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Abstract

Background: High genetic heterogeneity in the hepatitis C virus (HCV) is the major challenge of the development
of an effective vaccine. Existing studies for developing HCV vaccines have mainly focused on T-cell immune
response. However, identification of linear B-cell epitopes that can stimulate B-cell response is one of the major
tasks of peptide-based vaccine development. Owing to the variability in B-cell epitope length, the prediction of B-
cell epitopes is much more complex than that of T-cell epitopes. Furthermore, the motifs of linear B-cell epitopes
in different pathogens are quite different (e. g. HCV and hepatitis B virus). To cope with this challenge, this work
aims to propose an HCV-customized sequence-based prediction method to identify B-cell epitopes of HCV.

Results: This work establishes an experimentally verified dataset comprising the B-cell response of HCV dataset
consisting of 774 linear B-cell epitopes and 774 non B-cell epitopes from the Immune Epitope Database. An
interpretable rule mining system of B-cell epitopes (IRMS-BE) is proposed to select informative physicochemical
properties (PCPs) and then extracts several if-then rule-based knowledge for identifying B-cell epitopes. A web
server Bcell-HCV was implemented using an SVM with the 34 informative PCPs, which achieved a training accuracy
of 79.7% and test accuracy of 70.7% better than the SVM-based methods for identifying B-cell epitopes of HCV and
the two general-purpose methods. This work performs advanced analysis of the 34 informative properties, and the
results indicate that the most effective property is the alpha-helix structure of epitopes, which influences the
connection between host cells and the E2 proteins of HCV. Furthermore, 12 interpretable rules are acquired from
top-five PCPs and achieve a sensitivity of 75.6% and specificity of 71.3%. Finally, a conserved promising vaccine
candidate, PDREMVLYQE, is identified for inclusion in a vaccine against HCV.

Conclusions: This work proposes an interpretable rule mining system IRMS-BE for extracting interpretable rules
using informative physicochemical properties and a web server Bcell-HCV for predicting linear B-cell epitopes of
HCV. IRMS-BE may also apply to predict B-cell epitopes for other viruses, which benefits the improvement of
vaccines development of these viruses without significant modification. Bcell-HCV is useful for identifying B-cell
epitopes of HCV antigen to help vaccine development, which is available at http://e045.life.nctu.edu.tw/BcellHCV.

Background
Infection with the hepatitis C virus (HCV) often results
in chronic hepatitis, liver cirrhosis, and hepatocellular
carcinoma [1]. HCV presents high genetic heterogeneity
[2], and HCV species are currently classified into 11

genotypes with 80 subtypes within each genotype [3].
Therefore, no vaccine is currently available [4]; however,
some therapies have proven effective against some, but
not all, genotypes [5]. HCV is an enveloped virus with
two types of surface glycol-proteins, E1, and E2. The
two types of glycoprotein epitopes are targets for the
neutralization of antibody responses [6,7]. Some recent
approaches to vaccine development have focused on
HCV envelope structures [5,6,8].
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Previously, the development of HCV vaccines has
mainly focused on T-cell immune response [4,9-12].
Prabdial-Sing et al. performed sequence-based in silico
analysis of HCV epitopes using algorithms to predict
the immunogenicity of their variants from other less
studied genotypes [13]. Li, et al. find that the two HLA
epitopes may contribute to design the HCV vaccine for
the Chinese population [4] and Aqsa, et al. report that
the glycoprotein 2 of HCV-3a is an ideal target for vac-
cine design [10]. Despite identifying linear B-cell epi-
topes that can stimulate B-cell response, is one of the
major tasks to design peptide-based vaccine; there are
only few researches to analyze the B-cell immune
response of HCV. Furthermore, design a predictor for
B-cell epitopes, which have high variable epitope length,
is more complex than predictor for T-cell epitopes [14].
On the other hand, some alternative computational

methods (Table 1) have been developed for prediction
of linear B-cell epitopes. These prediction methods
mainly focus on peptides of a fixed length and use these
peptides as an input to various machine learning mod-
els, including the Markov model (HMM), the artificial
neural network (ANN), the support vector machine
(SVM) [14-19]. However, the underperformances of
these general-purpose methods [20,21] and the signifi-
cantly differenent sequence context of HCV from the
hepatitis B virus counterpart (Figure 1) motivate this
work to develop a specific method/tool for identifying
B-cell epitopes of HCV.
This work retrieved experimentally validated B-cell

response of HCV dataset (BR-HCV) from the immune
epitope database (IEDB) [22]. In order to provide
insights into the mechanism of B-cell epitopes of HCV
and improve the prediction accuracy, an interpretable
rule mining system of B-cell epitopes (IRMS-BE) is pro-
posed which consists of physiochemical property (PCP)
mining module to select informative PCPs and knowl-
edge acquisition module to extract several if-then rule-
based knowledge of predicting B-cell epitopes in HCV
(Figure 2). A web server Bcell-HCV for predicting linear

B-cell epitopes in HCV was implemented using the 34
informative PCPs and yields a test accuracy of 70.7%,
which is superior to that of other SVM-based methods
(66.5%) for identifying B-cell epitopes of HCV and the
two general-purpose methods (49.9%). This work uses a
feature knockout procedure [23] to analyze the efficiency
of the 34 PCP features in predicting antigenic epitopes in
HCV. The three most important properties (AAindex
IDs: GEIM800102, ISOY800107, and SNEP660101) pre-
sent the same difference (5.36%) in a feature knockout
procedure. Among the three essential properties, the
property of principal component I (AAindex ID:
SNEP660101) is related to aromatic structures. The
alpha-helix structure (AAindex ID: GEIM800102) plays
an significant role in connecting HCV and the host cell
and in facilitating HCV entry into host cells.
Furthermore, knowledge acquisition module can

obtain 12 interpretable rules from top-five PCPs that
have a prediction accuracy of 73.4% and sensitivity of
75.6%.
Finally, a conserved promising vaccine candidate,

PDREMVLYQE, is identified from the top-50 B-cell epi-
topes of HCV for inclusion in a vaccine against HCV.
The promising candidate is simultaneously considering
induce antibodies and neutralize as broad as possible.
The benefits of IRMS-BE lies in the incorporation of

informative physicochemical properties and rule-based
knowledge. Future research will be aimed at extending
the IRMS-BE method to the prediction of B-cell epi-
topes in other viruses. Also, Bcell-HCV has been imple-
mented as a web server and is available at http://e045.
life.nctu.edu.tw/BcellHCV.

Results
Performance comparison with the sequence-based
methods
Using m = 34 physiochemical properties, the proposed
prediction system Bcell-HCV produced training and
independent test accuracies of 79.7% and 70.7%, where
(C, g) = (22, 21). Additionally, its training and test MCC

Table 1. Representative peptide-based methods for predicting linear B-cell epitopes

Method Number of
propensities

Number of
features

Propensity/features Classifier

ABCpred [12] single 400 AAP propensity Neural network (NN)

BCPred [15] single AAP propensity SVM

BepiPred [14] single Hydrophilicity propensity Hidden Markov Model
(HMM)

GFSMLP [17] 8 160 Solvent accessibility, and beta-turn propensities SVM, NN

BayesB [18] None 400 Position-specific scoring matrix (PSSM) with PSI-
BLAST

SVM

SVMTriP [19] single 8000 Tri-peptide SVM

Bcell-HCV (this
work)

6 [49] 34 PCP features SVM
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values are 0.600 and 0.417, respectively. To evaluate the
four SVM-based classifiers with 531 PCP features
(referred to as SVM-PCP), 20 amino acid compositions
(referred to as SVM-AAC), 400 dipeptide compositions
(referred to as SVM-DPC), and 8000 tri-peptides
(referred to as SVM-TPC), respectively, were evaluated
in terms of prediction accuracy in 10-fold CV using the

BR-HCV dataset. The best values for parameters g and
C in the SVM-based classifier were determined using a
step-wise approach from g ∈ {2-15, 2-13, ..., 216} and
C∈ {-15, 2-13, ..., 216}. As shown in Table 2 the SVM-
PCP classifier achieved accuracies of 74.80% and 65.50%
when applied to the BR-HCVTr and BR-HCVTe datasets,
respectively, where (C, g) = (21, 2-3). Among the four

Figure 1 Sequence logo of linear B-cell epitopes in hepatitis C virus and hepatitis B virus. The sequence logo is generated using Two
Sample Logo tool [48] with p-value < 0.05 criterion. The upper and lower motifs are the B-cell epitopes of hepatitis C virus (HCV) and hepatitis
B virus (HBV), respectively.

Figure 2 The framework of the proposed IRMS-BE. Seven main parts are in this block diagram, comprising: 1) B-cell response of HCV Dataset,
2) PCP composition representation, 3) IRMS-BE system, 4) PCP mining module, 5) Knowledge acquisition module, 6) Bcell-HCV predictor and 7)
Interpretable rules set.
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SVM-based classifiers, SVM-PCP presented the second
best performance after that of Bcell-HCV. These experi-
mental results demonstrate that the prediction system
Bcell-HCV outperforms the SVM-based methods (70.7%
compared with 66.5% for test accuracy). Furthermore,
two elegant and general-purpose methods [12,24] for
predicting linear B-cell epitopes, ABCpred [12] and
LBtope [24], using the BR-HCVTe dataset were com-
pared with Bcell-HCV. The results indicate that Bcell-
HCV is better than the SVM-based methods for B-cell
epitopes of HCV and the two general-purpose methods
(Table 2). To prevent the threshold biased, the ROC
curves are plotted using the BR-HCVTe dataset (Figure 3).

Ranking the identified physiochemical properties
The work adopted a feature-knockout approach [23] to
rank the efficiency of m = 34 physiochemical properties
(PCPs) in the prediction of linear B-cell epitopes. The
most effective PCP has maximum accuracy difference
(Dj = Acc - Accj, for all j = 1, 2,..., m) between overall
accuracy and feature-knockout accuracy. Overall

accuracy Acc is obtained using all m = 34 PCPs, r = {r1,
r2,..., rm}. Feature-knockout accuracy Accj is obtained by
employing an SVM with m-1 PCPs in the r group. The
group r contains m-1 PCPs except for rj. Figure 4 dis-
plays the m = 34 accuracy differences and rank in
decreasing order. The top-10 PCPs are listed in Table 3
and relevant information associated with the 34 PCPs is
listed in Supplementary Table 1. Top-three physiochem-
ical properties are GEIM800102, ISOY800107, and
SNEP660101, which achieve a maximum accuracy differ-
ence, is 5.36%.
The 34 properties contain 10 related to secondary

structure, which are marked with “s”, as shown in Addi-
tional File 1: Table S1. These include the conformational
parameter of beta structure (AAindex ID BEGF750102),
which is ranked fifth. The hydrophobicity coefficient in
RP-HPLC, C8 with 0.1%TFA/MeCN/H2O (AAindex ID:
WILM950102) is ranked tenth, which is in agreement
with results obtained using AAP [15], suggesting that
this property is efficient in the discrimination of linear
B-cell epitopes and non B-cell epitopes.

Rule-based knowledge
This work presents a knowledge acquisition module
based on the decision tree method C5.0, an improved
version of C4.5 [25] to obtain insight into HCV antigenic
epitopes. Knowledge can be obtained from two aspects:
1) the identification of informative physicochemical
properties, and 2) if-then rules for distinguishing between
B-cell and non B-cell epitopes. The top-five most influen-
tial features for predicting B-cell epitopes of HCV are uti-
lized to acquire the rule set and a corresponding decision
tree. Figure 5 shows a constructed decision tree with
pruning confidence level higher than 25%. The accuracy
of classifying the training dataset using the constructed
decision tree is 73.4%. Furthermore, a set of 12 interpre-
table rules, six for identifying B-cell epitopes and six for
identifying non B-cell epitopes, are transformed from this
tree (Additional File 2: Table S2).
Table 4 presents the six interpretable rules for identi-

fying B-cell epitopes of HCV with top-five important

Table 2. Prediction performance comparisons between Bcell-HCV and representive methods using the BR-HCV dataset

Methods Cross-validation on the
BR-HCVTr dataset

Independent test on the
BR-HCVTe dataset

SP SE AUC MCC ACC SP SE AUC MCC ACC

Bcell-HCV (this study) 0.864 0.731 0.97 0.596 79.6% 0.764 0.651 0.76 0.417 70.7%

SVM-PCP 0.903 0.862 0.95 0.766 87.9% 0.589 0.721 0.74 0.313 66.5%

SVM-AAC 0.870 0.797 0.99 0.662 83.1% 0.620 0.709 0.76 0.331 66.5%

SVM-DPC 0.934 0.889 0.98 0.811 90.5% 0.616 0.713 0.74 0.331 66.5%

SVM-TPC 0.948 0.895 0.96 0.831 91.5% 0.078 0.992 0.73 0.173 49.9%

LBtope (SVM) - - - - - 0.162 0.841 - -0.042 49.9%

ABCPred (ANN) - - - - - 0.823 0.166 - -0.015 49.4%

Figure 3 The ROC curves of independent test on the BR-HCVTe

dataset.
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physicochemical properties, and each rule comprises the
different number of the criteria. If a query sequence meets
all of the criteria in one rule, then it is identified to B-cell
epitopes of HCV. The first rule, which covers 259 samples
and the accuracy is 78.3%, is constructed by three proper-
ties (SNEP660101, BEGF750102, and CHOP780215). This
rule has three criteria: (1) Principal component I (property
SNEP660101), which is related to aromatic structures,
equal or less than 0.364754. This rule means a query
sequence with a low ratio of aromatic structures composi-
tion. (2) The conformational parameter of beta structure
(property BEGF750102) is equal or less than -0.11677,
which means a query sequence with a high ratio of beta
structures composition. (3) The normalized value of
CHOP780215 is equal or less than -0.1979, which means a
query sequence with a low frequency of fourth residue in
turn composition.

The second rule, which covers 9 samples and the
accuracy is 77.8%, is constructed by five properties
(SNEP660101, BEGF750102, CHOP780215, GEIM800102,
and ISOY800107) that comprises the following five cri-
teria: (1) The normalized value of SNEP660101is equal or
less than 0.364754, which means a query sequence with a
low ratio of aromatic structures composition. (2) The con-
formational parameter of beta structure (property
BEGF750102) is equal or less than -0.11677, which means
a query sequence with a high ratio of beta structures com-
position. (3) The normalized value of CHOP780215 is
larger than -0.1979, which indicates a query sequence with
a high frequency of 4th residues in turn composition.
(4) The normalized value of GEIM800102 is larger than
0.026614, which means a query sequence with an inter-
mediate ratio of alpha-helix. (5) Normalized relative
frequency of double bend (property ISOY800107) is equal

Figure 4 The m = 34 PCP features ranked by the accuracy difference (Dj). The accuracy difference Dj = Acc - Accj, for all j = 1, 2, ..., m.
The overall accuracy Acc is obtained using m PCP features, r = {r1, r2 , ... , rm }. The feature-knockout accuracy Accj is obtained using the
remaining m-1 features after excluding the j-th feature, where the m-1 features from the r group.

Table 3. Definition of the top-10 properties ranked by the accuracy differences

Rank AAindex ID Description Difference

1 GEIM800102S Alpha-helix indices for alpha-proteins (Geisow-Roberts, 1980) 5.360

2 ISOY800107S Normalized relative frequency of double bend (Isogai et al., 1980) 5.360

3 SNEP660101 Principal component I (Sneath, 1966) 5.360

4 CHOP780215S Frequency of the 4th residue in turn (Chou-Fasman, 1978b) 5.165

5 BEGF750102S Conformational parameter of beta-structure (Beghin-Dirkx, 1975) 4.777

6 LEVM760106 van der Waals parameter R0 (Levitt, 1976) 4.777

7 OOBM850103 Optimized transfer energy parameter (Oobatake et al., 1985) 4.777

8 PRAM820103 Correlation coefficient in regression analysis (Prabhakaran-Ponnuswamy, 1982) 4.777

9 AURR980103S Normalized positional residue frequency at helix termini N” (Aurora-Rose, 1998) 4.777

10 WILM950104 Hydrophobicity coefficient in RP-HPLC, C18 with 0.1%TFA/2-PrOH/MeCN/H2O (Wilce et al. 1995) 4.777

S: with secondary structure propensity;
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or less than -0.47739, which means a query sequence with
a low rate of the double bend.
The third rule, which covers 65 samples and the accuracy

is 76.9%, is constructed by four properties (SNEP660101,
BEGF750102, GEIM800102, and CHOP780215). This rule
has four criteria: (1) The normalized value of SNEP660101is
equal or less than 0.364754, which means a query sequence
with a low ratio of aromatic structures composition. (2) The
conformational parameter of beta structure (property
BEGF750102) is larger than -0.11677 and less or equal
0.15908, which means a query sequence with a high ratio of
beta structures composition. (3) The normalized value of
GEIM800102 is less or equal than 0.055132, which means
a query sequence with a low rate of alpha-helix. (4) The
normalized value of CHOP780215 is less or equal than
-0.26309, which means a query sequence with a low fre-
quency of fourth residues in turn composition.

The fourth rule, which covers 89 samples and the
accuracy is 76.9%, is constructed by four properties
(SNEP660101, BEGF750102, CHOP780215, and
GEIM800102). This rule has four criteria: (1) The nor-
malized value of SNEP660101is larger than -0.14618
and equal or less than 0.364754, which means a query
sequence with a low ratio of aromatic structures com-
position. (2) The conformational parameter of beta
structure (property BEGF750102) is equal or less than
-0.11677, which means a query sequence with a high
ratio of beta structures composition. (3) The normal-
ized value of CHOP780215 is larger than -0.1979,
which indicates a query sequence with a high fre-
quency of fourth residue in turn composition. (4) The
normalized value of GEIM800102 is less or equal than
0.026614, which means a query sequence with a low
ratio of the alpha-helix.

Figure 5 A decision tree with top-5 features and pruning confidence level higher than 25%. The accuracy of classifying the training
dataset by using the top-5 features to construct decision tree is 73.4%.

Table 4. Six if-then rules for identifying B-cell epitope of HCV using C5.0 and top-five important physicochemical
properties

# Rule Covered
samples

Misclassified
sample

Accuracy

1 SNEP660101 <= 0.36475 AND BEGF750102 <= -0.11677 AND CHOP780215 <= -0.1979 259 56 78.3%

2 SNEP660101 <= 0.36475 AND BEGF750102 <= -0.11677 AND CHOP780215 > -0.1979 AND GEIM800102
> 0.026614 AND ISOY800107 <= -0.47739

9 2 77.8%

3 SNEP660101 <= 0.36475 AND -0.11677 < BEGF750102 <= 0.15908 AND GEIM800102 <= 0.055132 AND
CHOP780215 <= -0.26309

65 15 76.9%

4 -0.14618<SNEP660101 <= 0.36475 AND BEGF750102 <= -0.11677 AND CHOP780215 > -0.1979 AND
GEIM800102 <= 0.026614

89 25 71.9%

5 SNEP660101 <= 0.36475 AND BEGF750102 > -0.11677 AND GEIM800102 > 0.51531 20 6 70.0%

6 SNEP660101 <= -0.14618 AND BEGF750102 <= -0.11677 AND CHOP780215 > -0.1979 AND
GEIM800102 <= -0.13308

96 44 54.2%

Huang et al. BMC Medical Genomics 2015, 8(Suppl 4):S3
http://www.biomedcentral.com/1755-8794/8/S4/S3

Page 6 of 13



The fifth rule, which covers 20 samples and the
accuracy is 70.0%, is constructed by three properties
(SNEP660101, BEGF750102, and GEIM800102). This
rule has three criteria: (1) Principal component I ((AAin-
dex ID: SNEP660101), which is related to aromatic struc-
tures, equal or less than 0.364754, which means if a
query sequence with a low ratio of aromatic structures
composition, (2) The conformational parameter of beta
structure (AAindex ID: BEGF750102) is larger than
-0.11677, which means if a query sequence with a high
ratio of beta structures composition (3) The normalized
value of GEIM800102 is greater than 0.51531, which
means a query sequence with a high rate of alpha-helix.
The sixth rule, which covers 96 samples and the accuracy

is 54.2%, is constructed by four properties (SNEP660101,
BEGF750102, CHOP780215, and GEIM800102). This rule
has three criteria: (1) Principal component I (AAindex ID:
SNEP660101), which is related to aromatic structures,
equal or less than -0.14618, which means a query sequence
with a low ratio of aromatic structures composition,
(2) The conformational parameter of beta structure
(AAindex ID: BEGF750102) is less and equal than
-0.11677, which means a query sequence with a low ratio
of beta structures composition (3) The normalized value of
GEIM800102 is less than -0.13308, which means a query
sequence with a low ratio of the alpha-helix formation.

Identifying promising vaccine candidates
Sequence variability of neutralizing epitopes is considered
to be a major obstacle to vaccine development [26].
Owing to the rapid change of antigenic profile of HCV,
the promising vaccine candidate is identified from B-cell
epitopes of HCV by the two-stage procedure: 1) making

the neutralized range as broad as possible and 2) maxi-
mizing the ability to induce antibodies. To analyze the
ranges of the top-n B-cell epitopes of HCV using a phylo-
genetic tree, the procedure is described below.
Step 1) Select the top-n B-cell epitopes in accordance

with prediction scores of HCV using the prediction sys-
tem Bcell-HCV.
Step 2) Use these n B-cell epitopes of HCV to gener-

ate a phylogenetic tree (Figure 6) by applying the BLO-
SUM62 scoring matrix with the Jalview tool [27].
Step 3) Calculate the divergence is calculated by sum-

ming the distances of all edges in the corresponding
phylogenetic tree.
Step 4) (Termination test) If n != k then n = n+10 and

go to the Step1. Otherwise, stop the algorithm.
The value of k is determined by the specified threshold
(T) for the average score of top-n linear B-cell epitopes.
In this work, T= 0.95 is used.
In this work, the phylogenetic tree of the top-50 epi-

topes with the highest divergence (963.33) which
denotes the neutralize range of the identified vaccine
candidate is obtained (Additional File 3: Table S3). The
detailed information of the top-50 B-cell epitopes of
HCV is listed in Additional File 4: Table S4.
The following procedure performs the second stage

for maximizing the ability to induce antibodies:
Step 1) Use the MAFFT tool [28] to obtain the con-

served motif (PDRE-VLYQE) in Figure 7 from the top-
50 B-cell epitopes of HCV. The illustrated example is
PDRE-VLYQE, shown in Figure 7.
Step 2) Insert every one of the 20 amino acids into the

gap of the conserved motif (PDRE-VLYQE), to generate
20 peptides.

Figure 6 A phylogenetic tree with top-n B-cell epitopes of HCV. The phylogenetic tree is generated for analyzing the broadness of top-n
B-cell epitopes of HCV using the neighbor joining tree with the BLOSUM62 scoring matrix from the Jalview tool. n = 50 in this example.
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Step 3) The best one of the 20 peptides is a vaccine
candidate (PDREMVLYQE) in accordance with predic-
tion scores using the Bcell-HCV (Table 5).

Discussion
The one of the major challenges of designing a peptide-
based vaccine system is related to the collection of
non-epitopes. Some residues in epitope are incorrectly
annotated as non-epitopes led to overestimation pro-
blem that is overestimating of false positive rate. Most
researchers [21,29,30] dealt with this overestimation
problem by extracting a random sample of the protein
sequences in Swiss-Prot [31]. This work solves this over-
estimation problem using experimentally verified non
B-cell epitopes derived from IEDB [22]. The sequence

pattern of linear B-cell epitopes of similar pathogens are
quite different leading to the underperformance of gen-
eral-purpose computational methods [20,21] for predict-
ing B-cell epitopes in HCV, which is consistent with the
independent test results of two general-purpose tools
[12,24]. Hence, developing a virus-specific tool is impor-
tant to accurately identify linear B-cell epitopes in a
particular virus. To our knowledge, this is the first
HCV-customized report showing that predicting anti-
genic epitopes in HCV, analysis of informative physico-
chemical properties, and identifying promising vaccine
candidate from two views which are inducing antibodies
and neutralizing as broad as possible.
Analyzing the relationships among the 34 identified phy-

sicochemical properties and the estimated epitope
sequences provided some insight into linear B-cell epitopes
in HCV. As shown in Table 3 the three most influential
properties (obtained using AAindex IDs GEIM800102,
ISOY800107, and SNEP660101) have the same difference
in accuracy (5.36%), which clearly indicates their significant
contribution to the prediction of HCV antigenic epitopes.
These include alpha and turn propensities, hydrophobicity,
and aromatic properties.
The E2 segment plays a significant role in HCV con-

nection and entry into host cells, and the alpha-helix
structure (GEIM800102) of epitopes has a strong influ-
ence on this connection. For example, one of the central
binding regions in the E2 protein is formed by hydropho-
bic interactions on the alpha-helix, which is located at
the C-terminal [32]. Furthermore, the spatial arrange-
ment of the components at E2 of HCV is found to devi-
ate significantly from the corresponding complexes with
neutralizing antibodies [33].
Antibodies that target the two hypervariable regions of

the E2 segment include HVR1 and HVR2 [34]. These
two parts on the E2 segment contain conservative resi-
dues, such as Thr2, Gly6, Gly23, and Gln26, which are
polar amino acids that form hydrogen bonds [35].
Furthermore, in a work by Kong et al that analyzed anti-
bodies of HCV, the major antibody binding sites were

Figure 7 The motif analysis using the MAFFT tool. The MAFFT tool can analyze the conserved motif from the top-50 high-confidence B-cell
epitopes of HCV. As a result, the conserved motif is PDRE-VLYQE.

Table 5. Prediction scores of 20 vaccine candidates from
the conserved motif

No Sequence Score

1 PDREMVLYQE 0.92

2 PDREIVLYQE 0.91

3 PDREFVLYQE 0.88

4 PDREVVLYQE 0.87

5 PDRENVLYQE 0.83

6 PDRECVLYQE 0.80

7 PDREAVLYQE 0.79

8 PDRESVLYQE 0.77

9 PDRELVLYQE 0.73

10 PDREHVLYQE 0.72

11 PDRETVLYQE 0.68

12 PDREGVLYQE 0.67

13 PDREKVLYQE 0.66

14 PDREYVLYQE 0.63

15 PDREQVLYQE 0.60

16 PDREWVLYQE 0.60

17 PDREEVLYQE 0.56

18 PDRERVLYQE 0.51

19 PDREDVLYQE 0.50

20 PDREPVLYQE 0.48
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found to be conserved, and the residues that were sub-
stituted in those sites showed similar hydrophobicity
[36]. For HCV, the interaction between the antibody
and epitope depends on specific residues from the
hydrophobic face of the epitope. Accordingly, replacing
these with polar or charged residues could weaken or
eliminate the interaction between the antibody and the
antigen [36].
To investigate the property of the alpha-helix structure

(GEIM800102), the ps2 protein structure prediction server
(http://ps2.life.nctu.edu.tw/) to predict the 3D structure of
the query epitopes. The PyMOL (http://sourceforge.net/
projects/pymol/) molecular visualization system was then
used to present molecular visualization in 3D. For exam-
ple, in Figure 8(a), “YPGHVSGHRMAWDMM” is a linear
B-cell epitope which mainly forms a helix structure (blue),
whereas “RLWHYPCTINYTIFKI” is a non B-cell epitope
that possesses an alpha structure (red) as well as a helix
structure (blue).
The property of principal component I (AAindex ID:

SNEP660101) is related to aromatic structures, which
were discovered to play a fundamental role in the inter-
action between antibodies and epitopes. The side chain
of two aromatic residues, Phe442, and Tyr443, are exposed
on the same side of the helix in the E2 protein [37] and
close to the binding residues, Leu438, Ala439, and Leu441.
Systematic studies on mutagenesis have shown that only
Leu438 and Ala439 have the ability to tolerate mutations.
This means that the mutation of those two residues
should not damage the ability of the virus to bind to host
cells, whereas a mutation in one of the two aromatic resi-
dues would render the HCV virus non-functional [8,37].
In conclusion, the binding sites of HCV antibodies are

located in a predominantly hydrophobic cavity with aro-
matic residues that play a critical role in the interaction
with antibodies [36]. Some residues can adjust the shape
space of epitopes in the connection between antibodies

and epitopes. For instance, the small amino acids glycine
and proline are found interspersed between aromatic
residues, which can alter the geometry of the hydropho-
bic region to fit with various antibodies [38].

Conclusions
Development of an effective vaccine against hepatitis C
virus (HCV) is a complex task owing to the variability of
this RNA virus. Recently, development of HCV vaccines
has mainly focused on T-cell immune response. How-
ever, B-cell epitopes that can stimulate B-cell response is
one of the major tasks of peptide-based vaccine develop-
ment. This work proposes an interpretable rule mining
system IRMS-BE for extracting interpretable rules using
informative physicochemical properties and a web server
Bcell-HCV for predicting linear B-cell epitopes of HCV.
Finally, a conserved promising vaccine candidate,
PDREMVLYQE, is identified for inclusion in a vaccine
against HCV.

Methods
The block diagram in Figure 1 outlines the steps
involved in modeling with the proposed IRMS-BE sys-
tem, including 1) Datasets, 2) representing PCP compo-
sition, 3) IRMS-BE system, 4) PCP mining module,
5) knowledge acquisition module, 6) predicting B-cell
epitopes of HCV and 7) interpretable rules set. These
steps were applied in this work, and detailed descrip-
tions are in the following sub-sections.

Datasets
A B-cell response of HCV (referred to as BR-HCV)
dataset was established to evaluate IRMS-BE and Bcell-
HCV. BR-HCV dataset were collected from the immune
epitope database (IEDB) [22] (version 2.12 released on
Dec. 16, 2013), which contains data related to antibodies
and T-cell epitopes in humans, non-human primates,

Figure 8 The 3D structures of the linear B-cell epitope and non B-cell epitope. The 3D structures can distinguish when considering the top
propensity of Alpha-helix indices for alpha-proteins with AAindex ID: GEIM800102 (a) The structures of linear B-cell epitope are mainly composed
of helixes (blue). (b) But the structures of non B-cell epitopes contain beta-sheets (red, at the left) also to helixes (blue, at the right).
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rodents, and other animal species. The latest version
(version 2.3) was released on July 2, 2014. The BR-HCV
dataset was created as follows.
Step 1) The source organism “Hepatitis C virus” was

used to find the B-cell response of HCV sequences. This
result involved the collection of 8009 B-cell response
sequences, including 4041 linear B-cell epitopes (posi-
tives) and 3968 non B-cell epitopes (negatives), as
shown in Additional File 5: Figure S1.
Step 2) Epitopes with 10- to 20-mers lengths were

selected. The epitopes annotated with a greater number
of ‘positive’ (i.e. as opposed to ‘negative’) results were
regarded as positive samples. Conversely, peptide
sequences with more ‘negative’ results were considered
as negative. For example, Additional File 6: Figure S2 (a)
and (b) show the epitope ‘YLLPRRGPRL’ was considered
a positive sample because most of the experiment results
were positive. The epitope ‘DLMGYIPLV’, as shown in
Additional File 6: Figure S2 (c) was considered a negative
sample is showing the opposite criteria.
Step 3) Redundant samples (i.e., epitopes that shared

20% or more sequence identity with any other peptides in
the same subset) were removed from the benchmark data
sets to create a non-redundant dataset. This work used the
PICES [39] culling program, which resulted in the collec-
tion of 1548 B-cell response sequences, 774 positives and
774 negatives, to establish the BR-HCV dataset
Step 4) The BR-HCV dataset was divided into two

parts (BR-HCVTr and BR-HCVTe) for training and inde-
pendent test. The BR-HCVTr and BR-HCVTe datasets,
which were kept at a ratio of 2:1, contained 1032 (516
positives and 516 negatives) and 516 (258 positives and
258 negatives) B-cell response sequences, respectively.

Representation of PCP composition
Physicochemical properties (PCPs), also referred to as
propensity, are the most intuitive feature associated with
biochemical reactions and are widely used in the field of
bioinformatics. This work represents each peptide
sequence for an l-dimensional profile, where the value
of each amino acid is obtained from the AAindex [40]
database to encode a particular PCP feature. The
l-dimensional profiles are transformed into the NAAindex-
dimensional feature vectors (referred to as PCP compo-
sition), where NAAindex = 531 physicochemical properties
can be obtained from http://www.genome.ad.jp/aaindex
[40]. In this work, l = 10, 11 to 20 are used. Finally, all
values of the feature vectors are normalized into [-1, 1]
before being input into the SVM.

IRMS-BE system
An interpretable rule mining system of B-cell epitopes
(IRMS-BE) including physiochemical properties (PCPs)
mining module and knowledge acquisition module is

proposed. PCPs mining module selects 34 informative PCPs
from 531 physiochemical properties and determines the
values of C and g of the used SVM simultaneously based on
an inheritable bi-objective genetic algorithm [41]. The
knowledge acquisition module is based on the 34 informa-
tive PCPs, a decision tree method C5.0 [42] was used to
extract if-then rule-based knowledge for the biologist to
understand the mechanism of B-cell epitopes in HCV.

PCP mining module
To identify minimal number (m) out of 531 PCP fea-
tures while establishing an SVM-based training classifier
(referred to as PCP mining) with maximal accuracy is a
bi-objective combinatorial optimization problem [43].
Physicochemical property mining module (PCP mining
module) solved this optimization problem by utilizing
an inheritable bi-objective combinatorial optimization
genetic algorithm (IBCGA). The PCP mining module to
consider internal correlations among relevant features
rather than focusing on individual features [44].
To select a minimal set of m informative PCPs from

n = 531 PCPs while maximizing the prediction accuracy
of using these m features for designing an SVM classi-
fier is a bi-objective combinatorial optimization problem
C(n, m). To cope with this large parameter optimization
problem, the inheritable bi-objective combinatorial
genetic algorithm (IBCGA) is used [9]. The IBCGA can
simultaneously obtain a set of solutions, Sr, where r =
rstart, rstart+1, ..., rend in a single run using an inheritance
mechanism to efficiently search for a solution Sr+1 to C
(n, r+1) by inheriting a good solution Sr to C(n, r). On
the other hand, the IBCGA using an intelligent evolu-
tionary algorithm (IEA) [10] which can efficiently solve
large parameter optimization problems is good at deriv-
ing an optimized SVM model with the feature selection.
The high performance of IEA mainly arises from using
an orthogonal array based crossover operation with a
systematic reasoning ability instead of the traditional
crossover operation with a generate-and-go mechanism.
The detailed method can refer to the work [9]. Consid-
ering the purposes of this work, involving both model
selection and estimation of prediction errors, the cross-
validation scheme is used with an SVM-based classifier
of this PCP mining module. To reduce computational
costs, PCP mining module used the prediction accuracy
(ACC) of 10-fold CV to serve as the fitness function of
IBCGA [24] for the entire training set. The evaluation
of binary predictions involves the use of several quality
measures: accuracy (ACC), sensitivity (SE), specificity
(SP), and the Matthews correlation coefficient (MCC):

ACC = (TP + TN)/(TP + FP + TN + FN)

SE = TP/(TP + FN)

SP = TN/(TN + FP)

MCC = (TP× TN− FP× FN)/
√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

(1)
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where TP and TN are the numbers of correctly pre-
dicted linear B-cell epitopes and non B-cell epitopes,
respectively. FP and FN are the numbers of incorrectly
predicted linear B-cell epitopes and non B-cell epitopes,
respectively. MCC is often used to evaluate the balance
of model prediction.
The input of the PCP mining module is a training set

of protein sequences belonging to two classes: positives
and negatives. The output contains a set of m selected
PCP features and an SVM-based classifier with asso-
ciated parameter settings, gand C. Protocols for the PCP
mining module are as follows:
Step 1) Each sample is represented as an n-dimensional

feature vector P = [p1, p2, ..., pn] using the composition of
PCPs
Step 2) The IBCGA-chromosome consists of binary

genes fi from which to select PCP features and two 4-bit
genes for encoding kernel parameter (g) and cost para-
meter (C). The corresponding feature pi (the i-th PCP
feature) is excluded from the SVM classifier if fi = 0, and
is included if fi = 1. Let m be the sum of fi. The g > 0
determines how the samples are transformed into a high-
dimensional search space. The cost parameter C>0 of the
SVM classifier adjusts the penalty of total error. These
two parameters C and g must be tuned to get the best
prediction performance. In this work, g ∈ {2-15, 2-13, ...,
216}and C∈ {2-15, 2-13, ..., 216}.
Step 3) The fitness function is the prediction accuracy

of 10-fold CV using the LIBSVM classifier [47] with m
selected PCP features, g and C by decoding the IBCGA-
chromosome. In this work, a popular kernel function
that is radial basis function exp (− g ||xi xj||2) is
adopted. The xi and xj are training samples and g is a
kernel parameter. The parameter settings of IBCGA are
given in Additional File 7: Table S5.
Step 4) All solutions for Sr from r=rstart to rend are

obtained using IBCGA. Let Sm be the most accurate
solution with m selected PCP features among all solu-
tions from C(n, rstart) to C(n, rend) search space. In this
work, rstart = 10 and rend = 40 are used.
Step 5) IBCGA use mechanisms of randomization and

are therefore characterized as non-deterministic based
on the fact that results of individual runs are not the
same always. Therefore, Steps 3) and Step 4) are per-
formed for R independent runs to obtain the best R
number of discrete runs to get the best R solutions, In
this work, R = 30 is used.

The knowledge acquisition module
Decision tree algorithms are valuable to obtain the rule-
based knowledge since the tree can generate if-then
rules. In this work, the method C5.0 is employed to con-
struct decision tree classifier and acquire interpretable

rule set for analyzing hepatitis C virus. The decision tree
is constructed using ranked properties, which selected by
information gain, and can be used to select properties,
according to the ranks of properties. Nevertheless, the
selected properties have no interaction between each
property and the influence of properties should be con-
sidered individually. For acquiring the general and inter-
pretable rules, the pruning process is applied to avoid the
over-fitting problem and the threshold value of confi-
dence is set to 25%. The final tree can transfer to if-then
rules that one rule is corresponded to one leaf node. The
covered samples of a rule are the samples in one leaf
node.

Prediction system of B-cell epitopes of HCV
To provide prediction service to the scientific commu-
nity, we have developed a user-friendly web server Bcell-
HCV based on 34 informative physicochemical proper-
ties and optimized parameters (C, g) of SVM classifier
in this study. The 34 informative physicochemical prop-
erties were selected by the PCP mining training module.

Availability
The web server Bcell-HCV can deal with the amino acid
sequences of HCV antigens in FASTA format. Users
can input the size of sliding window and the threshold
of prediction score for screening high-confidence puta-
tive epitopes. The output is the identified B-cell epitopes
with location information and their prediction scores.
The high score implies a great probability for the pep-
tide to be a B-cell epitope of HCV. The web server is
freely available at http://e045.life.nctu.edu.tw/BcellHCV/

Additional material

Additional file 1: Table S1. Definition of the 34 properties ranked by
the accuracy differences.

Additional file 2: Table S2. Rule-based knowledge of Bcell-HCV
prediction.

Additional file 3: Table S3. Statistics of the top-k epitopes for the
threshold > 0.95.

Additional file 4: Table S4. The top-50 B-cell epitopes of HCV for
analyzing the conserved motif and constructing a phylogenetic tree are
listed. The order of peptide IDs are sorted using the prediction score.

Additional file 5: Figure S1. Figure S1 (a) HCV source organism. (b) A
total of 8009 non-redundant linear B-cell epitopes and non B-cell
epitopes are obtained.

Additional file 6: Figure S2. Figure S2 Collect relevant antigenic
sequences with (b) B-cell assay data, based on the (b) positive samples
and (c) negative samples.

Additional file 7: Table S5. The control parameters of IBCGA used.
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