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1. Introduction  

In the case of moving sources, various target angle tracking algorithms have been proposed 
and reported in the literature for multiple narrow-band targets. Yang and Kaveh proposed 
an iterative adaptive eigen-subspace method in conjunction with the multiple signal 
classification (MUSIC) algorithm to track the DOA angles of multiple targets (Yang & 
Kaveh, 1988). Due to the data association problem caused by multi-target tracking, the 
adaptive MUSIC method fails to track targets when they are moving close to each other. 
Although the method proposed by Sword, et al. (1990) can avoid the data association 
problem, errors are accumulated in each iteration, making it unable to track targets that are 
mutually close. Due to the nature of prediction-correction filtering process, Kalman filter 
(KF) can reduce estimation errors and avoid the data association problem when applied to 
angle tracking, as stated in several references (Javier & Sylvie, 1999; Yang, 1995; Park, et al. 
1994). Rao, et al. (1994) proposed to estimate DOA angles of targets using the maximum 
likelihood method and feeding the results to a KF. However, it is assumed that the signal 
powers of the targets are all different, making the algorithm impractical. Javier and Sylvie 
(1999) suggested to estimate target angles using the projection approximation subspace 
tracking algorithm with deflation (PASTd) (Yang, 1995) and a Newton-type method (for 
MUSIC spectrum) for the use in the KF. It has lower computational load and better tracking 
performance than Rao’s algorithm, but still exhibits poor tracking success rate at low signal-
to-noise ratios (SNRs). Park, et al. (1994) proposed an approach, which utilizes predicted 
angles obtained from Sword’s method. The approach also uses the constrained least-squares 
criterion to confine the dynamic range of angles. The choice of relevant parameters is 
empirical and is not suitable for various scenarios of different moving speeds and SNRs. 
Besides, the tracking performance degrades seriously with an increasing number of crossing 
targets. Later on, to improve Park’s method, Ryu, et al. (1999, 2002) suggested to obtain the 
angle innovations of the targets from a signal subspace, instead of the sensor output 
covariance matrix, via projection approximation subspace tracking (PAST) algorithm (Yang, 
1995). Chang, et al. (2005) modified Park’s algorithm by incorporating a spatial smoothing 
(Shan et al., 1985) technique to overcome multipath interference, and also coherent signal-
subspace (CSS) (Wang & Kaveh, 1985) processing for tracking wideband targets. All of the 
above algorithms are based on the sample covariance matrix or signal subspace made with 
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multiple snapshots of data from a sensor array. However, they all fail to track multiple 
targets when only a single snapshot measurement is available between two consecutive time 
steps during the tracking process, because DOA estimation using subspace-based approach 
requires sample covariance matrix or signal subspace with a rank of more than one.  

In the case of a single snapshot measurement within each time increment, tracking multiple 
targets becomes feasible if the sensor array output is directly used as the measurement data 
in the extended Kalman filter (EKF) (Kong & Chun, 2000). However, the EKF is an 
approximate nonlinear state estimation technique with first-order linearization accuracy, 
and is suitable for the tracking problem since the measurement model is nonlinear in terms 
of the angles (states) to be estimated. The algorithm proposed by Kong and Chun (2000) 
exhibits low tracking success rate when targets approach near the points of intersection. The 
reason for this weakness is the EKF can be difficult to tune and often gives unreliable 
estimates if the system nonlinearities are severe. 

2. Tracking algorithm 

For tracking non-stationary targets efficiently and effectively, the predictive angle tracking 
algorithm based on extended Kalman filter (PAT-EKF) is presented. In the proposed 
algorithm, the sensor array output is used as measurement data in EKF, since the 
measurement model is nonlinear in terms of angle estimates. Using the predicted angles, the 
PAT-EKF algorithm modifies Park's method to obtain angular innovation, from which the 
angle estimates are updated (smoothed) via Kalman gain.  

2.1 Data model 

In the data model, M targets moving (for tracking) in a plane are considered, which contain 

an array of L sensors (or hydrophones). The sensor positions are assumed to be known, and 

it takes them to be placed uniformly on a line with spacing of d between two adjacent 

sensors (abbreviated as ULA), measured in the unit of wavelength λ. The motion of the 

targets is assumed to be at constant angular speed in the presence of Gaussian disturbance, 

and is observed every T seconds. Let θm(t) [ / 2, /2]π π∈ − , measured clockwise with respect 

to y axis, denote the DOA angle of the mth target at time t. Assuming that these targets are 

located in the far field and their radiated signals are narrowband with a common angular 

frequency ω0, the output of the lth isotropic sensor at time t is then 

 
1

( ) ( ) ( )o lm

M
j

l m l
m

r t e s t n tω τ−

=

= +  (1) 

where ( )ms t R∈  is the signal transmitted by the mth target at time t, nl(t) is a complex 

Gaussian white noise with zero mean and variance 2
nσ , which is uncorrelated with the 

target signals, and τlm is the difference in time delays of the mth target reaching the first 

(reference) sensor and the lth sensor.  

By using vector-matrix representation, the output of the sensor array is given by 

 ( ) [ ( )] ( ) ( )t t t t= +r A θ s n  (2) 
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where 1( ) [ ( ),..., ( )]TLt r t r t=r , 1( ) [ ( ),..., ( )]TMt s t s t=s , 1( ) [ ( ),..., ( )]TLt n t n t=n  are the output 

data, target signal, and noise vectors, respectively. 1 2( ) [ ( ), ( ),..., ( )]TMt t t tθ θ θ=θ  is the target 

DOA vector and [ ( )]tA θ  is the array direction matrix with the direction vector of the mth 

target (the mth column vector) 

 

2 2
sin ( 1) sin

[1, ,..., ] , 1, , .
m mj d j L d

T
m e e m M

π π
θ θ

λ λ
− − −

= =a   (3) 

Suppose that there are K measurements (snapshots) that are taken for each increment T, and 
the time increment is sufficiently small allowing us to approximate the target as stationary. 
Figure 1 shows the sensor array and source configurations in 2-D space. 

mθ

mθ

 

Fig. 1. Sensor array and source configurations in 2-D space 

2.2 PAT-EKF algorithm 

First, it depicts the discrete-time state (process) model for the target motion. For each time index 

k, it defines the state vector for the mth target as ( ) ( ) ( )
T

m m mk k kθ θ =  x  , consisting of its DOA 

and angular speed. The mth target motion can lead to the process equation (Park et al., 1994) 

 ( 1) ( ) ( )m m mk k k+ = +x Fx w  (4) 

1

0 1

T 
=  
 

F  

where the process noise vector wm(k) is assumed to be Gaussian distributed with zero mean 
and covariance 

3 2

2

2 3 2

2

T T

m w
T

T
σ

 
 =  
  

Q  
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Assume that the motion of each target is mutually independent. By defining the composite 

state vector as 1( ) ( ),..., ( )
TT T

Mk k k =  x x x , the system dynamics is governed by the process 

model 

 ( 1) ( ) ( )k k k+ = +x Fx w  (5) 

( , , )

M

diag=F F F

  

The process noise vector w(k)= 1 ( ),..., ( )
TT T

Mk k 
 w w  reflects the random modeling error, 

which is Gaussian distributed with zero mean vector and covariance 

1( , , )Mdiag=Q Q Q  

The matrices F  and Q  are all block diagonal. Although the process equation is a linear 

model, the measurement model of (2) is a vector nonlinear function of the target DOAs (and 

thus, of the target state vectors as well), which can be restated as 

 ( ) ( ( ), ( ), ( )) ( ( )) ( ) ( )k k k k k k k= +r h x s n A x s n  (6) 

where n(k) is complex Gaussian noise process with the known covariance 2
nσ I , and is 

assumed to be uncorrelated with the process noise w(k). Assuming that a uniform linear 

array of L sensors with a half wavelength of inter-element spacing d is deployed, the partial 

derivative (Jacobian) matrix of the measurement model (6) is given by 

1( ) [ ( ),..., ( )]Mk k k
∂

= =
∂

h
H H H

x
 

By augmenting the real and imaginary parts of each complex matrix Hm(k), it has the 
composite real matrix of dimension 2L×2M 

1

1

( ( ),..., ( ))
( )

( ( ),..., ( ))
M

M

real k k
k

imag k k

 
=  
 

H H
H

H H
 

which can be expressed as 

1,1 ,1

1, 1 , 1

1,1 ,1

1, 1 , 1

0 0 0 0

0 0

0 0
( )

0 0 0 0

0 0

0 0

M

L M L

M

L M L

g g

g g
k

c c

c c

− −

− −

 
 
 
 
 
 =  
 
 
 
 
  

H




    




    


 

where 
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 , sin( sin( ( )))cos( ( )) ( )m b m m mg b k k s kπ θ θ= −  (7) 

 , cos( sin( ( )))cos( ( )) ( )m b m m mc b k k s kπ θ θ= −  (8) 

m=1, …, M, b=1, …, L−1. 

Initially (at k=0), the target DOA angles, { ˆ ( 1)mθ − } and { ˆ (0)mθ } at two successive time 

instants, k=−1 and k=0, are assumed to be available, which can be estimated by any 

subspace-based DOA angle estimation algorithm for instance the MUSIC algorithm 

(Schmidt, 1986). Thus, the initial state vector estimate can be set as 

1
ˆˆ(0|0) [ (0)θ=x 1

ˆ( (0)θ − 1
ˆ ( 1)) / , ,Tθ −   ˆ (0)Mθ  ˆ( (0)Mθ − ˆ ( 1)) / ]TM Tθ −  with its covariance 

matrix P(0|0), given by 

2

2

1

1 2

2

1

1 2

1
0

(0|0)

1
0

T

T T

v

T

T T

σ

 
 
 
 
 

=  
 
 
 
  

P


  

For k=1,2,…, the proposed tracking algorithm can be summarized in the following four 
steps. 

Step 1. Prediction of angles 

The prediction of the state vector and its covariance matrix can be obtained from the existing 
estimates by the equations 

 ˆ( | 1)k k −x ˆ( 1| 1)k k= − −Fx  (9) 

 ( | 1) ( 1| 1) Tk k k k− = − − +P FP F Q  (10) 

The first element of each state vector ˆ ( | 1)m k k −x  is the predicted estimate ˆ ( | 1)m k kθ −  of 

θm(k). The predicted direction matrix A(k|k-1) can be obtained by (3) using ˆ ( | 1)m k kθ −  for 

θm(k). From (2), the predicted output of the sensor array becomes 

 ( | 1) ( | 1) ( )k k k k k− = −r A s  (11) 

and can be obtained once s(k)=[s1(k),…, sM(k)]T is estimated by invoking the maximum 

likelihood method as 

 
1

ˆ( ) ( | 1) ( | 1) ( | 1) ( )H Hk k k k k k k k
−

 = − − − s A A A r  (12) 

Step 2. Computations of the angle innovation 

After time T, a new array output is observed and the direction matrix can be written as 
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 ( ) ( | 1) ( )k k k kδ= − +A A A  (13) 

where δA(k) is the error matrix, which can be derived, according to (Sword et al., 1990), as 

 

1

1 1

2 2
1 1

0 0

2 2( )

( 1) ( 1)

M

M M

L L
M M

k

L L

δγ δγ

γ δγ γ δγδ

γ δγ γ δγ− −

 
 
 
 =
 
 
 − − 

A





  



 (14) 

wherein 

 ( ) cos ( ) ( ) ( )m m m mk j k k kδγ π θ γ δθ= −  (15) 

Thus, the residual array output Δr(k) can be obtained and written as 

 ( ) ( ) ( | 1) ( ) ( ) ( )k k k k k k kδ∆ = − − = +r r r A s n  (16) 

Note that the first row vector of δA(k) in (14) is a null vector. To reduce the computation, the 

null vector allows us to define a (L−1)×1 vector ∆r , which is obtained by removing the first 

element of Δr in (16). By substituting (15) into (14), ∆r  can be represented by (dropping k 

temporarily) 

 δ∆ = +r B θ n   (17) 

In (17), the (L−1)×M matrix B is 

1 1 1

2 2
1 1 1

1 1
1 1 1

cos( ) cos( )

2 cos( ) 2 cos( )

( 1)cos( ) ( 1)cos( )

M M M

M M M

L L
M M M

s s

s s
j

L s L s

θ γ θ γ

θ γ θ γ
π

θ γ θ γ− −

 
 
 = −  
 
 − − 

B




  



 

where θm is substituted with the predicted angle ˆ ( | 1)m k kθ − , and δθ = [δθ1(k), δθ2(k),…, 

δθM(k)] is the unknown angle innovation vector to be estimated. In general, a least-squares 

solution of (17) is given by 1( )H Hδ −= ∆θ B B B r . However, the modified solution 

 1( )H Hδ −= + ∆θ B B L B r  (18) 

as suggested in Park's algorithm, will be used to constrain the absolute values of 

innovations for the cases of nearby targets, where L is a weighting matrix with diagonal 

form. 

Step 3. Estimation of the angles 

The estimated angle can be obtained as 

 ˆ ( )m kθ ˆ ( | 1) ( )m mk k kθ δθ= − +  (19) 
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Furthermore, ˆ ( )m kθ  and ˆ ( )ms k  are substituted into (7) and (8) to update the matrix ( )kH . 

Step 4. Smoothing the estimated angles 

Since the state vector is real-valued, it formulates the state estimation equation as 

 ˆ( | )k k =x ˆ( | 1) ( ) ( )k k k k− + ∆x K r  (20) 

where ( )k∆r =[ΔrR ΔrI]T is a real vector; ΔrR and ΔrI are the real and imaginary parts of Δr(k) 

from (16). K(k) is the Kalman Gain matrix, given by 

 
12( ) ( | 1) ( ) ( ) ( | 1) ( )T T

nk k k k k k k k σ
−

 = − − + K P H H P H I  (21) 

The covariance matrix of ˆ( | )k kx  is given by 

 ( | ) ( ) ( ) ( | 1)k k k k k k = − − P I K H P  (22) 

The proposed PAT-EKF algorithm requires the number of 7LM2+16L2M+LMK real 
multiplications, whereas the Park's and Kong's algorithms require, respectively, the 
numbers of 3LM2+K(3L2+LM) and 5M3+10LM2+8L2M+LMK real multiplications (K is the 
number of snapshots). Table 1 shows the comparison of computational complexity among 
these algorithms for M=3, L=8 and different number of snapshots. It is evident that the PAT-
EKF algorithm has lower computational complexity than the Park's algorithm for K ≥ 30, 
where K ≥ 30 is often needed for acceptable tracking performance. Although the 
computational complexity is higher than the Kong's algorithm, the proposed method has 
much better performance as demonstrated by the simulations. 

Algorithm PAT-EKF Park's Kong's 

Number of real multiplications 

K=1
K=10 
K=30 
K=50

3600
3816 
4296 
4776

432
2376 
6696 

11016

2415 
2631 
3111 
3591 

Table 1. Computational complexity comparison for M=3, L=8 and different K values. 

2.3 PAT-EKF algorithm for tracking targets in 3-D space 

The PAT-EKF algorithm is now extended to track narrow-band targets in 3-D space, where 
the system of sensor array and source configurations is shown in Figure 2, where sm(k) is the 
signal transmitted by the mth target, of which φm and θm are the azimuth and elevation 
respectively. ρm is the range from the mth target to the first (reference) sensor in the uniform 
linear array. As explained later, the number of sensors L must satisfy the condition L ≥  
3M+1, where M is the number of targets. All the targets can be located in the near field or far 
field. In the following formulations, far-field targets are treated. The output of the lth sensor 
for the kth sampling interval can be expressed as 

 
1

( ) ( ( )) ( ) 1,2, ,
M

l m lm l
m

r k s k k n k l Lτ
=

= − + =   (23) 
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Fig. 2. Sensor array and source configurations in 3-D space. 

From the array and source configurations shown in Figure 2, τlm(k) can be expressed as 

2 2 21
( ) ( ) ( ) ( )lm m l m l m l mk p x q y i z

c
τ ρ = − + − + − −   

where (xl, yl, zl) is the lth sensor position relative to the reference sensor. Here xl=(l−1)d, yl=0, 
and zl=0. The location coordinate of the mth signal source is given by 

sin cosm m m mp ρ θ ϕ=  

sin sinm m m mq ρ θ ϕ=  

cosm m mi ρ θ=  

Assume that all the signal sources are narrowband with a common angular frequency ω. 
Then 

( )( ( )) ( ) lmj k
lms k k s k e ωττ −−   

Therefore, (23) becomes 

( )

1

( ) ( ) ( ) 1,2, ,lm

M
j k

l m l
m

r k e s k n k l Lωτ−

=

= + =   

In vector-matrix notation, the received output vector of the sensor array is r(k)＝ 

( ) ( ) ( )k k k+A s n , where 

21 22 2

L1 L2

1 1 1

( ) ( ) ( )
( )=

( ) ( ) ( )

M

LM

k k k
k

k k k

γ γ γ

γ γ γ

 
 
 
 
 
  

A




   


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and 

( )( ) lmj k
lm k e ωτγ −=  

For the use of the EKF, it redefines the state vector for the mth target as 

[( ) ( ) ( )m m mk k kρ ρ=x   ( ) ( ) ( ) ( )
T

m m m mk k k kϕ ϕ θ θ 
  in 3-D space. By augmenting the real 

and imaginary parts of each complex matrix Hm(k), it has the composite real matrix of 

dimension 2L×6M 

1

1

( ( ),..., ( ))
( )

( ( ),..., ( ))
M

M

real k k
k

imag k k

 
=  
 

H H
H

H H  

which can be expressed as 

221 21 21

1 1 1

1 1 1

1 1 1

221 21 21

1 1 1

1 1

1 1

21 21 21 2

1 1 1

21 21 21 2

1 1

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0
( )

0 0 0 0 0 0 0 0

0 0 0 0

0 0

M

M

LML L L

M

M

M

L L

M

L L L LM

M

L L L

g g g g

g g g g
k

c c c c

c c c

ττ τ τ

ρ ϕ θ θ

ττ τ τ

ρ ϕ θ θ

ττ τ τ

ρ ϕ θ θ

τ τ

ρ ϕ

∂∂ ∂ ∂

∂ ∂ ∂ ∂

∂∂ ∂ ∂

∂ ∂ ∂ ∂

∂∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂

∂ ∂

=H





        







        
1

1
1 0 0LML

M
LMc

ττ

θ θ

∂∂

∂ ∂

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

with the following equations 

glm = −ωsin(ωτlm) sm(k) 

clm = ωcos(ωτlm) sm(k) 

[ ] ( ) ( ){ }
[ ]

[ ]

1
22 221

sin cos ( 1) sin sin cos

1
( 1) sin cos

1
( 1) sin cos

lm

m
m m m m m m m m

m m m

lm m m m

l d
c

l d
c

l d
c

τ

ρ
ρ θ ϕ ρ θ ϕ ρ θ

ρ θ ϕ

τ ρ θ ϕ

−∂

∂
= − − + +

× − − −

= × − − −

 

[ ] ( ) ( ){ }
1
22 221

sin cos ( 1) sin sin cos

( 1) sin sin

( 1) sin sin

lm

m
m m m m m m n n

m m m

lm m m m

l d
c

l d

l d

τ

ϕ
ρ θ ϕ ρ θ ϕ ρ θ

ρ θ ϕ

τ ρ θ ϕ

−∂

∂
= − − + +

× −

= × −
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[ ] ( ) ( ){ }
1
22 221

sin cos ( 1) sin sin cos

( 1) cos cos

( 1) cos cos

lm

m
m m m m m m m m

m m m

lm m m m

l d
c

l d

l d

τ

θ
ρ θ ϕ ρ θ ϕ ρ θ

ρ θ ϕ

τ ρ θ ϕ

−∂

∂
= − − + +

× − −

= × − −
 

For the 3-D PAT-EKF algorithm, the recursive equations of (9)-(13), (16) and (20)-(22) remain 
unchanged and the recursive equations of (14)-(15) and (17)-(19) need to be changed as 
stated in the following context. 

Let δρ(k), δφ(k), and δθ(k) be the unknown innovations of ρ(k), φ(k), θ(k) respectively, from 

time k-1 to time k. The (l,m) element of δA(k) can be derived as 

( , )[ ( )] ( ) lm lm lm

m m m
l m lm m m mk j k

τ τ τ

ρ ϕ θ
δ ωγ δρ δϕ δθ

∂ ∂ ∂

∂ ∂ ∂
 = − + + A  

and the residual array output with the first row removed can be expressed as 

 

( )

( ) ( )

( )

k

k k

k

δ

δϕ

δ

 
 ∆ = ⋅ + 
  

ρ
r B n

θ
   (24) 

where the matrix B is a (L−1) × 3M matrix, given by 

2 2 221 21 21

1 1 1

1 1 1

1 1 1

21 1 2 21 1 2 21 1 2

1 1 1 1 1 1

M M M

M M M

LM LM LML L L

M M M

N M M M M M

L LM M L LM M L LM M

s s s s s s

j

s s s s s s

τ τ ττ τ τ

ρ ρ ϕ ϕ θ θ

τ τ ττ τ τ
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Thus, a modified least-squares solution of (24) yields the innovations δρ(k)=[ δρ1(k),…, 

δρM(k)]T, δφ(k)=[ δφ1(k),…, δφM(k)]T, and δθ(k)=[ δθ1(k),…, δθM(k)]T , given by 

1

( )

( ) ( )

( )

H H

k

k

k

δ

δϕ

δ

−

 
  = + ∆ 
  

ρ
B B L B r

θ
  

These innovations are then used to update the state estimation according to 

ˆ ( )m kθ = ˆ ( | 1) ( )m mk k kθ δθ− +  

ˆ ( )m kϕ = ˆ ( | 1) ( )m mk k kϕ δϕ− +  

ˆ ( )m kρ = ˆ ( | 1) ( )m mk k kρ δρ− +  

There is one limiting condition, i.e., L−1 ≥ 3M, under which the L−1 linear equations are 

used for solving 3M unknown variables. 
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3. Simulation results and discussion 

In this section, the tracking performance of the three tracking algorithms are compared for 

narrow-band sources in 2-D space. A uniform linear array of eight sensors L=8 with half 

wavelength as the inter-element spacing is used. Three moving targets on the plane are 

tracked over an interval of 180s with T=1 s. During each T interval, K(=1, 10, 30, 50) 

snapshots of sensors data are generated. For comparison, the algorithms developed by Park 

et al. (1994), Kong and Chun (2000) were simulated. The Monte Carlo simulations of 100 

runs were carried out for each algorithm with various SNRs. The parameters used in the 

system model for all algorithms to be compared are 2
vσ =3, 2

wσ =1, and 2
nσ =3. The weighting 

factors to constrain the absolute values of innovations in (18) are set to be lm= 1
20

× (mth 

diagonal element of BHB), which is the same as in Park's algorithm (Park et al., 1994). The 

SNR is defined as 10log s
2/ )nσ(  in dB, where s is the signal power. 

Table 2 gives the tracking results for various SNRs at K=30 snapshots. The PAT-EKF 

algorithm shows the highest tracking success rate (true angle ±5°) for each SNRs. Table 3 

presents the tracking results for various number of snapshots at SNR=10dB. Again, the 

proposed algorithm shows the highest tracking success rate for each number of 

snapshots. 

 

SNR 

(dB) 

Tracking success rate (%) 

PAT-EKF Park’s Kong’s 

0 28 14 11 

5 62 44 34 

10 86 62 60 

Table 2. Tracking performance for various SNRs at K=30 

 

Number of 

Snapshots 

Tracking success rate (%) 

PAT-EKF Park’s Kong’s 

1 70 45 43 

10 83 69 55 

50 88 81 66 

Table 3. Tracking performance for various number of snapshots at SNR=10dB 

www.intechopen.com



 
Sensor Array 

 

48

Figure 3 shows typical sample run for crossing tracks, all based on a single snapshot of data 

vector (K=1) at SNR=10dB of each target. The PAT-EKF and Park's algorithms exhibit much 

better tracking capability than Kong's algorithm (Kong & Chun, 2000) especially at the cross 

points in the trajectory. 

Two moving targets are tracked over an interval of 20s with T=1 in 3-D space. During each T 

interval, K(=160) snapshots of sensors data are generated. Figure 4 shows the tracking 

performances of the 3-D PAT-EKF algorithm for the combinations of range, elevation, and 

azimuth at 3dB of SNR. In Figure 4, dot represents the true angle and line represents the 

tracked angle. The 3-D PAT-EKF algorithm is very effective in tracking the targets in 3-D 

space, even at low SNR. 

Note that the PAT-EKF algorithm is excluded for performance comparison, simply because 

it fails to track the angle of the first signal source for the simulation example illustrated in 

Figure 5. In this example, the trajectory of the first signal source reveals its significantly 

changing behavior of angles. This also indicates that tracking capability of the PAT-EKF 

algorithm is rather limited when there exists a signal source with significant rates of angle 

variation. 
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Fig. 3. Typical sample run for crossing tracks with three targets at SNR=10dB. (a) Kong's 

algorithm, (b) Park's algorithm, (c) PAT-EKF algorithm 
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Fig. 4. Typical sample run for crossing tracks with three targets at SNR=10dB. (a) Kong's 
algorithm, (b) Park's algorithm, (c) PAT-EKF algorithm 

 

Fig. 5. The averaged tracking trajectories, using the PAT-EKF algorithm, for three equi-

powered moving sources based on 25 snapshots at SNR=10dB. 
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4. Concluding remarks 

This chapter has presented the PAT-EKF algorithm for tracking multiple targets. The 

proposed algorithm modified Park's algorithm by using the sensor array output vector 

rather than the sample covariance matrix and incorporating EKF instead of KF. These 

modifications allow the proposed algorithm to lower computational load, and also improve 

the tracking success rate particularly at lower snapshots. The PAT-EKF algorithm is then 

extended to track the azimuth, elevation, and range of multiple targets in 3-D space. 

Through computer simulations, the effectiveness of each proposed algorithm has been 

demonstrated. The drawback of the PAT-EKF algorithm is that it fails to track any target 

with a significant rate of angle variations.  
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