124 research outputs found

    Generalized Minimum Error with Fiducial Points Criterion for Robust Learning

    Full text link
    The conventional Minimum Error Entropy criterion (MEE) has its limitations, showing reduced sensitivity to error mean values and uncertainty regarding error probability density function locations. To overcome this, a MEE with fiducial points criterion (MEEF), was presented. However, the efficacy of the MEEF is not consistent due to its reliance on a fixed Gaussian kernel. In this paper, a generalized minimum error with fiducial points criterion (GMEEF) is presented by adopting the Generalized Gaussian Density (GGD) function as kernel. The GGD extends the Gaussian distribution by introducing a shape parameter that provides more control over the tail behavior and peakedness. In addition, due to the high computational complexity of GMEEF criterion, the quantized idea is introduced to notably lower the computational load of the GMEEF-type algorithm. Finally, the proposed criterions are introduced to the domains of adaptive filter, kernel recursive algorithm, and multilayer perceptron. Several numerical simulations, which contain system identification, acoustic echo cancellation, times series prediction, and supervised classification, indicate that the novel algorithms' performance performs excellently.Comment: 12 pages, 9 figure

    Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

    Get PDF
    This paper contributes to the challenge of skeleton-based human action recognition in videos. The key step is to develop a generic network architecture to extract discriminative features for the spatio-temporal skeleton data. In this paper, we propose a novel module, namely Logsig-RNN, which is the combination of the log-signature layer and recurrent type neural networks (RNNs). The former one comes from the mathematically principled technology of signatures and log-signatures as representations for streamed data, which can manage high sample rate streams, non-uniform sampling and time series of variable length. It serves as an enhancement of the recurrent layer, which can be conveniently plugged into neural networks. Besides we propose two path transformation layers to significantly reduce path dimension while retaining the essential information fed into the Logsig-RNN module. (The network architecture is illustrated in Figure 1 (Right).) Finally, numerical results demonstrate that replacing the RNN module by the LogsigRNN module in SOTA networks consistently improves the performance on both Chalearn gesture data and NTU RGB+D 120 action data in terms of accuracy and robustness. In particular, we achieve the state-of-the-art accuracy on Chalearn2013 gesture data by combining simple path transformation layers with the Logsig-RNN

    THE TECHNIQUE OF DETERMINATION OF STRUCTURAL PARAMETERS FROM FORCED VIBRATION TESTING

    Get PDF
    This thesis details the results of an investigation into a technique for determination of "useful" structural parameters from forced vibration testing. The implementation of this technique to full scale civil engineering structures was achieved by several developments in the experimental and computational fronts: a vibration generator and a computer-aided-testing system for the former and two computational algorithms for the latter. The experimental developments are instrumental to exciting large structures and acquisition of large quantities of useful data in digital format. These data serve as inputs to the computational algorithms whose outputs are structural parameters. These parameters are in either modal or spatial forms which cannot be measured directly but have to be extracted from the raw data. The modal-parameter-extraction method is based on direct Least-Square fitting technique and is simple to implement. The technique can yield good accuracy if the residual effects from out-of-range modes are removed from the raw data before fitting. The spatial-parameter- extraction method distinguishes itself from other conventional methods in the way that the orthogonality property is not explicitly used. This method is applicable to situations where conventional methods are not; i.e. in cases if modal matrices are not square. Some success was achieved in cases in which computer synthesized or good quality laboratory test data were used. Full scale field tests of a tall office block and a slender tower were carried out and their modal models obtained. Attempts to obtain spatial models of these structures were not carried out, however, as this task can be a separate research topic in its own right. Further research in such application is still required

    Advances in image acquisition and filtering for MRI neuroimaging at 7 tesla

    Get PDF
    Performing magnetic resonance imaging at high magnetic field strength promises many improvements over low fields that are of direct benefit in functional neuroimaging. This includes the possibility of improved signal-to-noise levels, and increased BOLD functional contrast and spatial specificity. However, human MRI at 7T and above suffers from unique engineering challenges that limit the achievable gains. In this thesis, three technological developments are introduced, all of which address separate issues associated with functional magnetic resonance neuroimaging at very high magnetic field strengths. First, the image homogeneity problem is addressed by investigating methods of RF shimming — modifying the excitation portion of the MRI experiment for use with multi-channel RF coils. It is demonstrated that in 2D MRI experiments, shimming on a slice-by slice basis allows utilization of an extra degree of freedom available from the slice dimension, resulting in significant gains in image homogeneity and reduced RF power requirements. After acceptable images are available, we move to address complications of high field imaging that manifest in the fMRI time series. In the second paper, the increased physiological noise present in BOLD time series at high field is addressed with a unique data-driven noise regressor scheme based upon information in the phase component of the MRI signal. It is demonstrated that this method identifies and removes a significant portion of physiological signals, and performs as good or better than other popular data driven methods that use only the magnitude signal information. Lastly, the BOLD phase signal is again leveraged to address the confounding role of veins in resting state BOLD fMRI experiments. The phase regressor technique (previously developed by Dr. Menon) is modified and applied to resting state fMRI to remove macro vascular contributions in the datasets, leading to changes in spatial extent and connectivity of common resting state networks on single subjects and at the group level

    The deep space network

    Get PDF
    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is presented
    • …
    corecore