N 
(HBA2) 

Q61K 
(HRAS) 

A146T 
(HRAS) 

A693V 
(ZBTB20) 

∆∆∆Gbinding -11.56 0.90 -7.29 -0.21 -0.31 
∆∆∆GFoldX -1.41 1.39 -2.40 -0.11 0.00 
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Pathogenic mutations at the interface or non-interface of HRAS 

Follicular carcinoma is the second most common thyroid cancer, which accounts 

for about 15% of all thyroid malignancies. The v-Ha-ras Harvey rat sarcoma viral 

oncogene homolog (HRAS) encodes a follicular cancer-related protein located at the inner 

surface of cell membrane. The protein plays an important role in the transduction of 

signals arising from tyrosine kinase and G protein-coupled receptors. One pathogenic 

mutation (Q61K) in HRAS was found to cause constitutive activation of the downstream 

signaling pathways [38]. Another disease-causing mutation (A146T) was identified in 

patients with Costello syndrome, and was shown to affect the GTP/GDP binding of 

HRAS [39]. In this study, the heterodimer structure of HRAS has been built using the 

crystal structure of the transforming protein RhoA (PDB: 1OW3) as the template. The 

amino acid substitution Q61K is located at the interaction interface (Figure 6.3a), and 

A146T lies in a non-interface region of HRAS (Figure 6.3b). These two mutations in 

different structural regions have been analyzed to assess their effects on protein stability 

and protein-protein interaction. 

Both amino acid residues in the HRAS protein, Gln 61 and Ala 146, are 

conserved in other species (Figure 6.3c), suggesting that they may be functionally 

important sites. As shown in Table 6.1, the folding energy changes (∆∆Gstability) caused by 

Q61K and A146T are -4.42 kcal/mol and -1.39 kcal/mol (Table 6.1), respectively, 

suggesting that both mutations may destabilise the HRAS monomer structure. Consistent 

with the above results, the predictions made by structure-based tools show decreased 

protein stability for both mutations (excluding I-Mutant3.0 structure version for Q61K). 
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Furthermore, all the sequence-based methods also predict that A146T could make HRAS 

protein unstable.  

The Q61K mutation is located at the interaction interface (Figure 6.3a), and the 

binding energy change caused by Q61K is ∆∆∆Gbinding = -7.29 kcal/mol, or ∆∆∆GFoldX = -

2.40 kcal/mol (Table 6.1), suggesting that the mutation may significantly affect protein-

protein interaction. The distance between Gln 61 and its interaction partner, Arg 47 from 

the other chain, is only 1.88 Å, which is within the distance of hydrogen bond formation. 

When the polar residue Gln is replaced by positively charged residue Lys, the hydrogen 

bonds may be affected, and thus make strongly unfavorable interactions with Arg 47. In 

contrast, the A146T mutation located in a non-interface region (Figure 6.3b) does not 

appear to have a significant effect on protein-protein interaction. As shown in Table 6.1, 

the binding energy change caused by A146T is ∆∆∆Gbinding = -0.21 kcal/mol, or 

∆∆∆GFoldX = -0.11 kcal/mol. Nevertheless, Ala 146 and its neighboring residues (Leu 15 

and Val 148) may form the hydrophobic pocket, which is involved in the binding of the 

purine ring of GTP/GDP. The substitution of Ala 146 by the polar residue Thr may alter 

the hydrophobic environment in the pocket, and thus affect the binding of GTP or GDP.  
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Figure 6.3 Illustration of two disease-causing mutations (Q61K and A146T) in human 
HRAS. a) Structural representation of the Q61K mutation. Chains A and B are shown in 
green and yellow, respectively. The residue Gln 61 (wild-type) is shown in red, Lys 61 
(mutant) in blue, and Arg 47 of chain B in cyan. The hydrogen bond is represented as a 
white dash line. b) Structural representation of the A146T mutation. Chains A and B are 
shown in green and yellow, respectively. Ala 146 (wild-type) is shown in magenta, and 
Thr 146 (mutant) in blue. Two neighboring residues, Leu 15 in orange and Val 148 in 
white, are also shown. c) Multiple sequence alignment of HRAS with the amino acid 
substitution sites indicated. 
 

Application: the A693V substitution in ZBTB20 

The structure-based approach was also used to investigate the amino acid 

substitution, A693V, in the human ZBTB20 gene (zinc finger and BTB domain 

containing 20). ZBTB20 plays important roles in neurogenesis [40], postnatal survival 

and glucose homeostasis [41]. The A693V substitution is implicated to impair the 

function of ZBTB20 in the brain. Thus, predicting the effects of A693V on protein 
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stability and function may help determine the pathogenic potential of the amino acid 

substitution. 

The structure of the C-terminal region (560-739) of ZBTB20, including five zinc 

finger domains, was constructed using the homology modeling method with the six-

finger zinc finger peptide (PDB: 2I13) as the template. As shown in Figure 6.4a, although 

ZBTB20 may form a homodimer structure, the A693V mutation is not located at the 

interaction interface. The binding energy change caused by A693V is ∆∆∆Gbinding = -0.31 

kcal/mol, or ∆∆∆GFoldX = 0 kcal/mol (Table 6.2), suggesting that the amino acid 

substitution has little effect on dimer formation. The folding energy change was also 

calculated for A693V using TINKER (∆∆Gstability = -2.69 kcal/mol, Table 6.1). In 

addition, all of the structure-based methods predicted that A693V will decrease protein 

stability. Thus, the consensus prediction is that A693V will slightly destabilise the 

monomer structure of ZBTB20. 

Since the ZBTB20 protein was previously shown to bind DNA [40], the structure 

of ZBTB20 in complex with DNA has been modeled using the six-finger zinc finger 

peptide (PDB: 2I13) as the template. As shown in Figure 6.4b, the amino acid residue, 

Ala 693, is located close to the phosphate group of DNA backbone. Therefore, another 

possibility is that the A693V substitution may be involved in protein-DNA interaction. 

The multiple sequence alignment shown in Figure 6.4c also suggests that Ala 693 is 

highly conserved in other species, and thus may be important for the normal function of 

ZBTB20  
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Figure 6.4 Illustration of the A693V mutation in human ZBTB20. a) Structural 
representation of the A693V mutation. Chains A and B are shown in green and yellow, 
respectively. Ala 693 (wild-type) is shown in magenta, and Val 693 (mutant) in white. b) 
Representation of the modeled structure of ZBTB20 in complex with DNA. Shown are 
chain A in green, Ala 693 in magenta, Val 693 in white, and the DNA molecule as 
wireframe. c) Multiple sequence alignment of ZBTB20 with the amino acid substitution 
site indicated. 

 

CONCLUSION 

In this paper, a structure-based approach is described for assessing the effects of amino 

acid substitutions on protein stability and protein-protein interaction. Homology 

modeling and free energy calculation methods were used to compute the differences of 

folding energy and binding energy between the wild-type and mutant structures. Three 

case studies showed that the disease-causing mutations at the interaction interface might 

reduce the binding energy, and thus weaken the affinity in the protein complex. The 
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pathogenic mutations in the non-interface region could reduce the folding energy and 

thus destabilise the monomer structure. Therefore, the structure-based approach can be 

used to quantitatively assess the effects of amino acid substitutions on protein stability 

and protein-protein interaction. The approach may be useful for understanding the 

molecular mechanisms by which gene mutations cause human diseases. 
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CHAPTER SEVEN 
 

CONCLUSIONS 
 
 

In the present study, several predictive methods, including machine learning and 

structure modeling approaches, have been developed for analyzing genes and proteins to 

discover biological knowledge hidden in the heterogeneous datasets. Machine learning 

can be used to automatically recognize hidden patterns and make accurate predictions 

based on models derived from complex data. In this study, machine learning approaches 

were developed for identification of human tissue-specific genes using microarray gene 

expression data and sequence-based predictions of protein sumoylation sites and protein 

stability changes upon amino acid substitutions. The results suggest that the use of 

relevant biological features for classifier construction can improve the classifier 

performance, and the approaches and tools developed in the study can provide valuable 

information for genetic research community. The structure-based approaches were 

developed to quantitatively assess the effects of amino acid substitutions on protein 

stability and protein-protein interaction. It has been shown that pathogenic mutations can 

reduce the folding energy to destabilize the monomer structures and weaken the binding 

affinity to make the complex structures less stable. The machine learning approaches 

together with the structure-based methods were used to analyze candidate genes and 

proteins associated with human genetic disorders such as intellectual disability. 

Genes and proteins play essential roles in almost every biological process within 

the cell. The predictive bioinformatic approaches developed in this study may help 

understand the molecular mechanisms of tissue-specific gene expression, protein 
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sumoylation, protein stability and protein-protein interaction. Tissue-specific genes and 

protein sumoylation targets are implicated in many complex diseases. The amino acid 

substitutions at protein key sites play important roles in many monogenic diseases. 

However, molecular mechanisms underlying the genetic disorders are still poorly 

understood. The methods developed in the present study have been used to analyze 

disease candidate genes and proteins for human genetic studies and the findings may help 

elucidate the molecular mechanisms of some genetic disorders such as intellectual 

disability. The analytical results may also help biomedical scientists to design their 

experiments and to interpret the experimental data. Furthermore, the web servers make 

our computational methods available to the broader scientific community. 

The difficulty of predicting protein stability changes upon amino acid 

substitutions with machine learning approaches lies in the rarity of known positive and 

negative examples. Thus, semi-supervised learning methods, such as Self-training, Co-

training, Semi-supervised Support Vector Machines and Graph-based methods, can be 

used to improve the classifier performance with both labeled and unlabeled data in future 

works. Moreover, feature selection approaches, such as Random Forests and Support 

Vector Machine-based Recursive Feature Elimination, can be used to select relevant 

features for classifier construction to enhance the classifier performance. The predictive 

methods developed in this study can be used to analyze intellectual disability candidate 

genes for future studies. 
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Teng S, Srivastava AK, Schwartz CE, Alexov E, Wang L: Structural assessment of the 

effects of amino acid Substitutions on protein stability and protein-protein interaction, 
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Zhang Z§, Teng S§, Wang L, Schwartz CE, Alexov E: Computational analysis of 

missense mutations causing Snyder-Robinson syndrome. Human Mutation 2010, Sep 
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Appendix B  

Additional files for predicting human tissue-specific genes 

 

 Additional file B1.  List of brain-specific gene targets. (Supplemental 1) 

 

Additional file B2.  List of liver-specific gene targets. (Supplemental 1) 
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Appendix C 

Additional files for Predicting Protein Sumoylation Sites  

 

Table C.1 The list of 457 experimentally verified sumoylation sites in 263 proteins 

Protein Accession 
(UniProt Entry) 

Sumoylation Site  
Position 

Core  
Motif 

Match  
ΨKXE (Yes/No) 

Reference  
(PMID) 

268 sumoylation sites used by SUMOpre (reported before 08/10/2006) 
Q9H3D4 588 LKIP N 15539951 
Q9H3D4 676 IKEE Y 15539951 
O56136 84 EKGE N 15527853 
O56136 447 FKFE N 15527853 
P19544 73 IKQE Y 15520190 
P19544 177 FKHE N 15520190 
O75030 289 IKRE Y 15507434 
O75030 423 IKQE Y 15507434 
P19532 330 IKRE Y 15507434 
P19484 347 VKQE Y 15507434 
P37231 107* IKVE Y 15229330 
P37231-2 365 PKFE Y 16127449 
Q02447 120 IKDE Y 12419227 
Q02447 551 IKEE Y 12419227 
Q16665 391 LKKE Y 15465032 
Q16665 477 LKLE Y 15465032 
P46060 524 LKSE Y 15355965 
Q14191 496 LKME Y 15355988 
P43694 365 IKTE Y 15337742 
Q08211 76 IKSE Y 15312759 
Q08211 120 LKAE Y 15312759 
P36508 411 VKEE Y 15280358 
Q03188 534 VKSE Y 15272016 
Q03188 721 PKNR N 15272016 
Q03188 746 LKPL N 15272016 
P63279 153 AKKF N 15272016 
P19419 230 LKSE Y 15210726 
P19419 249 VKVE Y 15210726 
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P19419 254 PKEE Y 15210726 
Q9Y4L2 244* VKTE Y 15208321 
Q9Y4L2 263 IKDE Y 15208321 
Q13285 119 FKLE N 15192080 
Q13285 194 IKSE Y 15192080 
P15976 137 LKTE Y 15173587 
P15873 127 LKIE Y 12226657 
P15873 164 TKET N 12226657 
Q05193 376 VKME Y 15123615 
Q60591 684 IKTE Y 15117942 
Q60591 897 VKQE Y 15117942 
P41212 99 TKED N 12626745 
O13066 517* LKSE Y 15094046 
O60812 237 VKME Y 15082759 
P42858 6 EKLM N 15064418 
P42858 9 MKAF N 15064418 
P42858 15 LKSF N 15064418 
P10275 386 IKLE Y 12177000 
P10275 520 VKSE Y 12177000 
Q13485 113 VKYC N 12621041 
Q13485 159 VKDE Y 12621041 
Q03933 82 VKQE Y 11278381 
P78347 221 VKTE Y 15016812 
P78347 240 VKEE Y 15016812 
P78347 456 VKEE Y 15016812 
P78347 991 IKQE Y 15016812 
Q9BYV9 202 EKEE N 15060166 
Q9BYV9 276 IKSE Y 15060166 
Q9BYV9 421 CKQE N 15060166 
Q9BYV9 580 IKCE Y 15060166 
O00429 38 GKSS N 14972687 
Q9Y6K9 277 AKQE Y 14651848 
Q9Y6K9 309 YKAD N 14651848 
Q9UPW6 233 IKVE Y 14701874 
Q9UPW6 350 VKPE Y 14701874 
P06536 297* VKTE Y 14663148 
P06536 313* IKQE Y 14663148 
P25963 21 LKKE Y 14613580 
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P42224 703 IKTE Y 12855578 
P43354 91 IKVE Y 14559918 
P43354 577 LKLE Y 14559918 
Q05516 242 VKTE Y 14527952 
Q9NS56 560 KKEE N 14516784 
P08235 89 IKTE Y 14500761 
P08235 399 IKPE Y 14500761 
P08235 428 IKQE Y 14500761 
P08235 494 IKQE Y 14500761 
P08235 953 LKVE Y 14500761 
Q05397 152 VKSD N 14500712 
P06401 388 IKEE Y 12529333 
Q09472 1020 LKTE Y 12718889 
Q09472 1024 IKEE Y 12718889 
P17676 174 LKAE Y 12810706 
P11831 147 IKME Y 12788062 
Q13363 428 VKPE Y 12679040 
P32457 4 LKEE Y 12149243 
P32457 11 IKQD N 12149243 
P32457 30 IKQE Y 12149243 
P32457 63 VKVE Y 12149243 
P32457 287 AKSD N 12761287 
P32457 443 AKLE Y 12761287 
P32457 465 QKSE N 12761287 
Q12216 438 VKNE Y 12761287 
Q12216 446 VKQE Y 12761287 
Q99497 130 AKDK N 12761214 
P23769 222 MKME Y 12750312 
P23769 389 MKKE Y 12750312 
Q924A0 297 VKQE Y 12727872 
Q00613 298 VKEE Y 11514557 
P10242 503 IKQE Y 12631292 
P10242 527 IKQE Y 12631292 
P36956 123 IKEE Y 12615929 
P36956 418 VKTE Y 12615929 
Q12772 464 VKDE Y 12615929 
P16220 285 RKRE N 12552083 
P16220 304 KKKE N 12552083 
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Q15788 732 IKLE Y 12529333 
Q15788 774 VKVE Y 12529333 
P49715 161 IKQE Y 12511558 
P55854 11* VKTE Y 12506199 
P56817 275 LKMD N 12506199 
P11387 103 IKKE Y 11709553 
P11387 117 IKDE Y 11709553 
P11387 153 IKTE Y 11709553 
P11387 328 IKEE Y 11709553 
P11387 436 IKGE Y 11709553 
Q13547 444 VKTE Y 11960997 
Q13547 476 VKEE Y 11960997 
P27540 245 VKKE Y 12354770 
O15169 857 GKVE N 12223491 
O15169 860 EKVD N 12223491 
Q9NSC2 1086 IKTE Y 12200128 
P49716 120 LKRE Y 12161447 
Q9UER7 630 CKKS N 12150977 
Q9UER7 631 KKSR N 12150977 
P04150 277 VKTE Y 12144530 
P04150 293 IKQE Y 12144530 
P04150 703 VKRE Y 12144530 
P06786 1220 IKLE Y 12086615 
P06786 1246 IKKE Y 12086615 
P06786 1277 IKKE Y 12086615 
P05549 10 IKYE Y 12072434 
Q92481 10* VKYE Y 12072434 
Q15596 239 IKEE Y 12060666 
Q15596 731 IKQE Y 12060666 
Q15596 788 EKEE N 12060666 
P56524 559 VKQE Y 12032081 
Q13569 330* VKEE Y 11889051 
P04637 386 FKTE N 11867732 
P05627 229 LKEE Y 16055710 
P05627 257 IKAE Y 16055710 
P46061 526* LKSE Y 11853669 
P23497 297 IKKE Y 11792325 
P15330-2 382 IKTE Y 11756545 
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P27782 25 FKDE N 11731474 
P27782 267 VKQE Y 11731474 
P29590 65 AKCP N 9756909 
P29590 160 LKHE Y 9756909 
P29590 487 RKVI N 9756909 
P29590 490 IKME Y 9756909 
O15350 627 IKEE Y 10961991 
Q9H2X6 32 LKIE Y 15766567 
Q9H2X6 1191 AKVN N 12149243 
P32458 412 IKQE Y 12149243 
Q07657 426 IKQE Y 12149243 
Q07657 437 IKTE Y 12149243 
P19893 175 IKQE Y 10684265 
P19893 180 IKPE Y 10684265 
P03116 514 IKAP N 11005821 
P13202 450 VKSE Y 11602710 
Q9M0K4 258 KKQE N 11581165 
P03243 104 VKRE Y 11553772 
Q64127 724 IKQE Y 11313457 
Q64127 742 VKQE Y 11313457 
O00541 517 LKLE Y 11071894 
Q6XA64 802 IKSE Y 15105549 
P03206 12 VKFT N 11160742 
P03209 19 IKKQ N 15229220 
P03209 213 SKTG N 15229220 
P03209 517 VKAL N 15229220 
P61086 13 FKEV N 15723079 
P45448 213 LKLE Y 15713642 
P45448 289 IKSE Y 15713642 
P33244-2 418 IKQE Y 15713642 
P57682 10 VKQE Y 15684403 
P57682 198 IKIE Y 15684403 
Q15744 121 VKEE Y 15661739 
Q16514 19 IKPE Y 15637059 
Q15542 14 VKLE Y 15637059 
P04591 474 QKQE N 15613319 
P00445 18 VKFE Y 15596868 
P00445 69 KKTH N 15596868 
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P05750 211 PKEE Y 15596868 
P16649 270 PKEE Y 15596868 
Q07979 322 EKNE N 15596868 
Q07979 328 VKQE Y 15596868 
P04456 60 YKVI N 15542864 
P11978 1128 VKNV N 15542864 
Q04322 498 LKMG N 15542864 
P21538 807 MKTE Y 15542864 
Q14814 439 IKSE Y 15743823 
P41970 162 IKRE Y 15580297 
Q9U1H5 438 IKSE Y 15788563 
Q13422 58 VKVE Y 15767674 
Q13422 241 IKEE Y 15767674 
P06400 720 LKFK N 15806172 
P21063 95 IKIE Y 15800065 
O00180 274 LKKF N 15820677 
P54253 16 KKRE N 15824120 
P54253 194 HKAE N 15824120 
P54253 610 LKID N 15824120 
P54253 697 VKKG N 15824120 
P54253 746 LKFP N 15824120 
P54132 317 SKCL N 15829507 
P54132 331 RKED N 15829507 
P54132 344 SKPE N 15829507 
P54132 347 EKMS N 15829507 
Q8N2W9 35 LKHE Y 15831457 
P42575 77 AKVG N 15882978 
P41161 89 IKRE Y 15857832 
P41161 263 FKQE N 15857832 
P41161 293 IKQE Y 15857832 
P41161 350 VKQE Y 15857832 
O60315 391 IKTE Y 16061479 
O60315 866 IKKE Y 16061479 
P01100 265 LKTE Y 16055710 
O92597 158 VKAE Y 16014952 
P14921 15* IKTE Y 16319071 
Q90YL1 61 LKKE Y 16256735 
Q90YL1 365 IKTE Y 16256735 
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Q8AXX8 52 VKKE Y 16256735 
Q8AXX8 341 VKTE Y 16256735 
P18412 54 VKNE Y 16306045 
Q92793 998 MKTE Y 16287980 
Q92793 1033 VKEE Y 16287980 
Q92793 1056 VKVE Y 16287980 
Q16621 368 TKME N 16287851 
P40381 103 LKWE Y 16168376 
O60016 109 VKKE Y 16168376 
O60016 160 VKEE Y 16168376 
O42934 198 LKWE Y 16168376 
Q8N4C6 1641 LKEE Y 16154161 
Q8N4C6 1680 LKDE Y 16154161 
Q01543 67 VKRE Y 16148010 
Q99683 535 AKQE Y 16142216 
Q99683 1083 LKWE Y 16142216 
Q99683 1114 LKLE Y 16142216 
P55265 418 IKLE Y 16120648 
O00327 259 VKVE Y 16109848 
Q969V6 499 VKEE Y 16098147 
Q969V6 576 VKQE Y 16098147 
Q969V6 624 VKQE Y 16098147 
Q5U0M2 15 IKTE Y 16862185 
Q5U0M2 227 IKQE Y 16862185 
Q86YP4 30 IKME Y 16738318 
Q86YP4 487 AKAE Y 16738318 
Q5VUR2 33 LKME Y 16738318 
O95600 67 IKIE Y 16617055 
Q13426 210 IKQE Y 16478998 
Q06413 391 IKSE Y 16478538 
P10636-8 339 VKSE Y 16464864 
Q9NRA1 314 PKTG N 16443219 
P49792 2571 SKVE N 16194093 
P49792 2592 SKVK N 16194093 
P49792 2650 TKLK N 16194093 
P49792 2723 EKAK N 16194093 
P49792 2725 AKAD N 16194093 
P63165 16 DKKE N 16194093 
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P63165 37 FKVK N 16194093 
P63165 39 VKMT N 16194093 
P63165 46 KKLK N 16194093 
P61956 5* EKPK N 16194093 
P61956 11* VKTE Y 16194093 
P61956 42* SKLM N 16194093 
P06876 499* IKRE Y 16162816 
P06876 523* IKQE Y 16162816 
P12004 164* AKDG N 15931174 
O15151 254 IKVE Y 15907800 
O15151 379 IKKE Y 15907800 
Q07666 96 VKME Y 16568089 

139 sumoylation sites (reported between 08/10/2006 to 01/01/2010) 

P46060 8 AKLA N 15355965 
P63279 14 RKAW N 20424159 
P63279 49 KKGT N 20424159 
P41212 11 IKQE Y 18212042 
O00429 532* DKSS N 19638400 
O00429 535* SKVP N 19638400 
O00429 558* GKLI N 19638400 
O00429 568* TKNV N 19638400 
O00429 594* LKTS N 19638400 
O00429 597* SKAE N 19638400 
O00429 606* EKSK N 19638400 
O00429 608* SKPI N 19638400 
Q05516 387 SKLG N 17498654 
Q05516 396 MKSE Y 17498654 
P55854 41* SKLM N 20029837 
Q16621 215 AKPT N 19966288 
Q16621 234 MKIP N 19966288 
Q16621 241 DKIV N 19966288 
P63165 7 AKPS N 20388717 
P63165 25 LKVI N 20388717 
O95365 61 KKLF N 17595526 
P17544 118 IKEE Y 17264123 
Q8VIM5 573 IKQE Y 17101795 
Q13263 554 VKEE Y 17079232 
Q13263 575 TKPV N 17298944 
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Q13263 676 LKEE Y 17298944 
Q13263 750 EKLS N 17298944 
Q13263 779 DKAD N 17298944 
Q13263 804 TKFS N 17298944 
P04618 115 TKE N 17067581 
Q5U3M4 341 VKEE Y 17060459 
Q99607 657 IKME Y 16904644 
P48432 247 VKSE Y 17097055 
P00441 76 PKDE Y 16828461 
Q13642 144 PKGE Y 17509614 
Q13642 300 VKAP N 17509614 
P20263 118 VKLE Y 17496161 
Q9LSE2 393 VKEE Y 17416732 
Q9UHF7 1201 VKTE Y 17391059 
P25490 288 IKED N 17353273 
P12757 50 VKKE Y 17202138 
P12757 383 IKQE Y 17450299 
Q14526 333 MKHE Y 17283066 
P46099 56 LKSE Y 17938210 
Q04110 5 IKTE Y 17888002 
Q9Y458 63 PKTE Y 17846996 
Q92993 430 LKSE Y 17704809 
Q92993 451 IKKE Y 17704809 
P11474 14 IKAE Y 17676930 
P11474 403 VKLE Y 17676930 
P49841 292 FKFP N 18949077 
P06748 263 PKVE Y 17951246 
P05455 41 IKLD N 17646655 
P54841 32 VKKE Y 17548468 
P54841 297 VKCE Y 17548468 
Q04887 396* IKTE Y 17440973 
P08047 16 VKIE Y 18572193 
Q9WVS8 6 LKEE Y 18467627 
Q9WVS8 22 VKAE Y 18467627 
P43268 96 IKKE Y 18447755 
P43268 226 FKQE N 18447755 
P43268 260 IKQE Y 18447755 
P43268 322 IKQE Y 18447755 
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P43268 441 LKAE Y 18447755 
P06778 126 KKSA N 18396468 
Q64729 391 MKHF N 18469808 
P17275 240 FKEE N 18424718 
Q01826 744 VKLE Y 18408014 
P48552 756 IKSE Y 18211901 
P48552 1154 IKKE Y 18211901 
Q9CAE3 287 IKVE Y 18069938 
Q9CAE3 693 PKAD N 18069938 
Q9CAE3 770 IKAE Y 18069938 
Q9UPG8 250 IKTE Y 17551969 
Q9UPG8 269 VKEE Y 17551969 
Q9UPG8 356 PKVE Y 17551969 
P04050 1487 VKDE Y 19384408 
Q63120 949 IKKE Y 19074644 
Q8CF90 32 VKKE Y 19029092 
Q9UKL0 294 VKKE Y 18854179 
P33242 119* FKLE N 18838537 
P33242 194 IKSE Y 18726511 
P37238 107* IKVE Y 18832723 
Q13887 162 IKTE Y 18782761 
Q13887 209 IKQE Y 18782761 
P05067 662 IKTE Y 18675254 
P05067 670 VKMD N 18675254 
P70671 152 LKDE Y 18635538 
P70434 406 VKLE Y 18635538 
Q15022 72 VKKP N 18628979 
Q15022 73 KKPK N 18628979 
Q15022 75 PKME Y 18628979 
P03120 292 LKGD N 18619639 
Q00653 90 AKIE Y 18617892 
Q00653 298 MKIE Y 18617892 
Q00653 689 LKAG N 18617892 
Q00653 863 VKED N 18617892 
Q71A33 33* VKKE Y 20127678 
Q99814 394 LKEE Y 20026589 
Q19289-2 460 IKLE Y 19922876 
P35187 621 IKRE Y 19906698 
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Q499N1 163 KKKE N 19850744 
Q499N1 168 PKPE Y 19850744 
Q499N1 396 LKME Y 19850744 
Q91ZP3 599 IKEE Y 19753306 
Q91ZP3 629 IKHE Y 19753306 
Q92786 556 IKSE Y 19706680 
P07830 69 LKYP N 19635839 
P07830 285 MKCD N 19635839 
Q9UBK2 184 VKTE Y 19625249 
Q9UKL3 1813 LKSE Y 19615980 
Q07869 185 LKAE Y 19955185 
P17655 390 IKLE Y 19422794 
Q9SJN0 391 LKEE Y 19276109 
A9YTQ3 538 IKME Y 19251700 
A9YTQ3 577 LKTE Y 19251700 
A9YTQ3 660 VKRE Y 19251700 
Q9QWM1 173 MKLE Y 19125815 
Q9QWM1 289* IKSE Y 19125815 
P02545 201 MKEE Y 18606848 
Q9UQ80 93 LKSD N 19946338 
Q9UQ80 298 AKHE Y 19946338 
O13351 14 DKSA N 19707600 
O13351 30 VKPS N 19707600 
Q9UHP3 99 DKDD N 19440361 
Q99856 398 IKKE Y 19436740 
O88275 63 IKPF N 19339015 
O88275 107 IKVE Y 19339015 
Q12692 126 LKVE Y 19217407 
Q12692 133 SKK N 19217407 
Q9QXZ7 178 AKLE Y 19186166 
Q9QXZ7 315 FKPE N 19186166 
Q9QXZ7 322 LKDP N 19186166 
P32333 101 VKLE Y 19139279 
P32333 109 IKLE Y 19139279 
P35398-2 240 IKPE Y 19041634 
Q61164 74 MKTE Y 19029252 
Q61164 698 VKKE Y 19029252 
Q06710 308 IKQE Y 18974227 
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50 sumoylation sites (reported between 01/01/2010 to 06/01/2010) 
Q8R4I1 257 LKST N 19843541 
A2RU29 596 MKSE Y 20501696 
A2RU29 649 VKKE Y 20501696 
A2RU29 650 KKEE N 20501696 
A2RU29 739 VKKE Y 20501696 
A2RU29 793 VKAE Y 20501696 
O35426-2 276 VKIE Y 20408817 
O35426-2 297 VKKE Y 20408817 
Q16666 561 LKTE Y 20388717 
Q9UPN6 18 YKPP N 20388717 
Q9UG01 4 LKHL N 20388717 
Q99518 492 QKQR N 20388717 
Q96QD9 140 RKAN N 20388717 
Q9UBD0 215 VKSA N 20388717 
Q9UBG0 1142 QKPL N 20388717 
Q8IYA6 198 RKPD N 20388717 
O75475 75 RKGF N 20382164 
O75475 250 DKKE N 20382164 
O75475 254 GKKE N 20382164 
O75475 364 LKID N 20382164 
O43290 94 VKRE Y 20346425 
O43290 141 IKKE Y 20346425 
P40337 171 VKPE Y 20300531 
P20193 839 IKVF N 20299342 
P31669 469 IKQE Y 20228053 
P06730 36 IKHP N 20228053 
P06730 49 FKND N 20228053 
P06730 162 DKIA N 20228053 
P06730 206 TKSG N 20228053 
P06730 212 TKNR N 20228053 
O14776 503 IKEE Y 20215116 
O14776 608 IKEE Y 20215116 
P58012 114 IKVP N 20209145 
P58012 150 MKRP N 20209145 
Q92585 217 LKQE Y 20203086 
Q92585 299 IKTE Y 20203086 
P43351 411 MKKR N 20190268 
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P43351 412 KKRK N 20190268 
P43351 414 RKYD N 20190268 
P08069 1055 MKEF N 20145208 
P08069 1130 NKFV N 20145208 
P08069 1150 VKIG N 20145208 
P54843 33 VKKE Y 20127678 
Q15843 27 IKER N 20029837 
Q15843 33 EKEG N 20029837 
Q15843 54 EKTA N 20029837 
Q12306 54 AKRQ N 20029837 
P17844 53 PKFE Y 19995069 
Q92841 50 PKFE Y 19995069 
Q08499-6 323 VKTE Y 20196770 

* Redundant protein sumoylation site 

 

 

 

Table C.2 List of 40 biological features used in chapter three  
Class Feature Abbreviation 
Biochemical Hydrophobicity  H 

pKa value  K 
Molecular weight  M 
Size  S 
Residue volume V 
Polarity P 
Amino acid composition Co 
Buriability  Br 
Side chain hydropathy, corrected for salvation  Ss 
Scaled side chain hydrophobicity values Hs 

Structural Conformational parameter for alpha helix  A 
Conformational parameter for beta sheet  B 
Conformational parameter for beta-turn  T 
Conformational parameter for coil  C 
Buried average area  Aa 
Bulkiness Bu 
Average accessible surface area As 
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Thermodynamic Entropy of formation E 
Transfer free energy Et 
Partition energy Ep 
Short and medium range non-bonded energy per 
residue 

Er 

Average non-bonded energy per residue  En 
Free energy in alpha-helical conformation Ea 
Free energy in beta-strand conformation  Eb 
Solvation free energy Es 
Hydration free energy Eh 

Empirical Stability scale from the knowledge-based atom-
atom potential  

S1 

Relative stability scale extracted from mutation 
experiments 

S2 

Side-chain contribution to protein stability (kJ/mol) S3 
Molar fraction of 3220 accessible residues Fa 
Atomic weight ratio of hetero elements in end 
group to C in side chain  

Rh 

Mobility on chromatography paper Mc 
Other Interactivity scale obtained by maximizing the 

mean of correlation coefficient over single-domain 
globular proteins 

Is 

Side chain volume Vs 
Flexibility F 
Refractivity R 
Number of codons No 
Recognition factors Rf 
Relative mutability Rm 
Transmembrane tendency Tt 
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Appendix D 

Additional data regarding the effect of nsSNPs on binding energy with respect to amino 

acid characteristics 

 

Four different classes of amino acids were considered based on the amino acids’ 

physico-chemical properties: polar (S, T, H, N, Q, Y), charged (E, D, K, R), hydrophobic 

(W, I, L, M, F) and small (P, A, G, C, V). Below we illustrate the effects of nsSNP 

mutations on the ∆∆∆Gtot(snSNP), ∆∆∆Gvdw(nsSNP) and ∆∆∆Gel(nsSNP) (see main body 

of the manuscript for definition of these quantities) separately for each class and between 

classes (Table E.1).  The corresponding distributions are shown in Figure E.1. It can be 

seen that mutations that replace either charged or polar amino acids result in the largest 

energy change, while the effect is much smaller in the cases of small or hydrophobic 

residue replacement.  

Particular attention deserve the 108 cases of nsSNP mutations that retain the 

physico-chemical properties of the amino acid present in the target protein-protein 

complex (case “SAME”, e.g. polar�polar; charged�charged, small�small and 

hydrophobic�hydrophobic), and another 159 cases in which the nsSNP mutation 

changes the physico-chemical properties of the original amino acid (case “DIFF”) (Table 

B-1). In terms of the means of the distributions, there is no significant difference between 

the “SAME” and “DIFF” distributions. In both cases, the mean of the total binding 

energy and its electrostatic component are negative quantities, which means that in both 

of these cases, the target complex is more stable than the nsSNP variant. At the same 



 173 

time, the mean of the van der Waals energy distribution is positive. The difference is in 

the standard deviation. The standard deviation of the distribution in “SAME” cases is 

about two times smaller than the distribution of “DIFF” cases. This indicates that there 

are cases within the “DIFF” category that result in drastic changes in the binding energy. 

 
Table D.1 Parameters of distribution of total binding energy difference and its 
components 
Group No ∆∆∆Gtot ∆∆∆Gvdw ∆∆∆Gel 

mean std mean std mean std 
All 264 -0.86 4.28 -0.05 3.11 -0.78 4.64 
OMIM 45 -1.65 3.80 -1.03 3.32 -2.35 5.51 
Non-OMIM 219 -0.70 4.36 0.14 3.03 -0.45 4.39 
Polar (P) 62 -0.27 3.77 0.38 3.94 -0.83 4.74 
P-C 20 0.05 5.58 1.98 6.35 -3.00 7.59 
P-H 7 -1.76 3.16 0.54 0.54 -0.66 1.37 
P-P 28 -0.29 2.58 -0.50 1.73 0.35 2.07 
P-S 7 0.37 1.46 -0.75 1.79 0.44 0.85 
Charge (C) 76 -2.01 6.38 -0.33 2.25 -1.37 6.59 
C-C 25 -2.16 3.59 -0.45 1.77 -1.76 3.99 
C-P 30 -1.03 7.52 0.24 1.68 -0.38 8.53 
C-H 3 -5.84 6.23 1.76 2.01 -1.11 10.86 
C-S 18 -2.80 6.80 -1.45 0.74 -2.51 5.26 
Small (S) 94 -0.74 2.39 -0.03 2.49 -0.78 2.58 
S-C 10 0.56 2.72 2.51 3.58 -4.79 4.39 
S-H 31 0.04 1.57 0.27 1.83 0.38 1.23 
S-P 20 -0.88 1.53 0.01 1.37 -0.81 2.16 
S-S 33 -1.79 2.92 -1.11 2.61 -0.65 1.85 
Hydrophobic (H) 32 0.32 2.50 -0.36 4.46 0.74 3.23 
H-C 2 -1.40 0.51 -0.90 0.33 -3.14 0.07 
H-H 19 0.35 1.72 -0.39 1.70 -0.26 1.13 
H-P 5 0.56 3.65 2.10 9.45 5.14 5.93 
H-S 6 0.60 4.01 -2.14 5.61 1.55 1.40 
SAME 108 -1.09 2.97 -0.66 2.05 -0.57 2.58 
DIFF 159 -0.72 4.96 0.34 3.60 -0.91 5.61 
Conserved 139 -0.85 4.94 -0.07 3.71 -1.05 5.55 
Non-Conserved 88 -0.83 3.51 0.06 2.15 -0.72 3.38 
High Conserved 176 -0.93 4.84 -0.10 3.45 -1.11 5.16 
Low Conserved 51 -0.53 2.58 0.27 2.11 -0.26 3.38 
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Conserved (SI 100%), Non-Conserved (SI 10%-99%), High Conserved (SI 80%-100%), Low 
Conserved (SI 10%-79%). 

 

 

 
 
Figure D.1 Distribution of ∆∆∆Gtot(nsSNP), ∆∆∆Gel(nsSNP) and ∆∆∆Gvdw(nsSNP) in 
respect with physico-chemical properties of amino acids. T: total, P: polar, C: charged, S: 
small, H: hydrophobic. The thick black lines show the median, the boxes are drawn 
between upper and down quartiles and the dotted lines are extended to upper and down 
whiskers (marked with short horizontal lines). 
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