6,093 research outputs found

    ANN for Diagnosing Hepatitis Virus

    Get PDF
    Abstract: This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. A number of factors that may possibly influence the performance of patients were outlined. Such factors as age, sex, Steroid, Antivirals, Fatigue, Malaise, Anorexia, Liver Big, Liver Firm Splean Palpable, Spiders, Ascites, Varices, Bilirubin, Alk Phosphate, SGOT, Albumin, Protine and Histology, were then used as input variables for the ANN model . Test data evaluation shows that the ANN model is able to correctly predict the diagnosis of more than 93% of prospective Patients

    Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals

    Get PDF
    Several European countries have established criteria for prioritising initiation of treatment in patients infected with the hepatitis C virus (HCV) by grouping patients according to clinical characteristics. Based on neural network techniques, our objective was to identify those factors for HIV/HCV co-infected patients (to which clinicians have given careful consideration before treatment uptake) that have not being included among the prioritisation criteria. This study was based on the Spanish HERACLES cohort (NCT02511496) (April-September 2015, 2940 patients) and involved application of different neural network models with different basis functions (product-unit, sigmoid unit and radial basis function neural networks) for automatic classification of patients for treatment. An evolutionary algorithm was used to determine the architecture and estimate the coefficients of the model. This machine learning methodology found that radial basis neural networks provided a very simple model in terms of the number of patient characteristics to be considered by the classifier (in this case, six), returning a good overall classification accuracy of 0.767 and a minimum sensitivity (for the classification of the minority class, untreated patients) of 0.550. Finally, the area under the ROC curve was 0.802, which proved to be exceptional. The parsimony of the model makes it especially attractive, using just eight connections. The independent variable "recent PWID" is compulsory due to its importance. The simplicity of the model means that it is possible to analyse the relationship between patient characteristics and the probability of belonging to the treated group

    Predicting the outcome of renal transplantation

    Get PDF
    ObjectiveRenal transplantation has dramatically improved the survival rate of hemodialysis patients. However, with a growing proportion of marginal organs and improved immunosuppression, it is necessary to verify that the established allocation system, mostly based on human leukocyte antigen matching, still meets today's needs. The authors turn to machine-learning techniques to predict, from donor-recipient data, the estimated glomerular filtration rate (eGFR) of the recipient 1 year after transplantation.DesignThe patient's eGFR was predicted using donor-recipient characteristics available at the time of transplantation. Donors' data were obtained from Eurotransplant's database, while recipients' details were retrieved from Charite Campus Virchow-Klinikum's database. A total of 707 renal transplantations from cadaveric donors were included.MeasurementsTwo separate datasets were created, taking features with <10% missing values for one and <50% missing values for the other. Four established regressors were run on both datasets, with and without feature selection.ResultsThe authors obtained a Pearson correlation coefficient between predicted and real eGFR (COR) of 0.48. The best model for the dataset was a Gaussian support vector machine with recursive feature elimination on the more inclusive dataset. All results are available at http://transplant.molgen.mpg.de/.LimitationsFor now, missing values in the data must be predicted and filled in. The performance is not as high as hoped, but the dataset seems to be the main cause.ConclusionsPredicting the outcome is possible with the dataset at hand (COR=0.48). Valuable features include age and creatinine levels of the donor, as well as sex and weight of the recipient

    Popular Ensemble Methods: An Empirical Study

    Full text link
    An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund and Shapire, 1996; Shapire, 1990) are two relatively new but popular methods for producing ensembles. In this paper we evaluate these methods on 23 data sets using both neural networks and decision trees as our classification algorithm. Our results clearly indicate a number of conclusions. First, while Bagging is almost always more accurate than a single classifier, it is sometimes much less accurate than Boosting. On the other hand, Boosting can create ensembles that are less accurate than a single classifier -- especially when using neural networks. Analysis indicates that the performance of the Boosting methods is dependent on the characteristics of the data set being examined. In fact, further results show that Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally, consistent with previous studies, our work suggests that most of the gain in an ensemble's performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees

    Energy Efficiency Prediction using Artificial Neural Network

    Get PDF
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a dataset for building energy performance. The main factors for input variables are: relative compactness, roof area, overall height, surface area, glazing are a, wall area, glazing area distribution of a building, orientation, and the output variables: heating and cooling loads of the building. The dataset used for training are the data published in the literature for various 768 residential buildings. The model was trained and validated, most important factors affecting heating load and cooling load are identified, and the accuracy for the validation was 99.60%
    corecore