3,957 research outputs found

    NETpred: Network-based modeling and prediction of multiple connected market indices

    Full text link
    Market prediction plays a major role in supporting financial decisions. An emerging approach in this domain is to use graphical modeling and analysis to for prediction of next market index fluctuations. One important question in this domain is how to construct an appropriate graphical model of the data that can be effectively used by a semi-supervised GNN to predict index fluctuations. In this paper, we introduce a framework called NETpred that generates a novel heterogeneous graph representing multiple related indices and their stocks by using several stock-stock and stock-index relation measures. It then thoroughly selects a diverse set of representative nodes that cover different parts of the state space and whose price movements are accurately predictable. By assigning initial predicted labels to such a set of nodes, NETpred makes sure that the subsequent GCN model can be successfully trained using a semi-supervised learning process. The resulting model is then used to predict the stock labels which are finally aggregated to infer the labels for all the index nodes in the graph. Our comprehensive set of experiments shows that NETpred improves the performance of the state-of-the-art baselines by 3%-5% in terms of F-score measure on different well-known data sets

    Crude Oil Cost Forecasting using Variants of Recurrent Neural Network

    Get PDF
    Crude oil cost plays very important role in the country’s economic growth. It is  having close impact on economical stability of nation. Because of these reasons it is very important to have accurate oil forecasting system. Due to impact of different factors oil cost data is highly nonlinear and in fluctuated manner. Performing prediction on those data using data driven approaches is very complex task which require lots of preprocessing of data. Working on such a non-stationary data is very difficult. This research proposes recurrent neural network (RNN) based approaches such as simple RNN, deep RNN and RNN with LSTM. To compare performance of RNN variants this research has also implemented Naive forecast and Sequential ANN methods. Performance of all these models are evaluated based on root mean square error(RMSE), mean absolute error(MAE) and mean absolute percentage error(MAPE). The experimental result shows that RNN with LSTM is more accurate compare to all other models. Accuracy of LSTM is more than 96% for the dataset of U.S. Energy Information administration from March 1983 to June 2022. On the basis of experimental result, we come to the conclusion that RNN with LSTM is best suitable for time series data which is highly nonlinear

    Métodos para la previsión de los precios del gas

    Full text link
    The difficulty in gas price forecasting has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting gas prices however, all of the existing models of prediction cannot meet practical needs. In this paper, a novel hybrid intelligent framework is developed by applying a systematic integration of GMDH neural networks with GA and Rule-based Exert System (RES) employs for gas price forecasting. In this paper we use a new method for extract the rules and compare different methods for gas price forecasting. Our research reveals that during the recent financial crisis period by employing hybrid intelligent framework for gas price forecasting, we obtain better forecasting results compared to the GMDH neural networks and MLF neural networks and results will be so better when we employ hybrid intelligent system with for gas price volatility forecastingLa dificultad de la previsión de los precios del gas ha atraído considerablemente la atención de los investigadores universitarios y los profesionales del sector. A pesar de que se ha intentado solucionar el problema de la previsión de los precios del gas con diferentes métodos, ninguno de los modelos de predicción existentes llegan a cumplir con las necesidades prácticas. En este artículo, se ha desarrollado un novedoso sistema inteligente híbrido mediante la aplicación de la integración sistemática de redes neuronales de tipo Group Method of Data Handling (GMDH) con algoritmos genéticos (AG) y un sistema experto basado en reglas (SER) a la previsión de los precios del gas. Igualmente, utilizamos un nuevo método para extraer las reglas y comparar los diferentes métodos para la previsión de los precios del gas. Nuestra investigación revela que durante la reciente crisis económica se obtienen mejores resultados utilizando un sistema inteligente híbrido para la previsión de los precios del gas, en comparación con las redes neuronales de tipo GMDH y de tipo Multi-Layer Feed-forward (MLF), y que los resultados mejorarán si utilizamos un sistema inteligente híbrido en la previsión de la volatilidad de los precios del ga

    A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil

    Get PDF
    The following dissertation aims to show the benefits of a forecast combination between an econometric and a deep learning approach. On one side, a Factor Augmented Vector Autoregressive Model (FAVAR) with naming variables identification following Stock and Watson (2016)1; on the other side, a Stacked De-noising Auto-Encoder with Bagging (SDAE-B) following Zhao, Li and Yu (2017)2 are implemented. From January 2010 to September 2018 Two-hundred-eighty-one monthly series are used to predict the price of the West Texas Intermediate (WTI). The model performance is analysed by Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Directional Accuracy (DA). The combination benefits from both SDAE-B’s high accuracy and FAVAR’s interpretation features through impulse response functions (IRFs) and forecast error variance decomposition (FEVD)

    A blending ensemble learning model for crude oil price forecasting

    Get PDF

    Forecasting mid-price movement of Bitcoin futures using machine learning

    Full text link
    In the aftermath of the global financial crisis and ongoing COVID-19 pandemic, investors face challenges in understanding price dynamics across assets. This paper explores the performance of the various type of machine learning algorithms (MLAs) to predict mid-price movement for Bitcoin futures prices. We use high-frequency intraday data to evaluate the relative forecasting performances across various time frequencies, ranging between 5 and 60-min. Our findings show that the average classification accuracy for five out of the six MLAs is consistently above the 50% threshold, indicating that MLAs outperform benchmark models such as ARIMA and random walk in forecasting Bitcoin futures prices. This highlights the importance and relevance of MLAs to produce accurate forecasts for bitcoin futures prices during the COVID-19 turmoil
    corecore