15 research outputs found

    Prediction of enzyme function by combining sequence similarity and protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of studies have used protein interaction data alone for protein function prediction. Here, we introduce a computational approach for annotation of enzymes, based on the observation that similar protein sequences are more likely to perform the same function if they share similar interacting partners.</p> <p>Results</p> <p>The method has been tested against the PSI-BLAST program using a set of 3,890 protein sequences from which interaction data was available. For protein sequences that align with at least 40% sequence identity to a known enzyme, the specificity of our method in predicting the first three EC digits increased from 80% to 90% at 80% coverage when compared to PSI-BLAST.</p> <p>Conclusion</p> <p>Our method can also be used in proteins for which homologous sequences with known interacting partners can be detected. Thus, our method could increase 10% the specificity of genome-wide enzyme predictions based on sequence matching by PSI-BLAST alone.</p

    EFICAz²: enzyme function inference by a combined approach enhanced by machine learning

    Get PDF
    ©2009 Arakaki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2105/10/107doi:10.1186/1471-2105-10-107Background: We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified under the EC number of interest) or heterofunctional (annotated with another EC number or lacking enzymatic activity). Each of the two FDR-based components is associated to one of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAz's performance in this regime, we: i) increased the number of predictive components and ii) took advantage of consensual information from the different components to make the final EC number assignment. Results: We have developed two new EFICAz components, analogs to the two FDR-based components, where the discrimination between homo and heterofunctional members is based on the evaluation, via Support Vector Machine models, of all the aligned positions between the query sequence and the multiple sequence alignments associated to the enzyme families. Benchmark results indicate that: i) the new SVM-based components outperform their FDR-based counterparts, and ii) both SVM-based and FDR-based components generate unique predictions. We developed classification tree models to optimally combine the results from the six EFICAz components into a final EC number prediction. The new implementation of our approach, EFICAz², exhibits a highly improved prediction precision at MTTSI < 30% compared to the original EFICAz, with only a slight decrease in prediction recall. A comparative analysis of enzyme function annotation of the human proteome by EFICAz² and KEGG shows that: i) when both sources make EC number assignments for the same protein sequence, the assignments tend to be consistent and ii) EFICAz² generates considerably more unique assignments than KEGG. Conclusion: Performance benchmarks and the comparison with KEGG demonstrate that EFICAz² is a powerful and precise tool for enzyme function annotation, with multiple applications in genome analysis and metabolic pathway reconstruction. The EFICAz² web service is available at: http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.htm

    Enrichment of homologs in insignificant BLAST hits by co-complex network alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous.</p> <p>Results</p> <p>Analogous to the use of the genomics context in genome alignments, we test whether conserved functional context can be used to select candidate homologs from insignificant BLAST hits. We make a co-complex network alignment between complex subunits in yeast and human and find that proteins with an insignificant BLAST hit that are part of homologous complexes, are likely to be homologous themselves. Further analysis of the distant homologs we recovered using the co-complex network alignment, shows that a large majority of these distant homologs are in fact ancient paralogs.</p> <p>Conclusions</p> <p>Our results show that, even though evolution takes place at the sequence and genome level, co-complex networks can be used as circumstantial evidence to improve confidence in the homology of distantly related sequences.</p

    EFICAz2: enzyme function inference by a combined approach enhanced by machine learning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified under the EC number of interest) or heterofunctional (annotated with another EC number or lacking enzymatic activity). Each of the two FDR-based components is associated to one of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAz's performance in this regime, we: i) increased the number of predictive components and ii) took advantage of consensual information from the different components to make the final EC number assignment.</p> <p>Results</p> <p>We have developed two new EFICAz components, analogs to the two FDR-based components, where the discrimination between homo and heterofunctional members is based on the evaluation, via Support Vector Machine models, of all the aligned positions between the query sequence and the multiple sequence alignments associated to the enzyme families. Benchmark results indicate that: i) the new SVM-based components outperform their FDR-based counterparts, and ii) both SVM-based and FDR-based components generate unique predictions. We developed classification tree models to optimally combine the results from the six EFICAz components into a final EC number prediction. The new implementation of our approach, EFICAz<sup>2</sup>, exhibits a highly improved prediction precision at MTTSI < 30% compared to the original EFICAz, with only a slight decrease in prediction recall. A comparative analysis of enzyme function annotation of the human proteome by EFICAz<sup>2 </sup>and KEGG shows that: i) when both sources make EC number assignments for the same protein sequence, the assignments tend to be consistent and ii) EFICAz<sup>2 </sup>generates considerably more unique assignments than KEGG.</p> <p>Conclusion</p> <p>Performance benchmarks and the comparison with KEGG demonstrate that EFICAz<sup>2 </sup>is a powerful and precise tool for enzyme function annotation, with multiple applications in genome analysis and metabolic pathway reconstruction. The EFICAz<sup>2 </sup>web service is available at: <url>http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html</url></p

    Bioinformatics and Moonlighting Proteins

    Get PDF
    Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyse and describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are: a) remote homology searches using Psi-Blast, b) detection of functional motifs and domains, c) analysis of data from protein-protein interaction databases (PPIs), d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) have the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations –it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses

    Prediction of enzyme function by combining sequence similarity and protein interactions

    No full text
    Background: A number of studies have used protein interaction data alone for protein function prediction. Here, we introduce a computational approach for annotation of enzymes, based on the observation that similar protein sequences are more likely to perform the same function if they share similar interacting partners. Results: The method has been tested against the PSI-BLAST program using a set of 3,890 protein sequences from which interaction data was available. For protein sequences that align with at least 40% sequence identity to a known enzyme, the specificity of our method in predicting the first three EC digits increased from 80% to 90% at 80% coverage when compared to PSI-BLAST. Conclusion: Our method can also be used in proteins for which homologous sequences with known interacting partners can be detected. Thus, our method could increase 10% the specificity of genome-wide enzyme predictions based on sequence matching by PSI-BLAST alone

    COMPUTATIONAL METHODS FOR RECONSTRUCTION AND ENHANCEMENT OF GENOME-SCALE METABOLIC NETWORKS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Prediction of enzyme function by combining sequence similarity and protein interactions

    No full text
    Background: A number of studies have used protein interaction data alone for protein function prediction. Here, we introduce a computational approach for annotation of enzymes, based on the observation that similar protein sequences are more likely to perform the same function if they share similar interacting partners. Results: The method has been tested against the PSI-BLAST program using a set of 3,890 protein sequences from which interaction data was available. For protein sequences that align with at least 40% sequence identity to a known enzyme, the specificity of our method in predicting the first three EC digits increased from 80% to 90% at 80% coverage when compared to PSI-BLAST. Conclusion: Our method can also be used in proteins for which homologous sequences with known interacting partners can be detected. Thus, our method could increase 10% the specificity of genome-wide enzyme predictions based on sequence matching by PSI-BLAST alone.JE was supported by predoctoral fellowship from the Generalitat de Catalunya and CERBA (Spain). EQ acknowledges grants from the Spanish Ministerio de Educación y Ciencia (BIO2007-67904-C02-01). FXA acknowledges grants from the Spanish Ministerio de Educación y Ciencia (BIO2007-68046). AS acknowledges the financial support by the Sandler Family Supporting Foundation, IBM, HP, Netapps, and Intel for hardware gifts, and NIH grants GM74945, GM74929, GM71790, and GM54762. MAM-R acknowledges support from the Spanish Ministerio de Educación y Ciencia (BIO2007-66670). BO acknowledges grants from Generalitat de Catalunya (CIDEM), Spanish Ministerio de Educación y Ciencia (MEC BIO2005-00533 and PROFIT PSE-010000-2007-1) and by European Union INFOBIOMED-NoE (IST-507585) and @NEURIST (IST-2004-027703
    corecore