4,811 research outputs found

    A survey on artificial intelligence based techniques for diagnosis of hepatitis variants

    Get PDF
    Hepatitis is a dreaded disease that has taken the lives of so many people over the recent past years. The research survey shows that hepatitis viral disease has five major variants referred to as Hepatitis A, B, C, D, and E. Scholars over the years have tried to find an alternative diagnostic means for hepatitis disease using artificial intelligence (AI) techniques in order to save lives. This study extensively reviewed 37 papers on AI based techniques for diagnosing core hepatitis viral disease. Results showed that Hepatitis B (30%) and C (3%) were the only types of hepatitis the AI-based techniques were used to diagnose and properly classified out of the five major types, while (67%) of the paper reviewed diagnosed hepatitis disease based on the different AI based approach but were not classified into any of the five major types. Results from the study also revealed that 18 out of the 37 papers reviewed used hybrid approach, while the remaining 19 used single AI based approach. This shows no significance in terms of technique usage in modeling intelligence into application. This study reveals furthermore a serious gap in knowledge in terms of single hepatitis type prediction or diagnosis in all the papers considered, and recommends that the future road map should be in the aspect of integrating the major hepatitis variants into a single predictive model using effective intelligent machine learning techniques in order to reduce cost of diagnosis and quick treatment of patients

    Diagnosing Hepatitis Using Hybrid Fuzzy-CBR

    Get PDF
    The Malaysia populations are currently estimated to be 28.9 million with a number of medical specialists is 2,500 and 20,280 doctors. This ratio figures to cause patients need to wait longer in government hospitals and clinics before they can meet doctor or medical specialist. In order to resolve this problem, Ministry of Health has pledged to reduce waiting time of patient examination from 45 minutes to 30 minutes by provide allocation of large budget to the medical sector. This budget will be used either to buy new equipment, which can work with large capacity or upgrade the old equipment to work faster or build the new hospital to tend more patients or hire other doctors from overseas. Due to that reason and the coming which World Hepatitis Day on 28 July 2012, this study proposes a the use of hybrid intelligent, which combine Fuzzy Logic and Case-Based Reasoning (CBR) approach that could be integrated in the diagnosis system to classify patient condition by using fuzzy technique and similarity measurement based on current symptoms of a hepatitis patient. Focus of this study is to develop an automated decision support system that can be used by the doctors to accelerate diagnosis processing. As a result, a prototype called Intelligent Medical Decision Support System (IMDSS) using Fuzzy-CBR engine for diagnosis purposes has been developed, validated and evaluated in this study. The finding through validation and evaluation phase indicates that IMDSS is reliable in assisting doctors during the diagnosis process. In fact, the diagnosis of a patient has become easier than the manual process and easy to use

    Synthetic Peptide Vaccines

    Get PDF

    Feature Selection Method Based on Artificial Bee Colony Algorithm and Support Vector Machines for Medical Datasets Classification

    Get PDF
    This paper offers a hybrid approach that uses the artificial bee colony (ABC) algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications

    A hybrid feature selection on AIRS method for identifying breast cancer diseases

    Get PDF
    Breast cancer may cause a death due to the late diagnosis. A cheap and accurate tool for early detection of this disease is essential to prevent fatal incidence. In general, the cheap and less invasive method to diagnose the disease could be done by biopsy using fine needle aspirates from breast tissue. However, rapid and accurate identification of the cancer cell pattern from the cell biopsy is still challenging task. This diagnostic tool can be developed using machine learning as a classification problem. The performance of the classifier depends on the interrelationship between sample sizes, some features, and classifier complexity. Thus, the removal of some irrelevant features may increase classification accuracy. In this study, a new hybrid feature selection fast correlation based feature (FCBF) and information gain (IG) was used to select features on identifying breast cancer using AIRS algorithm. The results of 10 times the crossing (CF) of our validation on various AIRS seeds indicate that the proposed method can achieve the best performance with accuracy =0.9797 and AUC=0.9777 at k=6 and seed=50
    • …
    corecore