7 research outputs found

    Effect of operating temperature on degradation of solder joints in crystalline silicon photovoltaic modules for improved reliability in hot climates

    Get PDF
    Accelerated degradation of solder joint interconnections in crystalline silicon photovoltaic (c-Si PV) modules drives the high failure rate of the system operating in elevated temperatures. The phenomenon challenges the thermo-mechanical reliability of the system for hot climatic operations. This study investigates the degradation of solder interconnections in c-Si PV modules for cell temperature rise from 25 °C STC in steps of 1 °C to 120 °C. The degradation is measured using accumulated creep strain energy density (Wacc). Generated Wacc magnitudes are utilised to predict the fatigue life of the module for ambient temperatures ranging from European to hot climates. The ANSYS mechanical package coupled with the IEC 61,215 standard accelerated thermal cycle (ATC) profile is employed in the simulation. The Garofalo creep model is used to model the degradation response of solder while other module component materials are simulated with appropriate material models. Solder degradation is found to increase with every 1 °C cell temperature rise from the STC. Three distinct degradation rates in Pa/°C are observed. Region 1, 25 to 42 °C, is characterised by degradation rate increasing quadratically from 1.53 to 10.03 Pa/°C. The degradation rate in region 2, 43 to 63 °C, is critical with highest constant magnitude of 12.06 Pa/°C. Region 3, 64 to 120 °C, demonstrates lowest degradation rate of logarithmic nature with magnitude 5.47 at the beginning of the region and 2.25 Pa/°C at the end of the region. The module fatigue life, L (in years) is found to decay according to the power function L=721.48T-1.343. The model predicts module life in London and hot climate to be 18.5 and 9 years, respectively. The findings inform on the degradation of c-Si PV module solder interconnections in different operating ambient temperatures and advise on its operational reliability for improved thermo-mechanical design for hot climatic operations

    Development of C-Line plot technique for the characterization of edge effects in acoustic imaging: A case study using flip chip package geometry

    Get PDF
    Edge effect is a common phenomenon observed in acoustic micro-imaging of microelectronic packages. In this paper, using flip chip package geometry as a test vehicle, finite element modelling is carried out to study the fundamental mechanism of the edge effect phenomenon. C-Line plot technique is developed for the characterization of edge effects in acoustic C-scan images, in particular solder joint C-scan images. Simulated results are compared to experimental results. Results reveal that edge effect generation is mainly attributed to the under-bump-metallisation structure. In addition, through analysis of the C-Line profile of edge effects, the impact of the transducer focal point and the spot size on the edge effect is investigated. Results show that slight off-focus can reduce the severity of the edge effect in which image sharpness is a trade-off

    Evaluation of thermo-mechanical damage and fatigue life of solar cell solder interconnections

    Get PDF
    The soldering process of interconnecting crystalline silicon solar cells to form photovoltaic (PV) module is a key manufacturing process. However, during the soldering process, stress is induced in the solar cell solder joints and remains in the joint as residual stress after soldering. Furthermore, during the module service life time, thermo-mechanical degradation of the solder joints occurs due to thermal cycling of the joints which induce stress, creep strain and strain energy. The resultant effect of damage on the solder joint is premature failure, hence shortened fatigue life. This study seeks to determine accumulated thermo-mechanical damage and fatigue life of solder interconnection in solar cell assembly under thermo-mechanical cycling conditions. In this investigation, finite element modelling (FEM) and simulations are carried out in order to determine nonlinear degradation of SnAgCu solder joints. The degradation of the solder material is simulated using Garofalo-Arrhenius creep model. A three dimensional (3D) geometric model is subjected to six accelerated thermal cycles (ATCs) utilising IEC 61215 standard for photovoltaic panels. The results demonstrate that induced stress, strain and strain energy impacts the solder joints during operations. Furthermore, the larger the accumulated creep strain and creep strain energy in the joints, the shorter the fatigue life. This indicates that creep strain and creep strain energy in the solder joints significantly impacts the thermo-mechanical reliability of the assembly joints. Regions of solder joint with critical stress, strain and strain energy values including their distribution are determined. Analysis of results demonstrates that creep energy density is a better parameter than creep strain in predicting interconnection fatigue life. The use of six ATCs yields significant data which enable better understanding of the response of the solder joints to the induced loads. Moreover, information obtained from this study can be used for improved design and better-quality fabrication of solder interconnections in solar cell assembly for enhanced thermo-mechanical reliability

    Effect of stand‑of height on the shear strength of ball grid array solder joints under varying pad sizes

    Get PDF
    The solder joints of ball grid array utilized in consumer electronics systems or assemblies degrade and fail overtime. Their degree of degradation is more critical, especially at elevated temperatures and mechanical loading conditions. This study presents the efect of component standof height (CSH) on the shear strength reliability of ball grid array solder joints under diferent pad sizes. Investigation of the impact of standof height on the mechanical reliability of the solder joint of ball grid array components under diferent pad sizes was conducted in this work. Isothermal ageing of test samples were conducted at 150 °C for 8 days. This study focuses on establishing the relationship between CSH and shear strength of the solder joints under diferent pad sizes and the corresponding efect of prolonged elevated temperature conditions on the mechanical integrity of the soldered joints. The work also identifes the failure mode and examines the region of the failed joints and surfaces to provide information on the morphological characteristics of the material microstructure. The results of this study demonstrate that the smallest pad size (19 mil) gave the lowest shear strength of 61.08 MPa with a high standof height of 0.25 mm as compared to the largest pad size (24 mil) with the highest shear strength of 70.43 MPa having a relatively low standof height of 0.22 m

    Optimised solder interconnections in crystalline silicon (c-Si) photovoltaic modules for improved performance in elevated temperature climate

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.The operations of c-Si PV modules in elevated temperature climates like Africa and the Middle East are plagued with poor thermo-mechanical reliability and short fatigue lives. There is the need to improve the performance of the system operating in such regions to solve the grave energy poverty and power shortages. Solder interconnection failure due to accelerated thermo-mechanical degradation is identified as the most dominant degradation mode and responsible for over 40% of c-Si PV module failures. Hence the optimisation of c-Si PV module solder interconnections for improved performance in elevated temperature climate is the focus of this research. The effects of relevant reliability influencing factors (RIFs) on the performance (thermo-mechanical degradation and fatigue life) of c-Si PV module solder interconnections are investigated utilising a combination of ANSYS finite element modelling (FEM), Taguchi L25 orthogonal array and analytical techniques. The investigated RIFs are operating temperature, material combination and interconnection geometry. Garofalo creep relations and temperature dependent Young’s Modulus of Elasticity are used to model solder properties, EVA layer is modelled as viscoelastic while the other component layers are modelled using appropriate constitutive material models. Results show that fatigue life decays with increases in ambient temperature loads. A power function model =721.48−1.343, was derived to predict the fatigue life (years) of c-Si PV modules in any climatic region. Of the various ribbon-contact material combination models investigated, Silver-Silver, Aluminium-Aluminium, Silver-Aluminium and Aluminium-Silver are the top four best performing solder interconnection models with low deformation ratios, , normalised degradation values, 1. Further findings indicate that only the solder layer demonstrates good miniaturisation properties while the standard dimensions for ribbon and contact layers remain the best performing geometry settings. Additionally, from the Taguchi robust optimisation, the Aluminium-Silver ribbon-contact material combination model (ribbon = 180μm, solder = 56μm, contact = 50μm) demonstrated the best performance in elevated temperature climate, reduced solder degradation by 95.1% and is the most suitable substitute to the conventional c-Si PV module solder interconnection in elevated temperature climate conditions – in terms of thermo-mechanical degradation. These findings presented provide more insight into the design and development of c-Si PV modules operating in elevated temperature climates by providing a fatigue life prediction model in various ambient conditions, identifying material combinations and geometry which demonstrate improved thermo-mechanical reliability and elongated fatigue life.Schlumberger Faculty for the Future Foundation (FFTF
    corecore