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ABSTRACT 

 

The following dissertation aims to show the benefits of a forecast combination between an 

econometric and a deep learning approach. On one side, a Factor Augmented Vector Autoregressive 

Model (FAVAR) with naming variables identification following Stock and Watson (2016)1; on the 

other side, a Stacked De-noising Auto-Encoder with Bagging (SDAE-B) following Zhao, Li and Yu 

(2017)2 are implemented. From January 2010 to September 2018 Two-hundred-eighty-one monthly 

series are used to predict the price of the West Texas Intermediate (WTI). The model performance is 

analysed by Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and 

Directional Accuracy (DA). The combination benefits from both SDAE-B’s high accuracy and 

FAVAR’s interpretation features through impulse response functions (IRFs) and forecast error 

variance decomposition (FEVD).   

                                                
1 Stock, J.H. and Watson, M.W., 2016. Dynamic factor models, factor-augmented vector autoregressions, and structural vector 
autoregressions in macroeconomics. In Handbook of macroeconomics (Vol. 2, pp. 415-525). Elsevier. 
2 Zhao, Y., Li, J. and Yu, L., 2017. A deep learning ensemble approach for crude oil price forecasting. Energy Economics, 66, pp.9-
16.	



CHAPTER 1 

Chapter 1: Introduction 

The influential statistician George E. P. Box warned: “All models are wrong, but some are useful". 

The author believes that in forecasting exercises perfection doesn’t exist, generally speaking, due to 

complexity, in our world. Although empirical evidence proven human behaviours to be flawed, or in 

other words irrational, Economics courageously tries to explain them. Such process is all but easy, 

and Economists, although improving, are far from a unanimous model that describe accurately the 

laws of supply and demand disruptions through time. 

Forecasting is not a recent science. Its roots stem from our innate ability that one exploits 

unconsciously when thinking about the future. Luckily, the science has evolved enough to take a 

certain distance from who claim to predict the future by reading the hand’s palm. The idea of 

modelling nature and social’s behaviours comes later with new advances: Mathematics and more 

recently Statistics and Economics. In this sense, improvements, as for describing the law of nature as 

deterministic, have to wait more than a millennium to appear. Adam Smith (1776)3 defined “Political 

Economics” as “an inquiry into the nature and causes of the wealth of nations” Before it was renamed 

“Economics” by Alfred Marshall in the 19th century.  

Technology has a clear feed-forward impact in the innovation process. The more the technological 

advancement, the higher the rate of subsequent innovations. Big steps have been taken in the past 100 

years since Economists tried to describe our society by given linear equations. An example of such 

advances, strictly connected to both the models I will present in this paper, are Big Data or as 

Economists tends to define it: “Data rich environments”. As mentioned before, technology causes 

technology growth, and indeed a clear exponential pattern can be traced out on the amount of data 

available every year as pointed out in the recent report by McKinsey. The quality and quantity of 

                                                
3 Smith, A., 1817. An Inquiry into the Nature and Causes of the Wealth of Nations (Vol. 2).  



information have opened room for new techniques and computational power that previously were 

though inaccessible due to hardware or software constraints. 

The paper combines two innovative approaches that make use of Big Data in the compelling exercise 

of forecasting the oil price. On one side the author proposes an Econometric approach in a Data-rich 

environment based on State Space modelling literature, precisely a Factor Augmented Vector 

Autoregressive model (FAVAR) that follows Stock and Watson (2016)1. This model has been widely 

used in Macroeconomics since its introduction by Bernanke, Boivin and Eliasz (2005)4 mainly for 

the important advantages in structural analysis; on the other hand, the author evaluates a novel Deep 

Learning ensemble approach called Stacked De-noising Auto-encoders with Bagging (SDAE-B) 

proposed for the first time by Zhao, Li, Yu (2017)2 , who were able to show the model’s superior out 

of sample forecasting accuracy compared to other frequently used Big Data approaches. This paper 

follows the procedures of the two mentioned papers unless otherwise stated.  

The eventual combination would produce a model that exploits both structural analysis interpretation 

properties, addressing policy makers’ concerns, and exceptional forecasting accuracy deriving from 

the pattern recognition noise-filtering of the auto-encoders. Both models, in a sense, complement 

each other. The FAVAR reaches a good forecasting accuracy, but it’s not the main power of the 

model. Using the Econometric approach, one can expect to identify the structural shocks, obtain the 

impulse response functions (IRFs) and the forecast error variance decomposition (FEVD). On the 

other hand, the Big Data approach, produces high accuracy forecasting but, as its “black box” 

nickname suggests, it doesn’t allow the econometrician to understand the underlying structural 

dynamics.  

Although one Econometrician may prefer a model instead of another, because of personal opinion 

and beliefs - after all forecasting is more art than a precise science - predictive model combinations 

                                                
4 Bernanke, B.S., Boivin, J. and Eliasz, P., 2005. Measuring the effects of monetary policy: a factor-augmented vector autoregressive 
(FAVAR) approach. The Quarterly journal of economics, 120(1), pp.387-422.	



have been proven successfully in the literature (Diebold and Pauly, 19875; Makridakis, 19896; De 

Gooijer and Hyndman, 20067; Pesaran and Pick, 20118). The author uses a simple mean forecast 

combination. Bayesian averaging is also taken into consideration, but shown only if it suggests 

statistical significant improvements.  

The oil price has been covered extensively recently by the media due to geopolitical tensions and 

price instability; but its volatility has been central to macro-economists since the 70s when the OPEC 

and the Middle East wars revolutionized the industry landscape. As frequently underlined in the 

literature, although the 80s were a relatively calm period, excluding the Iraqi attacks to Kuwait, since 

the twentieth century began, the oil price literally ranged from $30/barrel to $140/barrel causing not 

infrequent socio-economic consequences for policy makers. For an in depth historical digression see 

Baumeister and Kilian (2016)9, who exhaustively analyse the past 40 years of oil price data. The past 

unmanageable volatility gave birth to an increasing number of documents and papers attempting to 

reproduce supply and demand’s dynamics. After the recent amount of scientific literature production 

is taken into consideration, one may argue that an unanimous consensus is far from being reached. 

Nevertheless, important results have been achieved, for instance, the fact that supply explains 

significantly less variance of oil prices than demand at quarterly and annual data. This is somewhat 

counterintuitive given the focus of media on global supply.  

Although the aim of the following dissertation isn’t a deep dive into the energy market, some words 

regarding the importance of oil price are needed. Oil represents, followed by coffee, natural gas and 

gold, the most traded commodity in the financial markets (OECD, 2018). Crude Oil products assume 

different names according to its sweet-bitter or light-heavy composition. In US the production has 

been recently disrupted by the introduction of “Shale Oil” which revolutionized the timing of 

                                                
5 Diebold, F.X. and Pauly, P., 1987. Structural change and the combination of forecasts. Journal of Forecasting, 6(1), pp.21-40. 
6 Makridakis, S., 1989. Why combining works?. International Journal of Forecasting, 5(4), pp.601-603. 
7 De Gooijer, J.G. and Hyndman, R.J., 2006. 25 years of time series forecasting. International journal of forecasting, 22(3), pp.443-
473. 
8 Pesaran, M.H. and Pick, A., 2011. Forecast combination across estimation windows. Journal of Business & Economic 
Statistics, 29(2), pp.307-318. 
9 Baumeister, C. and Kilian, L., 2016. Forty years of oil price fluctuations: Why the price of oil may still surprise us. Journal of 
Economic Perspectives, 30(1), pp.139-60. 



extraction. No matter what the commodity is called or where it is produced, it plays an important role 

for politic relationships and economies since the industrial revolution (Zou, Zhao, Zhang and Ziong, 

2016)10. Even if developed economies are looking into renewable energies to meet the climate goals 

established by the global summit held in Paris in 2017, for many oil producer developing countries 

the switch may last longer due to their economic dependency. As a matter of fact there is a long list 

of countries which massively depends on Oil revenue: Kuwait, Libya, Saudi Arabia, Iraq, Angola, 

Oman, Azerbaijan, Venezuela, Chad, Brunei to name a few (World Bank, 2018). One may expect an 

increase in diversification from oil price exposure given the past decades instability, instead Ross 

(1999)11, by reviewing the literature and analysing the recent data, reveals a heterogeneity of 

measures across regions, underlying for instance a failure to act from North and sub-Saharan Africa 

oil producer countries versus non-oil producers. Venezuela’s dramatic condition, as of mid-2018, 

adds one more example to the black-list of the oil-dependent countries that by failing to act and 

innovate, projected the country in currency corrections and hyperinflationary environments, 

ultimately culminating in bankruptcies. 

The Directional Accuracy (DA), Root Mean Square Error (RMSE) and Mean Absolute Percentage 

Error (MAPE) are compared in order to access forecasting accuracy for both models. These measures 

reflect the most popular performance measurement in the recent literature from Diebold and Mariano 

(2002)12, Mostafa and El Masry (2016)13, Yu et al (2016)14 and Zhao, Li, Yu (2017)2.  

                                                
10 Zou, C., Zhao, Q., Zhang, G. and Xiong, B., 2016. Energy revolution: From a fossil energy era to a new energy era. Natural Gas 
Industry B, 3(1), pp.1-11. 
11 Ross, M.L., 1999. The political economy of the resource curse. World politics, 51(2), pp.297-322. 
12 Diebold, F.X. and Mariano, R.S., 2002. Comparing predictive accuracy. Journal of Business & economic statistics, 20(1), pp.134-
144. 
13 Mostafa, M.M. and El-Masry, A.A., 2016. Oil price forecasting using gene expression programming and artificial neural 
networks. Economic Modelling, 54, pp.40-53. 
14 Yu, L., Dai, W. and Tang, L., 2016. A novel decomposition ensemble model with extended extreme learning machine for crude oil 
price forecasting. Engineering Applications of Artificial Intelligence, 47, pp.110-121.	



Chapter 2 

Chapter 2: Dataset 

Despite following previous literature, this paper brings new variations and innovations. Motivated by 

the empirical evidence on low supply importance for oil price’s variation (Juvenal and Petrella, 

201115, 201516), the model overweight real demand features by including variables concerning the 

top twenty countries in terms of gross domestic product price purchasing parity (GDP PPP). 

Additionally, the dataset is oriented toward the US Economy. The reason is that the WTI is produced 

and consumed more in US than it is exported abroad, hence the price is mostly exposed to domestic 

fluctuations. Nevertheless, price co-movement is common between oil&gas commodities and 

therefore the motivation for introducing the countries that would impact global real demand the most. 

Moreover, after careful literature research and comparison, the dataset is extended to about 281 

monthly variables, compared to the 139 quarterly used in Stock and Watson (2016)1 and the 198 

monthly used in Zhao, Li, Yu (2017)2. The series are temporarily trimmed on January 2010 and 

extended to September 2018. Overall, the variables aggregate into 13 dimensions: “Industrial 

Production”, “Employment”, “Orders, Inventories and Sales”, “Housing activities”, “General Prices”, 

“Income”, “Productivity and Earnings”, “Rates”, “Money and Credit”, “Exchange Rates”, “Activity”, 

“Assets Prices” and finally “Oil related variables”. Moreover, when possible, these 13 categories are 

further split between USA and Global. When such division is available, “USA” refers to variables 

related to the US economy only, whereas “Global” refers to variables related to the top 20 global 

economies ranked by gross domestic product adjusted for price purchasing parity. One may argue 

that more variables don’t necessarily improve performance. The statement is valid and nor the 

FAVAR neither the SDAE-B are exempt from this rule, and indeed both models address the issue: 

the former by dimensionality reduction and the latter by feature selection algorithm. 

 

                                                
15 Juvenal, L. and Petrella, I., 2011. Speculation in the oil market, Federal Reserve Bank of St (No. 2001). Louis, Working Paper. 
16 Juvenal, L. and Petrella, I., 2015. Speculation in the oil market. Journal of Applied Econometrics, 30(4), pp.621-649. 



Initially, around 380 variables are identified and downloaded from Bloomberg and FRED database 

according to the literature mentioned in this paper. The identification of the thirteen groups of 

variables follows more Stock and Watson (2016)1 implementation rather than Zhao, Li, Yu (2017)2. 

In this step, thirty-six variables are removed due to inconsistencies and missing data; while seventeen 

variables, where the missing data accounted for not over 10% of the overall number of observation, 

are linearly interpolated according to the growth of the series. The time coverage of the series goes 

from January 2010 to September 2018 for a total of 105 data points. 

In order to capture real demand, the nominal series are deflated by the CPI core inflation in decimal 

form re-indexed at the beginning of the observation period as in Stock and Watson (2016)1. As the 

paper aims to reflect real demand, the object then becomes to remove any part of the variable’s change 

that is attributable to price movements, arriving at a real, or inflation adjusted, indicator. 

The series are furthermore converted to be covariance-stationary and such transformation is tested by 

the popular Advanced Dickey-Fuller (ADF) and Phillip-Perron (PP) tests (Dickey and Fuller, 197917, 

Phillip and Perron, 198818). The logic behind the integration is set to a threshold confidence level of 

0.05. Specifically, if the ADF’s or the PP’s p-value are larger than 0.05, a transformation is applied. 

The test is repeated, and if one of the two tests’ critical values are still larger than the threshold, an 

additional transformation is carried out. This process is computed by further differentiation until all 

series are covariance stationary. No series required more than two differentiations.   

To conclude the pre-processing of the information, as in Stock and Watson (2016)1 and Zhao, Li, Yu 

(2017)2, the dataset is standardized. This step is necessary for both models and in particular for the 

FAVAR, where one of the first steps is a principal component analysis (PCA), which is the non-

parametric approach alternative, suggested instead of the computationally inefficient Gibbs 

Sampling. There is a debate in the literature on whether one method should be preferred instead of 

the other, but given that none of the two methods has been proven being superior, the two-step 

                                                
17 Dickey, D.A. and Fuller, W.A., 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the 
American statistical association, 74(366a), pp.427-431. 
18 Phillips, P.C. and Perron, P., 1988. Testing for a unit root in time series regression. Biometrika, 75(2), pp.335-346.	



approach, the PCA, is preferred due to its simplicity (Stock and Watson 20161). In the standardization 

step the series is demeaned and divided by the standard deviation, guaranteeing a range of variation 

that on average lies between minus three and plus three. Therefore, each series has mean equal zero 

and standard deviation equal to one. 

The series subject to these transformations are shown in the appendix. The choice of the series has 

been made to allow both models to bring value to the analysis. Most variables represent the driving 

forces of oil price and were taken combining multiple datasets including Zagaglia (2010)19, Naser 

(2016)20 and Stock and Watson (2016)1. It is worth mentioning that the series for US economy had a 

greater weight than the other country’s economies. This is due to the fact that the West Texas 

Intermediate is produced and consumed in US and more subject to US economy swings. Nevertheless, 

a new introduction is carried on within the features. In particular the top twenty countries for GDP 

PPP are selected among the whole population of countries. The reason, as mentioned early in the 

paper, is that demand has historically played a more important role than supply in driving oil prices 

in the long run (Juvenal and Petrella, 201115, 201516, Kilian and Lütkepohl, 201721 and Stock and 

Watson, 20161). Of these twenty countries, whenever available, the following variables, according to 

the fourteen dimensions are added: industrial production, employment, general prices, interest rates, 

exchange rates, asset indicators and oil related variables. 

 

Chapter 2: Factor Augmented Vector Autoregressive Model 

The Factor Augmented Vector Auto-regressive (FAVAR) model was proposed the first time by 

Bernanke, Boivin and Eliaz (2005)4. Their scope was to disentangle the monetary shocks. A recent 

version can be found in Namini (2018)22. After this successful paper, the model has been extended to 

                                                
19 Zagaglia, P., 2010. Macroeconomic factors and oil futures prices: a data-rich model. Energy Economics, 32(2), pp.409-417. 
20 Naser, H., 2016. Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging 
(DMA) approach. Energy Economics, 56, pp.75-87.	
21 Kilian, L. and Lütkepohl, H., 2017. Structural vector autoregressive analysis. Cambridge University Press. 
22 Siami-Namini, S., 2018. The Effect of Monetary Policy Shocks on the Real Economy: A FAVAR Approach. Res J Econ 2: 
1. of, 9, p.2. 



study policy uncertainty, oil prices, pass through inflation effect and fiscal policy (Belke, Osowski, 

201723, Prüser and Schlösser, 201724; Zagaglia, 201019, Lombardi 201225, Aastveit, 201326, Ratti and 

Vespignani, 201627 and Stock and Watson, 20161; Ribon 201128, Conflitti and Luciani, 201729; 

Roulleau-Pasdeloup, 201130). The amount of literature has grown so massively that more than one 

literature reviews and in-depth identification procedures have been recently presented: Barhoumi, 

Darné and Ferrara (2013)31, Stock and Watson (2016)1, and Kilian and Lütkepohl (2017)21. This paper 

focus on extensions related to oil prices. Generally speaking the FAVAR is a Dynamic Factor Model 

(DFM) of which one or more factors are observable. Although still growing, since its creation in 

Geweke (1977)32 extensive researches have been made on DFM after Marcellino et al (2000)33 and 

Stock and Watson (2002)34 demystified its characteristics. The model is mainly used in Economics 

and has grown in popularity because of the increasing amount of data. As pointed out by Stock and 

Watson (2016)1, the model performs better in data rich environments than simple Vector Auto-

regressions (VAR), and the peculiarity, is that most of the useful feature for structural analysis of 

VARs can be extended to FAVARs.  

Initially DFMs were used for monitoring economic activity. Nowadays they are also used for now-

casting and forecasting. These three functions reflect the main ability of the model: summarizing 

large amount of data in few factors. These factors can be estimated using both a parametric (for 

instance Gibbs sampling) and a non-parametric two steps approach (Principal Component Analysis). 

                                                
23 Belke, A. and Osowski, T., 2017. International effects of euro area versus US policy uncertainty: A FAVAR approach (No. 689). 
Ruhr Economic Papers. 
24 Prüser, J. and Schlösser, A., 2017. The effects of economic policy uncertainty on European economies: Evidence from a TVP-
FAVAR (No. 708). Ruhr Economic Papers. 
25 Lombardi, M.J., Osbat, C. and Schnatz, B., 2012. Global commodity cycles and linkages: a FAVAR approach. Empirical 
Economics, 43(2), pp.651-670. 
26 Aastveit, K.A., Natvik, G.J.J. and Sola, S., 2013. Economic uncertainty and the effectiveness of monetary policy. 
27 Ratti, R.A. and Vespignani, J.L., 2016. Oil prices and global factor macroeconomic variables. Energy Economics, 59, pp.198-212. 
28 Ribon, S., 2011. Augmented, V.A.R. Research Department Bank of Israel. 
29 Conflitti, C. and Luciani, M., 2017. Oil price pass-through into core inflation. 
30 Roulleau-Pasdeloup, J. and Doz, C., 2011. The dynamic effects of fiscal policy: a FAVAR approach (No. dumas-00650820).	
31 Barhoumi, K., Darné, O. and Ferrara, L., 2013. Testing the number of factors: An empirical assessment for a forecasting 
purpose. Oxford Bulletin of Economics and Statistics, 75(1), pp.64-79. 
32 Geweke, J., 1977. The dynamic factor analysis of economic time series. Latent variables in socio-economic models. 
33 Marcellino, M., Stock, J.H. and Watson, M.W., 2000. A dynamic factor analysis of the EMU. manuscript, http://www. igier. uni-
bocconi. it/whos. php. 
34 Stock, J.H. and Watson, M.W., 2002. Forecasting using principal components from a large number of predictors. Journal of the 
American statistical association, 97(460), pp.1167-1179.	



The Principal Component Analysis (or PCA) estimates the factors more efficiently than other 

methods (in terms of computational power required) obtaining non-inferior results and therefore is 

more frequent in the literature (Marcellino, 2017)35. The implementation is described later on, but for 

the moment,  it is enough to think about the factors as the orthogonal unit eigenvectors that minimize 

the squared distances of the multi-dimensional matrix representing the dataset.  

The process of structural analysis works in FAVARs as well as in VARs, although some identification 

supplements are required. Kilian and Lütkepohl (2017)21, Gallegati et al (2016)36, Stock and Watson 

(2016)1 debate extensively regarding these properties. In particular, depending on the objective of the 

study and the identification procedure, two or three additional restrictions are needed. The above-

mentioned papers describe exhaustively the variations for all the methodologies. Another important 

step is the selection of the number of factors. For indexing purpose, Stock and Watson (2016)1, shows 

that it is better to choose an additional factor, than incurring in the so called omitted variable bias. 

For forecasting and now-casting, also due to overfitting issues, the choice is more tedious and can be 

conducted graphically through the scree plot or analytically through the information criteria. Even if 

one may use the same information criteria depicted in VARs’ lag selection process, Bai and Ng 

(2002)37 and Amenguel and Watson (2007)38 developed an ad hoc test that is frequently used in the 

literature suggested by Stock and Watson (2016)1.  

Stock and Watson (2016)1 proposes a 207 variables quarterly data from 1984Q1 to 2014Q4 of which 

only 139 variables are used to estimate the factors. All the variables are transformed to be integrated 

of order zero and de-trended. After analysing the IC criteria, the number of factors is set to 8 because, 

as they say, “it is important that the factor innovations span the space of the structural shocks and the 

higher factors capture variation”. Although the series are available from 1959Q1, due to the parameter 

instability found in the data the model is produced as mentioned before since 1984Q1. Approaches 

                                                
35 Marcellino, M., 2017. An Introduction to Factor Modelling. 
36 Gallegati, M., Ramsey, J.B. and Semmler, W., 2016. AE-FSI. Dynamic Modeling, Empirical Macroeconomics, and Finance: 
Essays in Honor of Willi Semmler, p.195. 
37 Bai, J. and Ng, S., 2002. Determining the number of factors in approximate factor models. Econometrica, 70(1), pp.191-221. 
38 Amengual, D. and Watson, M.W., 2007. Consistent estimation of the number of dynamic factors in a large N and T panel. Journal 
of Business & Economic Statistics, 25(1), pp.91-96. 



such as in Mumtaz, Zabczyk and Ellis (2011)39, Eickmeier, Lemke and Marcellino (2015)40 solves 

the issue by building a time varying FAVAR (TV-FAVAR).  

The dynamic factor models (DFMs) are expressed either in static or dynamic form. Hereafter the 

static form is used. The state space model representation of a static (stacked) FAVAR is as follow: 

 𝑋" = Λ𝐹" + 𝑒"                    (1) 

𝐹" = Φ(L)𝐹" + 𝐺𝜂"                (2) 

Where the observed equation (1) equals the 𝑁𝑥1 vector		𝑋"of known time series with the sum of the 

common component Λ𝐹" and the idiosyncratic disturbances 𝑒". If this latter element is uncorrelated 

with the factors innovations at all leads and lags then the DFM is called exact DFM. Generally 

speaking this is a strong assumption and 𝑒" is modelled as an autoregressive process as in equation 

(3). Each 𝑣4"in this case is i.i.d. and the model is called non-exact DFM. 

𝑒4" = 𝛿4 𝐿 𝑒4"78 + 𝑣4"            (3) 

The common component is the dot product of the matrix Λ = (𝜆:, 𝜆8 … , 𝜆=) where 𝜆>is 𝑁𝑥𝑞 and the 

matrix 𝐹" = (𝑓"A, 𝑓"7>A , … , 𝑓"7=A )′ where	𝐹" is a 𝑟𝑥1 of static factors. Equation (2) is the vector 

autoregressive model expressed in canonical form by stacking the 𝑟 static factors. The number of 

static factors 𝑟, is by construction typically greater than the number of dynamic factors 𝑞, and can be 

assessed by a combination of a-priori knowledge, visual inspection of a scree plot, and the use of 

information criteria (IC). The scree plot in particular shows the variance explained by factors, while 

the IC, such as Bai and Ng (2002)41 and Amenguel and Watson (2007)42, provide a penalty function 

that measures the cost/benefit introduction of an additional factor. Finally, 𝐺 = 	 [𝐼>	0>G(H7>)]′ and 𝜂", 

as it was 𝑣", are assumed to be Gaussian. 

                                                
39 Mumtaz, H., Zabczyk, P. and Ellis, C., 2011. What lies beneath? A time-varying FAVAR model for the UK transmission 
mechanism. 
40 Eickmeier, S., Lemke, W. and Marcellino, M., 2015. Classical time varying factor-augmented vector auto-regressive models—
estimation, forecasting and structural analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society), 178(3), 
pp.493-533. 
41 Bai, J. and Ng, S., 2002. Determining the number of factors in approximate factor models. Econometrica, 70(1), pp.191-221. 
42 Amengual, D. and Watson, M.W., 2007. Consistent estimation of the number of dynamic factors in a large N and T panel. Journal 
of Business & Economic Statistics, 25(1), pp.91-96. 



Upon standardization of the data, the two-step factor estimation begins with the first set of restrictions 

on the observation equation (1). As opposed to the Principal Component Normalization used in 

Bernanke, Boivin and Eliaz (2005)4, the normalization used in this dissertation, called Named factor 

normalization (NFN), follows Stock and Watson (2016)1. The NFN is used because in line with the 

scope of this dissertation, that is, to exploit the structural analysis features of the FAVAR. Moreover, 

this normalization, allows for contemporaneous correlation of the principal components and take the 

form: 

ΛJK = 	
𝐼H

ΛHL8:NJK 	          (4) 

Since the VAR form is untouched and unrestricted, two more identification procedures need to be 

done on the observation equation (1) in order to identify the structural shocks and broadcast them 

from equation (2) to equation (1) on the individual series of the array	𝑋". The identification procedures 

are not all needed for forecasting, but are mainly computed to make sure that the estimated factors 

are identified and their space spanned is identified. For forecasting purposes, the normalization is 

enough to identify the space spanned by the factors while the factors themselves are left unidentified. 

Without these techniques, one would not able to reconcile the Impulse Response Functions and 

Forecast Error Variance Decomposition with the identified shocks.  

After these theoretical assumptions are converted into mathematical restrictions on the observation 

equation, a principal component (PCA) algorithm runs on all (or on an arbitrary number) of the 

standardized series inside the array 	𝑋". The PCA is a linear dimensionality reduction that uses a 

Singular Value Decomposition (SVD) of the data to project it to a lower dimensional space. This 

technique brings the 281th dimensions into some pre-determined number of factors that corresponds 

to the principal components of the spectral decomposition ranked by variance explained of the dataset 

from which the factors are extracted. 



Once the factors are identified and estimated, by reconstructing equation (2), a selected variable can 

be forecast in two different ways. The most frequent method is to project the factors and then recall 

the individual desired variable from the dataset 	𝑋" as follow: 

𝐸 𝑋4"|	𝑋", 𝐹"𝑋"78, 𝐹"78, … = 𝛼4K 𝐿 𝐹" + 𝛿4(𝐿)𝑋4"             (5) 

Where 𝛼4K = Λ4Φ 𝐿 − δ4(𝐿)Λ4 and 𝐹" equation (5) represents the matrix of the current values of the 

stacked vector of factors. Given a selected variable to forecast,	𝑋4", an alternative approach is to 

extract the factors from a dataset excluding the variable of interest. This method allows to directly 

forecast the variable with the factors in a VAR process without recalling it from the observation 

equation: 

𝑌" = 𝑐 + Π8𝑌"78 + ΠW𝑌"7W+. . . Π=𝑌"7= + 𝜀"                                 (6) 

Where 𝑌" = 	 (𝑋4, 𝐹8 …𝐹H)′, Π=are the estimated variable coefficients and 𝜀" the idiosyncratic shocks. 

For this VAR process, the h-step ahead forecast is as follow: 

𝑌YLZ|Y = 𝑐 + Π8𝑌YLZ78|Y+. . . +Π=𝑌"LZ7=|Y                                   (7) 

One important caveat of the second procedure to forecast is that the element of the matrix 𝑌" must be 

orthogonal. In order for the vectors to be orthogonal, the dot product should be approximately zero. 

Such adjustment can be implemented by the modified Gram Schmidt process (Björck, Å., 1967)43 as 

follow: 

𝑢\
(8) = 𝑣\ −		𝑝𝑟𝑜𝑗 a(𝑣\)
⋮ ⋮ ⋮

𝑢\
(\78) = 𝑢\

(\7W) − 	𝑝𝑟𝑜𝑗 cda(𝑢\
\7W )

                                   (8) 

where 𝑣8 …𝑣\ are a definite, linearly independent set of vectors in space and 𝑢8 …𝑢\ are the 

generated orthogonal set that spans the same k-dimensional subspace. The above process, is the 

modified version of the Gram-Schmidt process, that generates 𝑢 not only orthogonal to 𝑢\
(\78), but 

also against any errors introduced in computation of 𝑢\
(\78). 

                                                
43 Björck, Å., 1967. Solving linear least squares problems by Gram-Schmidt orthogonalization. BIT Numerical Mathematics, 7(1), 
pp.1-21. 



Chapter 2: Stacked De-noising Auto-encoders with Bagging 

Although the SDAE-B proposed by Zhao, Li, Yu (2017)2 is fairly recent, it follows a longer trial of 

Machine and Deep Learning attempts to forecast energy prices (more on this later). Stacked De-

noising Auto-encoders with Bagging is the full name of the hybrid used on 198 monthly series to 

forecast the West Texas Intermediate (WTI) price. A hybrid is a combination of two statistical 

techniques, in this case, of a deep learning approach (SDAE) and an ensemble learning approach 

(Bagging). The paper’s conclusions, that motivated this research, confirmed statistical effectiveness 

of this model over other Big Data comparable approaches.  

The model comes from the need to describe the price of oil dependency to multi-factors and not only 

to supply and demand or even purely past values. Namely, the model is exposed to 198 variables 

grouped in five categories: supply and demand, substitution effect from other source of energy 

(natural gas, coal, renewable energies…), financial markets, economic growth, technology and 

irregular events (Zhao, Li, Yu, 2017)2.  

Among the pure machine learning algorithms that tried similar exercises in the literature we find:  

genetic algorithms (Kaboudan, 2001)44, neural networks (Moshiri and Foroutan, 2006)45, support 

vector machine (Xie et al 2006)46, semi supervised learning (Greenwood-Nimmo et al, 2013)47, gene 

expression programming (Mostafa and el Masry, 2016)13. Among the hybrid machine learning 

algorithms in the literature we find: NARX (Godarzi et al, 2014)48, ANFIS (Ghaffari and Zare, 

2009)49, combination of NN and GA (Chiroma et al, 2015)50, IBL (Gabralla et al, 2013)51, ensemble 

                                                
44 Kaboudan, M.A., 2001. Compumetric forecasting of crude oil prices. In Evolutionary Computation, 2001. Proceedings of the 2001 
Congress on (Vol. 1, pp. 283-287). IEEE. 
45 Moshiri, S. and Foroutan, F., 2006. Forecasting nonlinear crude oil futures prices. The Energy Journal, pp.81-95. 
46 Xie, W., Yu, L., Xu, S. and Wang, S., 2006, May. A new method for crude oil price forecasting based on support vector machines. 
In International Conference on Computational Science (pp. 444-451). Springer, Berlin, Heidelberg. 
47 Greenwood-Nimmo, M. and Shin, Y., 2013. Taxation and the asymmetric adjustment of selected retail energy prices in the 
UK. Economics Letters, 121(3), pp.411-416. 
48 Godarzi, A.A., Amiri, R.M., Talaei, A. and Jamasb, T., 2014. Predicting oil price movements: A dynamic Artificial Neural 
Network approach. Energy Policy, 68, pp.371-382. 
49 Ghaffari, A. and Zare, S., 2009. A novel algorithm for prediction of crude oil price variation based on soft computing. Energy 
Economics, 31(4), pp.531-536. 
50 Chiroma, H., Abdulkareem, S. and Herawan, T., 2015. Evolutionary Neural Network model for West Texas Intermediate crude oil 
price prediction. Applied Energy, 142, pp.266-273. 
51 Gabralla, L.A., Jammazi, R. and Abraham, A., 2013, August. Oil price prediction using ensemble machine learning. In Computing, 
Electrical and Electronics Engineering (ICCEEE), 2013 International Conference on (pp. 674-679). IEEE. 



models that first decompose oil price series into components and then combine the forecast by NNs 

(Xiong et al, 201352, Yu et al, 200853, Yu et al, 201614). 

There are two essential components of a hybrid structure: on one hand the model is fitted on a training 

sample and the result is used to forecast a test sample. On the other hand, there is an additional 

technique used for enhancing the forecasting ability of the entire model. Regarding the latter three 

popular tools are used in the literature above: Bagging, Boosting and Stacking. In particular Bagging 

decreases the model’s variance; Boosting decreases the model’s bias; and Stacking increases the 

predictive force of the classifier.  

To understand better the stacked de-noising auto-encoders with Bagging the model is broken down 

into its components. An auto-encoder is a one hidden layer neural network where its input and output 

size are equal. The deterministic function connecting the inputs to the output is described in the 

implementation paragraph. De-noising is the action of cleaning partially corrupted input through AE 

and, as emphasised in Vincent at al (2010)54, is important for the extraction of useful features when 

minimizing the average reconstruction error in the loss function. Multiple levels of DAE are stacked 

one on another to improve the information reconstruction ability of the classifier (SDAE). In this step, 

the parameters are tuned by popular algorithms like the gradient descent. Finally, the ensemble 

component is combined. Bagging, or bootstrapping aggregation (Breiman, 1996)55 is a powerful tool 

frequently used in the literature for forecasting that take an average over predictions from all the 

trained base models. 

The main intuition behind using Auto-encoder is that the network learns the latent variables from the 

raw features while retaining the capability to produce the raw input back from the latent features. 

Hence, it predicts back the raw features, the input. This is in contrast with the popular neural network 

                                                
52 Xiong, T., Bao, Y. and Hu, Z., 2013. Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting 
models for crude oil prices. Energy Economics, 40, pp.405-415. 
53 Yu, L., Wang, S. and Lai, K.K., 2008. Forecasting crude oil price with an EMD-based neural network ensemble learning 
paradigm. Energy Economics, 30(5), pp.2623-2635. 
54 Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol, P.A., 2010. Stacked denoising autoencoders: Learning useful 
representations in a deep network with a local denoising criterion. Journal of machine learning research, 11(Dec), pp.3371-3408. 
55 Breiman, L., 1996. Bagging predictors. Machine learning, 24(2), pp.123-140. 



(ANN) that tries to predict the labels, whereas in our case the model predicts the input only at the 

output. The loss is based on the performance between raw input and predicted input (at the output 

layer). By minimizing the loss function the raw input is reconstructed. To this process, if a noise is 

added to the raw input, the process takes the name of “De-noising”. De-noising is sometimes 

substituted in the literature by “Sparsity” Auto-encoders as in Moussavi-Khalkhali Jamshidi (2016)56. 

Once the core model is structured, Stacking the process is a powerful tool used to increase the 

predictive power of the model. The idea, as the word suggests, is that the reconstructed input, at the 

output layer, is passed to a superior Auto-encoder and processed. Each Auto-encoder is structured as 

the previous, but the corrupted input within each level is different, therefore no level is the same. On 

top of the last 𝐾 + 1 Auto-encoder, a simple algorithm is added to connect the output to the supervised 

cost function. For detailed graphical representation Vincent et al (2010)51 is the standard in the 

literature. To better understand the mathematical process behind the model, a graphical representation 

taken from Zhao, Li, Yu (2017)2 is depicted below: 

Figure 1 SDAE-B. Source: Y. Zhao, J. Li, L. Yu (2017) 

 

In practice, the sample is divided into training and test with an 80-20% ratio as in Yu et al, (2008)50. 

To be consistent with the FAVAR, the model is applied over the same sample. In particular the dataset 

                                                
56 Moussavi-Khalkhali, A. and Jamshidi, M., 2016, December. Constructing a Deep Regression Model Utilizing Cascaded Sparse 
Autoencoders and Stochastic Gradient Descent. In Machine Learning and Applications (ICMLA), 2016 15th IEEE International 
Conference on (pp. 559-564). IEEE. 



is stationary according to ADF and PP tests; It is standardized and the variables are ordered by names 

following the Stock and Watson (2016)1 naming variable identification. This latter manipulation 

doesn’t alter the performance of the deep-learning model by any means. The West Texas Intermediate 

is extracted from the dataset and chosen as the target variable.  

For simplicity, a one hidden layer NN is built as main structure of the AE where the input equals the 

output. The input X maps to output Y following the determinist function:  

 𝑦 = 𝑓g 𝑥 = ∅i(𝑊𝑥 + 𝑏)           (9) 

Where the parameters are 𝑊 and 𝑏, respectively a 𝑑𝑥𝑑 weight matrix and a bias vector. 

The output Y is sub-sequentially mapped to vector 𝑧, following the equation: 

 𝑧 = 𝑔gA 𝑦 = ∅o(𝑊′𝑦 + 𝑏′)        (10) 

where the parameters 𝑊′ and 𝑏′ are the corresponding 𝑑𝑥𝑑 weight matrix and bias vector as before. 

Each parameter is optimized to minimize the average reconstruction error by following the equation: 

𝜃∗, 𝜃A∗ = arg𝑚𝑖𝑛 8
N

𝐿 𝑥4, 𝑧4N
4x8 = arg𝑚𝑖𝑛 8

N
	 𝐿(𝑥4, 𝑔g(𝑓g(𝑥4)))N

4x8    (11) 

Where the loss function 𝐿 would be the traditional squared error function 𝐿 𝑥, 𝑧 = |𝑥 − 𝑧|W. 

Finally, Bootstrapping aggregation is implemented (Bagging). A set of K training samples is fed to 

K SDAE models generating K predictions that are aggregate by averaging at the end of the process. 

 

Chapter 3 

Chapter 3: FAVAR and SDAE-B implementation 

The FAVAR is implemented by applying the naming factor normalization. In the Identified FAVAR, 

five unobserved factors are estimated on 69 selected variables according to Bai and Ng (2002)57 and 

Amenguel and Watson (2007)58 following Stock and Watson (2016)1 implementation and 

identification restrictions. The modified Gram-Schmidt algorithm is carried on in order to 

                                                
57 Bai, J. and Ng, S., 2002. Determining the number of factors in approximate factor models. Econometrica, 70(1), pp.191-221. 
58 Amengual, D. and Watson, M.W., 2007. Consistent estimation of the number of dynamic factors in a large N and T panel. Journal 
of Business & Economic Statistics, 25(1), pp.91-96. 



orthogonalise the factors to the West Texas Intermediate by rotating their space around the latter 

variable (hence, without changing its elements). After this transformation, the factors are once again 

controlled for stationarity according to the popular Advanced Dickey-Fuller (ADF) and Phillip-

Perron (PP) tests (Dickey and Fuller, 197959, Phillip and Perron, 198860). The construction of the 

Identified FAVAR continued with the implementation of equation (2) as a VAR on 6 variables and 

eight lags. The number of lags has been assigned by Akaike Information Criterion. The performance 

of the fitted model on the test sample is shown in Figure 2. 

Figure 2 Identified FAVAR forecast performance visualization 

 

The implementation of the popular Deep Neural Network (DNN) requires two steps, as it is a hybrid 

combination itself between two different methods: the Stacked De-noising Auto-encoders and the 

Bagging. 80% of the observations from 2010-01-31 to 2016-12-31 are extracted as training sample. 

As the bootstrapping aggregation process requires, during the first phase 𝑘 sets of replicas of the 

training sample are reproduced. On each 𝑘 set a SDAE is fitted. The SDAE is literally obtained by 

stacking several De-noising Auto-encoders. The hidden layer of the first DAE at layer one becomes 

the input of the DAE at the next layer and so on for 𝑘 times. The first layer DAE gets as input the 

input of the SDAE, and the hidden layer of the last DAE represents the output. All this process is 

                                                
59 Dickey, D.A. and Fuller, W.A., 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the 
American statistical association, 74(366a), pp.427-431. 
60 Phillips, P.C. and Perron, P., 1988. Testing for a unit root in time series regression. Biometrika, 75(2), pp.335-346.	



reproduced in Matlab2018 using the function SDAEB() available in the Machine Learning package. 

The forecast performance of the algorithm on the test sample is reproduced in Figure 3 below. 

Figure 3 SDAE-B forecast performance visualization 

 

Without digressing too far from the scope of the dissertation, as we are discussing the implementation 

phase of the models, in Figure 4, is reported the FEVD from the Identified FAVAR first equation 

relative to the WTI. For policy making such representation may be relevant as a tool of structural 

analysis because shows the contribute of the WTI series to the overall variance of the model at 2, 4, 

6, 8, 10 and 12 months. In other words, it shows the amount of information that the WTI contributes 

to the other variables in the auto-regression. Exogenous shocks to the WTI explains small forecast 

error variance of all factors till 12 months. Given that the factors are extracted from a dataset 

representing mostly the US economy, the results in Figure 4 are relevant when addressing policy 

issues. 

 

Chapter 3: Performance Evaluation 

The Directional Accuracy (DA), Root Mean Square Error (RMSE) and Mean Absolute Percentage 

Error (MAPE) are compared in order to access forecasting accuracy for both models. These measures 

reflect the most popular performance measurement in the recent literature from Diebold and 

 



 

 

Mariano (2002)61, Mostafa and El Masry (2016)62, Yu et al (2016)63 and Zhao, Li, Yu (2017)2. The 

measurement equations are proposed in equation (12), (13) and (14). where 𝑎" = 1 if (𝑦"L8 −

𝑦")(𝑦"L8 − 𝑦") ≥ 0 or 𝑎" = 0 otherwise and N is the size of the prediction. The forecast performance 

between the Identified FAVAR and the SDAE-B are summarized in the table 2. The table shows, as 

                                                
61 Diebold, F.X. and Mariano, R.S., 2002. Comparing predictive accuracy. Journal of Business & economic statistics, 20(1), pp.134-
144. 
62 Mostafa, M.M. and El-Masry, A.A., 2016. Oil price forecasting using gene expression programming and artificial neural 
networks. Economic Modelling, 54, pp.40-53. 
63 Yu, L., Dai, W. and Tang, L., 2016. A novel decomposition ensemble model with extended extreme learning machine for crude oil 
price forecasting. Engineering Applications of Artificial Intelligence, 47, pp.110-121.	

Figure 4 Forecast Error Variance Decomposition of the Identified FAVAR 



expected, the superior accuracy of the SDAE-B compared to the Identified FAVAR. The DA is equal 

for both models, although this should be tested on a greater sample size. As a matter of fact, the 

sample is only 20% of the 105 observations. 

(12) 

 

(13)                                   

 

(14) 

 

Table 1 Forecast performance of Identified FAVAR and SDAE-B 

 RMSE DA MAPE 
Identified FAVAR 0.087 0.714 1.581 

SDAE-B 0.051 0.714 0.971 
 

Figure 5 Identified FAVAR vs SDAE-B forecast performance visualization 

 

Chapter 3: Forecast combination 

The next exercise is to combine the two techniques. In doing so, Bates and Granger (1969)64 is the 

standard discussion in the literature. Fancy combination has not yet proven superior results compared 

                                                

64 Bates, J. M. and Granger, C. W. (1969). The combination of forecasts. Or, pages 451–468.  



to simple averages in out of sample forecasting. Two combination methods are proposed. The first 

represents the naïve simple average forecast and the second is a weighted forecast based on the Root 

Mean Squared Error (RMSE). Although the first method gives 50% weight to both techniques, the 

second method ensure more significance to the SDAE-B assigning around 65% of the weight. The 

visual result is shown in figure 6 and the performances are measured and summarized in table 3. 

Figure 6 Simple Average and RMSE Weighted Average forecast combination 

 

Figure 6 shows the original series of the West Texas Intermediate (blue line) and the two models in 

light orange and light green. The Simple Average and the RMSE Weighted Average combination are 

in red and violet respectively. The benefit of the model combinations pop up immediately even with 

the simplest of the averages. This once again confirms Bates and Granger (1969)64 who suggest that 

such result could imply that combining more than just two techniques may also be beneficial. 

Table 2 Simple Average and RMSE Weighted Average forecast combination 

 RMSE DA MAPE 
Identified FAVAR 0.087 0.714 1.581 

SDAE-B 0.051 0.714 0.971 
Simple Average 0.064 0.714 1.035 

RMSE Weighted Avg 0.058 0.714 0.877 
 

Table 3 confirms what the visualization suggests and further shows the performance quantitatively. 

The MAPE from the RMSE Weighted Average combination is even superior to the best model. The 

DA as expected is constant, given that both original models achieve the same score. 



Chapter 4 

Chapter 4: Conclusions 

The following dissertation shows the benefit of a forecast combination between an econometric and 

a deep neural network approach. The two models implemented are a Factor Augmented Vector 

Autoregressive Model and a Stacked De-noising Auto-encoder with Bagging, the fit performance on 

the test sample is represented in Figure 2 and 3 respectively. Both techniques are fairly recent in the 

literature and represent important achievements in forecasting. On one side, the FAVAR exploits 

structural analysis features such as Impulse Response Functions and Forecast Error Variance 

Decomposition; on the other side the SDAE-B is able to forecast accurately. One example of 

structural analysis visualization is depicted in Figure 4. Both models achieve a Directional Accuracy 

of 71.4%. The SDAE-B is superior in terms of Root Mean Squared Error and Mean Absolute 

Percentage Error compared to the FAVAR. The two forecast combinations proposed are the Simple 

Average and the RMSE Weighted Average where the model with the highest RMSE is penalized. In 

this latter, 65% of the relative forecast importance is assigned to the SDAE-B. The weighted 

combination shown in Figure 6 is the best combination among the two, achieving a RMSE of 0.058, 

DA of 0.714 and a MAPE superior also to the SDAE-B at about 0.877. Further challenges and 

interesting discussions may arise by comparing the forecast performance of an unidentified versus an 

identified FAVAR or even analysing different identification and their implications for forecasting 

accuracy. Clearly, extending the sample size would only be beneficial in confirming the results 

obtained in this document; finally, as proposed by Bates and Granger (1969)64, it would be interesting 

to combine more than two models and try alternatives weights. 
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APPENDIX 
 
Overall, the variables aggregate into 13 dimensions: “Industrial Production”, “Employment”, 

“Orders, Inventories and Sales”, “Housing activities”, “General Prices”, “Income”, “Productivity and 

Earnings”, “Rates”, “Money and Credit”, “Exchange Rates”, “Activity”, “Assets Prices” and finally 

“Oil related variables”. Moreover, when possible, these 13 categories are further split between USA 

and Global. When such division is available, “USA” refers to variables related to the US economy 

only, whereas “Global” refers to variables related to the top 20 global economies ranked by gross 

domestic product adjusted for price purchasing parity. 

 
TABLE APPENDIX: DATA SERIES 

Name Description 

1a Industrial Production, USA 

IPDurGooMat Industrial Production: Durable Materials SA 

IPNDuGooMat Industrial Production: nondurable Materials 

IPDurConsGoo Industrial Production: Durable Consumer Goods 

IPAuto IP: Automotive products 

IPNDurConsGod Industrial Production: Nondurable Consumer Goods 

IPBusEquip Industrial Production: Business Equipment 

CapUtiTot US Capacity Utilization Special Aggregates Excluding High Tech Total Industry 

1b Industrial Production, Global 

IP_CHN IMF China Industrial Production                                                  

IP_IND  Production in Total Manufacturing for India 

IP_JPN Production in Total Manufacturing for Japan 

IP_GER Production in Total Manufacturing for Germany 

IP_RUS Production in Total Manufacturing for Russian Federation 

IP_IDN Production in Total Manufacturing for Indonesia 

IP_BRA Production in Total Manufacturing for Brazil 

IP_GBN UK Industrial Production                 

IP_FRA Production in Total Manufacturing for France 

IP_MXN Production of Total Construction in Mexico 

IP_ITA Production in Total Manufacturing for Italy 

IP_TUR Production in Total Manufacturing for Turkey 

IP_KOR Production in Total Manufacturing for Korea 

IP_ESP Production in Total Manufacturing for Spain 

IP_CAN IMF Canada Industrial Production SA                                              

IP_THA Production in Total Manufacturing for Thailand 

2a. Employment, USA 

NFP_MLO US Employees on Nonfarm Payrolls Natural Resources & Mining SA                   

NFP_CST US Employees On Nonfarm Payrolls By Industry Construction SA                     

NFP_DUR Employees on Nonfarm payroll by Industry Durable Goods SA                        



NFP_NDU Employees on Nonfarm payroll by Industry Nondurable Goods SA                     

NFP_WSL US Employees On Nonfarm Payrolls By Industry Wholesale Trade SA                  

NFP_RET US Employees On Nonfarm Payrolls By Industry Retail Trade Total SA               

NFP_TRW Employees on Nonfarm payroll by Industry Transportation & Warehousing SA         

NFP_INF US Employees on Nonfarm Payrolls Information SA                                  

NFP_FIN US Employees On Nonfarm Payrolls By Industry Finance Insurance Real Estate SA    

NFP_EDH US Employees on Nonfarm Payrolls Education & Health Services SA                  

NFP_LEH US Employees on Nonfarm Payrolls Leisure & Hospitality SA                        

NFP_GOS US Employees on Nonfarm Payrolls State Govt SA                                   

NFP_GOL US Employees on Nonfarm Payrolls Local Govt SA                                   

NLF_CNIP US Civilian Noninstitutional Population Total NSA                              

NLF_CLF US Employment Civilian Labor Force Total in Labor Force SA Household Survey      

NLF_DJB Not in LF and don`t want a job now 

NLF_WJB US Civilians Not in Labor Force But Currently Want a Job NSA                     

NLF_WMA US Unemployed & Discouraged & Margin as # Labor Force & Margin NSA               

NLF_WDI US Number of Discouraged Workers NSA                                             

UN_ERS US Employment Part Time for Economic Reasons SA                                  

UN_NERS US Employment Part Time Workers Noneconomic Reasons SA                           

UN_NTMR Number Of Unemployed Not On Temporary Layoff SA                                  

UN_JBL US Unemployment Job Leavers Total SA                                             

UN_5WE US Unemployment Duration Less Than 5 Weeks SA                                    

UN_15W US Unemployment Duration Over 15 Weeks SA                                        

UN_27W US Unemployment Duration 27 Weeks and Over SA                                    

OVR_MNF US Average Weekly Hours All Employees Manufacturing Overtime Hours SA            

OVR_DUR US Average Weekly Hours All Employees Durables Gds Overtime Hours SA             

UNMP_USA   U-3 US Unemployment Rate Total in Labor Force Seasonally Adjusted                

2b. Employment, Global 

UNMP_JPN Japan Unemployment Rate SA                                                       

UNMP_DEU Germany Total Civilian Unemployment                                              

UNMP_RUS Unemployment Rate Russia                                                        

UNMP_BRA Unemployment Rate Brazil 

UNMP_GBR Unemployment Rate UK 

UNMP_FRA Unemployment Rate France 

UNMP_MEX Unemployment Rate Mexico 

UNMP_ITA Unemployment Rate Italy 

UNMP_TUR Unemployment Rate Turkey 

UNMP_KOR Unemployment Rate South Korea 

UNMP_ESP Unemployment Rate Spain 

UNMP_CAN Unemployment Rate Canada 

UNMP_THA Unemployment Rate Thailand 

UNMP_AUS Unemployment Rate Australia 

3. Orders, Inventories and Sales, USA 

PMI_NOR ISM Manufacturing Report on Business New Orders SA                               

PMI_PRD ISM Manufacturing Report on Business Production SA                               

PMI_EMP ISM Manufacturing Report on Business Employment SA                               

PMI_DEL ISM Manufacturing Report on Business Supplier Deliveries SA                      

PMI_BIN ISM Manufacturing Report on Business Inventories NSA                             



PMI_CIN ISM Manufacturing Report on Business Customers' Inventories NSA                  

PMI_PRC ISM Manufacturing Report on Business Prices Index NSA deflated                            

PMI_BCK ISM Manufacturing Report on Business Backlog of Orders NSA                       

PMI_BX ISM Manufacturing Report on Business Export Orders SA                            

PMI_BM ISM Manufacturing Report on Business Imports SA                                  

SL_TOT Adjusted Retail & Food Services Sales Total SA                                   

SL_XMV Adjusted Retail Sales Less Motor Vehicle and Parts Dealers SA                      

SL_XMG Adjusted Retail Sales Less Autos and Gas Stations SA                             

SL_SB Adjusted Retail Sales Food Services and Drinking Places SA                         

SL_ECO E-COMMERCE SALES QUARTERLY                                                       

4. Housing Activity, USA 

HstartsNE US New Privately Owned Housing Units Started Northeast 1 Unit Structure SAAR     

HstartsMW US New Privately Owned Housing Units Started Midwest 1 Unit Structure SAAR       

HstartsS US New Privately Owned Housing Units Started South 1 Unit Structure SAAR         

HstartsW US New Privately Owned Housing Units Started West 1 Unit Structure SAAR          

PermitsN US New Privately Owned Housing Auth by Building Permits Northeast 1 Unit SAAR    

PermitsMW US New Privately Owned Housing Auth by Building Permits Midwest 1 Unit SAAR      

PermitsS US New Privately Owned Housing Auth by Building Permits South 1 Unit SAAR        

PermitsW US New Privately Owned Housing Auth by Building Permits West 1 Units SAAR        

5a. General Prices, USA 

PCE_DEF PCE DEF Index 

PPI_FGF PPI final demand for foods 

PPI_ENE PPI final demand for energy 

PPI_LOG PPI logging 

PPI_MNF PPI total mining utilities and manufacturing 

PPI_CON PPI construction 

PPI_TRD PPI trade 

PPI_TRS PPI transportation and warehousing 

CPSFFOOD Food 

CPUPENER Energy 

CPUPENCM Energy Commodities 

CPSHFOCB Fuel Oil and Other Fuels 

CPIQFUOS Fuel oil 

CPIQPKFS Propane, Kerosene, and Firewood 

CPSTMTFL Motor fuel 

CPSTGAS Gasoline All Types 

CPIQGURS Unleaded Regular Gasoline 

CPIQGUMS Gasoline, Unleaded Midgrade 

CPIQGUPS Gasoline, Unleaded Premium 

CPIQOMFS Other Motor Fuels 

CPSHGE Energy Services 

CPIQELS Electricity 

CPIQUPGS Utility (Piped) Gas Service 

CPUPAXFE All Items Less Food and Energy Rebased at 31/01/10 

CPCATOT Commodities 

CPSSTOT Services 

CPCADUR Durables 



CPUPNOND Nondurables 

CPSHTOT Housing 

CPUETOT Education and Communication 

CPSRTOT Recreation 

CPSFTOT Food and beverages 

CPIQALFS Apparel Less Footwear 

CPSHFU Fuels and Utilities 

CPUMTOT Medical care 

CPSTTOT Transportation 

CPIQUPTS Utilities and Public Transportation 

CPSHHHFO Household Furnishings and Operations 

CPUOTOT Other goods and services 

CPI_USA Consumer price index usa 

5b. General Prices, Global 

 CPI_CHN China CPI Total at Constant Price 1978=100                                       

 CPI_IND consumer price index india 

 CPI_JPN consumer price index japan 

 CPI_DEU consumer price index germany 

 CPI_RUS consumer price index russia 

 CPI_IDN consumer price index indonesia 

 CPI_BRA FGV Brazil IGP-M CPI IPC-M                                                       

 CPI_GBN consumer price index uk 

 CPI_FRA consumer price index france 

 CPI_MXN consumer price index mexico 

 CPI_ITA consumer price index ita 

 CPI_TUR consumer price index turkey 

 CPI_KOR consumer price index south korea 

CPI_ESP consumer price index spain 

 CPI_CAN consumer price index canada 

 CPI_THA consumer price index thailand 

 CPI_SAU consumer price index australia 

6. Income, USA 

PI_PI US Personal Income SAAR Deflated 

PI_WSD Personal Income Wage & Salary Disbursements SAAR Deflated                                 

PI_DIV Personal Income Personal Dividend Income SA Deflated                 

PI_INT Personal Income Personal Interest Income SA Deflated                                     

PI_TPP Personal Income Transfer Payments to Persons SA Deflated                                  

DISP_INC US Disposable Personal Income Nominal Dollars SAAR Deflated                               

PCE$ Personal Consumption Expenditures (current $) Deflated 

PCE_DUR US Personal Consumption Expenditures Durable Goods Nominal Dollars SAAR Deflated 

PCE_NDU US Personal Consumption Expenditures Non Durable Goods Nominal Dollars SAAR Deflated 

PCE_SRV US Personal Consumption Expenditures Services Nominal Dollars SAAR Deflated 

SAVING Personal Savings Deflated 

SAV_RATE US Personal Saving as a % of Disposable Personal Income                          

DUR%PCE US Durable Goods Spending as a % PCE Current Dollars SAAR                        

NDU%PCE US Nondurable Good Spending as a % PCE Current Dollars SAAR                      

SRV%PCE US Service Spending as a % PCE Current Dollars SAAR                              



7. Productivity and Earnings, USA 

ERP_PRV Average hourly earnings Deflated 

ERP_MLO Mining and Logging Deflated 

ERP_CST Construction Deflated 

ERP_DUR Manufacturing Durable goods Deflated 

ERP_NDU Manufacturing Non durable goods Deflated 

ERP_WSL Wholesale Trade Deflated 

ERP_RET Retail Trade Deflated 

ERP_TRW Transportation and warehousing Deflated 

ERP_INF Information Deflated 

ERP_FIN Financial Activities Deflated 

ERP_PRB Professional and Business Services Deflated 

ERP_EDH Education and Health Services Deflated 

ERP_TTU Trade, Transportation, and Utilities Deflated 

8. Rates, USA 

FFR US Federal Funds Effective Rate                   

TB3 IMF US Treasury Bill 3 Month Rate                                                

BAA_G10 US Corporate BAA 10 Year Spread 

MRG_G10 US Bloomberg Fannie to Govt Spread 10 Year 

TB24_TB6 Treasury Spreads 2 Year - 6 month 

G10_TB3 Treasury Spreads 10 Year - 3 month 

TED_SPD Ted Spread 

9. Money and Credit, USA 

M1 Federal Reserve United States Money Supply M1 SA Deflated                                 

M2 Federal Reserve United States Money Supply M2 SA Deflated                                

LOA_LEA US Commercial Bank Assets Loans & Leases Commercial & Industrial SA Deflated             

REV_CRE Revolving Consumer Credit Owned and Securitized SA Flow Deflated 

COS_CRE Total Consumer Credit Owned and Securitized SA Flow Deflated                            

COS_AUT Federal Reserve Consumer Credit Commercial Bank Rate 48 Month New Car Deflated            

10. Exchange Rates, Global 

EURUSD EURUSD Spot Exchange Rate - Price of 1 EUR in USD 

USDCNH  USDCNH Spot Exchange Rate - Price of 1 USD in CNH 

USDINR  USDINR Spot Exchange Rate - Price of 1 USD in INR 

USDJPY  USDJPY Spot Exchange Rate - Price of 1 USD in JPY 

USDZAR  USDZAR Spot Exchange Rate - Price of 1 USD in ZAR 

USDIDR  USDIDR Spot Exchange Rate - Price of 1 USD in IDR 

USDBRL USDBRL Spot Exchange Rate - Price of 1 USD in BRL 

GBPUSD GBPUSD Spot Exchange Rate - Price of 1 GBP in USD 

USDMXN USDMXN Spot Exchange Rate - Price of 1 USD in MXN 

USDTRY USDTRY Spot Exchange Rate - Price of 1 USD in TRY 

USDKRW USDKRW Spot Exchange Rate - Price of 1 USD in KRW 

USDCAD USDCAD Spot Exchange Rate - Price of 1 USD in CAD 

USDTHB USDTHB Spot Exchange Rate - Price of 1 USD in THB 

AUDUSD AUDUSD Spot Exchange Rate - Price of 1 AUD in USD 

USDSAR USDSAR Spot Exchange Rate - Price of 1 USD in SAR 

USDCHF USDCHF Spot Exchange Rate - Price of 1 USD in CHF 

11. Activity, Global 



STE_65 IISI World Total Steel Production Data-Currently 65 countries 

STE_EU World Steel Association Crude Steel Production Data/European Union 

KILIAN Kilian Global Economic Activity Index 

WEATHER Average (°F) in Alabama 

12. Asset Prices, Global 

SP100 S&P Global 100 Index 

MSCIW MSCI World Index 

DJIA Dow Jones Industrial Average 

NIKKEI Nikkei 225 

FTSE100 FTSE 100 Index 

SHANGHAIEXC Shanghai Stock Exchange Composite Index 

SENSEX S&P BSE SENSEX Index 

HANGSENG Hong Kong Hang Seng Index 

IBOVESPA Ibovespa Brasil Sao Paulo Stock Exchange Index 

TSXEXC S&P/TSX Composite Index 

CAC40 CAC 40 Index 

DAX Deutsche Boerse AG German Stock Index DAX 

FTSEMIB FTSE MIB Index 

MOEX MOEX Russia Index 

KOSPI Korea Stock Exchange KOSPI Index 

IBEX35 IBEX 35 Index 

SETEXC Stock Exchange of Thailand SET Index 

AUSEXC Australian Stock Exchange All Ordinaries Index 

VOL Chicago Board Options Exchange OEX Volatility Index 

SHILLER20 S&P CoreLogic Case-Shiller 20-City Composite Home Price SA Index Deflated                

SHILLER10 S&P CoreLogic Case-Shiller 10-City Composite Home Price SA Index Deflated                

GOLD IMF UK USD per Ounce of Gold End of Period Deflated                                      

13. Oil related variables, Global 

GASOLINE Gasoline All Types                                                               

EXP_OPEC Exports by Selected Countries SA OPEC Deflated                                           

IMP_CIF_OPEC General Imports of Crude Oil OPEC Total CIF Value in thousand of Dlr NSA Deflated        

IMP_CUS_OPEC General Imports of Crude Oil OPEC Total Customs Value in thousand of Dollars NSA Deflated 

IMP_TOT_OPEC General Imports of Crude Oil OPEC Total Qty in Thousands of Barrels NSA          

IMP_TOT_NOPE General Imports of Crude Oil from Non-OPEC CIF Value in thousand of Dlr NSA  Deflated    

IMP_CUS_NOPE General Imports of Crude Oil from Non-OPEC Customs Value in thousand of Dlr NSA Deflated 

IMP_TOT_NOPE1 General Imports of Crude Oil from Non-OPEC Qty in Thousands of Barrels NSA       

SUPPLY_NOPE International Crude Oil and Liquid Fuels Supply Non OPEC 

NAT_GAS Natural gas Deflated 

WTI West Texas Intermediate Spot 

BRENT Brent Deflated 

WTIBRENT_SPRDF Bloomberg Fair Value Price/NYMEX WTI Futures minus ICE Brent Futures Month 1 

WTIBRENT_SPRDS Bloomberg Fair Value Price/WTI-Brent Crude Oil Spread Monthly 

DOES_OPEC DOE Monthly OPEC Total Crude Oil (excluding condensates) Supply 

DOEC_OPEC_TOT DOE Monthly OPEC Total Crude Oil Production Capacity 

DOEC_OPEC_EXC DOE Monthly OPEC Total Surplus Crude Oil Production Capacity 

BLB_Y_OPEC Bloomberg Total OPEC Crude Oil Production Output Data 

EI_OPEC_PROD Energy Intelligence Group OPEC Crude Oil Production Data 



EI_ROW_Q Energy Intelligence Group Oil Products Non-OECD Rest of World Demand Data 

EI_OECD_Q Energy Intelligence Group OECD Oil Products Demand Data 

EI_OIL_Q Energy Intelligence Group Oil Product Demand Data 

BH_OPEC_RIG Baker Hughes OPEC Countries Oil And Gas Rotary Rig Count Data 

BH_NOPE_RIG Baker Hughes Non-OPEC Countries Oil And Gas Rotary Rig Count Data 

BH_US_RIG Baker Hughes U.S. Oil And Gas Rotary Rig Count Data 

BH_CAN_RIG Baker Hughes Canadian Oil And Gas Rotary Rig Count Data 

BH_LATAM_RIG Baker Hughes Latin America Oil And Gas Rotary Rig Count Data 

BH_MDE_RIG Baker Hughes Middle East Oil And Gas Rotary Rig Count Data 

BH_FEAST_RIG Baker Hughes Far East Oil And Gas Rotary Rig Count Data 

BH_EU_RIG Baker Hughes Europe Oil And Gas Rotary Rig Count Data 

BH_AFR_RIG Baker Hughes Africa Oil And Gas Rotary Rig Count Data 

EIA_AME_STOCK International Energy Agency OECD Americas Industry Crude Oil Stocks 

EIA_EU_STOCK International Energy Agency OECD Europe Industry Crude Oil Stocks 

EIA_PAC_STOCK International Energy Agency OECD Pacific Industry Crude Oil Stocks 

EIA_AME_Y International Energy Agency Americas Industry Total Product Stocks 

EIA_EU_Y International Energy Agency Europe Industry Total Product Stocks 

EIA_PAC_Y International Energy Agency Pacific Industry Total Product Stocks 

DOES_48_Y DOE Crude Oil Lower 48 States Production Data 

GAS_Y Natural Gas Production Estimates - Lower 48 

ST_Y_FRCST DOE Short Term Outlook Total Crude Oil Production Forecast Monthly 

ST_GAS_Y United States Short Term Energy Outlook Dry Natural Gas Production 

ST_COAL_Y United States Short Term Energy Outlook Coal Production 

ST_OIL_P United States Short Term Energy Outlook Energy Prices Crude Oil Deflated 

ST_GAS_P United States Short Term Energy Outlook Natural Gas Henry Hub Deflated 

ST_COAL_P United States Short Term Energy Outlook Energy Prices Coal Deflated 

IMP_PAD1 DOE PSM PADD 1 Imports of Crude Oil 

IMP_PAD2 DOE PSM PADD 2 Imports of Crude Oil 

IMP_PAD3 DOE PSM PADD 3 Imports of Crude Oil 

IMP_PAD4 DOE PSM PADD 4 Imports of Crude Oil 

IMP_PAD5 DOE PSM PADD 5 Imports of Crude Oil 

EXP_PAD2 DOE US PADD II Exports of Crude Oil 

WTI_futures West Texas Intermediate Futures 

 


