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Spatially Coupled Sparse Regression Codes

for Single- and Multi-user Communications

Kuan Hsieh

Abstract

Sparse regression codes (SPARCs) are a class of channel codes for efficient communication

over the single-user additive white Gaussian noise (AWGN) channel at rates approaching the

channel capacity. In a standard SPARC, codewords are sparse linear combinations of columns

of an i.i.d. Gaussian design matrix, and the user message is encoded in the indices of those

columns. Techniques such as power allocation and spatial coupling have been proposed to

improve the performance of low-complexity iterative decoding algorithms such as approximate

message passing (AMP).

In this thesis we investigate spatially coupled SPARCs, where the design matrix has a block-

wise band-diagonal structure, and modulated SPARCs, which generalise standard SPARCs

by introducing modulation to the encoding of user messages. We introduce a base matrix

framework which provides a unified way to construct power allocated and spatially coupled

design matrices, and propose AMP decoders for modulated SPARCs constructed using base

matrices.

We prove that phase shift keying modulated and spatially coupled SPARCs with AMP

decoding asymptotically achieve the capacity of the (complex) AWGN channel. We also show via

numerical simulations that they can achieve lower error rates than standard coded modulation

schemes at finite code lengths. A sliding window AMP decoder is proposed for spatially coupled

SPARCs that significantly reduces the decoding latency and complexity.

We then investigate coding schemes based on random linear models and AMP decoding for

the multi-user Gaussian multiple access channel in the asymptotic regime where the number of

users grows linearly with the code length. For a fixed target error rate and message size per user

(in bits), we obtain the exact trade-off between energy-per-bit and the user density achievable

in the large system limit. We show that a coding scheme based on spatially coupled Gaussian

matrices and AMP decoding achieves near-optimal trade-off for a large range of user densities.

To the best of our knowledge, this is the first efficient coding scheme to do so in this multiple

access regime. Moreover, the spatially coupled coding scheme has a practical interpretation: it

can be viewed as block-wise time-division with overlap.
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Chapter 1

Introduction

This thesis investigates efficient capacity-achieving communication schemes for single- and

multi-user channels. In Sections 1.1 and 1.2, we introduce the additive white Gaussian noise

(AWGN) channel model for single-user communications, and the Gaussian multiple access chan-

nel model for multi-user communications. Furthermore, we describe the fundamental limits of

communication in these channels. Then in Sections 1.3–1.5, we introduce the main frameworks

and tools that we use to construct efficient capacity-achieving communication schemes: sparse

regression codes, approximate message passing algorithms, and spatial coupling.

1.1 AWGN channel

+

w ⇠ N (0, �2)

x y

+Encoder Decoder
x1, . . . , xn y1, . . . , yn

w1, . . . , wn
i.i.d.⇠ N (0, �2)

Source Destination
m bm

sent 
message

estimated 
message

transmitted 
symbols

received 
symbols

Figure 1.1: AWGN channel

The additive white Gaussian noise (AWGN) channel is depicted in Fig. 1.1. The channel

generates output y ∈ R from input x ∈ R according to

y = x+ w, (1.1)

where w is drawn from a zero mean Gaussian distribution with variance σ2, which we denote

by w ∼ N (0, σ2). The AWGN channel is memoryless since the channel output y only depends

on the current channel input x and not the previous inputs. The channel input has an average

power constraint P : if x1, x2, . . . , xn are transmitted over n uses of the channel, then it is

required that

1

n

n∑

i=1

x2
i ≤ P. (1.2)

9



+

w ⇠ N (0, �2)

x y

+Encoder Decoder
x1, . . . , xn y1, . . . , yn

w1, . . . , wn
i.i.d.⇠ N (0, �2)

Source Destination
m bm

sent 
message

estimated 
message

transmitted 
symbols

received 
symbols

Figure 1.2: Communication across the AWGN channel

The signal-to-noise ratio of the AWGN channel is therefore P/σ2.

This channel model is interesting and practically relevant because: (i) additive noise is

commonly found in physical systems; (ii) Gaussian noise is a good approximation to the sum

of many independent zero-mean random variables (which can represent different noise sources)

due to the central limit theorem; (iii) Gaussian noise is the worst noise for a given variance (in

the sense of differential entropy), so it provides a worst case bound; (iv) power constraints exist

in real systems (e.g., use of battery); (v) it is easy to analyse. More complex models can be

built on top of this.

Communication across the AWGN channel In order to communicate across the AWGN

channel, one needs to encode information into channel input symbols, and decode channel output

symbols back to meaningful information, see Fig. 1.2. The encoder maps a message m, chosen

from a message set M, into an input codeword x ∈ Rn. The decoder generates an estimate of

the sent message denoted m̂ ∈M from the channel output y ∈ Rn. The probability of error Pe

is usually defined as either the maximum or average probability of decoding a message in error,

i.e.,

Pe = max
m∈M

P(m̂ 6= m) or
∑

m∈M
P(m)P(m̂ 6= m), (1.3)

where P(m̂ 6= m) is the probability of decoding error given message m was transmitted.

Assuming all the messages are equally likely (which is a reasonable assumption when the

messages come from a compressed source), then each message contains log2 |M| bits of infor-

mation. Therefore, the rate of transmission denoted by R is given by

R =
log2 |M|

n
bits/channel use. (1.4)

One aims to communicate at high rates with a low probability of error.

Shannon’s channel coding theorem states that the channel capacity C (dependent on the

channel parameters) is the tight upper bound on the rate at which reliable communication is

achievable [8, 9]. In other words, for all R < C, there exists a code such that an arbitrarily

small probability of error can be achieved. Conversely, for R > C, it is impossible to achieve an

arbitrarily small probability of error. For the AWGN channel with average power constraint P

10
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Figure 1.3: Coded modulation

and noise variance σ2, the channel capacity is given by

C =
1

2
log2

(
1 +

P

σ2

)
bits/channel use. (1.5)

A key goal in information and coding theory is to communicate reliably across the AWGN

channel at rates approaching the channel capacity with computationally efficient encoders

and decoders.

In the standard forward proof of achievability, random codebooks with independent and

identically distributed (i.i.d.) Gaussian entries are used and the code length n is taken to

infinity [9]. However, decoding is computationally infeasible for this setup as the complexity

grows exponentially with n (requires an exhaustive search over the whole codebook).

Since the channel coding theorem was stated in 1948, the channel coding community has

been endeavouring to invent capacity achieving codes with feasible encoders and decoders. In

the past few decades, much progress has been made to “close the gap to capacity”, especially

with in the the invention of Turbo codes [10], the rediscovery of Low-Density Party Check

(LDPC) codes [11,12], and more recently the invention of polar codes [13] and spatially coupled

LDPC codes [14, 15]. For an overview of the development of channel codes over the years,

see [16].

Coded modulation Most practical coding schemes do not directly code for the AWGN

channel. Instead, they are separated into two steps: coding and modulation, which is referred

to as coded modulation [17–19].

The coding step includes an encoder, which maps messages m ∈M into binary sequences (or

sequences of symbols from another finite set), and a decoder which reverses this operation. The

modulation step includes a modulator and demodulator. The modulator uses standard schemes

such as quadrature amplitude modulation (QAM) to map binary sequences onto a finite set
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of symbols on a complex plane (known as constellations). These symbols are are then used to

modulate the carrier waveform to be transmitted over the channel. The demodulator reverses

the operation of the modulator. See Fig. 1.3 for the coded modulation system model.

For a fixed modulation scheme, the encoder and decoder views the modulator, channel and

demodulator together as a channel with discrete inputs and outputs (dashed box in Fig. 1.3).

State-of-the-art coded modulation schemes use binary error correcting codes such as Turbo,

LDPC or polar codes for the coding step. Moreover, at the receiver, the demodulator passes

soft-information to the decoder (posterior probabilities for each of the coded bits). The codes

mentioned above have been shown to either come very close to, or provably achieve the channel

capacity of binary input channels such as the binary erasure channel under practical decoders.

However, when used together with popular modulation schemes such as QAM, they have good

empirical performance but do not provably achieve the AWGN channel capacity.

Sparse regression codes One may ask if it were possible to step back from the cod-

ing/modulation divide and directly code for the AWGN channel (compare Figs. 1.2 and 1.3).

Sparse regression codes (SPARCs) are a recent class of codes that generate real valued code-

words to directly code for the AWGN channel, and are provably capacity achieving using various

low-complexity1 decoding algorithms [20–22].

In this thesis (Chapters 2 and 3) we consider SPARCs for AWGN channel coding under the

efficient approximate message passing (AMP) decoder. We prove that certain generalisations

of SPARCs can asymptotically achieve the channel capacity under AMP decoding. Further-

more, using these generalisations, we design SPARCs that achieve lower error rates than earlier

SPARCs designs and standard coded modulation schemes, and have lower decoding complexity

compared to earlier SPARCs. Introductions to SPARCs and the AMP algorithm are given in

Sections 1.3 and 1.4, respectively.

Other methods We list here a few notable coding schemes for the AWGN channel which

will not be discussed further in this thesis:

1. Trellis-coded modulation (TCM) [17] considers coding and modulation combined as a

single entity for improved performance. TCM is based on the combination of trellis

(convolutional) codes and constellation mappings via set partitioning.

2. Bit-interleaved coded modulation [19, 23] is a pragmatic approach to coded modulation

where the encoder is a serial concatenation of a binary code, a bit interleaver, and a binary

labelling function which maps bits to constellation symbols. Furthermore, the decoder

1By low-complexity, we mean the computational complexity is of the same order as a low order polynomial
in the code length n.
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receives soft information (e.g. bit-wise a posteriori probabilities) from the demodulator

and the performance can be improved if the decoder is implemented iteratively.

3. Multilevel coding (MLC) using binary codes and multistage decoding (MSD) can achieve

the AWGN channel capacity [24,25].

4. Lattice codes are a class of structured codes that can achieve the AWGN channel capacity

[26].

1.2 Gaussian multiple access channel

+

Encoder

Decoder
y1, . . . , yn

w1, . . . , wn
i.i.d.⇠ N (0, �2)

User 1

user 
messages

estimated 
messages

transmitted 
symbols

received 
symbols

c1,1, . . . , c1,n

EncoderUser 2
c2,1, . . . , c2,n

EncoderUser L

… …

cL,1, . . . , cL,n

m1

m2

mL

bm1, bm2, . . . , bmL

Figure 1.4: Communication across the Gaussian multiple access channel.

Often multiple users communicate simultaneously across a common channel to a single

receiver. A useful model for this setting is the L-user Gaussian multiple access channel (MAC),

where the channel output sequence/vector y ∈ Rn is generated as

y =
L∑

`=1

c` +w, (1.6)

where c` ∈ Rn is the codeword of user ` ∈ [L] and the entries of noise vector w ∈ Rn are i.i.d.

∼ N (0, σ2), see Fig. 1.4. For a positive integer N , we use [N ] to denote the set {1, . . . , N}. An

example of the model (1.6) is a wireless network where multiple mobile devices communicate

with a single base station over the same time or frequency block, and the electromagnetic

waves containing the user information undergo constructive interference. A shortcoming of

this channel model is that it assumes the users are coordinated and aligned in their use of the

channel, i.e., synchronised.

This thesis concentrates on symmetric Gaussian MACs, where the message setM and the

average power constraint of each user are the same. In this setting, the per user rate is given by

13



Ruser = log2 |M|/n bits/channel use. In the rest of the thesis, the symmetric setting is assumed

whenever MACs are mentioned.

Communication across Gaussian MACs involve trade-offs between the number of users, rate,

signal-to-noise ratio, and the probability of decoding error. Furthermore, variables such as the

probability of decoding error can be considered either on a per user basis, or on a joint (all user)

basis. These trade-offs have been analysed under several asymptotic regimes in which the code

length n is unbounded. We now discuss two such regimes.

1.2.1 Finite-user setting

In this setting, one considers a fixed number of users and aims to communicate at a high (per

user) rates with a low joint probability of error (JPE):

JPE = P((m̂1, . . . , m̂L) 6= (m1, . . . ,mL)), (1.7)

where each user’s message, m` for ` ∈ [L], is chosen uniformly at random from the message set

M. This is the conventional setting considered in multi-user information theory, see [9, Chpt. 15]

and [27, Chpt. 4].

Similar to the capacity of the (single-user) AWGN channel described in Section 1.1, the per

user capacity of the (symmetric) Gaussian MAC, denoted by Cuser, is the tight upper bound on

the per-user rate Ruser at which communication at arbitrarily low JPE is achievable. For the

Gaussian MAC with noise variance σ2 and average power constraint P , i.e.,

‖c`‖2 ≤ nP for ` ∈ [L], (1.8)

the per user capacity is given by

Cuser =
1

2L
log2

(
1 +

LP

σ2

)
bits/channel use. (1.9)

When L = 1 we recover the AWGN channel capacity in (1.5). When L increases with the

signal-to-noise ratio P/σ2 held constant, the per user capacity decreases to 0. This suggests

that for MACs with a large number of users, the constant user rate and (symbol) signal-to-noise

ratio setting is not the one of interest. (Note that L tends to infinity after the code length n.)

1.2.2 Many-user setting

There has been a growing interest in the study of Gaussian MACs in the many-user setting,

where the number of users L increases together with the code length n. This asymptotic setting

was first introduced by Chen et al. in [28]. It was motivated by the need to model emerging

digital communications scenarios where the number of devices in a network is expected to grow

14



significantly. These include scenarios introduced by Internet-of-Things (IoT) applications and

massive machine type communications. Moreover, the trade-offs of interest in these applica-

tions often differ from those analysed in the finite-user setting. For example in wireless sensor

networks, the number of bits transmitted by each sensor may be fixed instead of scaling with

n (the latter happens when considering fixed per user rate), and there may be energy-per-bit

requirements instead of power constraints on the user codeword symbols (see (1.8)). There-

fore, the term “many-user” is used in the literature in a broad sense and individual works on

many-user MACs may consider different trade-offs. In the literature, many-access channels and

massive multiple access are often also used to refer to this multiple access setting [28,29].

In the following sections, we discuss two lines of work on many-user MACs which analyse

two different sets of trade-offs.

Effect of user scaling on capacity per unit energy

The capacity per unit energy C̃user is the maximum number of bits (payload) that each user can

reliably transmit over the Gaussian MAC per unit energy, i.e., normalised by the squared norm

of the user codewords ‖c`‖2 = E. In other words, for any payload per unit energy log2 |M|
E less

than C̃user, there exists a code that can achieve an arbitrarily low JPE (defined in (1.7)).2

In [30], Ravi and Koch characterised the capacity per unit energy of Gaussian MACs in the

many-user setting for different scalings of the number of users with the code length. Specifically,

they showed that if the number of users Ln (a function of n) is of order strictly above n/ log n,

then C̃user = 0, i.e., no coding scheme can achieve a positive payload per unit energy. Conversely,

if Ln is of order strictly below n/ log n, then the capacity per unit energy is equal to that of a

single-user AWGN channel with the same noise variance as the Gaussian MAC, i.e., users can

communicate interference free in this scaling regime.

In [31], the same authors considered the same setting as above, but defined the capacity per

unit energy using the per-user probability of error (PUPE):

PUPE =
1

L

L∑

`=1

P(m̂` 6= m`), (1.10)

instead of the joint probability of error (JPE) defined in (1.7). They showed that similar results

hold with the transition threshold being at n instead of n/ log n: if Ln grows at least linearly

with n, then C̃user = 0. Otherwise, if Ln grows sublinearly in n, then C̃user is equal to that of

a single-user AWGN channel. Both the above results consider vanishing probabilities of error

(either JPE or PUPE → 0 as n→∞).

In [31], the authors also considered non-vanishing probabilities of error. It was shown that

the capacity per unit energy results for non-vanishing JPE are the same as that for vanishing

2 Note that the inverse of the capacity per unit energy is the minimum energy-per-bit Eb required for reliably
transmission.

15



JPE. That is, allowing JPE ≤ ε for some fixed ε ∈ (0, 1) that is independent of n does not

increase the payload that can be transmitted per unit energy as n→∞.

However, the capacity per unit energy results for non-vanishing PUPE are different from

those of vanishing PUPE. In particular, the authors argue that if the number of users grows

linearly with the code length, a positive payload per unit energy is achievable if one allows

for non-vanishing PUPE. Recall that C̃user = 0 (vanishing PUPE) for linear orders of growth.

Furthermore, in addition to requiring a non-vanishing PUPE to achieve positive payloads per

unit energy, both the energy E and the payload size log2 |M| must be bounded as n→∞. In

the following section, we describe results in this asymptotic scaling regime: the number of users

grows linearly with the code length, the user payload and energy are fixed, and a non-vanishing

PUPE is considered. This is the asymptotic regime that will be investigated in this thesis.

Tradeoff between user density and energy-per-bit in the linear scaling regime

In [32], Polyanskiy considered the Gaussian MAC in the asymptotic regime where the number

of users L grows linearly with the code length n, i.e., L = µn for some fixed user density µ, and

the number of bits transmitted by each user (payload) is fixed and independent of n. In this

asymptotic regime, Polyanskiy sought to characterise the optimal trade-offs between the user

density µ, the user payload log2 |M|, the per-user probability of error (PUPE) defined in (1.10),

and the signal-to-noise ratio Eb/N0. Here Eb is the energy-per-bit (the inverse of payload per

unit energy) and N0/2 = σ2 is the noise spectral density per dimension. Note that the energy of

the user codewords (‖c`‖2 = E) are bounded since E = Eb log2 |M|, and both Eb and log2 |M|
are considered fixed.

In [32] and [33], Polyanskiy et al. obtained converse and achievability bounds on the mini-

mum Eb/N0 required to achieve a decoding error of PUPE ≤ ε for a given ε ∈ (0, 1), when the

user density µ and user payload are fixed. The achievability bound was based on the coding

scheme where users encode their messages with i.i.d. Gaussian codebooks, and messages are

decoded with (joint) maximum likelihood (ML) decoding.

Fig. 1.5 shows an example of the results in [33]. We plot the converse (red) and achievability

(blue) bounds on the minimum Eb/N0 required to achieve a decoding error of PUPE ≤ 10−3

when the user payload is log2 |M| = 100 bits. We observe that at this payload size and

choice of maximum PUPE, the converse and achievability bounds match at user densities above

approximately 0.008. We also observe an interesting behaviour in the these bounds: as Eb/N0

increases, there is a sharp jump from not being able to communicate at any user density to being

able to achieve a strictly positive user density. In this low user density region (vertical part

of the curves), one can increase the user density up to the top of the vertical line without the

need to increase the signal-to-noise ratio or suffer a higher PUPE, i.e., there is perfect multi-user

interference cancellation. Recall from the previous section that interference free communications

is also achievable if L grows sublinearly in n.

16



0 2 4 6 8 10
Eb/N0 (dB)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Us
er

 d
en

sit
y,

 

Converse
Achievability (Gaussian codebooks)
Achievability (Orthogonal schemes)

Figure 1.5: Asymptotic achievable regions in Gaussian MACs when the number of users L grows linearly
with the code length n with fixed user density µ = L/n. We plot the minimum Eb/N0 required to
achieve a decoding error of PUPE ≤ 10−3 when the user payload is log2 |M| = 100 bits. (Same setup
as [33, Fig. 1].)

In Fig. 1.5 we also plot the achievable region of orthogonal multiple access schemes (e.g.

time division multiple access) for comparison (black), where the n channel uses are evenly

divided among the L users. The achievable region of orthogonal schemes is obtained using the

normal approximation to the (single-user) AWGN finite length error bound in [34] with the

following AWGN parameters: code length n/L = 1/µ, rate µ log2 |M|, and signal-to-noise ratio

2µEbN0
log2 |M|. We observe that the user density versus Eb/N0 trade-off that can be achieved

by orthogonal multiple access schemes is strictly suboptimal except at very small user densities,

and the gap to the achievability bound (blue) is significant.

In this thesis (Chapter 4) we consider the Gaussian MAC in the same asymptotic setting:

linear user scaling, finite payload, finite energy, and finite error probability. We analyse coding

schemes based on random linear models (which include i.i.d. Gaussian codebooks) and efficient

approximate message passing (AMP) decoding, and derive the exact asymptotic achievability

regions of these schemes. We find that the asymptotic achievability of a coding scheme based on

spatially coupled Gaussian matrices and AMP decoding exceeds that suggested by the achiev-

ability bound in [33] and nearly matches the converse bound for a large range of user densities.

To the best of our knowledge, this is the first efficient coding scheme to do so in this MAC

regime. The spatially coupled scheme can be interpreted as generalised time-sharing: the cou-

pling structure specifies which users are active during each channel use. Introductions to the

AMP algorithm and spatial coupling are given in Sections 1.4 and 1.5, respectively.
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Other works on many-user MACs

The recent papers [35, 36] study the fundamental trade-offs in the quasi-static fading MAC in

same asymptotic regime as [32, 33], where the number of users grows linearly with the code

length.

Several works on multiple access in many-user setting consider random multiple access

[28, 32, 37], unsourced multiple access, or a combination of both [32, 38–40]. Random (or unco-

ordinated) multiple access is where only a subset of all users are actively transmitting. The user

activity is sporadic and the active users need to be identified by the receiver. Moreover, the

number of active users may grow with the code length at a different rate compared to the total

number of users. This can model the sporadic nature of some event-driven IoT applications.

Unsourced multiple access is where all users use the same codebook and hence user messages

are decoded up to a permutation, i.e., without regard to who the sender is. The combination

of the two, which is called unsourced random access, can be used to model multiple access

in IoT applications where the population statistics is of interest rather than any individual’s

data, perhaps for privacy preserving reasons. A review of the recent developments in many-user

MACs can be found in [29].

1.3 Sparse regression codes

Sparse superposition codes, or sparse regression codes (SPARCs), are a recent class of codes

introduced by Joseph and Barron for reliable communication over the (single-user) AWGN chan-

nel (1.1) [20,21]. Since SPARCs were introduced, they have been generalised for communication

over general (single-user) memoryless channels [41, 42], and applied to lossy compression [43],

Gaussian multi-terminal source and channel coding problems [44], and unsourced random ac-

cess [39, 40]. The recently published monograph on SPARCs [45] provides an overview of the

research that have been done in SPARCs. In this thesis, we focus on SPARCs for AWGN

channel coding.

1.3.1 Encoding

A standard SPARC is defined by a random design matrix A of dimensions n × LM whose

entries are i.i.d. zero mean Gaussian. Here n is the code length and L, M are integers whose

significance will be explained later. As shown in Fig. 1.6, the design matrix A can be viewed as

having L sections with M columns each. Codewords are generated by the linear combination

of L columns of A, one column from each section. This can be represented as a matrix-vector

multiplication Aβ, where β ∈ RLM is a message vector with exactly one non-zero entry in each

of its L sections. The corresponding non-zero values are fixed a priori and denoted by a1, . . . , aL

as shown in Fig. 1.6. Note that SPARCs are not linear codes as the sum of two codewords is

18



. . .

Section 1 Section 2 Section L

A : n
rows

β : . . ....0, a1, 0 a2, 0, 0, ... 0, aL, 0, ...
ᵀ

M columns

Figure 1.6: SPARC codewords are of the form Aβ, where A is an n × LM design matrix and β is an
LM × 1 message vector with one non-zero entry in each of its L sections. The non-zero values a1, . . . , aL
are fixed a priori.

Input bit stream : . . .0, 0, 0 0, 1, 1 1, 1, 0

log2M bits log2M bits log2M bits

β : . . .0, 0, 0, 0, 0, 0, 0, 0, a1 0, 0, 0, 0, 0, a2, 0, 0, 0 0, aL, 0, 0, 0, 0, 0, 0, 0

T

M entries M entries M entries

Section 1 Section 2 Section L

Figure 1.7: SPARC encoding example with M = 8.

not necessarily a codeword. (We intentionally use L to denote both the number of users in a

Gaussian MAC (Section 1.2) and the number of sections in a SPARC. The connections between

the Gaussian MAC model and the SPARC construction are described in Chapter 4.)

The message to be transmitted is indexed by the locations of the non-zeros in the message

vector β. Since each section of the L sections of β has M entries, each section encodes log2M

bits, and the rate of the code is given by

R =
L log2M

n
bits/channel use. (1.11)

A graphical illustration of the encoding procedure is given in Fig. 1.7, where we use the decimal

equivalent of each segment of log2M bits to determine the location of the single non-zero entry

among M corresponding entries of the message vector. Note that the message vector is sparse,

i.e., most entries in β are zero.

Power allocation The design of the non-zero values in the message vector {a1, . . . , aL} is

denoted the power allocation. Power allocation is crucial to the performance of SPARCs when

efficient iterative decoders are used [21, 22, 46, 47]. A commonly used design for theoretical

analysis is the exponentially decaying power allocation:

a` ∝ 2−2C`/L for ` ∈ [L], (1.12)
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where C is the Shannon capacity of the AWGN channel given in (1.5). The variance of the

Gaussian entries of A and the power allocation {a1, . . . , aL} are chosen such that codewords

satisfy the average power constraint in (1.2) in expectation, i.e., E[‖Aβ‖2] ≤ nP . The intuition

for using this exponentially decaying power allocation for iterative decoding is that the sections

with higher power (larger values of a`) decode in the earlier iterations; once decoded, the

interference from these high power sections are removed, which makes lower power sections

easier to decode in later iterations.

1.3.2 Decoding

Using the AWGN channel model in (1.1), the channel output y ∈ Rn can be represented as

y = Aβ +w, (1.13)

where the noise vector w ∈ Rn has i.i.d. N (0, σ2) entries. The decoder aims to recover the

message vector β given the channel output y. The design matrix A, the power allocation

{a1, . . . , aL}, and the channel noise variance σ2 are known to the decoder. Notice that this is

similar to the compressed sensing signal recovery problem where one aims to recover a sparse

(in some known basis) vector β from random linear measurements y [48–50].3

Error performance criterion A common performance measure of SPARC decoders is the

section error rate (SER), which is the fraction of sections decoded wrongly, or equivalently, the

fraction of the locations of the non-zero entries estimated in error. It is defined as

SER :=
1

L

L∑

`=1

1

{
β̂sec(`) 6= βsec(`)

}
, (1.14)

where 1{·} is the indicator function, βsec(`) ∈ RM is the `-th section of the message vector,

and β̂sec(`) is the decoder’s estimate of that section. For several decoders (which are listed

later), prior works have obtained bounds on the probability of excess section error rate, i.e., the

probability of the event {SER > ε} for some ε ∈ (0, 1).

Another performance measure is the bit error rate (BER). Recall that log2M bits determine

the location of the non-zero entry in a section of the message vector β. Assuming that the

probability of estimating the location of the non-zero entry incorrectly is uniform across the M

possible locations, if the location is estimated incorrectly, then on average half of the log2M

bits will be decoded in error due to the uniform mapping of location to bits. Therefore, for a

3Compared to compressed sensing, the β vector for SPARCs has section-wise i.i.d. entries (one non-zero entry
in each section whose value is known to the decoder, only the location is unknown) whereas compressed sensing
usually assumes i.i.d. entries. Moreover, in the asymptotic analysis of compressed sensing, one often assumes
that the measurement ratio dim(y)

dim(β)
converges to a constant, whereas in the asymptotic analysis of SPARCs, the

measurement ratio tends to 0. See Section 1.4 for more details on compressed sensing.
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SPARC with a large number of sections, the bit error rate will be close to half the section error

rate.

Optimal decoder SPARCs with “flat” power allocation (a1 = a2 = . . . = aL) were analysed

under the optimal/maximum likelihood (ML) decoder in [20]. The decoder is given by

β̂ = arg min
β′∈BL,M

‖y −Aβ′‖22, (1.15)

where BL,M is the set of length LM vectors with L sections of M entries each, and with a

single non-zero entry equal to a1 in each section. For rates R < C, the ML decoder was shown

in [20] to have error probability decaying exponentially in the code length n. In particular, the

probability of excess section error rate is bounded as follows for any ε ∈ (0, 1):

P(SER > ε) ≤ e−κnmin(ε,(C−R)2), (1.16)

where κ is a universal positive constant. This result was extended to SPARCs with design

matrices that have i.i.d. Bernoulli ±1 entries in [51, 52]. Is not computationally feasible to

implement the ML decoder for large values of (L,M), hence, several low complexity iterative

decoders have been proposed.

Low complexity decoding schemes Here we list several low complexity iterative decoders

that have been proposed for SPARCs. The results that we discuss are all given for SPARCs

with exponentially decaying power allocations (see (1.12)).

1. Adaptive successive hard-decision decoder For any rate R < C, the probability of

excess section error rate of this decoder decays exponentially in n/ log n [21].

2. Adaptive successive soft-decision decoder For any rate R < C, the probability of

excess section error rate of this decoder decays exponentially in n/(log n)2T ∗+1, where T ∗

is the number of iterations run by the decoder [46,53].

3. Approximate message passing decoder This decoder has been proposed and analysed

in several works [22,54–57]. For any rate R < C, the excess section error rate of the AMP

decoder decays exponentially in n/(log n)2T ∗+1, where T ∗ is the number of iterations

required for successful decoding and is inversely proportional to log(C/R) [57].

Error performance Although the error exponents for the above three decoders are sim-

ilar, their empirical performance differs. In particular, the adaptive successive hard-decision

decoder has high SER at rates near capacity for practical code lengths [58]. To best of the au-

thor’s knowledge, the latter two decoder’s error performance have not been directly compared.
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Computational complexity The computational complexity and memory requirement of

the adaptive successive hard-decision decoder and the AMP decoder are both of order O(nLM)

when Gaussian design matrices used. The complexity is dominated by matrix-vector multiplica-

tions with the design matrix A ∈ Rn×LM and the memory requirement by the need to store the

design matrix. The adaptive successive soft-decision decoder has higher decoding complexity

as it requires a Cholesky decomposition computation at each iteration. In [22] and [56], the au-

thors proposed to construct design matrices A by uniformly sampling rows from a Hadamard or

Fourier matrix, similar to what is often done in the compressed sensing literature [50]. This can

reduce the computational complexity to O(LM log(LM)) by using the Fast Walsh-Hadamard

Transform [59] or the Fast Fourier Transform [60]. Furthermore, only the index of the rows that

were sampled need to be stored in memory, which is of order O(n).

Hardware implementations There has been some research done in the design of ded-

icated hardware for SPARC encoding and decoding for improved efficiency. In [61], the error

performance of SPARCs under the AMP decoders introduced in [22] and [56] were evaluated

under finite precision and finite code length. In [62], the same authors proposed the first SPARC

encoder and decoder architectures.

Improving error performance Two approaches have been proposed to improve the

finite length error performance of SPARCs under AMP decoding. In [22, 47], the authors

proposed ways to optimise the power allocation, and in [55,56], the authors proposed to use the

spatial coupling technique to construct the design matrix A. For rates away from capacity and

at practical code lengths, these methods showed orders of magnitude improvement in the SER

compared to using the exponentially decaying power allocation defined in (1.12). The spatial

coupling technique will be introduced in Section 1.5 and its application to SPARCs in Chapter

2.

In this thesis (Chapters 2 and 3) we devise a unified framework to analyse both power allocated

and spatially coupled SPARCs. Furthermore, we generalise the SPARC construction so that

information is not only encoded in the locations of the non-zero entries of the message vector β,

but also in the non-zero values that they take. These generalised SPARCs are named modulated

SPARCs as the non-zero values are chosen from a digital modulation scheme such as phase-shift

keying (PSK). We analyse the decoding progression of spatially coupled and PSK modulated

SPARCs under AMP decoding, and prove that they are asymptotically capacity achieving.

We also show via simulations that they can achieve lower error rates than existing SPARCs

constructions and also standard coded modulation schemes at finite code lengths.
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1.4 Approximate message passing

Approximate Message Passing (AMP) refers to a class of algorithms that are Gaussian/quadratic

approximations to loopy belief propagation/message passing algorithms on dense factor graphs

for certain high-dimensional problems, e.g., compressed sensing, generalised linear models, and

low-rank matrix estimation [63–66]. The AMP algorithm is closely related to the “approximate

belief propagation” algorithms used in earlier works for code-division multiple-access (CDMA)

multi-user detection problems [67–70].

In this thesis we focus on using AMP as a decoding algorithm for coding schemes based

on random linear models. In this section we introduce AMP in the context of the compressed

sensing problem, which is a particular application of random linear models.

Compressed sensing In compressed sensing [48–50], one aims to recover a signal vector

β0 ∈ Rn from random linear measurements yi = ai · β0 for i = 1, . . . ,m, where the ai’s are

random vectors, x · y represents the dot product between vectors x and y, and the number of

measurements m is less than the signal dimension n. Signal recovery is possible because the

recovery algorithm takes advantage of a priori knowledge of the signal structure, such as sparsity

(only a subset of entries of β0 are non-zero), or sparsity is some known basis (e.g., Wavelet or

Fourier). Compressed sensing in additive Gaussian noise is often represented in the following

vector form:

y = Aβ0 +w, (1.17)

where the sensing (or measurement) matrix A ∈ Rm×n has a1, . . . ,am as its rows and the noise

vector w ∈ Rm has i.i.d. N (0, σ2) entries.

Compressed sensing is often analysed in the large system limit where m,n both tend to infin-

ity with the measurement ratio δ = m/n converging to a constant in (0,∞). Furthermore, i.i.d.

Gaussian sensing matrices and i.i.d. signal vectors are often assumed, i.e., Aij
i.i.d.∼ N (0, 1/m)

and β0,j
i.i.d.∼ pβ0 [71–74]. We now introduce the AMP signal reconstruction algorithm in such a

setting.

AMP signal reconstruction for i.i.d. Gaussian A A compressed sensing signal recon-

struction algorithm aims to accurately recover the signal vector β0 from noisy measurements y

given the sensing matrixA. The AMP algorithm iteratively generates signal vector estimates βt

at iterations t = 0, 1, 2, . . . as follows: initialise β0 to the all-zero vector, and for t ≥ 0 compute

zt = y −Aβt +
1

δ
zt−1

〈
η′t−1(βt−1 +A∗zt−1)

〉
,

βt+1 = ηt
(
βt +A∗zt

)
.

(1.18)
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Here A∗ is the transpose of A, variables with negative iteration indices are set to zero, ηt(·)’s
are scalar denoising functions (applied entry-wise) that we discuss later, η′t(s) = ∂

∂sηt(s), and

for a vector x = [x1, ..., xn], 〈x〉 :=
∑n

i=1 xi/n. There is a vast literature on the history of

AMP algorithms and how they can be obtained by making approximations to sum-product (or

min-sum) message passing, a few references are [64,75–78]. Before we discuss the ηt(·) denoising

functions, we need to introduce state evolution.

State evolution State evolution (SE) is a deterministic recursion that tracks the per-iteration

performance of the AMP algorithm in the large system limit (m,n→∞ with m/n converging

to a constant). It is similar to the density evolution recursion, which tracks the per-iteration

erasure probability of the belief propagation decoder for sparse graph error correcting codes in

the limit of large code length [79]. In particular, state evolution tracks the evolution of a mean

squared error (MSE) term ψt and an effective noise variance term τt across iterations as follows:

initialise ψ0 = E[β2], and for t ≥ 0 compute

τt = σ2 +
1

δ
ψt,

ψt+1 = E
{

[ηt(β +
√
τtZ)− β]2

}
,

(1.19)

where σ2 is the measurement noise variance, and the expectation is taken over the random

variable β ∼ pβ0 and Z ∼ N (0, 1) independent of β.

For scalar functions ηt(·) which are Lipschitz continuous and signal distributions pβ0 that

satisfy certain bounded moment conditions, [76, Thm. 1] shows that the per-iteration MSE of

the AMP estimate is accurately tracked by ψt in the large system limit. That is, for t ≥ 0,

almost surely4

lim
n→∞

1

n

∥∥βt+1 − β0

∥∥2
= E

{
[ηt(β +

√
τtZ)− β]2

}
= ψt+1. (1.20)

Interpretation of the AMP decoder At each iteration the AMP algorithm first produces

a modified residual term zt, which consists of a residual term y − Aβt and an additional

“Onsager” correction term which is a function of the previous modified residual zt−1.5 The

AMP algorithm then produces an effective observation term st = βt +A∗zt which is the input

to the denoising function ηt(·). The key intuition behind the AMP algorithm is that the entries

of st can be seen as noisy versions of the entries of the signal β0. In particular, for index j ∈ [n],

stj approximately distributed as β0,j +
√
τtZ, where Z is a standard Gaussian independent of

4The result of [76, Thm. 1] holds for more general functions on βt+1 and β0 (other than the squared error
function), and only requires the empirical distribution of β0 to converge weakly to a probability measure pβ0 on
R with certain bounded moment conditions.

5The correction term is similar to momentum terms often found in accelerated first order optimisation algo-
rithms, e.g., Nesterov’s accelerated gradient method. However, the correction term is based on the residual term
zt and not the signal term βt as done in momentum methods. Furthermore, the correction term has a specific
characterisation (no tuning parameters) which differentiates it from momentum methods.
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β0,j , and τt is the state evolution parameter given in (1.19). Therefore, the role of the ηt(·)
function is to estimate the signal entries {β0,j}j∈[n] in Gaussian noise. The Onsager correction

term is crucial to the above distributional property of st. For more intuition on its role in the

AMP algorithm, see [76, Sec. I.C].

If the prior distribution of the signal pβ0 is known (e.g., in communication problems where

an engineer designs the “signal”), then the estimator ηt(·) that minimises the MSE is the

conditional expectation, i.e.,

ηt(s) = E [β | β +
√
τtZ = s] . (1.21)

Example: sparsity In compressed sensing applications, the signal β0 is often assumed to

be sparse and the signal recovery algorithm may not know the signal generating distribution

(or there may not be one). Let us assume that the entries of β0 are drawn i.i.d. from pβ0 , and

that pβ0 belongs to the class of distributions with sparsity ratio ε, i.e., P(β0 6= 0) = ε. The

soft-thresholding function is near-optimal for estimating such sparse signals in Gaussian noise

in a minimax sense, i.e., it achieves near minimum MSE for the worst case distribution in the

class of distributions with sparsity ratio ε [80, 81]. The soft-thresholding function S(s; θt) is

defined as follows:

S(s; θt) =





s− θt if s > θt,

0 if |s| ≤ θt,

s+ θt if s < θt.

(1.22)

Using ηt(s) = S(s; θt) in the AMP algorithm (1.18), we obtain the soft-thresholding AMP

algorithm:

zt = y −Aβt +
‖βt‖0
m

zt−1,

βt+1 = S
(
βt +A∗zt; θt

)
.

(1.23)

Here ‖x‖0 denotes the `0-pseudo-norm of vector x, i.e., the number of its non-zero entries. A

suitable choice for the threshold parameters {θt}t≥0 is to be proportional to the standard devi-

ation of the effective noise, i.e., θt = α
√
τt for some tuning parameter α. A specific prescription

for the choice of α (that is dependent on the sparsity ratio ε) is given in [77, Sec. 3].

It was proved in [72] that the asymptotic MSE of the soft-thresholding AMP algorithm

(1.23) coincides with that of the popular LASSO estimator for compressed sensing [82]:

β̂LASSO = arg min
β

1

2
‖y −Aβ‖2 + λ‖β‖1, (1.24)

where the `1 penalty term favours sparse solutions and λ > 0 is a tuning parameter. This

connection opened up a new way to analyse the LASSO, e.g., the noise-sensitivity of the LASSO
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estimates [71], and also provided an algorithm to solve it (for i.i.d. Gaussian sensing matrices).

Potential function analysis and connections to MMSE estimation In addition to

being able to analyse the per-iteration error of the AMP algorithm via state evolution, the error

of the AMP algorithm at convergence (considering t → ∞) can be analysed via the potential

function method [83].

Consider the linear model (1.17) and the AMP algorithm (1.18) with the denoising function

ηt(·) chosen to be the minimum mean squared error (MMSE) estimator in (1.21). For this

setting, the following potential function has been proposed (up to additive constants) in many

works [54,56,74,78,84]:6

F(δ, σ2, ψ) = I
(
β;β +

√
(σ2 + ψ/δ)Z

)
+
δ

2

[
ln

(
σ2 + ψ/δ

σ2

)
− ψ/δ

σ2 + ψ/δ

]
, (1.25)

where δ = m/n is the measurement ratio, σ2 is the measurement noise variance, and ψ is an MSE

term similar to that in state evolution (1.19). The mutual information term I(·; ·) is calculated

using β ∼ pβ0 and Z ∼ N (0, 1) independent of β. The stationary points of this function with

respect to ψ correspond to the fixed points of state evolution recursion (1.19). (One can verify

this via the I-MMSE relationship [85]). Hence, analysing the stationary points of the potential

function gives insight into asymptotic MSE achieved by the AMP algorithm at convergence.

In particular, when the stationary point is unique, the asymptotic MSE achieved by the AMP

(limn→∞ ‖βt−β0‖2/n) converges to the ψ value at the stationary point, which has been proven

to be the minimum achievable MSE [74, 76, 84]. The same works also show that when the

stationary point is not unique and the signal distribution pβ0 satisfies certain conditions, the ψ

value at the global minimum of the potential function corresponds to the minimum achievable

MSE, and the largest ψ value at a stationary point corresponds to asymptotic MSE achieved

by the AMP algorithm.

Potential functions have also been used to analyse sparse graphs codes and belief propagation

decoding, where the stationary points of the Bethe free energy correspond to the fixed points

of density evolution [83, 86, 87]. In Section 1.5 we will see how potential functions are a key

ingredient in analysing the performance gains obtained by spatial coupling.

Generalisations and other applications

Denoising functions In the above description of AMP, we assumed that the signal vec-

tor β0 had i.i.d. entries. This resulted in separable (scalar) denoising functions ηt(·). However,

this assumption is prohibitive in compressed sensing applications where the signal vector x

6The potential function can either be constructed explicitly to have the desired properties as done in [83], or
it can be obtained by using the (non-rigorous) replica method in statistical physics as done in [56,78].
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represents real signals, e.g., image and audio signals. Simulation results in compressed imag-

ing demonstrate that adapting the AMP algorithm’s denoising function ηt(·) to incorporate

more general signal models (e.g., Hidden Markov tree priors), or simply replacing them with

popular image denoisers such as BM3D [88], greatly improves the quality of image reconstruc-

tion [89–92]. The corresponding state evolution recursions for these AMP algorithms have been

theoretically justified for some classes of non-separable denoising functions [93–95]. When the

signal distribution or certain parameters of the distribution are unknown, several methods have

been proposed to incorporate learning or universal denoising into the AMP iteration [96–99].

Generalised linear models A generalised AMP (GAMP) algorithm and its correspond-

ing state evolution and potential function has been proposed and analysed for generalised linear

models, where the entries of the measurement vector y are obtained from Aβ0 via a memoryless

scalar channel [64,100,101]. These models are useful for modelling non-linearities at the output.

For example, logistic regression corresponds to using the logistic function as the scalar channel

and compressive phase retrieval [102] corresponds to using the absolute value function.

In addition to the LASSO, AMP (and GAMP) can also be used to analyse the asymptotic

performance of other statistical estimation problems, including M-estimation [103], logistic re-

gression [104,105], and SLOPE [106].

Non-Gaussian matrices A crippling problem with the AMP algorithm is that it is sen-

sitive to the choice of sensing matrix A in the linear (or generalised linear) model. The accuracy

of the state evolution has only been proven for sensing matrices with i.i.d. Gaussian [76,100] and

i.i.d. sub-Gaussian entries [107]. In numerical simulations, partial Fourier and Hadamard design

matrices can be used, but state evolution recursions of the form given in (1.19) do not accurately

track the performance of the AMP algorithm for such matrices. Furthermore, when the matrix

A is ill-conditioned, the AMP (and GAMP) algorithm diverges. Hence, for problems where the

matrix A is populated with data (e.g., generalised linear regression applications), there is no

guarantee on the performance of the AMP or GAMP algorithm.

A few approaches have been considered to address this limitation. One approach is to

design different algorithms using similar principles as that used to derive the AMP algorithm.

For example, many algorithms have been obtained by using different approximations to loopy

belief propagation and free energy/potential functions [108–111]. Although simulation results

show that these algorithms are more robust to the choice of A, their convergence properties

have not yet been rigorously analysed. Another approach is to consider a larger class of random

matrices [112, 113]. In [113], the vector AMP algorithm and its corresponding state evolution

was proposed. It was proven that the proposed state evolution tracks the performance of VAMP

for random matrices that are right-rotationally invariant.

Finally, one can view AMP and GAMP as optimisation algorithms and obtain convergence
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guarantees for arbitrary A matrices. In [114], the authors provided convergence guarantees

for AMP (GAMP) algorithms with added damping when the objective function is quadratic.

The optimisation algorithm proposed in [115] is motivated by (and similar to) GAMP. It has

convergence guarantees for arbitrary A matrices and strictly convex and smooth objective

functions.

Bilinear models The AMP and GAMP algorithms have also been extended to (gen-

eralised) bilinear models for applications such as sparse PCA, low-rank matrix estimation,

completion and factorisation, and dictionary learning [66,116–122].

In this thesis we use the AMP algorithm as a decoder for SPARCs (introduced in Section 1.3)

and their generalisations, and analyse the per-iteration performance of the AMP decoder via

state evolution. In particular, we show that for any rate less than the capacity, state evolution

analysis predicts that the asymptotic MSE (and section error rate) of the AMP decoder for

spatially coupled SPARCs can be upper bounded by an arbitrarily small constant after a finite

number of iterations (Chapter 2). In Chapter 3, we show that this result also extends to K-ary

PSK modulated SPARCs (either power allocated or spatially coupled) when the modulation

factor K is fixed. Furthermore, the results in [1, 22, 57] prove that the error performance of

the AMP decoder we propose concentrates on their corresponding state evolution predictions.

Based on the work on spatially coupled SPARCs, we also propose spatially coupled coding

schemes for many-user Gaussian MACs (introduced in Section 1.2) and use the AMP algorithm

for decoding (Chapter 4). We use state evolution and potential function analysis to show that

this coding scheme can asymptotically achieve near-optimal trade-offs.

Compressed coding Compressed coding is a scheme that uses similar AMP techniques for

communication over single-user and multiple-access Gaussian channels [123–126]. In single-user

compressed coding, a coded modulation scheme (e.g., a binary code plus PSK) is first used to

generate a code sequence β0 ∈ Rn, which is then used to generate the channel input sequence

x = Aβ0 via a random “compression” matrix A ∈ Rm×n. An AMP algorithm is used to

recover the code sequence β0 from the noisy channel output y = Aβ0 +w. (The AMP iterates

incorporate the demodulation/decoding procedures of the coded modulation scheme.) Using

state evolution and the area property of extrinsic information transfer charts, [126] showed that

the rate of compressed coding can asymptotically approach the channel capacity provided that

either a certain curve matching condition is satisfied, or spatial coupling is used. Although state

evolution is shown to track the proposed AMP decoder’s error performance via simulations, a

rigorous proof has not yet been shown.

28



1.5 Spatial coupling

1.5.1 Spatial coupling in LDPC codes

Spatial coupling is a technique originally developed for low density parity check (LDPC) codes to

improve the threshold of the low complexity belief propagation (BP) decoder, which is known

as the BP threshold.7 The idea of spatial coupling emerged in the context of constructing

convolutional codes using block codes [127], and in particular from LDPC codes [128]. Therefore,

spatially coupled LDPC codes are also called LDPC convolutional codes.

The idea behind spatial coupling is to couple together several regular LDPC codes in a

chain and use the same BP decoder as uncoupled regular LDPC codes. Since an LDPC code is

defined by its parity check matrix which can be represented by a sparse graph, the coupling of

LDPC codes can be represented by the coupling of disjoint sparse graphs; hence the name spatial

coupling. See Figs. 1.8 and 1.9 for a graphical representation of the coupling procedure known

as unwrapping [127, 128]. Many other coupling methods exist in the literature; in particular,

the works of this thesis is inspired by protograph based spatially coupled LDPC codes [129,130].

Perhaps surprisingly, when the coupling procedure is properly terminated at the two ends

of the chain, the BP threshold of the spatially coupled LDPC code improves over that of the

underlying regular LDPC code. Furthermore, [14] proved that for the binary erasure channel

(BEC), the threshold of a spatially coupled LDPC code under sub-optimal BP decoding matches

the threshold of the underlying regular LDPC code under optimal maximum a posteriori (MAP)

decoding — a phenomenon known as threshold saturation. Take the (3,6)-regular LDPC code

for example, spatial coupling improves the threshold under BP decoding from εBP ≈ 0.4294 to

εMAP ≈ 0.4882. The threshold saturation result for spatially coupled LDPC codes was later

extended to general binary-input memoryless output-symmetric channels in [15]. Since the

MAP decoding threshold of regular LDPC codes approaches the Shannon limit ((1 − rate) for

the BEC) as the variable and check node degrees tend to infinity, spatially coupled LDPC codes

with BP decoding is a practical coding scheme that is provably capacity achieving. A review

on the theory and practice of spatially coupled LDPC codes is given in [131].

An intuitive explanation for the improvement in BP threshold is as follows. Consider the

BEC for simplicity, noting that in this case BP decoding is equivalent to iteratively solving the

parity check equations to recover the erased codeword bits/symbols. Notice in Fig. 1.9c that

the check nodes at the two ends of the coupled graph are of a lower degree than the check

nodes in the middle (which have the same degree as the underlying (3,6)-regular LDPC code).

This allows the variables (codeword bits/symbols) at the two ends to be decoded more easily

than the variables in the middle. Therefore, the variables at the two ends can start decoding at

7In coding theory, the “threshold” is the unique channel parameter that separates decoding success and failure.
For example, consider a binary erasure channel with erasure probability ε and a (3,6)-regular LDPC code with
BP threshold εBP ≈ 0.4294. For ε < εBP, BP decoding succeeds with high probability (for large code lengths),
whereas for ε > εBP, BP decoding fails with high probability.
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resented by a bi-infinite parity check matrix, rep-
resented by Eq. 1, composed of a diagonal band
of (c – b) × c submatrices Hi(t), 0 £ i £ ms, t = 0,
1, 2, …, where the rows and columns of Hcc are
sparse; in other words, they contain a small
number of non-zero entries. If Hcc contains only
zeros and ones, the code is binary; otherwise, it
is non-binary. The syndrome former memory is
denoted by ms, where ms + 1 is the width of
each row in submatrices, and ns = (ms + 1)c,
the width of each row in symbols, is called the
decoding constraint length. If Hcc contains a fixed
number J of ones in each column and a fixed
number K of ones in each row, it represents a (J,
K)-regular LDPC-CC; otherwise, the code is
irregular. In general, Hcc describes a time-varying
LDPC-CC, and if the rows of Hcc vary periodi-
cally, the code is periodically time-varying. If the
rows of Hcc do not vary with time, the code is
time-invariant.

Using a technique termed unwrapping in [5],
it is possible to take any good LDPC-BC and
unwrap it to form an LDPC-CC with improved
BER performance. The unwrapping procedure
applies cut-and-paste and diagonal matrix exten-
sion operations to the parity check matrix H of
an LDPC-BC to produce a bi-infinite parity-
check matrix Hcc of an LDPC-CC, as illustrated
in Fig. 3a, where H represents a (3, 6)-regular
block code with block length n = 10, and Hcc
represents a (3, 6)-regular convolutional code
with constraint length ns = 10. The bi-infinite
(convolutional) Tanner graph representation of
Hcc is shown in Fig. 3b, and we see that the
unwrapping procedure preserves the graph struc-
ture of the underlying LDPC-BC, that is, all
node degrees remain the same, and the local
connectivity of nodes is unchanged.

Extensive computer simulation results [6]
have verified that for practical code lengths,

LDPC-CCs obtained by unwrapping an LDPC-
BC achieve a substantial convolutional gain com-
pared to the underlying LDPC-BC, where both
codes have the same computational complexity
with iterative decoding, and the block length of
the LDPC-BC equals the constraint length of
the LDPC-CC. An example illustrating this con-
volutional gain is shown in Fig. 4.

Even though the Tanner graph representa-
tion of an LDPC-CC extends infinitely both for-
ward and backward in time, in practice there is
always some finite starting and ending time; that
is, the Tanner graph is terminated at both the
beginning and the end (Fig. 3c). A remarkable
feature of this graph termination, first noted
numerically in the paper by Lentmaier et al. [7]
for both the binary erasure channel (BEC) and
the AWGNC, and then shown analytically (for
the BEC) by Kudekar et al., [8], is the so-called
threshold saturation effect. Consider for purposes
of illustration the (3, 6)-regular LDPC-BC
ensemble with AWGNC iterative BP decoding
threshold Eb/N0 = 1.11 dB, which is also the
threshold of the associated (unterminated)
LDPC-CC ensemble. As the graph termination
length L becomes large, the threshold of the
(terminated) LDPC-CC ensemble improves all
the way to 0.46 dB, the threshold of the (3, 6)-
regular LDPC-BC ensemble with ML decoding.4
In other words, terminated LDPC-CCs with BP
decoding are capable of achieving the same per-
formance as comparable LDPC-BCs with (much
more complex, and impractical) ML decoding!
This “step-up” of the BP threshold to the ML
threshold is referred to as threshold saturation.
Note that, after termination, the LDPC-CC code
ensemble can be viewed as an LDPC-BC ensem-
ble with block length n = (ms + 1)cL = nsL.
However, compared to typical LDPC-BC designs
that have no restrictions on the location of the
ones in the parity-check matrix and hence allow
connections across the entire graph, the LDPC-
CC code ensemble has a highly localized graph
structure, since the non-zero portion of the pari-
ty-check matrix is restricted to a diagonal band
of width ns. We will see later that this structure,
in addition to yielding excellent iterative decod-
ing thresholds, also gives rise to an efficient
decoder implementation.

Threshold saturation is a result of the termi-
nation, which introduces a slight structured
irregularity in the graph. Termination has the
effect of introducing lower constraint node
degrees (i.e., a structured irregularity) at each
end of the graph (Fig. 3c). In the context of iter-
ative BP decoding, the smaller degree constraint
nodes pass more reliable messages to neighbor-
ing variable nodes, and this effect propagates

Figure 2. a) Parity-check matrix of a (3, 6)-regular LDPC-BC with block
length n = 10; b) the associated (3, 6)-regular Tanner graph. The green
circles represent code bits, or variable nodes; the open circles � represent
parity checks, or constraint nodes, and the darkened edges represent a
cycle of length 4.
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Figure 1.8: a) Parity-check matrix of a (3, 6)-regular LDPC block code with block length n = 10; b) the
associated (3, 6)-regular Tanner graph. The blue circles represent code bits, or variable nodes; the open
circles represent parity checks, or constraint nodes, and the darkened edges represent a cycle of length
4. Taken from Fig. 2 of [131], c© 2014 IEEE.
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throughout the graph as iterations increase. This
results in BP thresholds for terminated LDPC-
CC ensembles that, for large enough degree
densities (J and K for regular codes), actually
achieve capacity as the constraint length ns and
termination length L go to infinity. In addition,
for regular LDPC-CCs, the terminated (slightly
irregular) ensembles are still asymptotically good
in the sense that their minimum distance grows
linearly with block length n.

The net result of these effects is captured in
Fig. 5, which illustrates the trade-offs between
the AWGNC BP decoding threshold (in Eb/N0),
the minimum distance growth rate (dmin/n), and
the code rate (R) for several (J, 2J)-regular ter-
minated LDPC-CC ensembles as a function of
the termination length L. We observe that, in

general, as the termination length L increases,
the LDPC-CC rate approaches the rate of the
underlying LDPC-BC and, in contrast to (J, 2J)-
regular LDPC-BC ensembles, the BP thresholds
of the terminated LDPC-CC ensembles
approach capacity as J increases.5 Also, linear
distance growth is maintained for any finite
value of L. In addition to regular ensembles, Fig.
5 also includes terminated LDPC-CC ensembles
based on the irregular ARJA codes designed by
Divsalar et al. [9], an irregular LDPC-BC ensem-
ble with linear distance growth and better thresh-
olds than comparable regular ensembles.
(Irregular LDPC-BC ensembles with optimized
degree profiles already have thresholds close to
capacity, and they do not possess linear distance
growth, so little is to be gained by applying the

Figure 3. a) An illustration of the unwrapping procedure for a (3, 6)-regular LDPC-BC; b) the Tanner
graph associated with the unwrapped (3, 6)-regular LDPC-CC; c) the terminated Tanner graph asso-
ciated with the unwrapped (3, 6)-regular LDPC-CC.
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Figure 1.9: a) An illustration of the unwrapping procedure for a (3, 6)-regular LDPC block code; b) the
Tanner graph associated with the unwrapped (3, 6)-regular LDPC convolutional code; c) the terminated
Tanner graph associated with the unwrapped (3, 6)-regular LDPC convolutional code. Taken from Fig. 3
of [131], c© 2014 IEEE.
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erasure probabilities above the BP threshold of an uncoupled (3,6)-regular LDPC code. Once

decoding is initiated at the two ends, a decoding “wave” propagates from the two ends until it

reaches the middle.

Due to the extra check nodes at the two ends, spatial coupling does come at the cost of

having a lower overall rate compared to the underlying uncoupled LDPC code. However, as the

coupling length (the number of LDPC codes coupled together) increases, this rate loss becomes

negligible.

Statistical physics analogy

The supercooling phenomenon — the cooling of a liquid below its freezing point without it

becoming a solid — is a useful analogy in explaining the threshold saturation phenomenon in

spatially coupled systems [65]. Under standard conditions, water freezes (crystallises) when the

temperature is lowered to 0◦C; however, if the water is pure and free of nucleation sites for

crystallisation (e.g. after demineralisation), then water can be supercooled down to −48.3◦C,

which is when homogeneous nucleation occurs. In between 0◦C and −48.3◦C, pure water gets

trapped in an amorphous (or “glassy”) state. It is the impurities in the water acting as seed

crystals that allow water to crystallise at 0◦C. If a nucleation site is introduced to pure water

in between 0◦C and −48.3◦C, then heterogeneous nucleation initiates from the boundary of the

nucleation site and a nucleation “wave” propagates from the boundary to the rest of the liquid.

A quick search for “supercooled water” on Youtube.com gives some good examples captured on

video.
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Figure 1.10: Toy figure illustrating the connections between the thresholds in various random systems.
The LDPC thresholds are discussed on page 29, the (noiseless) compressed sensing thresholds in Section
1.5.2, and the SPARC thresholds in Section 1.5.3.

31

https://www.youtube.com/results?search_query=supercooled+water


Regular LDPC codes can be likened pure water in the above example, and their BP threshold

to −48.3◦C. Since the parity check matrix is regular, the system is homogenous, without any

“impurities” where decoding (crystallisation) can easily initiate. In spatially coupled LDPC

codes, the extra check nodes at the two ends act as nucleation sites introduced to the system,

from which decoding can initiate. The MAP threshold can be likened to 0◦C. Furthermore,

the rest of the system away from the two ends (the “boundary”) is just like a like a regular

LDPC code without any “impurities”. Irregular LDPC codes [132] can be seen as another way

to introduce heterogeneity into the system. In Fig. 1.10, we draw a toy figure to illustrate the

relationships between LDPC thresholds and water crystallisation temperatures.

We will repeatedly refer to this supercooling analogy when giving intuitive explanations to

the workings of spatial coupling in other applications.

Threshold saturation proofs

Multiple strategies have been used to prove that the BP threshold of spatially coupled LDPC

codes “saturate” the MAP threshold of the underlying regular LDPC code. The first proof

was done via the Maxwell construction, which relates the fixed point of the coupled density

evolution (DE) to the area threshold of the underlying regular LDPC code [14, 15, 133]. Later

on, a strategy based on extrinsic information transfer (EXIT) charts [134] and strategies based

on potential functions [83,135] were used to provide a general proof of the threshold saturation

phenomenon in a variety of applications, such as LDPC codes and compressed sensing. These

proofs require the state of the underlying uncoupled system to be characterised by a scalar, e.g.,

the erasure probability characterises the state of density evolution.

The proof based on potential functions is the simplest of the three. The proof first constructs

a potential function whose stationary points have a one-to-one correspondence with the fixed

points of the scalar recursion corresponding to the uncoupled system. For example, in com-

pressed sensing with AMP signal recovery (introduced in Section 1.4), the potential function

in (1.25) has stationary points which correspond to the fixed points of state evolution (1.19).

It is known that the (global) minimum of such a potential function is related to the optimal

performance of the underlying system, e.g., MAP or MMSE decoding performance. Threshold

saturation is then proved by showing that the coupled recursion corresponding to the spatially

coupled system (e.g. coupled DE) has a unique fixed point that corresponds to the minimum of

the potential function.

There are deep and fascinating connections between the fundamental properties of random

systems, potential (free energy) functions, and message passing algorithms due to their connec-

tions with statistical physics. A recent survey article [136] reviews of some recent developments

in the use of statistical physics ideas in statistical inference problems. Please refer to the refer-

ences in [136] for detailed discussions on these topics.

In the following two sections, we discuss how spatial coupling has been applied to compressed
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sensing and sparse regression codes.

1.5.2 Spatial coupling in compressed sensing

Recall from Section 1.4 that in compressed sensing one aims to recover a (possibly sparse) signal

β0 ∈ Rn from noisy random linear measurements y = Aβ0 +w, where A ∈ Rm×n is the sensing

matrix and the noise vector w ∈ Rm has i.i.d. N (0, σ2) entries. The measurement ratio is

given by δ = m/n. In the noiseless case (σ2 = 0), it is of great interest to find the minimum δ

(maximum compression ratio) such that signal recovery is possible.

Consider compressed sensing in the setting where the sensing matrix A has i.i.d. Gaussian

entries and the signal vector β0 has i.i.d. entries drawn from pβ0 . In this setting, when the

measurements are noiseless (σ2 = 0), signal recovery is lossless if and only if δ > d(pβ0), where

d(pβ0) is the upper Rényi information dimension of the signal [137]. One can compare this with

the ε < εMAP condition for successful MAP decoding of regular LDPC codes over the BEC.

However, when we consider the low complexity AMP algorithm described in Section 1.4

(using the MMSE estimator (1.21) as the denoising function), signal recovery is lossless if and

only if δ > δAMP(pβ0), where the AMP threshold δAMP(pβ0) is greater than or equal to d(pβ0).

One can compare the AMP threshold to the BP threshold of regular LDPC codes. Take pβ0

to be the Bernoulli-Gaussian signal distribution for example, where each entry of β0 is drawn

from a standard Gaussian with probability α, and set to zero with probability 1−α. If we take

α = 0.2, then d(pβ0) = 0.2 and δAMP(pβ0) ≈ 0.355. Note that d(pβ0) always equals the sparsity

ratio α for Bernoulli-Gaussian priors.8 See Fig. 1.10 for a toy figure illustrating the connections

between thresholds in compressed sensing and LDPC codes.

The idea of using spatial coupling in compressed sensing was first proposed in [138]. Then

in [65] it was demonstrated via numerical simulations that spatial coupling can improve the

AMP threshold to near-optimal thresholds. A threshold saturation result similar to that in

spatially coupled LDPC codes was established in [139], and also included in the threshold

saturation proofs for general coupled systems [83, 134]. Specifically, [139] proved that lossless

signal recovery is achieved with spatial coupling and AMP if the measurement ratio δ exceeds

the theoretically optimal threshold d(pβ0). Furthermore, [139] proved that such a signal recovery

scheme is robust to measurement noise (σ2 > 0).

In LDPC codes, spatial coupling involves the coupling of sparse factor graphs; in compressed

sensing, spatial coupling involves the coupling of dense factor graphs corresponding to the dense

sensing matrixA. Each factor graph has n variable nodes and m constraint nodes corresponding

to the signal entries and measurement constraints, respectively (see [77] for more details). The

resulting spatially coupled system corresponds to using a block-diagonal sensing matrix A in

8This is very surprising, it tells us that the optimal signal recovery scheme can recover the signal as if knowing
the exact locations of the non-zero entries. More specifically, the number of “extra” measurements optimal
scheme requires is sublinear in n.
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Figure 1.11: Spatially coupled sensing matrix A. Entries within the same blue block are i.i.d. zero mean
Gaussian, and entries outside the block-diagonal region (the white areas) are equal to zero. Different
shades of blue represent different Gaussian variances. Dashed lines are drawn to show how blocks in the
sensing matrix correspond to blocks in the signal vector. (Inspired by [56, Fig. 5].)

compressed sensing. An example spatially coupled sensing matrix is illustrated in Fig. 1.11,

where the entries within the same blue block are i.i.d. Gaussian, and entries outside the block-

diagonal region (the white areas) are equal to zero. Entries across blocks are independent and

can have different Gaussian variances, as illustrated by the different shades of blue.

Each block of the spatially coupled sensing matrix in Fig. 1.11 can be seen as an uncoupled

sensing matrix. The signal vector β0 and noisy measurement vector y can be partitioned into

blocks that correspond to the column-blocks and row-blocks of the spatially coupled sensing

matrix, respectively. Consider the second row-block of the sensing matrix in Fig. 1.11, which

has three non-zero blocks. This means that the second row-block of y contains information

about the first three column-blocks of β0. Although many different spatially coupled sensing

matrix constructions have been proposed in the literature [56,78,124,139,140], they are all have

a block-diagonal structure, and many of them have an explicit “seed” region at the top-left

corner of the sensing matrix. In Fig. 1.11, this “seed” region is constructed by adding more

rows (measurements) to the blocks in the first row-block, which results in those blocks being

“taller” (having higher measurement ratio) compared to other blocks. The “seed” region helps

jump start AMP decoding, just like the extra check nodes at the two ends of spatially coupled

LDPC codes (see Fig. 1.9c) help jump start BP decoding.

1.5.3 Spatial coupling in sparse regression codes

Since sparse regression codes (SPARCs) can be seen as a special case of compressed sensing

where the signal vector β0 has a section-wise i.i.d. structure (compare the beginnings of Sections

1.3 and 1.4), spatial coupling ideas and AMP decoding algorithms have been applied to SPARCs.
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AMP decoding algorithms were first applied to SPARCs in [54], and similar authors intro-

duced spatially coupled SPARCs with AMP decoding [55, 56]. The authors proposed spatially

coupled design matrices for SPARCs that are of the type shown in Fig. 1.11. The analysis of

spatially coupled SPARCs under AMP decoding in these works were based on state evolution

and heuristic statistical physics methods such as the replica method. Their (not fully rigorous)

analysis showed that spatially coupled SPARCs with “flat” power allocation and AMP decod-

ing are asymptotically capacity achieving. Their numerical simulation results showed that the

error rate of spatially coupled SPARCs drops faster than that of power allocated SPARCs as

the code rate moves away from the channel capacity. Later on, the same authors made some

steps of the analysis rigorous [84, 140]. In particular, they proved a threshold saturation result

similar to that for spatially coupled LDPC codes and compressed sensing, and also showed that

the optimal (rate) threshold RMMSE of uncoupled SPARCs approaches the channel capacity as

the section size parameter M tends to infinity.9 The latter result is similar to how the MAP

threshold of regular LDPC codes εMAP tends to the Shannon limit as the degrees of the code

tend to infinity. See Fig. 1.10 for a toy figure illustrating the connections between thresholds in

LDPC codes, compressed sensing and SPARCs.10

In this thesis we also consider spatially coupled SPARCs (Chapter 2). We propose a simpler

construction for spatially coupled design matrices compared to earlier works, and show that

this construction provides a unified framework to analyse both power allocated and spatially

coupled SPARCs. It even enables one to consider SPARCs that utilise both techniques simul-

taneously. Using the simpler spatially coupled construction, we provide an alternative proof to

threshold saturation to show that spatially coupled SPARCs with AMP decoding are asymptot-

ically capacity achieving. We also provide numerical simulation results to show the finite code

length performance of spatially coupled SPARCs in comparison to power allocated SPARCs

and standard coded modulation schemes.

In contrast to threshold saturation, which analyses the fundamental threshold of the system

and the fixed points of a coupled state evolution, we analyse the iteration-by-iteration perfor-

mance of the AMP decoder via a coupled state evolution. This can be likened to the static

versus dynamic analysis in physics, where the former analyses the equilibrium state of a system

(i.e., when the time index tends to infinity and the system settles down), and the latter analyses

how the state of a system evolves over time. From another point of view, our analysis involves

taking limits in a different order compared to threshold saturation. In threshold saturation, one

first takes the coupling length (the number of graphs coupled together) to infinity and then a

certain code parameter to infinity (for SPARCs it is the section size M). In our analysis we

first consider a sufficiently large section size M and then consider a sufficiently large coupling

9In the context of SPARCs, the threshold is the parameter such that for rates less than the threshold, decoding
succeeds with high probability, and for rates larger than the threshold, decoding fails with high probability.

10In Chapter 2, RAMP is written as RBP to follow the convention in the literature [56].
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length. The benefit of our analysis is that we can understand the (large M) performance of

the AMP decoder at any iteration. This allows us to understand the decoding progression in

spatially coupled SPARCs and provide an upper bound on the number of iterations required for

successful decoding. By understanding the wave-like decoding progression of spatially coupled

SPARCs, we introduce a sliding window AMP decoder which has a per-iteration complexity

that is independent of the code length.

In Chapter 4, we apply the same techniques to construct and analyse spatially coupled coding

schemes with AMP decoding for many-user Gaussian MACs. We obtain a threshold saturation

result in terms of the user error rate (fraction of user messages decoded in error) instead of the

conventional MSE, and show that our proposed coding scheme can achieve near-optimal user

density and signal-to-noise ratio trade-offs.

1.5.4 Other applications

Spatial coupling has been successfully applied in many applications. A non-exhaustive list

includes random constraint satisfaction problems in computer science [141,142], lossy compres-

sion [143], multiple access [144–147], and the Curie-Weiss model in statistical physics [148,149].

Due to the generality of the threshold saturation phenomenon, spatial coupling has also been

used as a proof technique to study difficult theoretical problems [84, 150]. In these works, one

would analyse the optimal threshold of a system by analysing the fixed point of a hypotheti-

cally constructed coupled system. An overview of the applications of spatial coupling is given

in [15, Sec. I].

1.6 Structure of thesis

• In Chapter 2 we introduce and analyse spatially coupled (SC) SPARCs for communication

over the (single-user) AWGN channel. In Section 2.1, we introduce base matrices for the

construction of SPARC design matrices, which provide a unified framework for designing

power allocated and spatially coupled SPARCs. In Section 2.2 we introduce the AMP

decoder and the state evolution recursion that tracks the per-iteration error of the AMP

decoder.

In Section 2.3, we analyse the decoding progression of the AMP decoder for a simple

SC-SPARC construction that is defined by the coupling width ω and coupling length Λ of

the coupled system. In particular, for the simple coupling structure and for large message

vector section sizes, we obtain an upper bound on a key state evolution parameter that

tracks the per-iteration mean squared error (MSE) of the AMP decoder, which translates

to an upper bound on the per-iteration section error rate (SER). The analysis helps

explain the wave-like decoding progression in SC-SPARCs, and shows that for any rate

less than the capacity, and sufficiently large coupling width ω and coupling length Λ,
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the AMP decoder achieves perfect decoding (zero SER as the code length n → ∞) in a

finite number of iterations which is inversely proportional to the rate gap to capacity. In

Section 2.4, we use the above result together with the recent AMP concentration result

in [1, Thm. 2] to show that the probability of excess section error rate decays exponentially

in the code length n.

In Section 2.5, we provide finite code length simulation results of SC-SPARCs with AMP

decoding and compare them with power allocated SPARCs and standard coded modu-

lation schemes. In Section 2.6, we introduce a sliding window AMP decoder that takes

advantage of the wave-like decoding progression of SC-SPARCs, whose decoding latency

and per-iteration computational complexity is independent of the code length.

• In Chapter 3, we introduce and analyse modulated (complex) SPARCs for communication

over the complex AWGN channel. In a modulated SPARC, information is encoded in both

the locations and the values of the non-zero entries of the message vector, with the value

of each non-zero entry chosen from a set of K values. When K = 1, we recover regular

SPARCs without modulation (introduced in Section 1.3).

In Section 3.2, we introduce modulated SPARCs with K-ary phase shift keying (PSK)

modulation and justify our choice of using PSK. We consider modulated SPARCs whose

design matrix is constructed using a base matrix (as in Chapter 2). In Section 3.3, we

introduce the AMP decoder for K-PSK modulated (complex) SPARCs and the state

evolution recursion which tracks the per-iteration error of the AMP decoder.

In Section 3.4, we analyse the error performance of the AMP decoder for modulated

SPARCs using state evolution. The main technical result (Proposition 3.4.1) gives an

upper bound on a key state evolution parameter which tracks the per-iteration MSE of

the AMP decoder, which translates to an upper bound on the per-iteration SER. Using

this bound, we show that in limit of large message vector section size, the state evolution

of K-PSK modulated SPARCs is the same for any fixed value of K, including K = 1

(unmodulated). We use this result to prove that K-PSK modulated SPARCs with AMP

decoding are asymptotically capacity achieving for the complex AWGN channel, with

either spatial coupling or exponentially decaying power allocation (Theorems 2 and 3).

In Section 3.5, we provide finite code length simulation results of modulated SPARCs with

AMP decoding and compare them with coded modulation schemes using LDPC codes from

the DVB-S2 standard [151]. The results demonstrate that using modulation in SPARCs

can significantly reduce the decoder complexity without sacrificing error performance.

• In Chapter 4 we study the many-user Gaussian multiple access channel in the asymptotic

regime where the number of users L grows linearly with the code length n, i.e., both L

and n tend to infinity with user density µ = L/n held constant. We are interested in
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finding the optimal asymptotic trade-off between the signal-to-noise ratio Eb/N0 and the

user density µ, for a fixed target error rate and number of bits to be transmitted per user

(user payload).

In Section 4.2, we introduce coding/multiple-access schemes base on random linear models

with AMP decoding. We derive the exact asymptotic user error rate (the fraction of user

messages decoded in error) achieved by these schemes using state evolution and potential

function analysis, and find that the asymptotic achievability of a coding scheme based

on spatially coupled Gaussian matrices and AMP decoding nearly matches the converse

bound for a large range of user densities. The spatially coupled scheme can be interpreted

as generalised time-sharing: the coupling structure specifies which users are active during

each channel use.

In Section 4.3, we analyse the performance of these coding schemes as the user payload

grows large and discuss how using smaller codebooks and modulation can help avoid the

high complexity at large user payloads.

In Section 4.4, we extend our results to complex random linear coding schemes for the

complex Gaussian multiple access channel in the many-user setting.

• In Chapter 5, we summarise the work of this thesis and propose potential directions for

future research.

1.7 Notation

Table 1.1 on page 39 shows a list of the notations and acronyms used in this thesis.
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Table 1.1: Notations and acronyms used in this thesis.

Notation/acronym Description

i.i.d. independent and identically distributed

w.r.t. with respect to

a.s. almost surely

LHS, RHS left-hand-side, right-hand-side

R The set of real numbers

C The set of complex numbers

a Scalars are usually denoted by lower case English or Greek letters

a Vectors are usually denoted by bold lower case English or Greek letters

A Matrices are usually denoted by bold upper case English or Greek letters

ai The i-th entry of vector a

Ai,j The entry at the i-th row and j-th column of matrix A

A∗ The conjugate transpose of matrix A

<(z) The real part of a complex number z. If z = x+ j y, then <(z) = x.

=(z) The real part of a complex number z. If z = x+ j y, then =(z) = y.

z The complex conjugate of a complex number z.

IN The N ×N identity matrix

‖a‖2 The squared `2-norm of vector a, i.e., ‖a‖2 :=
∑

i |ai|2.

ln, log2 Natural logarithm, base 2 logarithm, and logarithm with undefined

log Logarithm with undefined base (either unnecessary or clear from context)

1{A} Indicator function of an event A
[N ] The set {1, . . . , N} for a positive integer N

N (µ, σ2) Gaussian distribution with mean µ and variance σ2

CN (µ, σ2) Circularly symmetric complex Gaussian distribution with

mean µ and variance σ2

O(xn), o(xn) For deterministic sequences (sn)n≥0, (xn)n≥0, we write sn = O(xn)

if |xn|sn
is bounded above by a strictly positive constant for all

sufficiently large n, and sn = o(xn) if limn→∞
|xn|
sn

= 0.
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Chapter 2

Spatially coupled sparse regression

codes

In this chapter we introduce spatially coupled sparse regression codes (SPARCs) for communi-

cation over the (single-user) AWGN channel. We introduce base matrices for the construction of

SPARC design matrices, which provides a unified framework for designing power allocated and

spatially coupled SPARCs (Section 2.1). We also introduce the approximate message passing

(AMP) decoder and the corresponding state evolution recursion which tracks the per-iteration

asymptotic error of the AMP decoder (Section 2.2).

In the limit of large section size M , we obtain a succinct characterisation of the state

evolution recursion. We analyse this asymptotic state evolution for a simple spatial coupling

construction that is defined by the coupling width ω and coupling length Λ. The analysis

shows that for any rate less than the capacity, and sufficiently large coupling width ω and

coupling length Λ, the AMP decoder achieves perfect decoding (zero section error rate as the

code length n→∞) in a finite number of iterations which is inversely proportional to the rate

gap to capacity (Section 2.3). The analysis also explains the “wave-like” decoding progression

in spatially coupled SPARCs. The asymptotic state evolution result is then refined for large

but finite section sizes M , which we use together with the recent AMP concentration result

in [1, Thm. 2] to show that the probability of excess section error rate decays exponentially in

the code length n (Section 2.4).

In Section 2.5, we provide finite code length simulation results of spatially coupled SPARCs

with AMP decoding and compare them with power allocated SPARCs and standard coded mod-

ulation schemes. Motivated by the wave-like decoding progression of spatially coupled SPARCs,

we introduce a sliding window AMP decoder in Section 2.6 whose per-iteration complexity is

independent of the code length.

In this chapter the rate and capacity terms (e.g., R and C) are given in bits for the discussion

of simulation results (Sections 2.5 and 2.6) and in nats elsewhere.
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Design matrix A

n/R

n

LM/C

LM

Base matrixW

R

C

Figure 2.1: A spatially coupled design matrix A is divided into blocks of size n
R × LM

C . There are R and
C blocks in each column and row respectively. The entries in each block of A are i.i.d. Gaussian with
zero mean and variance specified by the corresponding entry of the base matrix W . Each square in W
represents a scalar entry which specifies the variance of the entries in a block of A. The base matrix
shown here is an (ω,Λ, ρ) base matrix (Def. 2.1.1) with parameters ω = 3, Λ = 7 and ρ = 0. The white
parts of A and W correspond to zeros.

2.1 Spatially coupled SPARC construction

As in the standard construction of SPARCs (see Section 1.3), a spatially coupled (SC) SPARC

is defined by a design matrix A of dimension n×LM , where n is the code length. The codeword

x ∈ Rn is generated by x = Aβ, where the message vector β has one non-zero entry in each of

its L sections (M entries in each section). Without loss of generality, we set the values of the

non-zero entries in β to 1. (We will discuss later how to incorporate power allocation into our

framework.)

In an SC-SPARC, the design matrix A consists of independent zero-mean Gaussian entries

whose variances are specified by a base matrix W of dimension R × C. The design matrix is

obtained from the base matrix W by replacing each entry Wrc by an (n/R) × (LM/C) block

with i.i.d. entries ∼ N (0,Wrc/L), for r ∈ [R], c ∈ [C]. This is analogous to the “graph lifting”

procedure for constructing spatially coupled LDPC codes from protographs [130]. See Fig. 2.1

for an example.

From the construction, the design matrix A has independent Gaussian entries

Aij ∼ N
(

0,
1

L
Wr(i)c(j)

)
, for i ∈ [n], j ∈ [LM ]. (2.1)

The operators r(·) : [n] → [R] and c(·) : [LM ] → [C] in (2.1) map a particular row or column

index in A to its corresponding row-block or column-block index in W . We require C to divide

L, resulting in L/C sections per column block.

Recall that the non-zero entries in β are all set to 1. Then in order to satisfy the average
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power constraint ‖x‖2 = nP (in expectation), the entries of the base matrix W must satisfy

1

RC

R∑

r=1

C∑

c=1

Wrc = P. (2.2)

The trivial base matrix with R = C = 1 corresponds to an uncoupled SPARC with “flat”

power allocation, while a base matrix consisting of a single row R = 1, C = L is equivalent to an

uncoupled SPARC with power allocation. (The power allocation is in the base matrix entries

instead of the values of the non-zero entries of β.) For example, the exponentially decaying

power allocation in (1.12) is equivalent to choosing the base matrix values as follows:

W1,` = LP · 22C/L − 1

1− 2−2C
· 2−2C`/L for ` ∈ [L], (2.3)

where C is the capacity of the AWGN channel (in bits) given in (1.5).

We mention that the idea of constructing a power allocated or spatially coupled design

matrix from a base matrix is inspired by the construction of a irregular or spatially coupled

LDPC code from a protograph [129,130,132,152]. In the rest of this chapter, we use the following

base matrix inspired by the coupling structure of spatially coupled LDPC codes constructed

from protographs [130].

Definition 2.1.1. An (ω,Λ, ρ) base matrix W is described by three parameters: coupling

width ω ≥ 1 coupling length Λ ≥ 2ω − 1, and ρ ∈ [0, 1) which determines the fraction of power

allocated to the coupled entries in each column. The matrix has R = Λ + ω − 1 rows, C = Λ

columns, with each column having ω identical non-zero entries. For an average power constraint

P , the (r, c)-th entry of the base matrix, for r ∈ [R], c ∈ [C], is given by

Wrc =





(1− ρ)P · Λ+ω−1
ω if c ≤ r ≤ c + ω − 1,

ρP · Λ+ω−1
Λ−1 otherwise.

(2.4)

It is easy to verify that this definition satisfies the power constraint in (2.2). For example,

the base matrix in Fig. 2.1 has parameters ω = 3, Λ = 7 and ρ = 0. For our simulations in

Section 2.5, we use ρ = 0, whereas for our theoretical result (Theorem 1) we choose ρ to be

a small positive value proportional to the rate gap to capacity. (Choosing ρ = 0 causes some

technical difficulties in the proof, which can be addressed by picking a suitable ρ > 0.) Other

ways to construct spatially coupled design matrices can be found in [56,78,139,140].

Each non-zero entry in a base matrix W corresponds to an (n/R) × (ML/C) block in the

design matrix A. Each block can be viewed as an uncoupled SPARC with L/C sections (with

M columns in each section), code length n/R, and rate Rinner = (L/C) lnM
(n/R) nats. Rinner is related
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to the the overall rate of the SC-SPARC R = L lnM
n according to

Rinner =
R

C
R =

(
1 +

ω − 1

Λ

)
R, (2.5)

where the last equality holds for an (ω,Λ, ρ) base matrix.

With spatial coupling, the coupling width ω is an integer greater than 1, so R < Rinner. The

difference (Rinner − R) is sometimes referred to as the rate loss due to spatial coupling. From

(2.5), we see that rate loss depends on the ratio (ω− 1)/Λ, which becomes negligible when Λ is

large with respect to (w.r.t.) ω. For our theoretical results, we will be interested in the regime

where L� C = Λ� ω.

Remark 2.1.1. SC-SPARC constructions usually have a “seed” to jumpstart decoding. In

[140], a small fraction of β’s sections are fixed a priori — this pinning condition is used to

analyse the state evolution equations via the potential function method. Analogously, the

construction in [56] introduces additional rows in the design matrix for blocks corresponding to

the first row of the base matrix. In an (ω,Λ, ρ) base matrix, the fact that the number of rows in

the base matrix exceeds the number of columns by (ω−1) helps decoding start from both ends.

In Section 2.3.1, we describe how AMP decoding progresses in an (ω,Λ, ρ = 0) base matrix.

Remark 2.1.2. The base matrix framework described above allows one to design SPARCs

with both power allocation and spatial coupling. To do this, first construct a spatially coupled

(ω,Λ, ρ) base matrix W . (Recall that each entry of the base matrix corresponds to an (n/R)×
(LM/C) block in the spatially coupled design matrix, which can be seen as an uncoupled design

matrix with L/C sections.) Then, replace each entry of the base matrix with an 1×(L/C) vector.

These vectors are obtained by multiplying the original value of the base matrix entry (possibly

zero) with a 1× (L/C) power allocation vector (entry-wise). For example, the power allocation

vector could be the exponentially decaying power allocation in (2.3) or the iterative power

allocation scheme in [47] (with the number of sections equal to L/C instead of L). The resulting

base matrix has dimensions (Λ + ω− 1)×L. In order for a SPARC with both power allocation

and spatial coupling to have good error performance, both the spatial coupling parameters

(coupling width and length) and the power allocation parameters (see [47]) need to be optimised.

Preliminary simulation results show that it is possible for SPARCs with both power allocation

and spatial coupling to achieve lower error rates than SPARCs with either power allocation or

spatial coupling, at rates close to the channel capacity.1 We leave a thorough study of such

SPARC designs for future work.

In the remainder of the thesis, we use subscripts in sans-serif font (r or c) to denote row

1SPARCs with both power allocation and spatially coupled were considered in [56, Sec. VI] and the simulation
results showed poor finite code length error performance. This is because the code was not properly designed
and optimised.
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or column block indices. Thus, βc ∈ RLM/C denotes the c-th column block of β ∈ RLM , for

c ∈ [C].

2.2 AMP decoder

Since the SC-SPARC codeword is x = Aβ, the AWGN channel output y ∈ Rn can be repre-

sented as

y = Aβ +w, (2.6)

where the noise vector w ∈ Rn has i.i.d. N (0, σ2) entries. The SC-SPARC decoder aims to

recover the message vector β from the channel output y. The design matrix A and the base

matrix W are known to the decoder.

In this thesis we consider an approximate message passing (AMP) decoder for SC-SPARCs

(see Section 1.4 for an introduction to AMP algorithms). The AMP decoder for SC-SPARCs

can be derived using an approach similar to the one for uncoupled SPARCs [22, App. A],

with modifications to account for the different variances for the blocks of A specified by the

base matrix. It can also be derived from AMP algorithm for spatially coupled compressed

sensing [139] after accounting for the section-wise prior of the message vector.

The AMP decoder iteratively generates message vector estimates βt at iterations t =

0, 1, 2, . . . as follows: initialise β0 to the all-zero vector, and for t ≥ 0 compute

zt = y −Aβt + υ̃t � zt−1, (2.7)

βt+1 = ηt(βt + (Q̃
t �A)∗zt). (2.8)

Here � denotes the Hadamard (entry-wise) product and A∗ denotes the transpose of matrix

A. The vector υ̃t ∈ Rn, the matrix Q̃
t ∈ Rn×ML, and the denoising function ηt(·) are defined

below in terms of the state evolution parameters. Quantities with negative iteration indices are

set to zero. After some rescaling and simplification, the AMP decoder proposed for SC-SPARCs

in [56] is equivalent to the one shown above.

When the AMP decoder reaches the maximum allowed iteration number or an early stopping

criterion (described in a later section), we take the latest estimate of β, and set the largest entry

in each section to 1 and the remaining entries to 0 to obtain the decoded message vector β̂.

State evolution Given a base matrix W , state evolution (SE) is a deterministic recursion

that iteratively defines a sequence of scalars (φtr)r∈[R] and (ψtc)c∈[C], for t ≥ 0. Initialise ψ0
c = 1

for c ∈ [C], and for t = 0, 1, . . ., compute

γtr =
1

C

C∑

c=1

Wrcψ
t
c , φtr = σ2 + γtr , r ∈ [R], (2.9)
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τ tc =
R

lnM

[
1

R

R∑

r=1

Wrc

φtr

]−1

, ψt+1
c = 1− E(τ tc), c ∈ [C], (2.10)

where E(τ tc) is defined with U1, . . . , UM
i.i.d.∼ N (0, 1) as

E(τ tc) = E


 eU1/

√
τ tc

eU1/
√
τ tc + e−1/τ tc

∑M
j=2 e

Uj/
√
τ tc


 . (2.11)

SE parameters in the AMP decoder For t ≥ 1, the vector υ̃t ∈ Rn in (2.7) and the

matrix Q̃
t ∈ Rn×LM in (2.8) have a block-wise structure (indicated by the tilde), with entries

defined as follows. For i ∈ [n], j ∈ [LM ],

υ̃ti =
γtr(i)

φt−1
r(i)

, Q̃tij =
τ tc(j)

φtr(i)
, (2.12)

where we recall that r(i) and c(j) denote the row block index of the i-th entry and the column

block index of the j-th entry, respectively. The vector υ̃0 is defined to be all-zeros.

Using (2.12) in (2.8), one can also write the update equation for βt+1 in the AMP decoder

as follows,

βt+1 = ηt
(
βt + τ̃ t �

[
A∗
((
φ̃
t)−1 � zt

)])
, (2.13)

where the vectors τ̃ t ∈ RLM and φ̃t ∈ Rn have a block-wise structure, with entries τ̃ tj = τ tc(j)

and φ̃ti = φtr(i) for i ∈ [n], j ∈ [LM ]. The vector (φ̃
t
)−1 denotes the element-wise inverse of φ̃

t
.

This version of the update equation is used in implementation of the AMP decoder due to its

lower computational complexity compared to (2.8).

The denoising function ηt = (ηt1, . . . , η
t
LM ) : RLM → RLM in (2.8) is defined as follows, for

j ∈ [LM ]. For index j in section ` ∈ [L], with section ` in column block c ∈ [C],

ηtj(s) =
esj/τ

t
c

∑
j′∈sec(`) e

sj′/τ
t
c
, (2.14)

where sec(`) := {(` − 1)M + 1, . . . , `M} refers to the set of indices in section `. We note that

ηtj(s) depends on all the components of s in the section containing j.

Interpretation of the AMP decoder and state evolution The input to ηt(·) in (2.8),

denoted by st, can be viewed as a noisy version of true message vector β. Consider an index

j in section ` ∈ [L] which belongs to column block c ∈ [C]. Recall that β` ∈ RM is section

` of the message vector, and let st` denote section ` of the input vector to ηt(·). Then, st` is

approximately distributed as β` +
√
τ tcZ`, where Z` ∈ RM is a standard normal random vector

independent of β`, and the effective noise variance τ tc is given by (2.10). Under the above
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Figure 2.2: Normalised mean squared error
‖βt

c−βc‖22
L/C versus column block index c ∈ [C] for several AMP

decoding iterations of an SC-SPARC. The SC-SPARC is constructed with an (ω = 6,Λ = 32, ρ = 0)
base matrix and has the following parameters: R = 1.5 bits, M = 512, L = 2048 and n = 12284. The
channel capacity is C = 2 bits. The solid lines are the state evolution predictions from (2.10), and the
dotted lines are the average NMSE over 100 instances of AMP decoding.

distributional assumption, the denoising function ηtj in (2.14) is the minimum mean squared

error (MMSE) estimator for βj , i.e.,

ηtj(s
t) = E

[
βj | β` +

√
τ tc Z` = st`

]
, for j ∈ [LM ], (2.15)

where the expectation is calculated over and Z` ∼ N (0, IM ) and β`, which is uniformly dis-

tributed over the M vectors with a single non-zero entry equal to 1. Moreover, ψt+1
c in (2.10)

of the state evolution recursion corresponds to the MMSE value, i.e.,

ψt+1
c = E

{∥∥∥β` − ηt
(
β` +

√
τ tc Z`

)∥∥∥
2
}

= E
{∥∥∥β` − E

[
β` | β` +

√
τ tc Z`

]∥∥∥
2
}
. (2.16)

Due to the above distributional property of the input vector to ηt(·), the AMP estimate of the

message vector βt+1, which is the output vector of ηt(·), achieves a (block-wise) normalised mean

squared error (NMSE) that can be predicted by the ψt+1
c ’s of state evolution, i.e.,

‖βt+1
c −βc‖22
L/C ≈

ψt+1
c for c ∈ [C]. This is illustrated in Fig. 2.2. In Fig. 2.2 we also observe that as the AMP

iterates, the reduction in NMSE propagates from the blocks at the two ends towards the blocks

in the middle. This phenomenon can be explained using the state evolution analysis in Section

2.3.

The vector zt in (2.7) is a modified residual vector, consisting of the residual y −Aβt and

an “Onsager” correction term υt � zt−1. The entries of the modified residual zt in (2.7) are

approximately Gaussian and independent, with the variance determined by the block index.
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For r ∈ [R], the SE parameter φtr approximates the variance of ztr, the r-th block of the residual.

The Onsager term arises naturally in the derivation of the AMP algorithm, and is crucial for

the Gaussian distributional properties mentioned above. For intuition about the role of the

Onsager term, see [76, Sec. I-C] and [139, Sec. VI].

The key difference between the AMP decoder and state evolution for SC-SPARCs and that

for uncoupled SPARCs [22] is that for SC-SPARCs, the variances of the effective observation

and the residual depend on the column- and row-block indices, respectively. These variances

are captured by {τ tc}c∈[C] and {φtr}r∈[R].

2.2.1 The error performance of the AMP decoder

The performance of a SPARC decoder is measured by the section error rate (SER) — the

fraction of sections decoded in error. It is defined as

SER :=
1

L

L∑

`=1

1

{
β̂sec(`) 6= βsec(`)

}
, (2.17)

where 1{·} is the indicator function, βsec(`) ∈ RM is the `-th section of the message vector, and

β̂sec(`) is the AMP decoder’s estimate of that section (after the final hard-decision step).

If the AMP decoder is run for T iterations, the section error rate can be bounded in terms

of the squared error ‖βT − β‖2 as follows, where βT is the AMP decoder’s estimate after T

iterations (without the hard-decision step). Since the unique non-zero entry in any section

` ∈ [L] of β equals 1 and β̂sec(`) 6= βsec(`) implies that the corresponding element of βTsec(`) is

less than or equal to 1/2,

β̂sec(`) 6= βsec(`) ⇒ ‖βTsec(`) − βsec(`)‖22 ≥
1

4
. (2.18)

We recall that βc ∈ RLM/C corresponds to the c-th column block of the message vector. There

are L
C sections in βc, with the non-zero entry in each section being equal to 1; we denote by βc`

the `-th of these sections, for ` ∈ [L/C]. Then, (2.18) implies

SER =
1

L

L∑

`=1

1{β̂sec(`) 6= βsec(`)} =
1

L

C∑

c=1

L/C∑

`=1

1

{
β̂c` 6= βc`

}

≤ 4

L

C∑

c=1

L/C∑

`=1

∥∥∥βTc` − βc`

∥∥∥
2

= 4

[
1

C

C∑

c=1

‖βTc − βc‖22
L/C

]
= 4

[
1

L

∥∥βT − β
∥∥2
]
. (2.19)

Due to (2.19), an upper bound on the normalised mean square error (NMSE) ‖βT −β
∥∥2
/L

will provide an upper bound on the section error rate. Furthermore, [1, Thm. 2] proved that

the NMSE concentrates on
∑C

c=1 ψ
T
c /C for large (n,L), where {ψTc }c∈[C] are the state evolution

parameters in (2.10). In the next section, we obtain bounds on {ψtc}c∈[C] and understand the
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decoding progression of the AMP decoder by analysing the state evolution recursion.

2.3 Decoding progression according to state evolution

In this section we analyse the NMSE achieved by SC-SPARCs with AMP decoding via the

state evolution recursion. We derive bounds for the state evolution parameters {ψtc}c∈[C] which

lead to a succinct asymptotic characterisation of state evolution (as section size M → ∞). In

Section 2.3.1, we consider the asymptotic state evolution for (ω,Λ, ρ = 0) base matrices. Our

asymptotic state evolution analysis helps to explain the decoding progression illustrated in Fig.

2.2 and why SC-SPARCs with AMP decoding are asymptotically capacity achieving. Then in

Section 2.3.2, we refine our results for large but finite values of M and small but positive values

of ρ.

The following lemma provides lower and upper bounds the state evolution parameters

{ψtc}c∈[C] which predict the block-wise NMSE of the AMP decoder.

Lemma 2.3.1 ( [1, Lem. 4.1]). Let W ∈ RR×C be a base matrix having row and column averages

that are bounded above and below by strictly positive constants. That is, there exist constants

κL, κU > 0 such that

κL ≤
1

C

∑

c′

Wrc′ ,
1

R

∑

r′

Wr′c ≤ κU, r ∈ [R], c ∈ [C].

Let

νtc :=
R

τ tc lnM
=

1

R

R∑

r=1

Wrc

φtr
. (2.20)

For sufficiently large M and any δ ∈ (0, 1
2), δ̃ ∈ (0, 1),

(
1−M−k1δ̃2

)
1{νtc < (2− δ̃)R} ≤ ψt+1

c ≤ 1−
(

1− M−kδ
2

δ
√

lnM

)
1{νtc > (2 + δ)R}, c ∈ [C ],

(2.21)

where k, k1 are positive constants depending only on κL and κU.

Asymptotic state evolution Noting that ψt+1
c ∈ [0, 1], Lemma 2.3.1 implies the following

asymptotic state evolution recursion as M → ∞. Initialise ψ̄0
c = 1, for c ∈ [C], and for

t = 0, 1, 2, . . .,

φ̄tr = σ2 +
1

C

C∑

c=1

Wrcψ̄
t
c, r ∈ [R], (2.22)

ψ̄t+1
c = 1

{
1

R

R∑

r=1

Wrc

φ̄tr
≤ 2R

}
, c ∈ [C], (2.23)
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where φ̄, ψ̄ indicate asymptotic values as M →∞.

The term ν̄tc := 1
R

∑
r(Wrc/φ̄

t
r) in (2.23) represents the average signal to effective noise ratio

for the column block index c after iteration t. If this quantity exceeds the threshold of 2R, then

the c-th column block of the message vector, βc, will be decoded in the next iteration in the

large system limit, i.e., ψ̄t+1
c = 0. If we terminate the AMP decoder at iteration T , we want

ψTc = 0, for all c ∈ [C], so that the entire message vector is decoded correctly.

Remark 2.3.1 (BP threshold). For rates R smaller than the belief propagation (BP) threshold

RBP :=
snr

2(1 + snr)
, (2.24)

where snr = P/σ2, one does not require power allocation or spatial coupling for reliable SPARC

decoding. Indeed, consider a standard uncoupled SPARC where the 1-by-1 base matrix is a

single entry equal to P . Using the asymptotic state evolution recursion (2.22)–(2.23), we see

that if R < RBP, then the whole message vector decodes in one iteration, i.e., ψ̄1 = 0.

2.3.1 Asymptotic analysis

The asymptotic SE recursion (2.22)–(2.23) is given for a general base matrix W . To get some

insight into the decoding progression, we specialise the result to the (ω,Λ, ρ = 0) base matrix

introduced in Definition 2.1.1. Recall that an (ω,Λ, ρ = 0) base matrix has R = Λ +ω− 1 rows

and C = Λ columns, with each column having ω non-zero entries each equal to P · Λ+ω−1
ω .

Corollary 2.3.1. The asymptotic state evolution recursion (2.22)–(2.23) for an (ω,Λ, ρ = 0)

base matrix is as follows. Initialise ψ̄0
c = 1, for c ∈ [Λ], and for t = 0, 1, 2, . . .,

φ̄tr = σ2 +
ϑP

ω

cr∑

c=cr

ψ̄tc, r ∈ [Λ + ω − 1], (2.25)

ν̄tc =
P

ω

c+ω−1∑

r=c

1

φ̄tr
, ψ̄t+1

c = 1{ν̄tc ≤ 2R}, c ∈ [Λ], (2.26)

where ϑ = Λ+ω−1
Λ , and

(cr, cr) =





(1, r) if 1 ≤ r ≤ ω
(r− ω + 1, r) if ω ≤ r ≤ Λ

(r− ω + 1, Λ) if Λ ≤ r ≤ Λ + ω − 1.

(2.27)

Proof. Substitute the value of Wrc from (2.4), with ρ = 0 and C = Λ, R = Λ + ω − 1 in

(2.22)–(2.23).

Observe that the φ̄tr’s, ν̄
t
c’s, and ψ̄tc’s are symmetric about the middle indices, i.e., φ̄tr = φ̄tR−r+1
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for r ≤ bR2 c and ν̄tc = ν̄tC−c+1, ψ̄tc = ψ̄tC−c+1 for c ≤ bC2 c.

Decoding initialisation

Consider the initial step (t = 0): from (2.25) the value of φ̄0
r depends on the number of non-zero

entries in row r of W , which is equal to cr − cr + 1, with cr, cr given by (2.27). Therefore, φ̄0
r

increases from r = 1 until r = ω, is constant for ω ≤ r ≤ Λ, and then starts decreasing again for

Λ < r ≤ Λ +ω− 1. As a result, ψ̄1
c is smallest for c at either end of the base matrix (c ∈ {1,Λ})

and increases as c moves towards the middle, since the ν̄0
c =

∑c+ω−1
r=c (φ̄0

r )
−1 term in (2.26) is

largest for c ∈ {1,Λ}, followed by c ∈ {2,Λ− 1}, and so on. Therefore, we expect the blocks of

the message vector corresponding to column block index c ∈ {1,Λ} to be decoded most easily,

followed by c ∈ {2,Λ− 1}, and so on. Fig. 2.2 shows that this is indeed the case as the blocks

of the message vector at the two ends decode first.

Rates below the BP threshold Since the noise variance φ̄0
r is highest (and constant) for

ω ≤ r ≤ Λ, the average signal to noise ratio ν̄0
c is lowest (and constant) for column block indices

ω ≤ c ≤ Λ − ω + 1. Therefore, all column blocks of the message vector to decode in the first

iteration (ψ̄1
c = 0 for c ∈ [Λ]) if ν̄0

ω > 2R. We now obtain a lower bound on ν̄0
ω to get a sufficient

condition for all column blocks to decode in the first iteration.

ν̄0
ω =

snr

ω

2ω−1∑

r=ω

1

1 + ϑ snr
ω (cr − cr + 1)

≥ snr

1 + ϑ snr
, (2.28)

where snr = P/σ2. The inequality holds because (cr − cr + 1) ≤ ω from (2.27), and becomes an

equality if Λ ≥ 3ω − 2. Therefore, if the rate satisfies

R <
snr

2(1 + ϑ snr)
, (2.29)

then all column blocks of the message vector to decode in the first iteration. Note that
snr

2(1+ϑ snr) ≤ RBP, and recall that for rates less than RBP, there is no need for spatial coupling

(see Remark 2.3.1).

Rates above the BP threshold For rates greater than RBP and Λ ≥ 3ω− 2, we know that

it is impossible for all column blocks of the message decoder to decode in the first iteration

by using the same arguments as above. In order for any column block to decode, we require

ν̄0
1 > 2R since ν̄0

c is largest for c ∈ {1,Λ} and ν̄0
1 = ν̄0

Λ due to symmetry. We now obtain a lower

bound on ν̄0
1 to get a sufficient condition for decoding to start. For column block index c < ω,

we have

ν̄0
c =

snr

ω

( ω−1∑

r=c

1

1 + ϑ snr
ω r

+
c

1 + ϑ snr

)
(i)
>

1

ϑ

∫ ϑ snr
ω
ω

ϑ snr
ω

c

1

1 + x
dx+

c

ω

snr

(1 + ϑ snr)
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=
1

ϑ
ln(1 + ϑ snr)− 1

ϑ
ln
(

1 + ϑ snr
c

ω

)
+

c

ω

snr

(1 + ϑ snr)

(ii)
>

1

ϑ
ln(1 + ϑ snr)− c

ω
snr +

c

ω

snr

(1 + ϑ snr)
=

1

ϑ
ln(1 + ϑ snr)− c

ω

ϑ snr2

(1 + ϑ snr)
, (2.30)

where (i) is obtained by using a definite integral to lower bound the left Riemann sum of the

positive decreasing function 1
1+x , and (ii) from lnx ≤ x − 1. Therefore, a sufficient condition

for ν̄0
1 > 2R is

R <
1

2ϑ
ln(1 + ϑ snr), (2.31)

ω >
ϑ snr2

2(1 + ϑ snr)

(
1

2ϑ
ln(1 + ϑ snr)−R

)−1

. (2.32)

If the above conditions are satisfied, then (at least) the first and last column block of the

message vector decodes, i.e., ψ̄1
1 = ψ̄1

Λ = 0. Note that the right-hand-side (RHS) of (2.31) can

be made arbitrarily close to the channel capacity C by making ω−1
Λ small enough (recall that

ϑ = 1 + ω−1
Λ ). Indeed, since the RHS of (2.31) is decreasing in ϑ for ϑ > 1, we have

C >
1

2ϑ
ln(1 + ϑ snr) >

C

ϑ
. (2.33)

Therefore, the term in the brackets in (2.32) can be seen as a rate gap to capacity term, and

the requirement on the coupling width ω is inversely proportional to this gap.

Remark 2.3.2 (Choice of base matrix parameters). For any fixed rate R < C = 1
2 ln(1 + snr),

the base matrix parameters (ω,Λ) can be chosen such that the conditions in Eqs. (2.31)–(2.32)

are satisfied. Indeed, consider a rate R = C/ϑ0, for any constant ϑ0 > 1. Then choose ω to

satisfy (2.32) (with ϑ replaced by ϑ0), and Λ large enough that ϑ = Λ+ω−1
Λ ≤ ϑ0. Therefore, for

any fixed rate R < C and suitably chosen base matrix parameters (ω,Λ), the AMP decoder can

start successfully decoding the message vector in the limit of large (n,L,M) (whilst satisfying

nR = L lnM).

Decoding progression

From the “Decoding initialisation” section above, we know that if R < RBP, then all column

blocks of the message vector decode in one iteration. In this section we explain the decoding

propagation phenomenon seen in Fig. 2.2 for rates between the BP threshold and the channel

capacity C, assuming that Λ ≥ 3ω − 2.

From the section above, we know that if R > RBP, then fewer than ω column blocks (from

each end) of the message vector decode in the first iteration. Furthermore, if R < C and

the base matrix parameters (ω,Λ) are appropriately chosen (Remark 2.3.2), then at least one

column block (from each end) of the message vector decodes in the first iteration. We now find
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all the column block indices c < ω that decode in the first iteration for these choices of R and

(ω,Λ), i.e., the indices c < ω for which ψ̄1
c = 0, or equivalently ν̄0

c > 2R. Using the lower bound

on ν̄0
c for c < ω given in (2.30), a sufficient condition for ν̄0

c > 2R is

c < ḡ := ω · 2(1 + ϑ snr)

ϑ snr2

(
1

2ϑ
ln(1 + ϑ snr)−R

)
. (2.34)

Therefore, all column blocks whose index satisfies c < ḡ (and c > Λ − ḡ + 1) will decode in

the first iteration, i.e., ψ̄1
c = 0. Note that 1 < ḡ ≤ ω due to the condition on ω in (2.32) and

because R > RBP >
snr

2(1+ϑ snr) .

We next consider subsequent iterations t > 1. Assume towards induction that

ψ̄tc = ψ̄tΛ−c+1 = 0 for c < tḡ, (2.35)

We will prove that (2.35) implies ψ̄t+1
c = ψ̄t+1

Λ−c+1 = 0 for c < (t + 1)ḡ, i.e., in each iteration

at least bḡc additional column blocks from each end of the message vector decode. We find

the column block indices c ∈ (tḡ, tḡ + ω) for which ψ̄t+1
c = 0, or equivalently ν̄tc > 2R. The

same analysis applies to the indices at the other end due to symmetry. Using the induction

assumption (2.35) in the asymptotic state evolution (2.25)–(2.27), we have

φ̄tr
σ2
≤





1, r ≤ tḡ,

1 + ϑ snr
ω (r− tḡ), tḡ < r < tḡ + ω,

1 + ϑ snr, r ≥ tḡ + ω.

(2.36)

We now obtain a lower bound on ν̄tc for c ∈ (tḡ, tḡ + ω) using the same steps as (2.30).

ν̄tc ≥
snr

ω

( tḡ+ω−1∑

r=c

1

1 + ϑ snr
ω (r− tḡ)

+
c− tḡ

1 + ϑ snr

)
=

snr

ω

( ω−1∑

r=c−tḡ

1

1 + ϑ snr
ω r

+
c− tḡ

1 + ϑ snr

)

>
1

ϑ
ln(1 + ϑ snr)− c− tḡ

ω

ϑ snr2

(1 + ϑ snr)
. (2.37)

Therefore, for column block indices c ∈ (tḡ, tḡ + ω), a sufficient condition for ψ̄t+1
c = 0, or

equivalently ν̄tc > 2R, is c < (t+ 1)ḡ. We thus conclude the proof by induction.

The above analysis implies that for rates satisfying RBP < R < C and appropriately chosen

base matrix parameters, all column blocks of the message vector decode in at most dΛ/(2ḡ)e
iterations. Since ḡ is proportional to the ‘rate gap to capacity’ term 1

2ϑ ln(1 + ϑ snr) − R, this

upper bound on the number decoding iterations increases as the rate approaches the channel

capacity.

Remark 2.3.3 (Power allocated SPARCs). One can analyse the decoding progression of AMP

decoded power allocated SPARCs in a similar way by substituting the corresponding base
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matrix of the power allocation scheme into the asymptotic state evolution (2.22)–(2.23). See [22,

Lemma 2] for the asymptotic state evolution analysis of the decoding progression of a SPARC

with exponentially decaying power allocation (2.3).

Decoding velocity The wave-like decoding propagation in Fig. 2.2 has a roughly constant

decoding velocity, i.e., roughly the same number of column blocks decode every 5 iterations

until the two decoding waves “merge” and “collapse” near the middle. In our analysis above,

we showed that at least bḡc additional column blocks from each end of the message vector

decode in each iteration. In order to prove the decoding velocity is roughly constant, we require

an upper bound that is of the same order as ḡ. We expect this to be the case, but have not yet

proved it.

This wave-like decoding propagation also occurs in spatially coupled LDPC codes decoded

with belief propagation. The propagation of the LDPC decoding wave (in the large system

limit) was studied in [153].

2.3.2 Non-asymptotic analysis

In Section 2.3.1, we analysed the decoding progression of the AMP decoder for SC-SPARCs

based on (ω,Λ, ρ = 0) base matrices in limit of M → ∞. In this section, we consider the

decoding progression for (ω,Λ, ρ) base matrices where ρ can be a small positive value, and

refine the previous analysis to account for large but finite values of M using Lemma 2.3.1. This

non-asymptotic result (Proposition 2.3.1) will be used to establish the result that SC-SPARCs

with AMP decoding are asymptotically capacity achieving in the next section.

We need to analyse the ρ > 0 case because the analysis that shows the NMSE of the AMP

decoder concentrates around the state evolution prediction only holds for base matrices with

entries that are lower bounded by a strictly positive constant [1, Thm. 2].

Proposition 2.3.1. Consider a rate R SC-SPARC with an n×LM design matrix constructed

using an (ω,Λ, ρ) base matrix and consider a constant δ ∈ (0,min{ ∆
2R ,

1
2}), where 0 ≤ ρ ≤

min{ ∆
3snr ,

1
2}, and

∆ :=
1

2ϑ
ln(1 + ϑsnr)−R. (2.38)

If the rate satisfies R < (1−ρ)snr
(2+δ)(1+ϑsnr) , then all the column blocks of the message vector

simultaneously decode in one iteration, i.e., for all c ∈ [Λ],

ψ1
c ≤ fM,δ :=

M−kδ
2

δ
√

lnM
(2.39)

for sufficiently large M , where k > 0 is a universal constant.

Otherwise, if the rate satisfies (1−ρ)snr
(2+δ)(1+ϑsnr) ≤ R < 1

2ϑ ln(1 +ϑ snr), and the coupling width ω
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satisfies

ω >

(
ϑ snr2

1 + ϑsnr

)
1

∆
, (2.40)

then, for t ≥ 1 and

c ≤ max

{
tg,

⌈
Λ

2

⌉}
, (2.41)

where

g =
(1 + ϑ snr)∆

ϑ snr2
ω, (2.42)

we have

ψtc = ψtΛ−c+1 ≤ fM,δ (2.43)

for sufficiently large M .

The proof of this proposition is given in Section 2.7.

Decoding progression

The discussions made in Section 2.3.1 concerning decoding initialisation and decoding progres-

sion also hold for the non-asymptotic setting considered here with slight modifications.

For example, for rates larger than the BP threshold, the proposition says that if the coupling

width ω is large enough (as specified by (2.40)), then in iteration t at least the first and last

btgc column blocks from each end of the message vector are expected to decode, i.e., have their

state evolution predicted NMSE less than or equal to fM,δ. Furthermore, the proof shows that

if gt ≤ Λ/2 is the exact number of column blocks such that ψtc = ψtΛ−c+1 ≤ fM,δ for c ≤ gt, then

gt+1 ≥ bgt + gc, i.e., in each iteration at least bgc ≥ 1 additional column blocks of the message

vector from each end are expected to decode.

This decoding progression continues until iteration T when all column blocks have been

decoded, i.e., ψTc ≤ fM,δ for c ∈ [Λ]. More precisely, we run the AMP decoder for T iterations

where

T := min{t : ψtc ≤ fM,δ for c ∈ [Λ]}. (2.44)

Proposition 2.3.1 implies that for rates larger than the BP threshold

T ≤
⌈

Λ

2g

⌉
. (2.45)

We note that g is proportional to ∆, which represents the rate gap to capacity (see (2.33),

(2.38)). Therefore, from (2.45) the number of iterations T grows as the rate approaches the

channel capacity. For a fixed R the quantity fM,δ tends to 0 with growing M .
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2.4 Probability of excess section error rate

Proposition 2.3.1 shows that for any R < C, suitably chosen base matrix parameters (ω,Λ, ρ),

and sufficiently large M , the state evolution predicted NMSE achieved by AMP decoding after a

finite number of iterations can be upper bounded by a term (fM,δ) that can be made arbitrarily

small by increasing M . Using Proposition 2.3.1 with the the result in [1, Thm. 2] where the

NMSE of the AMP decoder is shown to concentrate on the state evolution estimates, and the

fact that NMSE provides an upper bound on the section error rate (see (2.19)), we obtain a

bound on the probability of the section error rate exceeding some fixed ε ∈ (0, 1).

Theorem 1. For any rate satisfying RBP ≤ R < C, let W ∈ RR×C
+ be an (ω,Λ, ρ) base matrix

with parameters chosen such that R < 1
2ϑ ln(1+ϑ snr), where ϑ = 1+ ω−1

Λ , and ω is large enough

that the condition in (2.40) is satisfied, and ρ = min{ ∆
3snr ,

1
2}, where ∆ is defined in (2.38). Let

Sn be an SC-SPARC of rate R defined via an n×LM design matrix constructed using the base

matrix W . The parameters (n,L,M) satisfy nR = L lnM .

Fix ε ∈ (0, 1), and for fM,δ defined in (2.39), let M be large enough such that fM,δ ≤ ε
8 for

δ = min{ ∆
3R ,

1
3}. Then the section error rate of the AMP decoder after T iterations, with T

defined in (2.44), satisfies

P (SER(Sn) > ε) ≤ KT−1(RC)T exp

( −κT−1nε
2

64(lnM)2T (R/ω)2T−1

)
. (2.46)

For t ≥ 0, the constants κt and Kt are given by κt = [ξ2t(t!)24]−1 and Kt = Ξ2t(t!)14 where

ξ,Ξ > 0 are universal constants (not depending on the AMP parameters (L,M, n,R,C) or ε),

but not explicitly specified.

Proof. Without loss of generality, we can assume that rate gap ∆ (defined in (2.38)) satisfies

∆ < 2R. Otherwise the arguments below hold with (∆/R) replaced by 1.

For the choice of base matrix parameters (ω,Λ, ρ) stated in Theorem 1, we have that
1
C

∑
c ψ

T
c ≤ fM,∆/(3R) (from Proposition 2.3.1). The AMP concentration result in [1, Thm. 2]

implies that for any ε̃ > 0,

P
(‖βT − β‖2

L
≥ ε̃+ fM, ∆

3R

)
≤ KT−1(RC)T exp

( −κT−1nε̃
2

(lnM)2T (R/ω)2T−1

)
. (2.47)

Furthermore, from (2.19) we have

P(SER(Sn) > ε) ≤ P
(‖βT − β‖2

L
≥ ε

4

)
. (2.48)

Combining (2.47) and (2.48), and taking ε̃ = ε
8 and M large enough so that fM,∆/(3R) ≤ ε

8 (see

(2.39)) yields the theorem.2

2I would like to emphasize that my contribution to the proof of Theorem 1 is the state evolution analysis in
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Remark 2.4.1. Theorem 1 implies that for any fixed R < C and ε ∈ (0, 1), one can construct

a sequence of rate R spatially coupled SPARCs {Sn} (indexed by code length n) for which

lim
n→∞

SER(Sn) = 0 almost surely. (2.49)

Indeed, once (Λ, ω,M) are chosen to satisfy the conditions in Theorem 1, the bound in (2.46)

decreases exponentially in n. The Borel-Cantelli lemma then yields the asymptotic result in

(2.49).

Remark 2.4.2 (Below the BP threshold). Theorem 1 is stated for rates satisfying RBP ≤ R < C

as this is the region where spatial coupling is required. Indeed, for R < RBP, Proposition 2.3.1

and the proof of Theorem 1 imply that the probability bound (2.46) holds with R = C = ω = 1

and T = 1. This result also follows from the analysis in [57], applied with a “flat” power

allocation.

2.5 Empirical performance

In this section, we investigate the finite length error performance of SC-SPARCs with AMP

decoding via numerical simulations. We use the (ω,Λ, ρ = 0) base matrix construction in all

the simulations. The implementation details will be given after the discussion of the simulation

results.

SC versus non-SC SPARCs In Fig. 2.3 we compare the average section error rate (SER)

of SC-SPARCs with standard (non-SC) SPARCs. The SC-SPARCs are constructed with an

(ω = 6,Λ = 32, ρ = 0) base matrix. The standard SPARCs either have “flat” power allocation

(red) or power allocation optimised using the iterative power allocation algorithm proposed

in [47] (green). The signal-to-noise ratio P/σ2 = 15 (capacity C = 2 bits), section size M = 512,

and number of sections L = 1024 are fixed while the rate of the codes are varied by varying

the code length n. For each rate, the code length is the same for all three codes, and AMP

decoding is used for all codes.

Comparing standard SPARCs with “flat” power allocation (PA) to SC-SPARCs, we see that

spatial coupling significantly improves the error performance: the rate threshold below which

the SER drops steeply to a small value is a lot higher for SC-SPARCs. Comparing standard

SPARCs with iterative PA to SC-SPARCs, we see that at rates close to the capacity, standard

SPARCs with iterative PA have lower SER than SC-SPARCs. However, as the rate decreases,

the drop in SER for standard SPARCs with iterative PA is not as steep as that for SC-SPARCs.

Section 2.3. The AMP concentration result in (2.47) was done by Ramji Venkataramanan and Cynthia Rush,
and will not be discussed in this thesis.
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Figure 2.3: Average SER versus rate at snr = 15, C = 2 bits, M = 512, L = 1024, and n ∈ [5100, 7700].
The SERs are averaged over 104 trials. Plots are shown for standard (non-SC) SPARCs with “flat” (red)
and iterative (green) power allocation, and SC-SPARCs constructed with an (ω = 6,Λ = 32, ρ = 0) base
matrix (blue). For each rate, the code length is the same for all three codes, and AMP decoding is used
for all codes. The dotted vertical lines indicate that no section errors were observed over 104 trials at
smaller rates.

Effect of the coupling width ω In Fig. 2.4, we investigate the effect of the coupling width

ω on the error performance. Fig. 2.4 compares the average SER of SC-SPARCs with (ω,Λ =

32, ρ = 0) base matrices and varying ω. For a fixed Λ, we observe from (2.5) that a larger ω

results in a larger inner SPARC rate Rinner when the overall SC-SPARC rate R is fixed. A

larger value of Rinner makes decoding harder; on the other hand, increasing the coupling width

ω helps to jumpstart AMP decoding (Remark 2.1.1). Thus for a fixed rate, there is a trade-off

as illustrated in Fig. 2.4: increasing ω improves the SER performance up to a certain point, but

the performance degrades for larger ω. In general, ω should be large enough so that coupling

can benefit decoding, but not so large that Rinner is very close to the channel capacity. For

example, for R = 1.6 bits and Λ = 32, the inner SPARC rate Rinner = 1.65, 1.75, 1.85, 1.95 bits

for ω = 2, 4, 6, 8, respectively. With the capacity C = 2 bits, Fig. 2.4 shows that ω = 6 is the

best choice for R = 1.6 bits, with ω = 8 being noticeably worse. This also indicates that smaller

values ω would be favoured as the rate R gets closer to C.

SC-SPARCs versus coded modulation We now compare the performance of SC-SPARCs

with that of standard coded modulation schemes such as LDPC codes with quadrature am-

plitude modulation (QAM). Since these standard schemes produce complex-valued symbols,

we consider communication over the complex AWGN channel, where the noise is circularly-

symmetric complex Gaussian. A complex SC-SPARC is defined in the same way as a real-valued

SC-SPARC (Section 2.1), except the design matrix has independent circularly-symmetric com-
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Figure 2.4: Average SER versus rate at snr = 15, C = 2 bits, M = 512, L = 1024, and n ∈ [5100, 6200].
The SERs are averaged over 104 trials. Plots are shown for SC-SPARCs with an (ω,Λ = 32, ρ = 0) base
matrix and coupling width ω taking values in {2, 4, 6, 8}. For each rate, the code length is the same
for different ω values. The dotted vertical line indicates that for ω = 6 and 8, no section errors were
observed over 104 trials at R = 1.5 bits.

plex Gaussian entries instead of real-valued Gaussian entries. The AMP decoder for complex

SC-SPARCs is similar to the one in (2.7)–(2.8): we take A∗ to be the conjugate transpose of

A, and modify the definition of ηtj in (2.14) according to (2.15). Complex SC-SPARCs and its

AMP decoder are described in detail in Chapter 3.

In Figures 2.5, 2.6, and 2.7, we provide numerical simulation results demonstrating the finite

length error performance of complex SC-SPARCs with AMP decoding at different code rates

and code lengths. The error performance is evaluated using both the bit error rate (BER) and

the frame error rate (FER). (The FER is the message/codeword error rate.) We also simulate

and plot the error performance of coded modulation schemes (LDPC + QAM) for reference

using the AFF3CT toolbox [154]. The LDPC codes are chosen from the DVB-S2 standard [151]

and a belief propagation (BP) decoder is used which runs for 50 iterations. For fair comparison,

in each figure, the frame length of the coded modulation scheme is chosen to be close to the

code length of the SC-SPARC.

Fig. 2.5 shows the performance of SC-SPARCs with rate 1.5 bits/dimension and code length

n = 10795. The AMP decoder for the SC-SPARC is run for a maximum of 200 iterations (details

in Sec. 2.5.1). The coded modulation scheme uses a rate 1
2 (32400, 64800) DVB-S2 LDPC code

with 64-QAM modulation, for the same overall rate of 1.5 bits/dimension and a frame length

of 10800 symbols. We observe that the SC-SPARC requires a smaller Eb/N0 to achieve BERs

in the range 10−1 to 10−5, and FERs down to 5 × 10−4 compared to the coded modulation

scheme. However, for much lower FERs, we expect the coded modulation scheme to require a

smaller Eb/N0 because its frame error rate drops faster as Eb/N0 increases.
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Figure 2.5: Error performance of complex SC-SPARCs defined via a (ω = 4,Λ = 32, ρ = 0) base matrix.
Code parameters: R = 1.5 bits/dimension, L = 2944, M = 2048, code length n = 10795. The dashed
lines show the performance of coded modulation: (K = 32400, N = 64800) DVB-S2 LDPC + 64 QAM,
frame length = 10800 symbols. The solid black line in the BER plot is the AWGN Shannon limit for
R = 1.5 bits/dimension, and in the FER plot, it is the normal approximation to the AWGN finite length
error probability bound in [34].

Figure 2.6: Error performance of complex SC-SPARCs defined via an (ω = 6,Λ = 32, ρ = 0) base matrix.
Code parameters: R = 1.6 bits/dimension, L = 960, M = 128, code length n = 2100. The dashed lines
show the performance of coded modulation: (K = 6480, N = 16200) DVB-S2 LDPC + 256 QAM, frame
length = 2025 symbols. The solid black line in the BER plot is the AWGN Shannon limit for R = 1.6
bits/dimension, and in the FER plot, it is the normal approximation to the AWGN finite length error
probability bound in [34].

Fig. 2.6 shows the performance of an SC-SPARC with a shorter code length n = 2100, and

a rate of 1.6 bits/dimension. The AMP decoder for the SC-SPARC is run for a maximum of

100 iterations. The coded modulation scheme uses a rate 1
2 (6480, 16200) DVB-S2 LDPC code

with 256-QAM modulation, for the same overall rate of 1.6 bits/dimension and a frame length

of 2025 symbols. We observe that the SC-SPARC requires a smaller Eb/N0 to achieve BERs

in the range 10−1 to 10−5 and FERs down to 10−4 compared to the coded modulation scheme.

However, for BERs and FERs lower than 10−5 and 10−4, respectively, we expect the coded

modulation scheme to require a smaller Eb/N0 because its error rate drops faster as Eb/N0

increases.

In Fig. 2.7, the rate of the SC-SPARC is 2 bits/dimension and the code length is n = 2688.

The AMP decoder for the SC-SPARC is run for a maximum of 100 iterations. The coded
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Figure 2.7: Error performance of complex SC-SPARCs defined via an (ω = 6,Λ = 32, ρ = 0) base matrix.
Code parameters: R = 2 bits/dimension, L = 2688, M = 16, code length n = 2688. The dashed lines
show the performance of coded modulation: (K = 10800, N = 16200) DVB-S2 LDPC + 64 QAM, frame
length = 2700 symbols. The solid black line in the BER plot is the AWGN Shannon limit for R = 2
bits/dimension, and in the FER plot, it is the normal approximation to the AWGN finite length error
probability bound in [34].

modulation scheme uses a rate 2
3 (10800, 16200) DVB-S2 LDPC code with 64-QAM modulation,

for the same overall rate of 2 bits/dimension and a frame length of 2700 symbols. We observe

that the SC-SPARC has a higher BER and FER compared to the coded modulation scheme for

all values of Eb/N0, and its error rate also drops more slowly as Eb/N0 increases.

In the above plots, the SC-SPARC parameters (ω,Λ, L,M, n) have not been carefully opti-

mised. An interesting direction for future work is to develop good finite length design guidelines

for choosing these parameters as a function of rate and snr. Another direction is to explore

whether alternative base matrix designs could improve the finite length performance at higher

rates like 2 bits/dimension.

2.5.1 Implementation details

The (ω,Λ, ρ = 0) base matrix was used for all the simulations. Furthermore, to reduce the

decoding complexity and the memory requirement, a few modifications were made to the SC-

SPARC construction and the AMP decoder.

DFT based design matrices We replaced the Gaussian (or complex Gaussian) design ma-

trix with either a Hadamard or discrete Fourier transform (DFT) based design matrix. This

enables the matrix-vector multiplications in the AMP decoder (2.7)–(2.8) to be computed via the

fast Walsh-Hadamard transform (FWHT) [59] or the fast Fourier transform (FFT) [60], which

significantly lowers the decoding complexity and memory requirement. Our approach follows

that of [22,56] where Hadamard based design matrices were used for real-valued SPARCs.

A Hadamard-based design matrix A can be generated as follows given base matrix W ∈
RR×C

+ . Let k = dlog2(max((n/R) + 1, (LM/C) + 1))e. Each block of the design matrix (indexed

by (r, c) for r ∈ [R], c ∈ [C]) is constructed by choosing (n/R) rows and (LM/C) columns
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uniformly at random3 from a 2k × 2k Hadamard matrix and then scaling each entry up by√
Wrc/L. The resulting design matrix has entries Aij = ±

√
Wr(i),c(j)/L. When DFT based

design matrices are used, the FFT operation must be appropriately normalised.4

The computational complexity of the AMP decoder is dominated by the two matrix-vector

multiplications associated with the design matrixA. These operations have complexityO(nLM)

when A has independent Gaussian entries. The memory requirements of the encoder and de-

coder are also proportional to nLM since the Gaussian design matrix has to be stored. By

constructing the design matrix using randomly sampled rows of the (deterministic) Hadamard

or DFT matrix, the complexity of the matrix-vector multiplications (replaced by FWHTs/FFTs)

is reduced to O(LM log(LM)), and the memory requirements of the encoder and decoder are

proportional to ωLM . The error performance of Hadamard/DFT based design matrices was

found to be similar to that of Gaussian matrices for large matrix sizes.

Online estimation of state evolution parameters The AMP decoder in (2.7)–(2.8) con-

tains parameters computed using the state evolution (SE) recursion (2.9)–(2.11). In particular,

the vector υ̃t, and the matrix Q̃
t

are determined via SE parameters computed offline. Instead of

computing the SE parameters offline, the SE parameters can be estimated online (at runtime)

using the outputs of the AMP decoder in each iteration. The SE parameters {γtr}r∈[R], {φtr}r∈[R]

and {τ tc}c∈[C], which are needed to compute υ̃t and Q̃
t

(see (2.12)) can be estimated online in

the following way. For r ∈ [R] and c ∈ [C],

γ̂tr =
1

C

C∑

c=1

Wrc

(
1− ‖β

t
c‖2

L/C

)
, (2.50)

φ̂tr =




σ2 + γ̂tr if the decoder knows σ2,

‖ztr‖2
n/R otherwise,

(2.51)

τ̂ tc =
L

n

[
1

R

R∑

r=1

Wrc

φ̂tr

]−1

. (2.52)

The justification for these estimates comes from [1, Lemma 7.6], which proves that the

estimates γ̂tr , φ̂
t
r concentrate on γtr , φ

t
r, respectively, for large (n,L). We observe that using

online estimates of the SE parameters results in better empirical error performance than using

deterministic SE parameters. A similar improvement was observed in [47] for power allocated

SPARCs.

3Earlier works [22,47] considered randomly choosing the rows of the Hadamard matrix, but not the columns.
In our simulations we found that at smaller design matrix sizes, the AMP decoder sometimes diverged when
design matrices were based on randomly chosen rows only. Randomly choosing both the rows and the columns
led to improved performance.

4We do not use the first row and column of the Hadamard matrix because they are all +1’s. The other rows
and columns have an equal number of +1’s and −1’s. We do not use the first and (2k−1 + 1)-th row and column
of the DFT matrix because their entries are all real-valued.
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Early stopping of AMP Since the online estimates of SE parameters in (2.50)–(2.52) are

estimates of certain noise variances related to the decoding error in each iteration of the AMP,

we choose to stop the AMP decoder early if the change in γ̂t, φ̂
t

or τ̂ t falls below a prescribed

threshold over consecutive iterations. A similar stopping criterion was used in [47] to terminate

the AMP decoder for power allocated SPARCs.

A Python implementation of SPARCs (both power allocated and spatially coupled) with

AMP decoding is available at [155].

2.6 Sliding window AMP decoding

As shown in Fig. 2.2, the decoding progression of SC-SPARCs (at high rates) starts from the

two ends of the message vector and progresses towards the centre until the whole message vector

is decoded. This decoding progression suggests that the estimates of the sections at the middle

of the message vector are not being improved by the decoder during the initial iterations of

decoding, and the estimates of the sections at the two ends are not further improved during the

final iterations of decoding. Therefore, at different stages of decoding, the decoder is wasting

computational power trying to improve the estimates of sections of the message vector where

improvements cannot be made.

It is therefore desirable to design a decoder that tracks the decoding progression, updating

only the estimates of the sections of the message vector where they can be improved. The

computational complexity and memory requirements of such a decoder would depend on the

number of sections whose estimate can be improved, which may be much lower than the total

number of sections. Moreover, if this decoder only tracks the decoding progression that goes

from the front to the back of the message vector (unidirectional), then this decoder can start

decoding once it has received enough codeword symbols from the channel to update the estimate

of the first section of the message vector. This has potential to greatly reduce latency, and the

continuous decoding process (similar to that of convolutional codes) may be useful in streaming

applications.

The same “wave-like” decoding progression is seen in spatially coupled LDPC (SC-LDPC)

codes with belief propagation (BP) decoding. A window decoder for SC-LDPC codes was

proposed and analysed in [156, 157]. The sliding window AMP decoder we describe below

borrows many ideas from [156].

2.6.1 Sliding window decoder description

Recall that a SC-SPARC is defined by a design matrix A ∈ Rn×LM that is constructed using

a base matrix W ∈ RR×C
+ . The codewords are constructed according to x = Aβ, where

β ∈ RLM is a message vector with L sections. The design matrix A is divided into R×C blocks,

and the message vector can be divided into C blocks corresponding to the C column-blocks of
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(a) window position 1 (first) (b) window position 2 (c) window position 3

(d) window position 13 (e) window position 14 (f) window position 15 (last)

Figure 2.8: Sliding window decoding steps for window width w = 4 and base matrix parameters (ω = 3,
Λ = 16, ρ = 0). Blue: the decoding window and the corresponding parts of the message vector estimate
being updated. Red: additional columns on the left of decoding window required by the decoder and the
corresponding parts of the message vector (already decoded). Green: parts of the message vector that
have been decoded and are no longer used by the decoder.

A. We describe the sliding window AMP decoder for (ω,Λ, ρ = 0) base matrices which have

R = Λ+ω−1 rows, C = Λ columns, and ω non-zero entries in each column (see Def. 2.1.1). The

same ideas can be extended to other spatially coupled base matrix designs that have a band

diagonal structure.

The progression of the sliding window decoder is illustrated in Fig. 2.8. The high level idea

is as follows. A square w × w decoding window (blue) moves diagonally across the base matrix

W , from top-left to bottom-right, to eventually cover all the non-zero entries of the base matrix

in its progression. At each window position, the decoder acts on the part of the noisy channel

output y that corresponds to the rows of the base matrix within the window, and uses them

to estimate of the part of the message vector β that corresponds to the columns of the base

matrix within the window. We now describe the sliding window decoder in more detail.

The sliding window AMP decoder has an additional window width parameter w compared

to the “full” AMP decoder in (2.7)–(2.8). This parameter determines the size of the decoding
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window and lies within the range ω to R. When w = R the window decoder is the same as the

full decoder.

On initialisation (Fig. 2.8a), the initial estimate of the message vector is set to the all zero

vector, and the decoding window (blue) covers the top-left w-by-w entries of the base matrix.

The AMP decoder (2.7)–(2.8) is run for this window with the corresponding parts of the channel

output and message vector. It is as if the AMP decoder is decoding an SC-SPARC constructed

using a base matrix equal to the “sub-matrix” covered by the decoding window. The estimates

of the message vector in this window (blue) are updated iteratively. The decoder runs until

the change in the estimates corresponding to the left-most column in the decoding window —

the target column — drops below a tolerance parameter (or when the maximum number of

iterations allowed per window position is reached).

The decoding window (blue) then moves to the next window position by shifting one row

down and one column to the right in the base matrix (Fig. 2.8b). The estimate of the message

vector corresponding to the previous target column (c = 1) is now fixed and will not be updated

further. (Parts of the message vector that are no longer being updated are shown in either red

or green.) The AMP decoder is run again for this new decoding window, until the change in

the estimates of the message vector corresponding to the new target column (c = 2) drops

below the tolerance parameter. This process of “shift and decode” continues until the decoding

window covers the last row of the base matrix, i.e., the target column position reaches c =

R−w+ 1 = Λ +ω−w. At this position the AMP decoder runs until the change in the estimates

of the message vector corresponding to all the columns in the decoding window drops below

the tolerance parameter. Then the sliding window decoder terminates.

After the first window position (Fig. 2.8a), the AMP decoder requires up to ω−1 additional

columns (red) on the left of the decoding window (blue) in order to correctly calculate the

residual term zt in (2.7). Note that the estimates of the message vector corresponding to those

additional columns are fixed, hence those additional columns are not needed in the calculation

of βt+1 in (2.8).

As the sliding window AMP decoder moves across the base matrix, it outputs soft estimates

for parts of the message vector. During this process, the parts of the message vector that have

been decoded and are no longer used by the decoder (green) can be hard decoded (set largest

entry in each section to 1 and the remaining entries to 0).

Decoding latency and complexity

In practice, the sliding window AMP decoder offers a way to trade-off between computational

complexity, latency and error performance. Indeed, the full decoder is recovered when the

window width w equals R = Λ + ω − 1.

The decoding latency of the window decoder in number of received symbols is w · n
Λ+ω−1 ,

compared to n for the full decoder. When a Hadamard or DFT based design matrix is used
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together with their corresponding fast transform (see Sec. 2.5.1), the per-iteration decoding

complexity of the window decoder is smaller than that of the full decoder by a factor of ap-

proximately Λ/ω. Specifically, the per-iteration decoding complexity of the window decoder is

O(wω ·x log x), where wω is the maximum number of non-zero entries in the base matrix covered

by the decoding window, and x = LM/Λ is the number of columns in each column block of the

design matrix. Observe that both the decoding latency and complexity scale linearly with the

window width w. Note that it reasonable to consider L and n scaling linearly with Λ.

We expect to see significant complexity and latency advantages of the window decoder over

the full decoder for long code lengths because the complexity and latency of the window decoder

depends on the window width instead of the code length (assuming fixed ω and L/Λ).

Asymptotic state evolution analysis

Using the asymptotic (section size M → ∞) state evolution analysis in Section 2.3.1, one can

see that the (unidirectional) sliding window AMP decoder with window width w = ω has the

same asymptotic error performance as the full decoder. It also requires approximately twice the

number of iterations to finish decoding. However, this assumes that the sliding window decoder

knows exactly how many columns to shift between window positions so that all decoded sections

of the message vector are no longer within the decoding window at the next window position.

The sliding window decoder described in the previous section only shifts one column between

window positions.

Disadvantages compared to the full AMP decoder

1. The sliding window decoder cannot utilise the “seed” at the end (bottom-right) of the

base matrix until the last few window positions. Therefore, it has worse error performance

compared to the full decoder.

2. The sliding window decoder does not track the decoding progression (“wave”) from both

ends of the message vector simultaneously. Therefore, it takes more iterations to decode.

3. If decoding errors occur early on in sliding window decoding, they propagate to the subse-

quent window positions and cannot be corrected since the decoding window never moves

in the reverse direction. This can lead to decoding instances where many section errors

occur.

The first two disadvantages can be addressed by using a bidirectional sliding window de-

coder. However, bidirectional window decoders loose the low latency advantage of unidirectional

window decoders, since the whole codeword has to be received before decoding can initiate.

The window extension algorithm proposed in [158] mitigates the effects of error propagation

in the window decoding of SC-LDPC codes. We expect a similar approach to help address the

65



1.50 1.55 1.60 1.65 1.70 1.75 1.80
Rate (bits)

10 4

10 3

10 2

10 1

100

Av
er

ag
e 

Se
ct

io
n 

Er
ro

r R
at

e

width: 12
width: 18
width: 32
full

Figure 2.9: Average SER of SC-SPARCs with sliding window AMP decoding as the window width w

increases. Code parameters: C = 2 bits, ω = 6, Λ = 64, ρ = 0, M = 512 and L = 2048. The vertical
lines indicate that no section errors were observed over 104 trials at smaller rates.

third disadvantage of sliding window AMP decoding of SC-SPARCs.

2.6.2 Empirical performance

In this section, we investigate the finite length error performance of sliding window AMP de-

coding via numerical simulations. As in Section 2.5, we Hadamard based design matrices in

these simulations for lower complexity and memory requirements.

Fixed code length, varying window width Fig. 2.9 shows the average section error rate

(SER) of the sliding window decoder for different values of the window width w, with the other

code parameters fixed. The SC-SPARCs are constructed using an (ω = 6,Λ = 64, ρ = 0) base

matrix and has code parameters M = 512 and L = 2048. We observe that the error performance

improves as the window width is increased. Recall that the decoding latency and per iteration

complexity increases with the window width.

According to the asymptotic state evolution recursion, the sliding window decoder with

window width w = ω achieves the same asymptotic performance as full decoder. However,

at finite code lengths n and section sizes M , the column blocks of the message vector are

not perfectly decoded (i.e., corresponding MSE 6= 0) at the end of the predicted iteration using

w = ω. Therefore, larger window widths improve the error performance by using larger decoding

windows (more channel output information can be used), and updating column blocks of message

vector estimates for a larger number of iterations (due to being in more window positions).

Moreover, we increase the number of decoding iterations allowed per window position for larger

window widths, as the window decoder requires more iterations for the estimate of the target

column to converge. See Table 2.1 for the list of decoding iterations allowed for different window
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Figure 2.10: Average SER of SC-SPARCs with sliding window AMP decoding as the code length increases
and the window width is fixed to w = 32. Code parameters: C = 2 bits, ω = 6, ρ = 0, M = 512, and
L/Λ = 32 sections per column block. (Λ = 32 corresponds to full AMP decoding.)

Table 2.1: Maximum number of iterations allowed (per window position for the window decoder)

full decoder (ω = 6) window decoder

Λ = 32 Λ = 64 w = 6 w = 12 w = 18 w = 32

tmax 100 200 10 20 30 100

widths.

Fixed window width, increasing code length Fig. 2.10 shows the performance of the

sliding window AMP decoder with fixed window width w = 32, and increasing code length.

The SC-SPARCs are constructed using (ω,Λ, ρ = 0) base matrices with a fixed coupling width

ω = 6 and has section size M = 512. The number of sections L (and code length) increases

proportionally with Λ, with L/Λ = 32 held constant. Since the window width w, coupling width

ω, section size M and L/Λ are fixed, the per iteration decoding complexity is the same for

the four different cases in Fig. 2.10. All decoders in this set of simulations have the maximum

number of iterations allowed (per window position) set to 100. Note that for the Λ = 32 case,

the full AMP decoder is used.

There is a trade-off in error performance when the coupling length Λ is increased whilst the

coupling width ω and decoding window width w are held constant. Increasing Λ with ω fixed

reduces the rate loss of the SC-SPARC (2.5). This results in a lower inner SPARC rate in the

SC-SPARC, which leads to better error performance when its decoded with the full decoder.

However, window decoders with a fixed window width become more suboptimal compared to

full decoders as the coupling length Λ increases. In Fig. 2.10 we observe that the section error

rate generally improves as Λ (and hence the code length) is increased, for a fixed window
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width w. For large values of Λ such as Λ = 128 or 256, the complexity of full AMP decoding

is prohibitively large. In such cases, sliding window AMP decoding (green and red) offers a

noticeable improvement over smaller code length SC-SPARCs with full AMP decoding (blue).

2.7 Proof of Proposition 2.3.1

Using the definition in (2.4), the state evolution equations (2.9)–(2.10) for the (ω,Λ, ρ) base

matrix are as follows. With ψ0
c = 1 for c ∈ [Λ], for t ≥ 0:

φtr = σ2

[
1 + ϑ snr

(
1− ρ
ω

cr∑

c=cr

ψtc +
ρ

Λ− 1

∑

c∈[Λ]\{cr,...,cr}

ψtc

)]
, r ∈ [Λ + ω − 1], (2.53)

νtc =
R

τ tc lnM
=

(1− ρ)P

ω

c+ω−1∑

r=c

1

φtr
+

ρP

Λ− 1

∑

r∈[Λ+ω−1]\{c,...,c+ω−1}

1

φtr
, c ∈ [Λ] (2.54)

ψt+1
c = 1− E(R/(νtc lnM)). (2.55)

Here E(·) is defined in (2.11), and cr, cr are defined (2.27).

Since the variables ψtc for c ∈ [Λ] and t ≥ 0 are symmetric about the center column index,

i.e. ψtc = ψtΛ−c+1 for c ≤
⌈

Λ
2

⌉
, we carry out the analysis for c ≤

⌈
Λ
2

⌉
; the result for the other

half then holds by symmetry. We will upper bound ψtc using Lemma 2.3.1. Using (2.21), for the

first iteration we will have ψ1
c ≤ fM,δ for indices c for which {ν0

c > (2 + δ)R}. We now obtain a

lower bound on ν0
c for indices c < ω.

Using (2.54) we have

ν0
c =

(1− ρ)P

ω

c+ω−1∑

r=c

1

φ0
r

+
ρP

Λ− 1

∑

r∈[Λ+ω−1]\{c,...,c+ω−1}

1

φ0
r

(2.56)

≥ (1− ρ)P

ω

c+ω−1∑

r=c

1

φ0
r

(i)
=

(1− ρ) snr

ω

(
ω−1∑

r=c

1

1 + (1−ρ)ϑ snr
ω r + ρ ϑ snr

Λ−1 (Λ− r)
+

c

1 + (1− ρ)ϑ snr + ρ ϑ snr Λ−ω
Λ−1

)

≥ (1− ρ) snr

ω

ω−1∑

r=c

1

1 + ρ ϑ snr + (1− ρ)ϑ snr r
ω

+
c

ω

(1− ρ) snr

1 + ϑ snr

(ii)

≥ 1

ϑ

(
ln(1 + ϑ snr)− ln

(
1 + ρ ϑ snr + (1− ρ)ϑ snr

c

ω

))
+

c

ω

(1− ρ) snr

1 + ϑ snr
(iii)

≥ 1

ϑ
ln(1 + ϑ snr)− ρ snr− (1− ρ) snr

c

ω
+

c

ω

(1− ρ) snr

1 + ϑ snr

≥ 1

ϑ
ln(1 + ϑ snr)− ρ snr− c

ω

ϑ snr2

1 + ϑ snr
,

where the labelled steps are obtained as follows: (i) using the expression for φtr in (2.53) and the
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fact that c < ω, (ii) using a definite integral to lower bound the left Riemann sum of a positive

decreasing function:

1

ω

ω−1∑

r=c

1
1+ρ ϑ snr

(1−ρ)ϑ snr + r
ω

≥
∫ 1

c/ω

1
1+ρ ϑ snr

(1−ρ)ϑ snr + x
dx. (2.57)

Inequality (iii) is obtained using ln(1 + x) ≤ x.

Therefore, the condition ν0
c > (2 + δ)R will be satisfied if

1

ϑ
ln(1 + ϑ snr)− ρ snr− c

ω

ϑ snr2

1 + ϑ snr
> (2 + δ)R. (2.58)

Rearranging (2.58) gives

c < ω · 2(1 + ϑ snr)

ϑ snr2

[
1

2ϑ
ln (1 + ϑ snr)− ρ snr

2
−R− δR

2

]
, (2.59)

Note that the RHS of (2.59) is smaller than or equal to 1 if R ≥ (1−ρ)snr
(2+δ)(1+ϑ snr) . Using ρ ≤ ∆

3snr

and δ < ∆
2R , the sufficient condition in (2.59) for ψ1

c ≤ fM,δ can be weakened to c ≤ g where g

is defined in (2.42). Note that the condition (2.40) on ω guarantees that g > 1.

Notice from (2.56) that ν0
c is decreasing in c for c ∈ [1, ω] and is then constant for c ∈ [ω, dΛ

2 e].
Therefore, for any δ ∈ (0, 1), if ν0

c > (2+δ)R is satisfied for c = ω then ψ1
c ≤ fM,δ for all c ∈ [Λ].

By using a similar analysis as above for lower bounding ν0
c , one can show that a sufficient

condition for ν0
ω > (2 + δ)R is R < (1−ρ)snr

(2+δ)(1+ϑ snr) .

Next we consider subsequent iterations t > 1. Assume towards induction that

ψtc ≤ fM,δ, for c ≤ gt, (2.60)

where gt ≥ tg. We will prove that (2.60) implies ψt+1
c ≤ fM,δ for c ≤ gt+g. We prove the result

for gt ≥ ω, with the other case being similar. We wish to find column indices c ∈ (gt, gt + ω)

for which ψt+1
c ≤ fM,δ, or equivalently νtc > (2 + δ)R. For brevity, we will use the shorthand

f := fM,δ. Using the induction assumption (2.60) in (2.53), we deduce

φtr
σ2
≤





1 + f (1− ρ)ϑ snr r
ω + f ρ ϑ snr gt−rΛ−1 + ρ ϑ snr Λ−gt

Λ−1 , 1 ≤ r ≤ ω,

1 + f (1− ρ)ϑ snr + f ρ ϑ snr gt−ωΛ−1 + ρ ϑ snr Λ−gt
Λ−1 , ω ≤ r ≤ gt,

1 + (1−ρ)ϑ snr
ω [f(ω − (r− gt)) + (r− gt)] + f ρ ϑ snr r−ω

Λ−1 + ρ ϑ snr Λ−r
Λ−1 , gt ≤ r < gt + ω,

1 + (1− ρ)ϑ snr + f ρ ϑ snr r−ω
Λ−1 + ρ ϑ snr Λ−r

Λ−1 , r ≥ gt + ω.

(2.61)

69



For M sufficiently large (i.e., f sufficiently small), noting that gt ≥ ω we can simplify (2.61) to

φtr
σ2
≤





1 + f (1− ρ)ϑ snr r
ω + ρ ϑ snr Λ−r

Λ−1 , 1 ≤ r ≤ ω,

1 + f (1− ρ)ϑ snr + ρ ϑ snr Λ−ω
Λ−1 , ω ≤ r ≤ gt,

1 + (1−ρ)ϑ snr
ω [f(ω − (r− gt)) + (r− gt)] + ρ ϑ snr Λ−ω

Λ−1 , gt ≤ r < gt + ω,

1 + (1− ρ)ϑ snr + ρ ϑ snr Λ−ω
Λ−1 , r ≥ gt + ω.

(2.62)

We now obtain a lower bound on νtc for gt < c < gt + ω. Using (2.54) we have

νtc ≥
(1− ρ)P

ω

c+ω−1∑

r=c

1

φtr

(i)

≥ (1− ρ)snr

ω

gt+ω−1∑

r=c

1

1 + (1−ρ)ϑ snr
ω [f(ω − (r − gt)) + (r − gt)] + ρ ϑ snr

Λ−1 (Λ− ω)

+
c− gt
ω

(1− ρ) snr

1 + (1− ρ)ϑ snr + ρ ϑ snr Λ−ω
Λ−1

≥ (1− ρ)snr

ω

gt+ω−1∑

r=c

1

1 + ρϑsnr + f(1− ρ)ϑsnr + (1− f)(1− ρ)ϑsnr (r−gt)
ω

+
c− gt
ω

(1− ρ)snr

1 + ϑsnr

≥ (1− ρ)snr

ω

ω−1∑

r′=c−gt

1

1 + ρϑsnr + f(1− ρ)ϑsnr + (1− f)(1− ρ)ϑsnr r′

ω

+
c− gt
ω

(1− ρ)snr

1 + ϑsnr

(ii)

≥ 1

(1− f)ϑ

(
ln(1 + ϑ snr)− ln

(
1 + ρ ϑ snr + f (1− ρ)ϑ snr + (1− f)(1− ρ)ϑ snr

c− gt
ω

))

+
c− gt
ω

(1− ρ) snr

1 + ϑ snr
(iii)

≥ 1

ϑ
ln(1 + ϑ snr)− ρ snr− f (1− ρ) snr− (1− ρ) snr

c− gt
ω

+
c− gt
ω

(1− ρ) snr

1 + ϑ snr

≥ 1

ϑ
ln(1 + ϑ snr)− ρ snr− f snr− c− gt

ω

ϑ snr2

1 + ϑ snr
, (2.63)

where the labelled steps are obtained as follows: (i) using the bounds for φtr given in (2.62), (ii)

using a definite integral to lower bound the left Riemann sum of a decreasing function, similar

to (2.57), and (iii) using the inequalities ln(1 + x) ≤ x and 1
1−f ≥ 1.

Recall from Lemma 2.3.1 that ψt+1
c ≤ fM,δ if νtc > (2 + δ)R. From (2.63), this condition will

be satisfied if

1

ϑ
ln(1 + ϑ snr)− ρ snr− f snr− c− gt

ω

ϑ snr2

1 + ϑ snr
> (2 + δ)R. (2.64)

Rearranging (2.64) gives

c− gt < ω · 2(1 + ϑ snr)

ϑ snr2

[
1

2ϑ
ln (1 + ϑ snr)− ρ snr

2
− f snr

2
−R− δR

2

]
. (2.65)
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Note that the RHS of (2.65) is smaller than or equal to 1 if R ≥ (1−ρ)snr
(2+δ)(1+ϑ snr) . Using ρ ≤ ∆

3snr

and δ < ∆
2R in (2.65), we obtain that a sufficient condition for ψt+1

c ≤ fM,δ is

c− gt < ω · 2(1 + ϑ snr)

ϑ snr2

[
7∆

12
− f snr

2

]
(2.66)

For M sufficiently large, f < ∆/(6 snr). Thus we conclude from (2.66) that ψt+1
c ≤ fM,δ for

c− gt ≤ g, and hence for c ≤ (t+ 1)g (since gt ≥ tg).
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Chapter 3

Modulated sparse regression codes

3.1 Introduction

In this chapter we propose modulated sparse regression codes (SPARCs), a generalisation of

SPARCs, for communication over the complex AWGN channel.

In the complex AWGN channel, the output symbol y is produced from (complex) input

symbol x according to y = x + w. The noise random variable w is drawn from a zero mean

circularly-symmetric complex Gaussian distribution with variance σ2, which we denote by w ∼
CN (0, σ2). There is an average power constraint P on the channel input: if a codeword x =

x1, x2, . . . , xn is transmitted over n uses of the channel, then

1

n

n∑

i=1

|xi|2 ≤ P, (3.1)

where | · | denotes the modulus of a complex number. The capacity of the channel is

C = ln

(
1 +

P

σ2

)
nats. (3.2)

As in the standard construction of SPARCs (Section 1.3, Fig. 1.6), a modulated SPARC is

defined by a design matrix A of dimension n×LM , where n is the code length. The codeword

is x = Aβ, where β has one non-zero entry in each of the L sections of size M .

In the standard SPARC construction, the message is indexed by the locations of the non-

zero entries in β, with their values fixed a priori. Since each section encodes lnM nats and

there are L sections, the rate of the SPARC can be expressed as R = L lnM
n nats.

In a modulated SPARC, information is encoded in both the locations and the values of the

non-zero entries of the message vector β. In particular, we allow each non-zero entry of β to

take values in a K-ary constellation with equal probability (e.g., K-ary phase shift keying).

Therefore, each section encodes lnK + lnM nats, and the rate of the modulated SPARC can
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be expressed as

R =
L ln(KM)

n
nats. (3.3)

A SPARC without modulation can be seen as having modulation factor K = 1.

Modulation introduces an extra degree of freedom in the design of SPARCs which can be

used to reduce decoding complexity without sacrificing finite-length error performance (Section

3.5). Furthermore, in Chapter 4 we will see how adding modulation to the SPARC design can

be useful in coding for many-user Gaussian multiple access channels.

Since we consider communication over the complex AWGN channel, the SPARC codeword

Aβ can be complex-valued. Accordingly, the design matrix A is chosen to have independent

zero-mean complex Gaussian entries. We refer to SPARCs defined with complex design matrices

as complex SPARCs. Furthermore, for modulated complex SPARCs, the non-zero entries of β

take values in a K-ary complex constellation.

The average power constraint in (3.1) implies that the variances of the entries of A and the

non-zero values of β should be chosen such that ‖Aβ‖2 ≤ nP is satisfied with high probability.

For example, if the values of the non-zero entries of β are all chosen to be 1 (the unmodulated

case), the power constraint is satisfied with high probability if the entries of A are chosen

i.i.d. ∼ CN (0, P/L). With optimal decoding, such a design has error probability decaying

exponentially in the code length for rates R < C [20].1

As introduced in Sections 1.3 and 1.5, either power allocation in the non-zero entries of

β or spatially coupled design matrices A are required for good error performance with low

complexity decoders. In particular, both power allocated and spatially coupled unmodulated

SPARCs have been to proven to have vanishing error probability in the large system limit with

approximate message passing (AMP) decoding, for any R < C [1, 22, 57, 140]. (Here “large

system limit” refers to (L,M, n) all tending to infinity such that nR = L lnM .) In this chapter

we will extend the proof to modulated complex SPARCs with either power allocation or spatial

coupling. Recall that spatially coupled unmodulated SPARCs and their AMP decoder are

described in Chapter 2.

Structure of the chapter

In Section 3.2, we introduce modulated SPARCs with K-ary phase shift keying (PSK) constel-

lations and justify our choice of using PSK. We briefly review how the design matrix A can

be constructed from a base matrix, and how both power allocation and spatial coupling can be

implemented by an appropriate choice of the base matrix.

In Section 3.3, we propose an AMP decoder for complex SPARCs with PSK modulation and

describe its state evolution recursion. The state evolution recursion predicts the mean-squared

1The result in [20] was proved for a real-valued SPARC over a real AWGN channel, but the result can be
extended to the complex case by similar arguments.
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error between the true message vector and its estimate in each iteration of AMP decoding. Since

SPARCs have only been analysed for real-valued channels (even in the unmodulated case), we

briefly discuss the differences between the AMP decoders and state evolution recursions for real

and complex SPARCs (both unmodulated).

In Section 3.4, we analyse the error performance of the AMP decoder for modulated complex

SPARCs using state evolution. The main technical result (Proposition 3.4.1) gives an upper

bound on a key state evolution parameter which predicts the mean squared error of the AMP

estimate in each iteration. Using this bound, we show that in the large system limit, the state

evolution recursion for complex SPARCs with K-ary PSK modulation is the same for any fixed

value of K, including K = 1 (unmodulated). We use this result to prove that K-PSK modulated

SPARCs with AMP decoding are asymptotically capacity achieving for the complex AWGN

channel, with either spatial coupling or exponentially decaying power allocation (Theorems 2

and 3).

In order to show that K-PSK modulated SPARCs with a specified design are capacity

achieving in the large system limit, two steps are required:

1. Prove that for any rate R < C, state evolution predicts vanishing probability of decoder

error in the large system limit.

2. Prove that the error rate of the AMP decoder is accurately tracked by the state evolution

parameters for sufficiently large code length.

In Section 3.4, we carry out Step 1. Step 2 was proved in [1, Thms. 1 and 2] for the case

of unmodulated real-valued SPARCs (including spatially coupled and power allocated ones),

where it was shown that the normalised mean squared error of the AMP decoder concentrates

on the state evolution prediction. Step 2 for modulated complex-valued SPARCs can be proved

along the same lines. We do not provide detail on the proof as it is a straightforward extension

of the analysis in [1]: the proof uses the same induction argument and sequence of steps as [1],

with modifications to account for for A and β being complex valued. The key conceptual

difference between PSK-modulated complex SPARCs and unmodulated real-valued SPARCs is

in the state evolution and its analysis, which is discussed in Sections 3.3 and 3.4.

In Section 3.5, we evaluate the finite length error performance of modulated complex SPARCs

with AMP decoding via numerical simulations, and compare their performance with coded

modulation schemes using LDPC codes from the DVB-S2 standard. With a DFT-based im-

plementation, the per-iteration complexity of the AMP decoder is O(LM(K + log(LM))). For

K � log(LM), our numerical results demonstrate that modulation allows one to significantly

reduce the decoder complexity without sacrificing error performance.

We would like to mention that SPARCs for the real AWGN channel with binary PSK

modulation (K = 2) and power allocation were discussed in Adam Greig’s PhD thesis [159,
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Figure 3.1: Labelling of phase shift keying (PSK) constellation symbols for K = 4 and K = 8.

Chap. 5]. That work motivated the current study of PSK-modulated SPARCs for the complex

AWGN channel.

In this chapter the rate and capacity terms (e.g., R and C) are given in bits for the discussion

of simulation results (Section 3.5) and given in nats elsewhere.

3.2 Modulated SPARC construction

In a modulated SPARC, the value of the non-zero entry in each section of the message vector β

is chosen from a K-ary constellation. Each section encodes lnM nats in the location of non-zero

entry and at most lnK nats in the its value, which is achieved when the non-zero values are

chosen uniformly from the K-ary constellation (the mapping from bits to constellation symbol

is uniform).

In this chapter, we choose the non-zero values in β uniformly from a K-ary phase shift

keying (PSK) constellation, where the K symbols are equally spaced on the unit circle of the

complex plane. The symbols are denoted by

ck := ej2πk/K for k = 1, . . . ,K, (3.4)

where j :=
√
−1. (Fig. 3.1 illustrates the labelling of the constellation symbols.) PSK is chosen

rather than other modulation techniques such as quadrature amplitude modulation (QAM)

because the PSK symbols have equal magnitude. Unequal symbol magnitudes will counteract

the effect of power allocation and spatial coupling, and simulations show that errors are much

more likely to occur in the sections where symbols of smaller magnitude are chosen. We choose

the non-zero values uniformly from the PSK constellation due to the global symmetry of the

constellation.
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3.2.1 Power allocation and spatial coupling

The main idea behind both power allocation and spatial coupling is to change the variances of

the (independent Gaussian) entries of A so that certain parts of the message vector are easier

to decode than others. Power allocation varies the variance across the sections (columns) of A,

while spatial coupling varies the variance across both rows and columns such that A has a band

diagonal structure. Both techniques can be described in terms of base matrices, as described in

Chapter 2.1. We now briefly review the base matrix construction and comment on how it can

be applied to design matrices with complex Gaussian entries.2

The design matrix A ∈ Cn×LM is divided into R-by-C equally size blocks. The entries

within each block are i.i.d. complex Gaussian with zero mean and variance specified by the

corresponding entry of a base matrix W ∈ RR×C
+ . The n×LM design matrix A is constructed

by replacing each entry of the base matrix Wrc, for r ∈ [R], c ∈ [C], by an (n/R) × (LM/C)

matrix with entries drawn i.i.d. from CN (0,Wrc/L). See Fig. 2.1 for an example. Hence, given

base matrix W , the design matrix A has independent complex Gaussian entries

Aij ∼ CN
(

0,
1

L
Wr(i)c(j)

)
, for i ∈ [n], j ∈ [LM ]. (3.5)

The operators r(·) : [n] → [R] and c(·) : [ML] → [C] in (3.5) map a particular row or column

index to its corresponding row block or column block index. We require C to divide L, resulting

in L/C sections per column block.

The non-zero entries of message vector β all have magnitude equal to 1 due to PSK modu-

lation. In order to satisfy the average power constraint in (3.1) (in expectation), the entries of

the base matrix W must satisfy the condition in (2.2), i.e.,

1

RC

R∑

r=1

C∑

c=1

Wrc = P. (3.6)

The trivial base matrix with R = C = 1 corresponds to an uncoupled complex SPARC, i.e.,

the entries of the design matrix are drawn i.i.d. from CN (0, P/L). A single-row base matrix

with R = 1 and C = L corresponds to a design matrix with power allocation. For example, the

exponential power allocation used in [21,22,46] corresponds to

W1` = LP · e
C/L − 1

1− e−C · e
−C`/L, for ` ∈ [L], (3.7)

where C is the capacity of the complex AWGN channel (in nats) given in (3.2).

2In standard unmodulated SPARCs, power allocation is often described as the choice of the non-zero values of
the message vector β across all L sections while the design matrix A has i.i.d. Gaussian entries. This is equivalent
to a choice of the variances of the Gaussian entries across the L sections of the design matrix while the non-zero
values of β are all equal to 1. The latter perspective allows a unified treatment of power allocation and spatial
coupling.
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In this chapter we will consider two kinds of base matrices: i) the one corresponding to the

exponentially decaying power allocation (3.7), and ii) the class of (ω,Λ, ρ) base matrices used

to construct spatially coupled SPARCs defined in Definition 2.1.1.

Recall that an (ω,Λ, ρ) base matrix is described by the coupling width ω, the coupling length

Λ, and a parameter ρ ∈ [0, 1) which specifies the fraction of power allocated to the uncoupled

entries in each column. These base matrices have R = Λ+ω−1 rows, C = Λ columns, with each

column having ω identical non-zero entries in the band-diagonal region. When ρ = 0, the base

matrix only has non-zero entries in the band-diagonal region. For our simulations in Section

3.5, we use ρ = 0, whereas for Theorem 2 we choose ρ to be a small positive value proportional

to the rate gap from capacity.

In the remainder of the chapter, we use subscripts in sans-serif font (r or c) to denote row

or column block indices. For example, βc ∈ CLM/C denotes the c-th column block of β ∈ CLM

for c ∈ [C], and yr ∈ Cn/R denotes the r-th row block of y ∈ Cn for r ∈ [R].

3.3 AMP decoder and state evolution

The decoder aims to recover the message vector β from the channel output y ∈ Cn, given by

y = Aβ +w, (3.8)

where w1, . . . , wn
i.i.d.∼ CN (0, σ2). The design matrix A and base matrix W are available to the

decoder.

3.3.1 AMP decoder

The approximate message passing (AMP) algorithm is introduced in Section 1.4, and the AMP

decoder for unmodulated real-valued SPARCs is introduced in Section 2.2. In this section we

propose an AMP decoder for modulated complex SPARCs which takes into account the complex

design matrix and the K-ary PSK modulated message vector.3

Given the channel output y, the AMP decoder iteratively generates message vector estimates

βt at iterations t = 0, 1, 2, . . . as follows: initialises β0 to the all-zero vector, and for t ≥ 0

compute

zt = y −Aβt + υ̃t � zt−1,

βt+1 = η
(
βt + (Q̃

t �A)∗zt, τ̃ t
)
.

(3.9)

3Complex-valued versions of AMP have been proposed for the linear model in (3.8) where the matrix A, as
well as β,w can be complex [160–162]. However, the complex AMP cannot be directly used to decode SPARCs
because it does not incorporate spatial coupling and is based on an i.i.d. prior for β; in a SPARC the message
vector β is only section-wise i.i.d.
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Here � denotes the Hadamard (entry-wise) product, A∗ denotes the conjugate transpose of

matrix A, and quantities with negative time indices are set to zero. The vectors υ̃t ∈ Rn,

τ̃ t ∈ RLM and the matrix Q̃
t ∈ Rn×LM are defined in terms of the state evolution parameters

which will be described later. The function η = (η1, . . . , ηLM ) : CLM × RLM → CLM is defined

as follows, for j ∈ [LM ]. For j in section ` ∈ [L],

ηj(s, τ̃ ) =

∑K
k=1 ck · e<(sjck)/τ̃j

∑
j′∈sec(`)

∑K
k′=1 e

<(sj′ck′ )/τ̃j′
, (3.10)

where sec(`) := {(`− 1)M + 1, . . . , `M} denotes the set of indices in section `, and {ck}k∈[K] is

the set of PSK symbols defined in (3.4). We use z to denote the conjugate of a complex number

z, and use <(z), =(z) to denote its real and imaginary part, respectively. Notice that ηj(s, τ̃ )

depends on all the entries of s and τ̃ in the section containing j.

Decoder termination When the change in βt across successive iterations falls below a pre-

specified tolerance, or the decoder reaches the maximum number of iterations allowed, the

decoder terminates. Let T denote the final AMP iteration (in which zT−1 and βT are computed).

After iteration T , the decoder produces a hard-decision estimate of the message vector, denoted

by β̂
T

, as follows. Using sT−1 = βT−1 + (Q̃
T−1�A)∗zT−1, the `-th section of β̂

T
is computed

as

β̂
T

sec(`) = arg max
b∈BM,K

<
[(
sT−1

sec(`)

)∗
b

]
, for ` ∈ [L], (3.11)

where BM,K denotes the set of all possible length M vectors with a single non-zero entry whose

value belongs to the PSK constellation {ck}k∈[K].

Interpretation of the AMP decoder Consider the function η(·, τ̃ t) in (3.9), which produces

the updated message vector estimate βt+1. The first input to this function, denoted by st, can

be viewed as a noisy version of the true message vector β. In particular, st is approximately

distributed as β +
√
τ̃ t � u, with u = [u1, . . . , uLM ]T

i.i.d.∼ CN (0, 2) independent of β. Under

the above distributional assumption, the function ηj defined in (3.10) is the minimum mean

squared error (MMSE) estimator of βj . That is, for j ∈ [LM ],

ηj(s, τ̃ ) = E
[
βj
∣∣ s = β +

√
τ̃ � u

]
, (3.12)

where the expectation is calculated over β and u, with the location and value of the non-

zero entry in each section of β being uniformly distributed among the possible choices. Under

the same distributional assumption, the final hard-decision step of the algorithm (3.11) is the
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Figure 3.2: NMSE
‖βt

c−βc‖2
L/C vs. column block index c ∈ [C] for several iteration numbers. The spatially

coupled complex SPARC is defined via an (ω = 6,Λ = 32, ρ = 0) base matrix and has parameters
R = 3.1 bits, C = 4 bits, M = 256, L = 2048 and n = 5291. The solid lines are the SE predictions from
(3.15), and the dashed lines are the average NMSE over 100 instances of AMP decoding.

maximum a posteriori (MAP) estimator for βsec(`), i.e.,

β̂
T

sec(`) = arg max
b∈BM,K

P
(
b
∣∣ sT−1

sec(`) = b+
√
τ̃T−1

sec(`) � usec(`)

)
, for ` ∈ [L]. (3.13)

State evolution Under the distributional property described above, the normalised mean

square error (NMSE) between the true message vector and its estimate in each iteration of

the AMP decoder can be predicted using a deterministic recursion called state evolution. For

a modulated complex SPARC defined by base matrix W ∈ RR×C
+ , and a complex AWGN

channel with noise variance σ2, state evolution (SE) iteratively defines vectors γt,φt ∈ RR and

τ t,ψt ∈ RC as follows. Initialise ψ0
c = 1 for c ∈ [C], and for t = 0, 1, . . ., compute

γtr =
1

C

C∑

c=1

Wrcψ
t
c, φtr = σ2 + γtr , r ∈ [R], (3.14)

τ tc =
R/2

ln(KM)

[
1

R

R∑

r=1

Wrc

φtr

]−1

, ψt+1
c = 1− E(τ tc), c ∈ [C], (3.15)

where E(τ) is defined as follows for τ > 0:

E(τ) = E




∑K
k=1<[ck] · e

1
τ
<[(1+

√
τU1) ck]

∑K
a=1 e

1
τ
<[(1+

√
τU1) ca] +

∑M
j=2

∑K
b=1 e

1√
τ
<[Uj cb]


 , (3.16)

with U1, . . . , UM
i.i.d.∼ CN (0, 2).
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As illustrated in Fig. 3.2, the state evolution parameters {ψtc}c∈[C] closely track the NMSE

of each block of the message vector, i.e., ψtc ≈ ‖βtc−βc‖2
L/C for c ∈ [C]. Similarly, the parameters

{φtr}r∈[R] closely track the block-wise variance of the modified residual vector zt, i.e. φtr ≈ ‖z
t
r‖2

n/R

for r ∈ [R].

For t ≥ 0, the vectors υ̃t ∈ Rn, τ̃ t ∈ RLM , and the the matrix Q̃
t ∈ Rn×LM in the AMP

decoder (3.9) all have a block-wise structure, with their entries defined as follows. For i ∈ [n]

and j ∈ [LM ],

υ̃ti =
γtr(i)

φt−1
r(i)

, τ̃ tj = τ tc(j), Q̃tij =
τ tc(j)

φtr(i)
, (3.17)

where we recall that r(i) and c(j) denote the row and column block index of the i-th row entry

and j-th column entry respectively. The vector υ̃0 is defined to be all-zeros.

Online estimation of SE parameters In the AMP decoder (3.9), instead of computing the

SE parameters (3.14)–(3.17) offline they can be estimated online using intermediate outputs

from the AMP. In particular, the SE parameters {γtr}r∈[R], {φtr}r∈[R] and {τ tc}c∈[C], which are

needed to compute υ̃t, τ̃ t and Q̃
t
, can be estimated online as follows. For r ∈ [R] and c ∈ [C],

γ̂tr =
1

C

C∑

c=1

Wrc

(
1− ‖β

t
c‖2

L/C

)
, (3.18)

φ̂tr =




σ2 + γ̂tr if the decoder knows σ2,

‖ztr‖2
n/R otherwise,

(3.19)

τ̂ tc =
R/2

ln(KM)

[
1

R

R∑

r=1

Wrc

φ̂tr

]−1

. (3.20)

These online estimates are used for the numerical simulations in Section 3.5. The justification

for these estimates comes from [1, Lemma 7.6], which shows that in the case of unmodulated

real-valued SPARCs, the estimates (3.18)–(3.20) concentrate on their respective state evolution

parameters. The arguments of [1, Lemma 7.6] can be extended to show similar concentration of

the online estimates for modulated complex SPARCs, but we do not pursue this in this thesis.

AMP and SE for real-valued versus complex-valued SPARCs The AMP decoder

for unmodulated (K = 1) complex SPARCs in (3.9)–(3.10) simplifies to the AMP decoder

for unmodulated real-valued SPARCs in (2.7)–(2.8) if a real-valued design matrix A is used.

Moreover, the state evolution for unmodulated complex SPARCs in (3.14)–(3.16) simplifies to

the state evolution for unmodulated real-valued SPARCs in (2.9)–(2.11), except that in the

definition of τ tc in (3.15), the “R/2” term is replaced with “R” for a rate R unmodulated
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real-valued SPARC.4 This implies that the predicted NMSE of the AMP decoder for a rate

R unmodulated complex SPARC is the same as that for a rate R/2 unmodulated real-valued

SPARC. This matches our intuition since a transmission rate R over a complex AWGN channel

with signal-to-ratio P/σ2 corresponds to a rate of R/2 over each of two independent (real)

AWGN channels with signal-to-noise ratio P/σ2.

3.4 Error performance analysis

3.4.1 Error criteria

A natural error criterion for a SPARC decoder is the section error rate (SER) defined in (2.17),

which is the fraction of sections decoded in error. (For the AMP decoder, the hard decision

estimate β̂
T

is given in (3.11).) In a modulated SPARC, a section is decoded in error when

either the location or the value of the non-zero entry in that section is estimated incorrectly.

Recall that each section corresponds to log2K + log2M nats of information.

We can also measure decoding performance via the bit error rate (BER). Recall that log2M

bits determine the location of the non-zero entry in a section of the message vector β, and

log2K bits determine its value. If the location of the non-zero entry is estimated incorrectly, on

average half of the log2M bits will be decoded wrongly due to the uniform mapping of bits to

location. If the value is estimated incorrectly, on average less than half of the log2K bits will

be decoded wrongly because Gray coding is used to map bits to constellation symbols.

A third performance measure is the frame error rate (FER), which is based on whether the

entire SPARC codeword is decoded correctly. Since an error in decoding any of the sections

leads to a codeword error, the FER is at least as large as the SER. In particular, we have FER

≥ SER ≥ BER.

In the following sections, we first show that the SER of the AMP decoder is upper bounded

by a constant times its normalised mean squared error (NMSE). This result (Lemma 3.4.1)

implies that an an upper bound on the SER can be obtained from an upper bound on the

state evolution parameters {ψtc}c∈[C] (which predict the block-wise NMSE). Our main technical

result (Proposition 3.4.1) provides such an upper bound on {ψtc}c∈[C]. Using this bound, we

show that in the large system limit, the state evolution recursion for complex SPARCs with

K-ary PSK modulation (Corollary 3.4.1) is the same for any fixed value of K, including K = 1

(unmodulated). Therefore, the same arguments that prove that unmodulated SPARCs are

capacity achieving with AMP decoding also imply that K-PSK modulated SPARCs are capacity

4One can also define τ tc in (3.15) using “R” instead “R/2” for complex SPARCs and change the definition of
the functions η in (3.10) and E(τ) in (3.16) accordingly. With this alternative definition of τ tc , the interpretation of
the arguments to the function η in (3.12) would be slightly different: the first argument s would be approximately
distributed as β +

√
τ̃ � u, with u1, . . . , uLM i.i.d. ∼ CN (0, 1) (instead of i.i.d. ∼ CN (0, 2)). The definition of

τ tc in (3.15) using “R/2” makes the comparison of the AMP and SE equations between complex and real-valued
SPARCs straightforward.
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achieving with AMP decoding, for any fixed K (Theorems 2 and 3).

3.4.2 Bounding the section error rate

Lemma 3.4.1 (Bounding SER in terms of NMSE). Consider a complex SPARC with K-ary

PSK modulation, with K being a power of 2. Let the AMP decoder be run for T iterations, with

βT being the final “soft-decision” estimate produced according to (3.9), and β̂
T

the final hard-

decision estimate produced according to (3.11). Let the SER corresponding to β̂
T

be defined

as in (2.17). Then the SER can be bounded in terms of the normalised mean squared error
1
L‖βT − β‖2 as follows:

SER ≤





4 · ‖βT−β‖2L if K = 1, 2, 4,

sin−4( πK ) · ‖βT−β‖2L if K ≥ 8.
(3.21)

The proof is given in Section 3.6.1.

Since the NMSE 1
L‖βt − β‖2 is predicted by the state evolution quantity 1

C

∑
c ψ

t
c, Lemma

3.4.1 implies that an upper bound on the parameters {ψtc}c∈[C] would give an upper bound on

the SER after iteration t. The following proposition gives such an upper bound for {ψtc}c∈[C].

Proposition 3.4.1 (Bounding the state evolution predicted NMSE). Consider any base matrix

W that satisfies ξ1 ≤ 1
R

∑
r′Wr′c ≤ ξ2 and ξ1 ≤ 1

C

∑
c′Wrc′ ≤ ξ2 for some universal positive

constants ξ1, ξ2, for all r ∈ [R], c ∈ [C]. Let

νtc :=
1

τ tc · ln(KM)
=

2

R · R
R∑

r=1

Wrc

φtr
, for c ∈ [C]. (3.22)

Then,
2

R
· ξ1

σ2 + 2ξ2
≤ νtc ≤

2

R
· ξ2

σ2
, (3.23)

and for K being a power of 2, sufficiently large M and any δ ∈ (0, 1
2),

ψt+1
c ≤ fK,M · 1{νtc > 2 + δ} + (1 + hK,M ) · 1{νtc ≤ 2 + δ}, for c ∈ [C]. (3.24)

The non-negative scalars fK,M and hK,M are bounded as:

fK,M ≤
(KM)−α1Kδ

2

δ
√

ln(KM)
, hK,M ≤

(KM)−α2Kν
t
c

√
νtc ln(KM)

, (3.25)

where α1K and α2K are positive constants depending only on K and the bounds of νtc in (3.23).

Exact expressions for fK,M , hK,M are given in Remark 3.4.2 below.

Remark 3.4.1. The variable νtc can be regarded as a measure of the “signal-to-noise ratio” of

column block c after iteration t. When νtc exceeds 2 + δ, the predicted NMSE of column block c
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after iteration t+1, denoted by ψt+1
c , is upper bounded by fK,M , which can be made arbitrarily

small as M → ∞ (Remark 3.4.3). On the other hand, if νtc is less than 2 + δ, ψt+1
c is upper

bounded by 1 + hK,M , which tends to 1 as M →∞.

Remark 3.4.2. The expressions for the scalars fK,M and hK,M when K is a power of 2, are as

follows. For K = 1, 2 and 4,

fK,M , hK,M =





M−κ1δ
2

δ
√

lnM
, 0, if K = 1

(2M)−κ2δ
2

δ
√

ln(2M)
, (2M)−ν

t
c/2√

2πνtc ln(2M)
, if K = 2

(4M)−κ3δ
2

δ
√

ln(4M)
, 2(4M)−ν

t
c/2√

2πνtc ln(4M)
, if K = 4,

(3.26)

and for K ≥ 8,

fK,M =
(1 + cot(2π

K ))(KM)
− κ4δ

2

(1+cot( 2π
K

))2

δ
√

ln(KM)
+K(KM)−2(2+δ2) sin2( π

K
), (3.27)

hK,M =
2(1 + cot(2π

K ))(KM)
− νtc

2(1+cot( 2π
K

))2

√
2πνtc ln(KM)

, (3.28)

where κ1 to κ4 are universal positive constants, not depending on K or M .

Remark 3.4.3. From (3.25)–(3.28), it is clear that for any fixed K and δ ∈ (0, 1
2), both fK,M

and hK,M approach 0 as M →∞. On the other hand, for any fixed M and δ ∈ (0, 1
2), both fK,M

and hK,M increase with K, for K ≥ 8. Therefore, the upper bound on the predicted block-wise

NMSE ψt+1
c in (3.24) and the upper bound on the SER in (3.21) both increase with K, when

K ≥ 8. This is consistent with the fact that when M is fixed, the amount of information

transmitted per section increases with K.

If we consider increasing values of K, one can ask: how fast can K grow with M such that

fK,M and hK,M approach 0 as K,M both approach infinity? Using the expressions in (3.25)–

(3.28), we deduce that fK,M and hK,M approach 0 for any fixed δ ∈ (0, 1
2) if limK,M→∞ | Mg(K) | =

∞ (i.e., M dominates g(K) asymptotically), where

g(K) =
1

K
max

([
1+cot

(2π

K

)] [1+cot( 2π
K

)]2

κ4δ
2

,
[
1+cot

(2π

K

)] 2[1+cot( 2π
K

)]2

minc ν
t
c , K

1
2(2+δ2) sin2( π

K
)

)
. (3.29)

The proof of Proposition 3.4.1 is given in Section 3.6.2. A proof sketch is presented here to

highlight the main ideas.

Proof Sketch. Recall from (3.15) that ψt+1
c = 1− E(τ tc). The upper bound on ψt+1

c in (3.24) is

proved by obtaining two lower bounds for E(τ tc), one which holds for all values of νtc > 0, and
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the other which holds for νtc > 2. In particular, we show that

E(τ tc) ≥




−hK,M , for νtc > 0,

1− fK,M , for νtc > 2 + δ.
(3.30)

For the case of K = 1 (no modulation), the result was proved in [57]. The proof for K ≥ 2 is

significantly more challenging as the E(τ tc) term defined in (3.16) can be negative. We discuss

the K ≥ 2 case below.

From (3.16) , we observe that E(τ) is an expectation over M i.i.d. CN (0, 2) random variables

U1, . . . , UM . Using the tower property we write

E(τ) = EU1EU2,...,UM

[ ∑K
k=1<[ck] · e

1
τ
<[(1+

√
τU1) ck]

∑K
a=1 e

1
τ
<[(1+

√
τU1) ca] +

∑M
j=2

∑K
b=1 e

1√
τ
<[Uj cb]

∣∣∣∣U1

]
, (3.31)

noting that U2, . . . , UM only appear in the denominator. The outer expectation over U1 is split

into four terms, each of which integrate over different ranges of UR1 and U I1 , the independent

real and imaginary parts of U1.

E(τ) =

∫ ∞

u

∫ ∞

u
p(uR)p(uI)EU2,...,UM [. . .]duRduI +

∫ u

−∞

∫ u

−∞
p(uR)p(uI)EU2,...,UM [. . .]duRduI

+

∫ ∞

u

∫ u

−∞
p(uR)p(uI)EU2,...,UM [. . .]duRduI +

∫ u

−∞

∫ ∞

u
p(uR)p(uI)EU2,...,UM [. . .]duRduI

= I1 + I2 + I3 + I4, (3.32)

where u is an arbitrary parameter which splits the range of the integration.

We argue that for a suitably chosen value of u (which depends on K,M but not on νtc), the

EU2,...,UM [. . .] term is non-negative for UR1 ≥ u and U I1 ≥ u, and hence I1 ≥ 0. For the terms I2

to I4, we first show that EU2,...,UM [. . .] ≥ −1, and then use tail bounds for standard normals to

obtain I2 + I3 + I4 ≥ −hK,M . Thus we obtain the lower bound E(τ tc) ≥ −hK,M for all νtc > 0.

For νtc > 2, we again split the integral into the ranges in (3.32), but choose u to depend on

νtc as well as K,M . We again use EU2,...,UM [. . .] ≥ −1 and tail bounds for standard normals to

obtain a lower bound of the form I2 + I3 + I4 ≥ −B1 · fK,M for sufficiently large M and positive

constant B1. We then obtain a lower bound for I1 which takes the form I1 ≥ 1 − B2 · fK,M
for sufficiently large M and positive constant B2. Combining the results, we obtain the lower

bound on E(τ tc) for the νtc > 2 case. We therefore have both the lower bounds in (3.30).

In addition to the upper bound on the state evolution parameter ψt+1
c given in Proposition

3.4.1, a corresponding lower bound can be derived for the νtc < 2 case.

Proposition 3.4.2. Under the same conditions as Proposition 3.4.1, for sufficiently large M ,
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and any δ̃ ∈ (0, 1),

ψt+1
c ≥

(
1−M−α3K δ̃

2
)
· 1{νtc < 2− δ̃}, (3.33)

where α3K is a positive constant depending only on K and the bounds of νtc in (3.23).

The above result was proved for the unmodulated (K = 1) case in [1, Lem. 4.1] (see also

Lemma 2.3.1). To prove this lower bound for the general K ≥ 1 case, we use similar high-level

arguments as in the proof of [1, Lem. 4.1], as well as specific techniques used in the proof of the

upper bound in Proposition 3.4.1 for the K ≥ 1 case. The proof is given in Section 3.6.4.

Asymptotic state evolution

Proposition 3.4.1 together with Proposition 3.4.2 immediately yields the following asymptotic

characterisation of the state evolution recursion for M →∞.

Corollary 3.4.1 (Asymptotic state evolution). For any base matrix W satisfying the conditions

in Proposition 3.4.1, the state evolution recursion in (3.14)–(3.16) simplifies to the following as

M →∞, for any fixed K ≥ 1. Initialise ψ̄0
c = 1 for c ∈ [C], and for t = 0, 1, . . ., compute

φ̄tr = σ2 +
1

C

C∑

c=1

Wrcψ̄
t
c, r ∈ [R], (3.34)

ψ̄t+1
c = 1

{
1

R

R∑

r=1

Wrc

φ̄tr
≤ R

}
, c ∈ [C], (3.35)

where φ̄, ψ̄ indicate asymptotic values.

Remark 3.4.4. Though the state evolution parameters in (3.14)–(3.16) depend on the modu-

lation factor K, the asymptotic values of these parameters in (3.34)–(3.35) do not. Therefore,

as M →∞, the predicted per-iteration NMSE of the AMP decoder for complex SPARCs with

K-ary PSK modulation is the same for any finite K, including K = 1 (unmodulated).

Remark 3.4.5 (Complex versus real asymptotic SE). The only difference between the asymp-

totic state evolution in (3.34)–(3.35) for modulated complex SPARCs and that for unmodulated

real-valued SPARCs in (2.22)–(2.23) is that R within the indicator in (3.35) is replaced by 2R

in (2.23). This matches our intuition since a rate of R nats over a complex AWGN channel

corresponds to a rate of R/2 nats/dimension (see also last paragraph of Section 3.3.1).

We note that the lower bound in Proposition 3.4.2 is not required for Theorems 2 and

3, which are the main results of this chapter (see Section 3.4.3); only the upper bounds in

Proposition 3.4.1 are required. That is, Theorems 2 and 3 does not require the equality in

(3.35), but only an upper bound on ψ̄t+1, which tracks the NMSE of the AMP decoder.
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3.4.3 PSK-modulated SPARCs are capacity achieving

The asymptotic state evolution equations in (3.34)–(3.35) have been analysed for two choices of

base matrix W : for a suitable (ω,Λ, ρ) base matrix in Chapter 2 (which has appeared in [1,2]),

and for the base matrix corresponding to an exponentially decaying power allocation in [22].

These results show that in both cases, for any fixed R < C we have ψ̄Tc = 0 for c ∈ [C], where

the number of iterations T is a finite value depending on the rate gap from capacity. That is,

the state evolution equations predict reliable decoding in the large system limit for R < C.

We know that the asymptotic equations (3.34)–(3.35) hold for K-PSK modulated complex

SPARCs, for any K ≥ 1 (Remarks 3.4.4 and 3.4.5). We can therefore directly use the asymptotic

state evolution results in Chapter 2 and [22] to argue that K-PSK modulated SPARCs are

asymptotically capacity achieving for any finite K, with the base matrices used in Chapter 2 and

[22]. Theorem 2 gives this result for modulation applied to spatially coupled SPARCs defined

via an (ω,Λ, ρ) base matrix. Theorem 3 gives a similar result for SPARCs with exponentially

decaying power allocation. We require some definitions to state the theorems.

For an (ω,Λ, ρ) base matrix, let ϑ = 1 + ω−1
Λ , and

R? =
1

ϑ
ln(1 + ϑ snr), (3.36)

where snr = P
σ2 . We will consider rates R < R? (in nats), noting that C > R? > C

ϑ , where

C = ln(1 + snr). (3.37)

Observe that ϑ → 1 as ω
Λ → 0, and hence R? can be made arbitrarily close to C for any fixed

ω by choosing Λ to be sufficiently large. Finally, let

ω? =
ϑ snr2

(1 + ϑ snr)(R? −R)
. (3.38)

Theorem 2 (K-PSK modulated SPARCs with spatial coupling are capacity achieving). For

any R < C, let W be an (ω,Λ, ρ) base matrix with parameters chosen such that R? > R, ω > ω?

and ρ = min{1
2 ,

R?−R
3snr }, where R?, ω? are defined in (3.36) and (3.38). Fix K to be a power

of 2. Let {Sn} be a sequence of rate R, K-PSK modulated SPARCs (indexed by code length

n), with Sn defined via an n × LM design matrix constructed from the base matrix W . Let

SER(Sn) := 1
L

∑L
`=1 1{β̂

T

sec(`) 6= βsec(`)} denote the section error rate of the AMP decoder after

T iterations where T = dΛω?

2ω e. Then

lim
n→∞

SER(Sn) = 0 almost surely,

where the limit is taken with (L,M, n) all tending to infinity such that R = L ln(KM)/n.
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Proof. Recall the definition of asymptotic state evolution parameter ψ̄Tc from Corollary 3.4.1.

Under the stated conditions on the parameters of the (ω,Λ, ρ) base matrix, Proposition 2.3.1

shows that

ψ̄Tc = 0, for c ∈ [C]. (3.39)

Furthermore, [1, Thm. 2] implies that

lim
‖βT − β‖2

L
=

1

C

∑

c∈[C]

ψ̄Tc almost surely, (3.40)

where the limit is taken with (L,M, n) all tending to infinity such that R = L ln(KM)/n. The

concentration result in (3.40) is shown for unmodulated real-valued SPARCs in [1], and the

proof for K-PSK modulated complex SPARCs case is essentially the same. Combining (3.39)

and (3.40) with Lemma 3.4.1 yields the statement of the theorem.

For any rate R < C, we can choose the base matrix parameters ω and Λ using the method

described in Remark 2.3.2 to satisfy the conditions of the theorem.

Theorem 3 (K-PSK modulated SPARCs with exponentially decaying power allocation are

capacity achieving). For any R < C, let W be a 1 × L base matrix corresponding to the

exponentially decaying power allocation, i.e.,

W1` = LP · e
C/L − 1

1− e−C · e
−C`/L, ` ∈ [L]. (3.41)

Fix K to be a power of 2. Let {Sn} be a sequence of rate R, K-PSK modulated SPARCs

(indexed by code length n), with Sn defined via an n× LM design matrix constructed from the

base matrix W . Let SER(Sn) := 1
L

∑L
`=1 1{β̂

T

sec(`) 6= βsec(`)} denote the section error rate of

the AMP decoder after T iterations where T = d C
ln(C/R)e. Then

lim
n→∞

SER(Sn) = 0 almost surely,

where the limit is taken with (L,M, n) all tending to infinity such that R = L ln(KM)/n.

Proof. With the exponentially decaying allocation in (3.41), using R = 1, C = L, the asymptotic

state evolution recursion in Corollary 3.4.1 reduces to

ψ̄t+1
` = 1



W1` ≤ R

(
σ2 +

1

L

L∑

j=1

W1j ψ̄
t
j

)


 , ` ∈ [L]. (3.42)
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This recursion is analysed in [22, Lemmas 1 and 2], where it is shown that

lim
1

L

L∑

`=1

W1` ψ̄
T
` = 0, (3.43)

for T = d C
ln(C/R)e. Furthermore, [1, Thm. 2] implies that

lim

∣∣∣∣∣∣
‖βT − β‖2

L
− 1

L

∑

`∈[L]

ψ̄T`

∣∣∣∣∣∣
= 0 almost surely. (3.44)

In both (3.43) and (3.44), the limit is taken with (L,M, n) all tending to infinity such that

R = L ln(KM)/n. The concentration result in (3.44) is shown for unmodulated real-valued

SPARCs in [1], and the proof for K-PSK modulated complex SPARCs is essentially the same.

As L → ∞, the base matrix entries {W1`}`∈[L] in (3.41) are bounded above and below by

strictly positive universal constants. Therefore, (3.43) implies that 1
L

∑
`∈[L] ψ̄

T
` = 0. Using this

in (3.44) and then invoking Lemma 3.4.1 yields the statement of the theorem.

Theorems 2 and 3 correspond to two different choices of base matrices for which ψ̄Tc = 0

for c ∈ [C]. The key requirement for a PSK-modulated complex SPARC design to be capacity

achieving is that the underlying base matrix satisfies 1
C

∑C
c=1 ψ̄

T
c = 0, for all fixed R < C. Here

T is the final iteration, which in the examples above is determined by the gap from capacity

(C −R). Whenever we have a base matrix whose asymptotic state evolution recursion (3.34)–

(3.35) satisfies the above property, [1, Thm. 2] and Lemma 3.4.1 together imply that the design

is capacity achieving in the large system limit.

3.5 Empirical error performance

In Figs. 3.3 and 3.4 we show the finite length error performance of PSK-modulated complex

SPARCs with AMP decoding via numerical simulations. The error performance is evaluated

using bit error rate (BER) and frame error rate (FER) as they are common performance metrics

of interest. For reference, we also simulate and plot the error performance of coded modulation

schemes (LDPC + QAM) using the AFF3CT toolbox [154]. The LDPC codes used are from

the DVB-S2 standard.

Within each figure, the SPARCs have the same rate R, code length n, and number of sections

L. We vary the code parameters K and M while keeping their product KM constant, recalling

that R = L log2(KM)
n bits. As K increases from 1 (unmodulated) to 4, both the BER and the

FER improve. At K = 8, the BER continues to improve at low values of Eb/N0, but an error

floor starts to appear at high Eb/N0. However, the FER at K = 8 is significantly worse than

that of K = 1, 2, 4 for all values of Eb/N0. We expect that a much larger M is required to

88



4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Eb/N0 (dB)

10 6

10 5

10 4

10 3

10 2

10 1

Bi
t E

rro
r R

at
e

M: 128, K: 1
M: 64, K: 2
M: 32, K: 4
M: 16, K: 8
LDPC + QAM

(a) Bit error rate

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Eb/N0 (dB)

10 5

10 4

10 3

10 2

10 1

100

Fr
am

e 
Er

ro
r R

at
e

M: 128, K: 1
M: 64, K: 2
M: 32, K: 4
M: 16, K: 8
LDPC + QAM

(b) Frame error rate

Figure 3.3: Error performance of K-ary PSK modulated complex SPARCs defined via a (ω = 6,Λ =
32, ρ = 0) base matrix. Code parameters: R = 1.593 bits/dimension, L = 960, code length n = 2109.
Each curve represents a K and M pair with fixed KM = 128. The dashed lines show the performance
of coded modulation: (6480, 16200) DVB-S2 LDPC + 256 QAM, frame length = 2025, overall rate
= 1.6 bits/dimension. The solid black line in subplot (a) is the AWGN Shannon limit for R = 1.6
bits/dimension, and in subplot (b) it is the normal approximation to AWGN finite length error bound
in [34].

achieve low FER with K = 8, but more investigation is required.

Recall that in a modulated SPARC, a section error occurs when either the location or value

(or both) of the non-zero entry in the section is decoded incorrectly. Figs. 3.4c and 3.4d show

the location error rate (fraction of sections where the location of the non-zero entry was decoded

in error) and the value error rate (fraction of sections where the value of the non-zero entry was

decoded in error) from the same set of simulations used to plot Figs. 3.4a and 3.4b. We notice

that with KM held fixed, the location error rate consistently improves as K increases and M

decreases. We also notice that when Eb/N0 > 9 dB, all errors in decoding the M = 2,K = 8

modulated complex SPARC were due to value errors. Since bit errors arise from a combination

of both location and value errors (see beginning of Section 3.4), the location error rate and value

error rate curves help us understand the shape of the BER curve in Fig. 3.4a.

Implementation details For the simulations, a discrete Fourier transform (DFT) based de-

sign matrix was used instead of a Gaussian one. This enables the matrix-vector multiplications

in the AMP decoder (3.9) to be computed via the fast Fourier transform (FFT), which signifi-

cantly lowers the decoding complexity and memory requirement. The error performance of DFT

based design matrices were found to be similar to that of Gaussian matrices for large matrix

sizes. Our approach is similar to that discussed in Section 2.5.1 (and [22,56]) where Hadamard-

based design matrices were used for unmodulated real-valued SPARCs. For the simulations, we

also use the online estimates of the state evolution parameters described in (3.18)–(3.20). The

code used for the simulations is available at [155].
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(a) Bit error rate (b) Frame error rate

(c) Location error rate (d) Value error rate

Figure 3.4: Error performance of modulated complex SPARCs defined via a (ω = 6,Λ = 32, ρ = 0)
base matrix. Code parameters: R = 1.99 bits/dimension, L = 2688, code length n = 2701. Each
curve represents a K and M pair with fixed KM = 16. The dashed lines show the performance of
coded modulation: (10800, 16200) DVB-S2 LDPC + 64 QAM, frame length = 2700, overall rate = 2.0
bits/dimension. The solid black lines in subplots (a), (c) and (d) are the AWGN Shannon limit for
R = 2.0 bits/dimension, and in subplot (b) it is the normal approximation to AWGN finite length error
bound in [34].

3.5.1 Decoding complexity

The complexity of the AMP decoder is dominated by the two matrix-vector multiplications

(which are replaced by FFTs) in (3.9), and the η function in (3.10). The complexity of the FFTs

are O(LM log(LM)) and the complexity of the η function is O(LMK). Therefore, the overall

complexity per iteration is O(LM(log(LM)+K)). In each set of simulations, as K increases and

M decreases, with the product KM kept constant, the overall decoding complexity decreases.

To compare the decoding complexities of unmodulated and modulated SPARCs with KM

held fixed, denote the values of M for the two cases by Munmod and Mmod, so that Munmod =

KMmod. Then the ratio of decoding complexities is

complexity for unmodulated SPARC

complexity for modulated SPARC
= K · log(LMunmod) + 1

log(LMunmod) +K − logK
. (3.45)

If K � log(LM), then modulation can reduce decoding complexity by nearly K times. For
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example, in Fig. 3.3 the decoding complexity is reduced by approximately 3.8 times from (K =

1,M = 128) to (K = 4,M = 32) while the error performance improves.

The simulations above indicate that for a fixed code length n, rate R, and number of

sections L, modulation can significantly reduce decoding complexity without sacrificing error

performance. Modulation also allows more flexibility in the code design of SPARCs. For

example, due to the rate equation R = L ln(KM)
n , for a fixed code length n, number of sections

L, and section size M , one can increase the rate of the SPARC by increasing the modulation

parameter K, and this increase of K will not affect the decoding complexity if K � log(LM).

3.6 Proofs

3.6.1 Proof of Lemma 3.4.1

Recall that sec(`) := {(` − 1)M + 1, . . . , `M} for ` ∈ [L] and βsec(`) ∈ CM denotes the `-th

section of the message vector β ∈ CLM . We will show that if βsec(`) is decoded in error after

T iterations of AMP decoding, then the squared error of that section is lower bounded by a

positive number that is a function of the modulation parameter K. More precisely, we show

that

β̂
T

sec(`) 6= βsec(`) ⇒ ‖βTsec(`) − βsec(`)‖2 ≥ h(K), (3.46)

where

h(K) =





1
4 if K = 1, 2, 4,

sin4( πK ) if K ≥ 8.
(3.47)

Then (3.46) implies

SER =
1

L

L∑

`=1

1

{
β̂
T

sec(`) 6= βsec(`)

}
≤ 1

h(K)

1

L

L∑

`=1

‖βTsec(`) − βsec(`)‖2 =
1

h(K)
· ‖β

T − β‖2
L

,

which is the required result after substituting in (3.47). We now prove the statements given in

(3.46)–(3.47).

We denote the location index of the non-zero entry of βsec(`) as sent(`) (let’s assume section

` is in column block c ∈ [C]). By symmetry of the PSK constellation, we can assume without

loss of generality that the value of the non-zero entry is cK = +1. Thats is, for j ∈ sec(`),

βj =





1 if j = sent(`),

0 otherwise.
(3.48)

Thus,

‖βTsec(`) − βsec(`)‖2 ≥ |βTsent(`) − βsent(`)|2 = |βTsent(`) − 1|2
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(i)
=

∣∣∣∣
K∑

k=1

ck ·
e
<(sT−1

sent(`)
ck)/τT−1

c

∑
j′∈sec(`)

∑K
k′=1 e

<(sT−1
j′ ck′ )/τ

T−1
c

− 1

∣∣∣∣
2

(ii)
=

[ K∑

k=1

cos
(2πk

K

)
· pk − 1

]2

+

[ K∑

k=1

sin
(2πk

K

)
· pk
]2

≥
[ K∑

k=1

cos
(2πk

K

)
· pk − 1

]2

, (3.49)

where (i) is obtained using the expression for βTsent(`) derived from (3.9), (3.10) and (3.17), and

(ii) from substituting in ck = ej2πk/K and defining

pk :=
e
<(sT−1

sent(`)
ck)/τT−1

c

∑
j′∈sec(`)

∑K
k′=1 e

<(sT−1
j′ ck′ )/τ

T−1
c

, k ∈ [K]. (3.50)

Towards proving (3.46), assume that β̂
T

sec(`) 6= βsec(`). Then from (3.11) we know that

<(sT−1
sent(`)cK) ≤ <(sT−1

j∗ ck∗) for some (j∗, k∗) 6= (sent(`),K). This gives us the following inequal-

ity.

pK =
e
<(sT−1

sent(`)
cK)/τT−1

c

∑
j′∈sec(`)

∑K
k′=1 e

<(sT−1
j′ ck′ )/τ

T−1
c

≤ e
<(sT−1

j∗ ck∗ )/τT−1
c

∑
j′∈sec(`)

∑K
k′=1 e

<(sT−1
j′ ck′ )/τ

T−1
c

≤ 1− e
<(sT−1

sent(`)
cK)/τT−1

c

∑
j′∈sec(`)

∑K
k′=1 e

<(sT−1
j′ ck′ )/τ

T−1
c

= 1− pK ,

(3.51)

where the second inequality is obtained by noting that

∑

j∈sec(`)

K∑

k=1

e<(sT−1
j ck)/τT−1

c

∑
j′∈sec(`)

∑K
k′=1 e

<(sT−1
j′ ck′ )/τ

T−1
c

= 1.

From (3.51) and the fact that pK ≥ 0, we deduce 0 ≤ pK ≤ 1
2 .

Continuing from (3.49), we obtain the required lower bounds on the squared error of section

` when it is decoded in error.

[ K∑

k=1

cos
(2πk

K

)
· pk − 1

]2

=





(1 · p1 − 1)2 if K = 1,

(−1 · p1 + 1 · p2 − 1)2 if K = 2,

(−1 · p2 + 1 · p4 − 1)2 if K = 4,

≥ 1

4
, (3.52)
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where the last inequality is obtained using 0 ≤ pK ≤ 1
2 and pk ≥ 0 for k ∈ [K].

For the K ≥ 8 case, first notice that |∑k cos(2πk/K) · pk| ≤ 1 since pk ≥ 0 for k ∈ [K] and
∑

k pk ≤ 1. Moreover,

K∑

k=1

cos
(2πk

K

)
· pk ≤ cos

(2πK

K

)
· pK + max

k∈{1,...,K−1}

{
cos
(2πk

K

)}
·
(K−1∑

k=1

pk

)

≤ pK + cos
(2π

K

)
· (1− pK). (3.53)

Using this together with |∑k cos(2πk/K) · pk| ≤ 1, we obtain

[ K∑

k=1

cos
(2πk

K

)
· pk − 1

]2

≥
[
(1− pK)

(
cos(2π/K)− 1

)]2

≥ 1

4

(
1− cos(2π/K)

)2
= sin4 (π/K) . (3.54)

Here the second inequality is obtained using 0 ≤ pK ≤ 1
2 . Using (3.52) and (3.54) in (3.49)

completes the proof of (3.46), and hence the lemma.

3.6.2 Proof of Proposition 3.4.1

We will prove the proposition for K — the size of the PSK constellation — being a power of 2.

We first obtain the lower and upper bounds of νtc given in (3.23). To do this, we first show

that the absolute value of E(τ) defined in (3.16) is bounded. Indeed,

|E(τ)| ≤ E



∣∣∣∣∣∣

∑K
k=1<[ck] · e

1
τ
<[(1+

√
τU1) ck]

∑K
a=1 e

1
τ
<[(1+

√
τU1) ca] +

∑M
j=2

∑K
b=1 e

1√
τ
<[Ujcb]

∣∣∣∣∣∣




(i)

≤ E




∑K
k=1 e

1
τ
<[(1+

√
τU1) ck]

∑K
a=1 e

1
τ
<[(1+

√
τU1) ca] +

∑M
j=2

∑K
b=1 e

1√
τ
<[Ujcb]




≤ 1, (3.55)

where (i) is obtained by |<[ck] | ≤ 1. Using the above result in (3.15) we deduce that

0 ≤ ψtc ≤ 2. (3.56)

Now we obtain upper and lower bounds for νtc,

νtc
(i)
=

2

RR

R∑

r=1

Wrc

σ2 + 1
C

∑
c′Wrc′ψ

t
c′

(ii)

≤ 2

RR

R∑

r=1

Wrc

σ2

(iii)

≤ 2

R
· ξ2

σ2
, (3.57)

νtc
(i)
=

2

RR

R∑

r=1

Wrc

σ2 + 1
C

∑
c′Wrc′ψ

t
c′

(ii)

≥ 2

RR

R∑

r=1

Wrc

σ2 + 2ξ2

(iii)

≥ 2

R
· ξ1

σ2 + 2ξ2
. (3.58)
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The labelled steps can be obtained as follows: (i) using the definition of νtc and φtr in (3.22) and

(3.14), (ii) using (3.56) and ξ1 ≤ 1
C

∑
cWrc ≤ ξ2, and (iii) using ξ1 ≤ 1

R

∑
rWrc ≤ ξ2. Note that

Wrc ≥ 0 for r ∈ [R], c ∈ [C] and σ2 > 0.

In the remainder of this proof, we obtain the upper bound on ψt+1
c given in (3.24). We do

this by obtaining a lower bound on E(τ tc) since ψt+1
c = 1−E(τ tc). The result will first be proven

for the K ≥ 8 case. The other cases (K = 1, 2, 4) use similar arguments and will be discussed

afterwards.

We first rewrite E(τ) defined in (3.16) in terms of ν. Recalling from (3.22) that ν = 1
τ ln(KM) ,

we have

E(τ) = E




∑K
k=1<[ck] · eν ln(KM)<[ck]+

√
ν ln(KM)<[U1ck]

∑K
a=1 e

ν ln(KM)<[ca]+
√
ν ln(KM)<[U1ca] +

∑M
j=2

∑K
b=1 e

√
ν ln(KM)<[Ujcb]


 , (3.59)

where U1, . . . , UM
i.i.d∼ CN (0, 2), and ck = ej2πk/K , for 1 ≤ k ≤ K. Furthermore, we note

that the set of PSK symbols {ck}k=1,...,K can equally be represented as {ck}k=i,...,i+K−1 for any

integer i, and we have ci = ci modK . We now introduce some notation to simplify (3.59):

cosa = cos(2πa/K) = <[ca] for integer a, (3.60)

sina = sin(2πa/K) = =[ca] for integer a, (3.61)

tana = tan(2πa/K) for integer a, (3.62)

URj = <[Uj ] for j = 1, . . . ,M, (3.63)

U Ij = =[Uj ] for j = 1, . . . ,M, (3.64)

µ = ν ln(KM) =
1

τ
. (3.65)

Using the above notation, we have

E(τ) = E

[ ∑K
k=1 cosk e

µ cosk +
√
µ<[U1ck]

∑K
a=1 e

µ cosa +
√
µ<[U1ca] +

∑M
j=2

∑K
b=1 e

√
µ<[Ujcb]

]

(i)
= E




∑K/4
k=−K/4+1 cosk e

µ cosk +
√
µ<[U1ck] − cosk e

−µ cosk −
√
µ<[U1ck]

∑K/4
a=−K/4+1

(
eµ cosa +

√
µ<[U1ca] + e−µ cosa−

√
µ<[U1ca]

)
+
∑M

j=2

∑K
b=1 e

√
µ<[Ujcb]




(ii)
= E



∑K/4

k=−K/4+1 2 cosk · sinhYk

X +
∑K/4

a=−K/4+1 2 coshYa


 = EU1EX



∑K/4

k=−K/4+1 2 cosk · sinhYk

X +
∑K/4

a=−K/4+1 2 coshYa

∣∣∣∣∣U1


 , (3.66)

where (i) is obtained by using ca = −c(a+K
2

) modK and cosa = − cos(a+K
2

) modK , noting that K

is a multiple of 4, and (ii) is obtained with the following substitutions,

Yk = µ cosk +
√
µ< [U1ck] = µ cosk +

√
µ
[
UR1 cosk +U I1 sink

]
, k = −K

4
+ 1, . . . ,

K

4
, (3.67)
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X =

M∑

j=2

K∑

b=1

e
√
µ<[Ujcb] =

M∑

j=2

K∑

b=1

e
√
µ[URj cosb +UIj sinb]. (3.68)

From (3.55), we know that −1 ≤ E(τ) ≤ 1. Furthermore, the same arguments used to obtain

(3.55) shows that the expectation over X in (3.66) is bounded as follows,

−1 ≤ EX



∑K/4

k=−K/4+1 2 cosk · sinhYk

X +
∑K/4

a=−K/4+1 2 coshYa

∣∣∣∣∣U1


 ≤ 1. (3.69)

To lower bound E(τ), we first identify when the expression inside the inner expectation in

(3.66) is non-negative. Observe that cosk, X, and coshYa are all non-negative for the values of

a and k being considered, with cosk = 0 when k = K
4 . Furthermore, from the definition of Yk

in (3.67), for k ∈ {−K/4 + 1, . . . ,K/4− 1}, we have sinhYk ≥ 0 if and only if

UR1 cosk +U I1 sink ≥ −
√
µ cosk . (3.70)

It can be easily verified that a sufficient condition for (3.70) to hold for k ∈ {−K/4+1, . . . ,K/4−
1} is that both UR1 and U I1 are greater than or equal to −√µ/(1 + tan(π2 − 2π

K )).

Using this knowledge, we can split the expectation over U1 in (3.66) into integrals over four

regions such that in at least one of the regions the integrand is non-negative. For any u < 0,

we have

E(τ) =

∫ ∞

u

∫ ∞

u
p(uR) p(uI)EX

[∑K/4
k=−K/4+1 2 cosk · sinhYk

X +
∑K/4

a=−K/4+1 2 coshYa

∣∣∣∣UR1 = uR, U I1 = uI

]
duR duI

+

∫ u

−∞

∫ u

−∞
p(uR) p(uI)EX [. . .]duR duI +

∫ ∞

u

∫ u

−∞
p(uR) p(uI)EX [. . .]duR duI

+

∫ u

−∞

∫ ∞

u
p(uR) p(uI)EX [. . .]duR duI

(i)

≥
∫ ∞

u

∫ ∞

u
p(uR) p(uI)EX [. . .]duR duI +

∫ u

−∞

∫ u

−∞
p(uR) p(uI) (−1) duR duI

+

∫ ∞

u

∫ u

−∞
p(uR) p(uI) (−1) duR duI +

∫ u

−∞

∫ ∞

u
p(uR) p(uI) (−1) duR duI

(ii)
= I1 −Q(|u|)2 − 2[1−Q(|u|)]Q(|u|)
≥ I1 − 2Q(|u|), (3.71)

where I1 is the integral over the first region. Step (i) is obtained using (3.69), and step (ii) using

UR1 , U
I
1

i.i.d∼ N (0, 1), and defining Q(x) =
∫∞
x

1√
2π
e−z

2/2 dz to be the upper tail probability of

the standard Gaussian distribution.

From (3.70) and the discussion surrounding it, when u = −√µ/(1+tan(π2− 2π
K )) = −√µ/(1+

cot(2π
K )), the integrand of I1 is non-negative, and we therefore have the following lower bound
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for E(τ):

E(τ) ≥ −2Q(|u|) ≥ − 2(1 + cot(2π
K ))√

2πν ln(KM)
(KM)

− ν

2(1+cot( 2π
K

))2 , (3.72)

where the second inequality is obtained using the bound Q(x) ≤ 1
x
√

2π
e−x

2/2 for x > 0.

The lower bound of E(τ) in (3.72) applies for all ν > 0. We now show that for ν > 2, one

can obtain a better lower bound which shows that E(τ) approaches the upper bound of 1 with

growing M . We do this by using a different choice for u to split the expectation over U1 in

(3.66) into integrals over four different regions. Let

u =
−α(ν2 − 1)

ν

√
µ

1 + cot(2π
K )

. (3.73)

Then, for any α ∈ (0, 1) and ν > 2, when UR1 ≥ u and U I1 ≥ u we have

UR1 cosk +U I1 sink ≥ −
√
µ cosk ·

α(ν2 − 1)

ν
· 1 + tank

1 + tan(π2 − 2π
K )
≥ −√µ cosk , (3.74)

for −K4 + 1 ≤ k ≤ K
4 − 1. Thus, under these conditions, (3.70) holds and the integrand of I1

in (3.71) is non-negative. In the following lemma, we obtain a stronger lower bound on I1 for

ν > 2.

Lemma 3.6.1. When u =
−α( ν

2
−1)

ν

√
µ

1+cot( 2π
K

)
for any α ∈ (0, 1), ν > 2 and K ≥ 4, the I1 term

in (3.71) can be lower bounded as follows:

I1 ≥ 1− 3Q(|u|)− 2(KM)−2z − (KM)1+ ν
2
−z − (K − 2)(KM)−(z−z?), (3.75)

where

z = ν − α(ν2 − 1)

1 + cot(2π
K )

, (3.76)

z? = z cos
(2π

K

)
+ (ν − z) sin

(2π

K

)
. (3.77)

The proof is given in Section 3.6.3.

Applying the result of Lemma 3.6.1 into (3.71), we have, for any α ∈ (0, 1) and ν > 2,

E(τ) ≥ 1− 5Q(|u|)− 2(KM)−2z − (KM)1+ ν
2
−z − (K − 2)(KM)−(z−z?)

(i)
= 1− 5Q(|u|)− 2(KM)

−2
(
ν− α( ν2−1)

1+cot( 2π
K

)

)
− (KM)

−
(

1− α

1+cot( 2π
K

)

)
( ν

2
−1)

− (K − 2)(KM)
−
(
ν− α( ν2−1)

1+cot( 2π
K

)

)
(1−cos( 2π

K
))+

α( ν2−1)

1+cot( 2π
K

)
·sin( 2π

K
)

≥ 1− 5Q(|u|)− (KM)
−
(

1− α

1+cot( 2π
K

)

)
( ν

2
−1)
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−K(KM)
−
(
ν− α( ν2−1)

1+cot( 2π
K

)

)
(1−cos( 2π

K
))+

α( ν2−1)

1+cot( 2π
K

)
·sin( 2π

K
)

(ii)

≥ 1− 5
√
ν(1 + cot(2π

K ))(KM)
− α2( ν2−1)2

2ν(1+cot( 2π
K

))2

(ν/2− 1)α
√

2π ln(KM)
− (KM)

−
(

1− α

1+cot( 2π
K

)

)
( ν

2
−1)

−K(KM)
−[1−cos( 2π

K
)]·
[
ν
[
1−α

2

(
1+ 1

sin( 2π
K

)+cos( 2π
K

)

)]
+α
(

1+ 1

sin( 2π
K

)+cos( 2π
K

)

)]
, (3.78)

where (i) is obtained using the substitutions (3.76) and (3.77), and (ii) from using the bound

Q(x) ≤ 1
x
√

2π
e−x

2/2 for x > 0 (noting that u < 0 for ν > 2), and rearranging the exponent of

the last term as follows. Dropping the arguments of sin(·), cos(·) and cot(·) for brevity, we have

−
(
ν − α(ν2 − 1)

1 + cot

)
(1− cos) +

α(ν2 − 1)

1 + cot
· sin

= −(1− cos)

[
ν − α(ν/2− 1)

1 + cot
− α(ν/2− 1)

1 + cot

sin

1− cos

]

= −(1− cos)

[
ν
(

1− α/2

(1 + cot)

(
1 +

sin

1− cos

))
+

α

(1 + cot)

(
1 +

sin

1− cos

)]

= −(1− cos)

[
ν
(

1− α

2

(
1 +

1

sin + cos

))
+ α

(
1 +

1

sin + cos

)]
.

For any δ ∈ (0, 1
2), we consider the case ν > 2 + δ and choose α = 1− δ. With this choice,

the exponent of the last term in (3.78) can be bounded as follows:

ν
[
1− α

2

(
1 + (sin(2π/K) + cos(2π/K))−1

)]
+ α

(
1 + (sin(2π/K) + cos(2π/K))−1

)

> 2 + δ
[
1− α

2

(
1 + (sin(2π/K) + cos(2π/K))−1

)]

≥ 2 + δ(1− α) = 2 + δ2, (3.79)

where the second inequality holds because sin(2π
K ) + cos(2π

K ) ≥ 1 for K ≥ 8.

Using (3.79) in (3.78) along with ν
2 − 1 > δ

2 and α = 1− δ, we obtain

E(τ)

≥ 1− 10
√
ν (1 + cot(2π

K ))(KM)
− (1−δ)2δ2

8ν(1+cot( 2π
K

))2

(1− δ) δ
√

2π ln(KM)
− (KM)

−
δ(δ+cot( 2π

K
))

2(1+cot( 2π
K

)) −K(KM)−(2+δ2)(1−cos( 2π
K

))

≥ 1− (1 + cot(2π
K ))(KM)

− κδ2

(1+cot( 2π
K

))2

δ
√

ln(KM)
−K(KM)−2(2+δ2) sin2( π

K
), (3.80)

where κ < (1−δ)2

8ν is a suitably chosen universal positive constant (for M sufficiently large). For

the second inequality we used 1− δ > 1
2 and the fact that ν can be upper bounded by a positive
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constant (3.57). Comparing the exponents of the last two terms of (3.80), using κ < (1−δ)2

8ν ,

δ ∈ (0, 1
2) and ν > 2, we have

κδ2

(1 + cot(2π
K ))2

<
(1− δ)2δ2

8ν(1 + cot(2π
K ))2

<
1

256 (1 + cos1 / sin1)2
=

1− cos2
1

256 (sin1 + cos1)2

=
(1− cos1)(1 + cos1)

256 (sin1 + cos1)2
<

2(1− cos1)

256
<

2(2 + δ2) sin2(π/K)

256
,

where we have used the notation cos1 = cos(2π/K) and sin1 = sin(2π/K). The second last

inequality above is obtained using cos1 < 1, and (sin1 + cos1)2 = [
√

2 sin(π4 + 2π
K )]2 ≥ 1 for

K ≥ 8. Therefore, the exponent of third term is more than 256 times larger than that of second

term (in absolute value).

Summing up, we now have two lower bounds on E(τ) for different values of ν. When ν ≤ 2+δ

we have (3.72), and when ν > 2 + δ we have (3.80). By applying them to the state evolution

equation ψt+1
c = 1 − E(τ tc), we obtain the required result for the K ≥ 8 case. The results for

the other cases (K = 1, 2, 4) use similar arguments and are explained below.

K = 1: There is only one constellation symbol c0 = 1 which has no imaginary part. There-

fore, all imaginary parts in the expression of E(τ) disappear as shown below.

E(τ) = E


 eν ln(M)+

√
ν ln(M)UR1

eν ln(M)+
√
ν ln(M)UR1 +

∑M
j=2 e

√
ν ln(M)URj


 ,

where UR1 , . . . , U
R
M

i.i.d.∼ N (0, 1). The above expression is the same as that given in [57, Eq. (A.2)].

Therefore, we can obtain the result from following the steps in [57, App. A].

K = 2: In this case there are two constellation symbols c0 = 1 and c1 = −1, which are

both real. We follow steps similar to those used to obtain (3.71) in the K ≥ 8 case to obtain

the following lower bound on E(τ) for any u ≤ 0

E(τ) = E

[
2 sinh(µ+

√
µUR1 )

2 cosh(µ+
√
µUR1 ) +

∑M
j=2(e

√
µURj + e−

√
µURj )

]

= EUR1 EX

[
2 sinh(µ+

√
µUR1 )

2 cosh(µ+
√
µUR1 ) +X

∣∣∣UR1

]

=

∫ ∞

u
p(u)EX

[
. . . |UR1 = u

]
du+

∫ u

−∞
p(u)EX

[
. . . |UR1 = u

]
du

(i)

≥
∫ ∞

u
p(u)EX

[
. . . |UR1 = u

]
du+

∫ u

−∞
p(u) (−1)du

(ii)
= I1 −Q(|u|), (3.81)

where µ = ν ln(2M), X =
∑M

j=2(e
√
µURj + e−

√
µURj ). Step (i) is obtained using | 2 sinh(x)

2 cosh(x)+X | ≤ 1

for any x, and step (ii) holds since u ≤ 0.

Similar to what was done in (3.72) for the K ≥ 8 case, we choose u = −√µ = −
√
ν ln(2M)
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so that the integrand of I1 is non-negative, and obtain the following lower bound on E(τ) for

all ν > 0.

E(τ)
(i)

≥ −Q
(√

ν ln(2M)
) (ii)

≥ − (2M)−
ν
2√

2πν ln(2M)
, (3.82)

where the labelled inequalities are obtained as follows: (i) I1 ≥ 0 when u = −√µ, and (ii) using

the bound on the tail probability of a standard Gaussian.

The lower bound on E(τ) in (3.82) applies for all values of ν > 0. To obtain a better bound

for ν > 2 which shows that E(τ) approaches 1 with growing M , we choose

u =
−α(ν2 − 1)

ν

√
µ = −α

(ν
2
− 1
)√ ln(2M)

ν
(3.83)

for any α ∈ (0, 1), and then using this choice of u in (3.81) to obtain a lower bound for I1. We

obtain the following lower bound on I1 by following similar steps to the proof of Lemma 3.6.1

given in Section 3.6.3. Recall that Lemma 3.6.1 obtains a lower bound on I1 for ν > 2 in the

K ≥ 4 case.

I1 ≥ 1−Q(|u|)− 2 (2M)−((2−α)ν+2α) − (2M)−(1−α)( ν
2
−1). (3.84)

Using (3.84) in (3.81), we have the following lower bound on E(τ) for ν > 2 and u taking the

value in (3.83).

E(τ) ≥ 1− 2
√
ν(2M)−

α2( ν2−1)2

2ν

α(ν2 − 1)
√

2π ln(2M)
− 2 (2M)−((2−α)ν+2α) − (2M)−(1−α)( ν

2
−1), (3.85)

where we used the bound Q(x) ≤ 1
x
√

2π
e−x

2/2 for x > 0.

For any δ ∈ (0, 1
2), we consider the case ν > 2 + δ and choose α = 1− δ. Plugging these into

(3.85), we have

E(τ) ≥ 1− 4
√
ν(2M)−

δ2(1−δ)2
8ν

δ(1− δ)
√

2π ln(2M)
− 2 (2M)−(4+δ+δ2) − (2M)−

δ2

2 ≥ 1− (2M)−κ2δ2

δ
√

ln(2M)
, (3.86)

for sufficiently large M and a suitably chosen universal positive constant κ2. The second in-

equality is obtained by noting that 1 − δ > 1
2 and that ν can be upper bounded by a positive

constant (3.57).

By applying the two lower bounds (3.82) and (3.86) to the state evolution equation ψt+1
c =

1 − E(τ tc) for the ν ≤ 2 + δ and ν > 2 + δ case respectively, we obtain the required result for

K = 2.

K = 4: The arguments for this case are essentially the same as that for the K ≥ 8 case,

noting that tan(π2 − 2π
K ) = cot(2π

K ) = 0 and cos(2π
K ) = 0 for K = 4.
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By following the same arguments from (3.59)–(3.72), we obtain the following lower bound

for E(τ) for any ν > 0,

E(τ) ≥ −2(4M)−
ν
2√

2πν ln(4M)
. (3.87)

To obtain the improved lower bound for the ν > 2 case, we follow the same arguments from

(3.74) to (3.80) and arrive at the following. For any δ ∈ (0, 1
2) and ν > 2 + δ, we have

E(τ) ≥ 1− 10
√
ν(4M)−

(1−δ)2δ2
8ν

(1− δ)δ
√

2π ln(4M)
− (4M)−

δ2

2 − 4(4M)−2−δ2 ≥ 1− (4M)−κ3δ2

δ
√

ln(4M)
, (3.88)

for sufficiently large M and a suitably chosen universal positive constant κ3. The last inequality

is obtained by noting that 1− δ > 1
2 and that ν can be upper bounded by a positive constant

(3.57).

By applying the two lower bounds (3.87) and (3.88) to the state evolution equation ψt+1
c =

1 − E(τ tc) for the ν ≤ 2 + δ and ν > 2 + δ case respectively, we obtain the required result for

K = 4.

3.6.3 Proof of Lemma 3.6.1

From (3.71), we have

I1 =

∫ ∞

u

∫ ∞

u
p(uR) p(uI)EX

[∑K/4
k=−K/4+1 2 cosk · sinhYk

X +
∑K/4

a=−K/4+1 2 coshYa

∣∣∣∣UR1 = uR, U I1 = uI

]
duR duI ,

(3.89)

where cosk, Yk for k ∈ {−K/4 + 1, . . . ,K/4} and X are defined in (3.60), (3.67) and (3.68)

respectively, K ≥ 4, and p(uR), p(uI) are standard Gaussian densities. We aim to lower bound

I1 with u taking the value

u =
−α(ν2 − 1)

ν

√
µ

1 + cot(2π
K )

(3.90)

for any α ∈ (0, 1) and ν > 2. Recall from the arguments around equation (3.73) and (3.74) that

the integrand of I1 is non-negative for ν > 2 with this choice of u.

Using Jensen’s inequality for the expectation in (3.89), we obtain

I1 ≥
∫ ∞

u

∫ ∞

u
p(uR) p(uI)

∑
k 2 cosk · sinhYk

EX +
∑

a 2 coshYa
duR duI

(i)

≥
∫ ∞

u

∫ ∞

u
p(uR) p(uI)

∑
k 2 cosk · sinhYk

(KM)1+ ν
2 +

∑
a 2 coshYa

duR duI

(ii)

≥
∫ ∞

u

∫ ∞

u
p(uR) p(uI)

2 sinhY0

(KM)1+ ν
2 +

∑
a 2 coshYa

duR duI , (3.91)

where in the above, the summations over a and k go from −K/4+1 to K/4 and are omitted for
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brevity. Inequality (i) is obtained as follows using the definition of X in (3.68) and the moment

generating function of a standard Gaussian:

EX =

M∑

j=2

K∑

b=1

E
[
e
√
µ cosb U

R
j
]
E
[
e
√
µ sinb U

I
j
]

=

M∑

j=2

K∑

b=1

e
µ
2

(cos2
k + sin2

k) =

M∑

j=2

K∑

b=1

(KM)
ν
2 < (KM)1+ ν

2 ,

where we have used µ = ν ln(KM). Inequality (ii) in (3.91) is obtained by taking only the k = 0

term in the numerator’s summation, recalling that cosk and sinhYk for k ∈ {−K/4+1, . . . ,K/4}
are all non-negative when UR1 ≥ u and U I1 ≥ u.

Next, we further lower bound I1 using the fact that the term 2 sinhY0

((KM)1+ ν
2 +
∑
a 2 coshYa)

in (3.91)

is a strictly increasing function of UR1 . (Recall from (3.67) that Yk is a function of UR1 for each

k.) To see that the term is increasing in UR1 , we write

f :=
2 sinhY0

(KM)1+ ν
2 +

∑
a 2 coshYa

=
fnum

fden
, (3.92)

and show that ∂f/∂UR1 > 0. Since

∂f

∂UR1
=
(∂fnum

∂UR1
· fden − fnum ·

∂fden

∂UR1

)/(
f2

den

)
, (3.93)

we show below that ∂fnum

∂UR1
· fdem − fnum · ∂fdem

∂UR1
> 0. Indeed,

∂fnum

∂UR1
· fden − fnum ·

∂fden

∂UR1

= (2
√
µ cos0 coshY0)((KM)1+ ν

2 +
∑

a

2 coshYa)− (2 sinhY0)(
∑

a

2
√
µ cosa sinhYa)

= 2
√
µ coshY0 · [(KM)1+ ν

2 + 2
∑

a

(coshYa −
sinhY0

coshY0
cosa sinhYa)]

= 2
√
µ coshY0 · [(KM)1+ ν

2 + 2
∑

a

coshYa · (1− tanh(Y0) tanh(Ya) cosa)] > 0. (3.94)

In the above, the summations over a go from −K/4 + 1 to K/4. The inequality in (3.94) holds

because 0 ≤ cosa ≤ 1 for a ∈ {−K/4 + 1, . . . ,K/4}, and |tanh(x)| < 1 for all x ∈ R.

Using the fact that the integrand in (3.91) is strictly increasing in UR1 , we further bound

I1 from below using the minimum value of UR1 in the range, i.e., UR1 = u where u is given by

(3.90). Using the expressions for Y0 and Ya from (3.67), and the substitution

z =
(µ+

√
µu)

ln(KM)
= ν − α(ν2 − 1)

1 + cot(2π
K )

, (3.95)

101



the RHS of (3.91) is lower bounded as

I1 ≥
∫ ∞

u

∫ ∞

u
p(uR) p(uI)

2 sinh[z ln(KM)]

(KM)1+ ν
2 +

∑
a 2 cosh[z ln(KM) cosa +

√
µuI sina]

duR duI

(i)
= Q(u)

∫ ∞

u
p(u)

2 sinh[z ln(KM)]

(KM)1+ ν
2 +

∑
a 2 cosh[z ln(KM) cosa +

√
µu sina]

du

≥ Q(u)

∫ −u

u
p(u)

2 sinh[z ln(KM)]

(KM)1+ ν
2 +

∑
a 2 cosh[z ln(KM) cosa +

√
µu sina]

du

(ii)
= Q(u)

∫ −u

u
p(u)

2 sinh[z ln(KM)]

(KM)1+ ν
2 + (1 + ∆(u)) · 2 cosh[z ln(KM)]

du

= Q(u)

∫ −u

u
p(u)

1− (KM)−2z

1 + (KM)−2z + (KM)1+ ν
2
−z + ∆(u)(1 + (KM)−2z)

du

(iii)

≥ Q(u)

∫ −u

u
p(u) [1− (KM)−2z][1− (KM)−2z − (KM)1+ ν

2
−z −∆(u)(1 + (KM)−2z)] du

≥ Q(u)

∫ −u

u
p(u) [1− 2(KM)−2z − (KM)1+ ν

2
−z −∆(u)(1 + (KM)−2z)] du

(iv)

≥ Q(u)

∫ −u

u
p(u) [1− 2(KM)−2z − (KM)1+ ν

2
−z − (K − 2)(KM)−(z−z?)] du

(v)
= [1−Q(|u|)] [1− 2Q(|u|)] [1− 2(KM)−2z − (KM)1+ ν

2
−z − (K − 2)(KM)−(z−z?)]

≥ 1− 3Q(|u|)− 2(KM)−2z − (KM)1+ ν
2
−z − (K − 2)(KM)−(z−z?). (3.96)

The labelled steps are obtained as follows: (i) recalling that UR1 ∼ N (0, 1) and dropping the

superscript on uI for brevity; (ii) introducing the substitution

∆(u) =
∑

a∈{−K/4+1,...,K/4}\0

cosh[z ln(KM) cosa +
√
µu sina]

cosh[z ln(KM)]
; (3.97)

(iii) using 1
1+x ≥ 1− x for x ≥ 0, noting that ∆(u) > 0; (iv) from the upper bound on ∆(u) for

|u| ≤ −u shown below in (3.98); and (v) from recalling that p(u) is the density of a standard

Gaussian and noting that u < 0.

To complete the proof of the lemma, it remains to show the upper bound on ∆(u) that is

used in step (iv) of (3.96). Using the definition of ∆(u) in (3.97), for |u| ≤ −u we have

∆(u)
(i)

≤
∑

a∈{−K/4+1,...,K/4}\0

cosh[z ln(KM) cosa +
√
µ|u|| sina |]

cosh[z ln(KM)]

=
∑

a∈{−K/4+1,...,K/4}\0

cosh[z ln(KM) cosa +
α( ν

2
−1)

1+cot(2π/K) ln(KM)| sina |]
cosh[z ln(KM)]

(ii)

≤
(K

2
− 1
)maxa∈{1,...,K/4} cosh[z ln(KM) cosa +(ν − z) ln(KM) sina]

cosh[z ln(KM)]
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(iii)
=
(K

2
− 1
)cosh[z? ln(KM)]

cosh[z ln(KM)]
=
(K

2
− 1
)

(KM)−(z−z?) 1 + (KM)−2z?

1 + (KM)−2z

(iv)

≤ (K − 2)(KM)−(z−z?)

1 + (KM)−2z
, (3.98)

where the labelled steps are obtained as follows: (i) for u ≥ u, we know

z ln(KM) cosa +
√
µu sina ≥ 0

and that cosh(x) is an increasing function for x ≥ 0; (ii) using (3.95) and noting that taking

the maximum over a ∈ {−K/4 + 1, . . . ,K/4}\0 is the same as taking the maximum over

a ∈ {1, . . . ,K/4} since cosa = cos−a and | sina | = | sin−a |; (iii) holds because the maximum is

achieved with a = 1 (shown below) and defining z? as

z? = z cos
(2π

K

)
+ (ν − z) sin

(2π

K

)
, (3.99)

where z is defined in (3.95); and (iv) using 1 + (KM)−2z? ≤ 2 since z? ≥ 0.

In order to show that a = 1 achieves the maximum of

f1(a) := cosh[z ln(KM) cosa +(ν − z) ln(KM) sina]

= cosh

[
ν ln(KM)

((
1− α(1

2 − 1
ν )

1 + cot(2π/K)

)
cosa +

α(1
2 − 1

ν )

1 + cot(2π/K)
sina

)]
(3.100)

for a ∈ {1, . . . ,K/4}, we show that f ′1(a) < 0 for all a in this region. Since cosh(x) is increasing

function for x ≥ 0 and the argument of the cosh term in (3.100) is non-negative, we only need

to show that f ′2(a) < 0 for all a ∈ {1, . . . ,K/4}, where

f2(a) :=

(
1− α(1

2 − 1
ν )

1 + cot(2π/K)

)
cosa +

α(1
2 − 1

ν )

1 + cot(2π/K)
sina . (3.101)

For α ∈ (0, 1) and ν > 2, we have

f ′2(a) =
2π

K

[
α(1

2 − 1
ν )

1 + cot(2π
K )

cos
(2πa

K

)
−
(

1− α(1
2 − 1

ν )

1 + cot(2π
K )

)
sin
(2πa

K

)]

=
2π

K
sin
(2πa

K

)[
α
(1

2
− 1

ν

)
· 1 + cot(2πa

K )

1 + cot(2π
K )
− 1

]
,

which is negative for a ∈ {1, . . . ,K/4} since sin(2πa
K ) > 0 and

1+cot( 2πa
K

)

1+cot( 2π
K

)
≤ 1 for K ≥ 4 and

a ∈ {1, . . . ,K/4}. This completes the proof of (3.98), and hence the lemma.
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3.6.4 Proof of Proposition 3.4.2

Recall that ψt+1
c = 1 − E(τ tc) where E(τ tc) is defined in (3.16). We obtain the required lower

bound for ψt+1
c by obtaining an upper bound for E(τ tc). In this section, we drop the dependencies

on the column block index c and the iteration index t in our notation for brevity, e.g., we simply

denote νtc by ν.

We will use the following concentration inequality for the maximum of N i.i.d. standard

Gaussian random variables Z1, . . . , ZN . For any ε ∈ (0, 1),

P
(

max
1≤j≤N

Zj <
√

2 lnN(1− ε)
)
≤ exp

(−λN ε(2−ε)
√

lnN

)
, (3.102)

where λ is a universal positive constant.

We will prove the required result for the K ≥ 4 case. The K = 1 was proved in [1, Lem. 4.1].

The K = 2 case uses similar arguments as the K ≥ 4 case so we omit the details.

Using the same steps and notations in (3.59)–(3.68), we have that

E(τ) = EU1EX



∑K/4

k=−K/4+1 2 cosk · sinhYk

X +
∑K/4

a=−K/4+1 2 coshYa

∣∣∣∣∣U1


 . (3.103)

We will obtain an upper bound for E(τ) using the fact that the term inside the expectation

in (3.103) is strictly increasing in UR1 (the real part of U1 ∼ CN (0, 2)). (Recall from (3.67) that

Yk is a function of UR1 for each k.) To see that the term is increasing in UR1 , we write

f :=

∑K/4
k=−K/4+1 2 cosk · sinhYk

X +
∑K/4

a=−K/4+1 2 coshYa
=
fnum

fden
, (3.104)

and show that ∂f/∂UR1 > 0. Since

∂f

∂UR1
=
(∂fnum

∂UR1
· fden − fnum ·

∂fden

∂UR1

)/(
f2

den

)
, (3.105)

we show below that ∂fnum

∂UR1
· fdem − fnum · ∂fdem

∂UR1
> 0. Indeed,

∂fnum

∂UR1
· fden − fnum ·

∂fden

∂UR1

= (
∑

k

2
√
µ cos2

k coshYk)(X +
∑

a

2 coshYa)− (
∑

k

2 cosk sinhYk)(
∑

a

2
√
µ cosa sinhYa)

= 4
√
µ

[
X

2
· (
∑

k

cos2
k coshYk) + (

∑

k

cos2
k coshYk)(

∑

a

coshYa)− (
∑

k

cosk sinhYk)
2

]

(i)

≥ 4
√
µ

[
X

2
· (
∑

k

cos2
k coshYk) + (

∑

k

cosk coshYk)
2 − (

∑

k

cosk sinhYk)
2

]
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(ii)
> 4
√
µ · X

2
· (
∑

k

cos2
k coshYk) > 0,

where (i) is obtained using the Cauchy-Schwarz inequality and (ii) from x2−y2 = (x+y)(x−y)

and cosh(x) > | sinh(x)| for all x.

Since the term inside the expectation in (3.103) is strictly increasing in UR1 and upper

bounded by 1 (see (3.55)), we have the following upper bound on E(τ). Recall that UR1 , U
I
1

i.i.d.∼ N (0, 1) and let ũ be positive scalar variable that will be specified later. Also let α ∈ (0, 1)

be a constant that will be specified later.

E(τ)
(i)

≤ P(UR1 > ũ) · 1

+ P(UR1 ≤ ũ) · EUI1 EX



∑K/4

k=−K/4+1 2 cosk · sinh((µ+
√
µũ) cosk +

√
µU I1 sink)

X +
∑K/4

a=−K/4+1 2 cosh((µ+
√
µũ) cosa +

√
µU I1 sina)




(ii)

≤ Q(ũ) + E




∑K/4
k=−K/4+1 2 cosk · sinh(. . .)

∑M
j=2

∑K
b=1 e

√
µ[URj cosb +UIj sinb] +

∑K/4
a=−K/4+1 2 cosh(. . .)




(iii)

≤ Q(ũ) + E




∑K/4
k=−K/4+1 2 cosk · sinh(. . .)

(
max2≤j≤M e

√
ν ln(KM)URj

)
+
∑K/4

a=−K/4+1 2 cosh(. . .)




≤ Q(ũ) + P
(

max
2≤j≤M

URj <
√

2 lnM(1− αδ̃)
)
· 1

+ P
(

max
2≤j≤M

URj ≥
√

2 lnM(1− αδ̃)
)
· EUI1




∑K/4
k=−K/4+1 2 cosk · sinh(. . .)

M
√

2ν(1−αδ̃) +
∑K/4

a=−K/4+1 2 cosh(. . .)




(iv)

≤ Q(ũ) + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)

+ EUI1




∑K/4
k=−K/4+1 2 cosk · sinh((µ+

√
µũ) cosk +

√
µU I1 sink)

M
√

2ν(1−αδ̃) +
∑K/4

a=−K/4+1 2 cosh((µ+
√
µũ) cosa +

√
µU I1 sina)


 , (3.106)

where Q(x) =
∫∞
x

1√
2π
e−z

2/2 dz is the upper tail probability of the standard Gaussian distri-

bution and the labelled steps are obtained as follows: (i) expanding Yk according to (3.67)

and letting ũ > 0 be a parameter we can set later; (ii) using the definition of X in (3.68)

(note that the expectation at this step is over UR2 , . . . , U
R
M , U

I
1 , . . . , U

I
M

i.i.d.∼ N (0, 1)); (iii) using

µ = ν ln(KM) and noting that cosb=K = 1, sinb=K = 0; and (iv) using (3.102) with λ being a

universal positive constant.

We further bound E(τ) by noting that the term inside the expectation term on the RHS of

(3.106) is bounded by 1.

E(τ) ≤ Q(ũ) + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)
+ P(U I1 < −ũ) · 1 + P(U I1 > ũ) · 1
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+

∫ ũ

−ũ

∑K/4
k=−K/4+1 2 cosk · sinh((µ+

√
µũ) cosk +

√
µu sink)

M
√

2ν(1−αδ̃) +
∑K/4

a=−K/4+1 2 cosh((µ+
√
µũ) cosa +

√
µu sina)

φ(u) du

(i)

≤ 3Q(ũ) + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)

+

∫ ũ

−ũ

∑K/4
k=−K/4+1 2 sinh((µ+

√
µũ) cosk +

√
µ|u|| sink |)

M
√

2ν(1−αδ̃) + 2 cosh(µ+
√
µũ)

φ(u) du

≤ 3Q(ũ) + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)

+ (1− 2Q(ũ)) ·



∑K/4

k=−K/4+1 exp((µ+
√
µũ) cosk +

√
µũ| sink |)

M
√

2ν(1−αδ̃) + exp(µ+
√
µũ)




(ii)

≤ 3Q(ũ) + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)
+

1 + ∆ · exp(−(µ+
√
µũ))

1 +M
√

2ν(1−αδ̃) · exp(−(µ+
√
µũ))

, (3.107)

where φ(·) denotes the standard Gaussian density and the labelled steps are obtained as follows:

(i) noting that cosk ≤ 1, cosh(·) > 0, cosa=0 = 1, sina=0 = 0, and that sinh(·) is an increasing

function; and (ii) substituting

∆ :=
∑

k∈{−K/4+1,...,K/4}\0

exp((µ+
√
µũ) cosk +

√
µũ| sink |). (3.108)

Since the RHS of (3.107) is increasing in ∆, we obtain an upper bound on ∆ to further

bound E(τ).

∆ ≤
(
K

2
− 1

)
max

k∈{−K/4+1,...,K/4}\0
exp((µ+

√
µũ) cosk +

√
µũ| sink |)

(i)
=

(
K

2
− 1

)
max

k∈{1,...,K/4}
exp((µ+

√
µũ) cosk +

√
µũ sink), (3.109)

where step (i) is obtained by noting that taking the maximum over k ∈ {−K/4+1, . . . ,K/4}\0 is

the same as taking the maximum over k ∈ {1, . . . ,K/4} since cosk = cos−k and | sink | = | sin−k |.
We now show that for a certain choice of ũ, the maximum in (3.109) is achieved with k = 1.

For any α̃ ∈ (0, 1), let

ũ =
κ̃α̃δ̃

2(1 + cot(2π/K))

√
ln(KM)

ν
, (3.110)

where κ̃ > 0 is the positive constant defined in (3.23) that lower bounds ν, and δ̃ ∈ (0, 1) is the

constant defined in Proposition 3.4.2. In order to show that k = 1 achieves the maximum in

(3.109) with this choice of ũ, we show that the derivative of the exp(. . .) term with respect to

k is negative for all k ∈ {1, . . . ,K/4}. Since exp(·) is an increasing function, we only need to

show this negative derivative result for its argument, which we denote by

f1(k) = (µ+
√
µũ) cosk +

√
µũ sink .
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Recalling that cosk = cos(2πk/K) and sink = sin(2πk/K), its derivative with respect to k is

f ′1(k) =
2π

K
[
√
µũ cosk−(µ+

√
µũ) sink] =

2π

K
µ sink

[
ũ√
µ

cot

(
2πk

K

)
−
(

1 +
ũ√
µ

)]

=
2π

K
µ sink

[
ũ√
µ

(
cot

(
2πk

K

)
− 1

)
− 1

]
=

2π

K
µ sink

[
κ̃α̃δ̃

2ν
· cot

(
2πk
K

)
− 1

cot
(

2π
K

)
+ 1

− 1

]
< 0,

where we use (3.110), µ = ν lnKM , recalling that K ≥ 4, and noting that sink > 0 for

k ∈ {1, . . . ,K/4}, and also that cot(x) is decreasing for x ∈ (0, π2 ).

Therefore, using the fact that k = 1 achieves the maximum in (3.109) when ũ is chosen

according to (3.110), we have an upper bound on ∆ which we use in (3.107) to further bound

E(τ). In the following we use cot1 to denote cot(2π/K).

E(τ) ≤ 3Q(ũ) + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)

+
1 +

(
K
2 − 1

)
exp((µ+

√
µũ) cos1 +

√
µũ sin1) · exp(−(µ+

√
µũ))

1 +M
√

2ν(1−αδ̃) · exp(−(µ+
√
µũ))

(i)
= 3Q(ũ) + e−λ(

√
lnM)−1Mαδ̃(2−αδ̃)

+
1 +

(
K
2 − 1

)
(KM)

−
[(
ν+ κ̃α̃δ̃

2(1+cot1)

)
(1−cos1)− κ̃α̃δ̃

2(1+cot1)
sin1

]

1 +M
√

2ν(1−αδ̃) · (KM)
−
(
ν+ κ̃α̃δ̃

2(1+cot1)

)

= 3Q(ũ) + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)
+

1 +
(
K
2 − 1

)
(KM)

−(1−cos1)
(
ν− κ̃α̃δ̃

2
·

sin1
1−cos1

−1

1+cot1

)

1 +K
−
(
ν+ κ̃α̃δ̃

2(1+cot1)

)
·M

√
2ν
(

1−
(
α+ κ̃α̃

2
√

2ν(1+cot1)

)
δ̃
)
−ν

(ii)

≤ 3Q(ũ) + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)
+

1 +
(
K
2 − 1

)
(KM)−(1−cos1)(ν−κ̃α̃δ̃)

K
−
(
ν+ κ̃α̃δ̃

2(1+cot1)

)
·M

√
2ν
(

1−
(
α+ κ̃α̃

2
√

2ν(1+cot1)

)
δ̃
)
−ν

(iii)

≤ 3(KM)
− (κ̃α̃δ̃)2

8ν(1+cot1)2 + e−λ(
√

lnM)−1Mαδ̃(2−αδ̃)

+
K

(
ν+ κ̃α̃δ̃

2(1+cot1)

)
+K

1+
(
ν+ κ̃α̃δ̃

2(1+cot1)

)
· (KM)−(1−cos1)(ν−κ̃α̃δ̃)

M
√

2ν
(

1−
(
α+ α̃

2

)
δ̃
)
−ν

, (3.111)

where step (i) is obtained by substituting in (3.110); (ii) is obtained by noting that for K ≥ 4,

sin1
1−cos1

− 1

1 + cot1
=

1−cos2
1

1−cos1
− sin1

cos1 + sin1
=

1 + cos1− sin1

cos1 + sin1
=

1

cos1 + sin1
+ tan

(π
4
− 2π

K

)
≤ 2, (3.112)

and (iii) by using the bound Q(x) ≤ e−x2/2 for x > 0, and from

κ̃

2
√

2ν(1 + cot1)
≤ κ̃

2ν
≤ 1

2
, (3.113)

where the inequalities are obtained using κ̃ < ν < 2 and cot1 ≥ 0 for K ≥ 4.

Finally, from the final steps of the proof of the unmodulated (K = 1) case in [1, App. A.1],
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we know that for α = 1/64, α̃ = 10/32 and ν ∈ [κ̃, 2− δ̃], we have

√
2ν
(
1−

(
α+

α̃

2

)
δ̃
)
− ν ≥ 1

32
δ̃ +

55

512
δ̃2. (3.114)

By using (3.114) in (3.111) and noting that ν can be upper bounded by a positive constant (see

(3.23)), we obtain the required result: for sufficiently large M , any δ̃ ∈ (0, 1), and ν < 2− δ̃, we

have

E(τ) ≤M−α3K δ̃
2
,

where α3K is a positive constant depending only on K and the bounds of ν in (3.23).
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Chapter 4

Many-user Gaussian multiple access

In this chapter, we study the many-user Gaussian multiple access channel (1.6) in the asymptotic

regime where the number of users L grows linearly with the code length n. (Throughout this

chapter, “asymptotic” refers to the large system limit where L and n both tend to infinity with

user density µ = L/n held constant.) As introduced in Section 1.2.2, we are interested in finding

the optimal asymptotic trade-off between the signal-to-noise ratio Eb/N0 and the user density

µ, for a fixed target error rate and number of bits to be transmitted per user (user payload).

Here Eb is the energy-per-bit and N0 = 2σ2 is the noise spectral density. Decoding performance

is measured via the user error rate (UER):

UER :=
1

L

L∑

`=1

1 {x̂` 6= x`} , (4.1)

where x` denotes the message sent by user ` ∈ [L], and x̂` is the decoder’s estimate of the

message. The per-user probability of error (PUPE) error criterion used in [32, 33] and defined

in (1.10) is the expected value of the UER.

In this chapter, we analyse coding schemes based on random linear models with approximate

message passing (AMP) decoding. We derive the exact asymptotic achievable regions of these

schemes, and show that the asymptotic achievability of a coding scheme based on spatially

coupled Gaussian matrices and AMP decoding nearly matches the converse bound for a large

range of user densities (Section 4.2). To the best of our knowledge, this is the first efficient

coding scheme to do so in this multiple access regime. The spatially coupled scheme can be

interpreted as generalised time-sharing: the coupling structure specifies which users are active

during each channel use. We also analyse the performance of these coding schemes as the

user payload grows large (Section 4.3) and extend our results to complex random linear coding

schemes for the complex Gaussian multiple access channel (Section 4.4). We show that using

small random codebooks multiple times to transmit large user payloads is near-optimal at large

user densities, and adding modulation (e.g., K-ary phase shift keying) to the encoding scheme
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can increase the size of the asymptotic achievable region in such settings.

4.1 Random linear coding and AMP decoding

We consider coding schemes where the codewords of user ` ∈ [L] are constructed as c` = A`x`,

where A` ∈ Rn×B is a random matrix and x` ∈ RB encodes the message of user `. In this

coding framework, the Gaussian multiple access channel (MAC) model (1.6) can be written as

y = Ax+w, (4.2)

where the design matrix A ∈ Rn×LB is the (horizontal) concatenation of matrices A1, . . . ,AL,

and the message vector x ∈ RLB is the concatenation of vectors x1, . . . ,xL. We will assume

that the squared norm of each column of A equals 1 in expectation.1

The L sections of x (which each correspond to a user’s message) are drawn i.i.d. from pXsec ,

which is a probability mass function over a finite set of length B vectors. The per-user payload

is therefore equal to the entropy H(Xsec), where Xsec ∼ pXsec . The codeword energy constraint

is denoted by E, i.e., we require pXsec to satisfy E‖Xsec‖2 = E <∞.

Example 4.1.1 (Random codebooks). Let pXsec be the distribution over length B vectors

that chooses uniformly at random one of its entries to be non-zero, taking the value
√
E. This

corresponds to a per-user payload of log2B bits. Then, if the entries of the design matrix A are

i.i.d. N (0, 1
n), in the coding scheme each user selects one-of-B random codewords of expected

energy E[‖c`‖2] = E = Eb log2B. In the rest of the chapter, we denote the choice of pXsec used

in this example by p1.

Example 4.1.2 (Random codebooks with binary modulation). Let pXsec be the distribution

over length B vectors that chooses uniformly at random one of its B entries to be non-zero,

taking values in {±
√
E} with equal probability. This corresponds to a per-user payload of

1 + log2B bits. Then, if the entries of the design matrix A are i.i.d. N (0, 1
n), in the coding

scheme each user encodes log2B bits in the selection of one-of-B random codewords, and an

additional 1 bit in whether to flip the sign of the codeword. When B = 1, this coding scheme

corresponds to random code division multiple access (CDMA) with antipodal signalling. In the

rest of the chapter, we denote the choice of pXsec used in this example by p2.

4.1.1 Spatially coupled coding schemes

Spatially coupled matrices constructed via base matrices are described in detail for the SPARC

construction in Section 2.1, we will give an overview of the construction here in the context of

1Compared to earlier chapters, this chapter uses x instead of β to denote the message vector, and B instead
of M to denote the size of each section of the message vector. This is done so that our notation is compatible
(and not easily confused) with existing notation in the many-user Gaussian MAC literature.
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coding for Gaussian MACs. A spatially coupled (Gaussian) design matrixA ∈ Rn×LB is divided

into R-by-C equally size blocks. The entries within each block are i.i.d. Gaussian with zero mean

and variance specified by the corresponding entry of a base matrix W ∈ RR×C
+ . The design

matrix A is constructed by replacing each entry of the base matrix Wrc, by an (n/R)× (LB/C)

matrix with entries drawn i.i.d. from N (0,Wrc/(n/R)). See Fig. 2.1 for an example. Hence, the

design matrix A has independent Gaussian entries

Aij ∼ N
(

0,
1

n/R
Wr(i)c(j)

)
, for i ∈ [n], j ∈ [LB]. (4.3)

The operators r(·) : [n] → [R] and c(·) : [LB] → [C] in (4.3) map a particular row or column

index to its corresponding row block or column block index. We require C to divide L, resulting

in L/C ≥ 1 sections per column block.

The entries of the base matrix W must satisfy
∑R

r=1Wrc = 1 for c ∈ [C] to ensure that the

columns of the design matrix A have unit norm in expectation. The trivial base matrix with

R = C = 1 (single entry equal to 1) corresponds to the design matrix with i.i.d. N (0, 1
n) entries.

In this chapter we will consider a class of base matrices called (ω,Λ, ρ) base matrices [1,2]. (Note

that the definition differs slightly from that in Definition 2.1.1 for spatially coupled SPARCs

due to the different constraint on the base matrix entries.)

Definition 4.1.1. An (ω,Λ, ρ) base matrix W is described by three parameters: coupling

width ω ≥ 1, coupling length Λ ≥ 2ω− 1, and ρ ∈ [0, 1) which specifies the fraction of “energy”

allocated to the uncoupled entries in each column. The matrix has R = Λ + ω − 1 rows and

C = Λ columns, with each column having ω identical non-zero entries in the band-diagonal

region. The (r, c)-th entry of the base matrix, for r ∈ [R], c ∈ [C], is given by

Wrc =





1−ρ
ω if c ≤ r ≤ c + ω − 1,

ρ
Λ−1 otherwise.

(4.4)

When ρ = 0, the base matrix has non-zero entries only in the band-diagonal region. For

example, the base matrix in Fig. 2.1 has parameters (ω = 3, Λ = 7, ρ = 0).

Each entry of the base matrix corresponds to an (n/R)× (LB/C) block of the design matrix

A, and each block can be viewed as an (uncoupled) i.i.d. Gaussian design matrix with L/C

sections, code length n/R, and user density

µinner =
L/C

n/R
=

R

C
µ =

(
1 +

ω − 1

Λ

)
µ. (4.5)

Since ω > 1 in spatially coupled systems, we have µ < µinner. This difference is often referred to

as a “rate loss” in the literature of spatially coupled error correcting codes [2, 14, 15, 131], and

becomes negligible when Λ is much larger than ω.
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Figure 4.1: An example of how 25 users communicate over 35 uses of the channel using the multiple
access scheme based on a spatially coupled design matrix constructed using an (ω = 3, Λ = 5, ρ = 0)
base matrix. A red dot in the 2D grid represents a certain user being active during a certain time instant
and empty squares represent silence.

The spatially coupled coding scheme can be viewed as block-wise time-division with overlap.

Consider a scenario with L = 25 users, n = 35 channel uses, and a spatially coupled design

matrix constructed using an (ω = 3, Λ = 5, ρ = 0) base matrix W ∈ R7×5
+ . Each block of the

design matrix corresponds to 5 channel uses and 5 users. Fig. 4.1 shows how users communicate

using this multiple access scheme, assuming the code dimension is time and that each channel

use corresponds to one time instant. A red dot in the 2D grid represents a certain user being

active (transmitting) during a certain time instant, and empty squares represent silence (no

transmission). For example, users in the first column block (users 1 to 5) will transmit during

time instants 1 to 15 (corresponding to the first ω = 3 row blocks) but silent afterwards; users

6 to 10 will transmit during time instants 6 to 20 but silent otherwise, and so on.

Users within the same column block transmit simultaneously over ω = 3 row blocks of time

(15 time instants), and users in neighbouring column blocks overlap in ω − 1 row blocks of

time. At each time instant, ω = 3 column blocks of users (15 users) simultaneously transmit

(less users at the initial and end time instances), but the set of active users gradually shifts

over time. Thus, this multiple access scheme can be seen as a (block-wise) time-division with

overlap scheme. When ω = 1, there is no time overlap (no coupling) between neighbouring

blocks of users and each block of users communicates using an i.i.d. Gaussian matrix. When Λ

is large with respect to ω, users are silent for most of the transmission period (n channel uses).

This facilitates low-complexity encoding and decoding (e.g., the sliding window AMP decoder

introduced in Section 2.6).

112



4.1.2 AMP decoding and state evolution

We consider an efficient AMP decoder that aims to reconstruct the message vector x from the

channel output y. The design matrix A, the base matrix W , the distribution pXsec , and the

channel noise variance σ2 are known to the decoder. The AMP decoder we now describe is

almost identical to the AMP decoder for spatially coupled SPARCs described in Section 2.2,

albeit with a slight change in the scaling of certain variables related to the energy E, and

considering the user density µ instead of the code rate R.

The AMP decoder iteratively generates message vector estimates xt ∈ RLB for iterations

t = 1, 2, . . . as follows. Initialise x0 to the all-zero vector, and for t ≥ 0, iteratively compute:

zt = y −Axt + υ̃t � zt−1,

xt+1 = ηt
(
xt + (Q̃

t �A)∗zt
)
.

(4.6)

Here � is the Hadamard (entry-wise) product and quantities with negative iteration indices are

set to zero. The vector υ̃t ∈ Rn and the matrix Q̃ ∈ Rn×LB will be described in terms of the

following state evolution parameters.

State evolution The performance of the AMP in the large system limit (L, n → ∞ with

µ = L/n held constant) is succinctly captured by a deterministic recursion called state evolution

(SE). State evolution iteratively defines vectors γt,φt ∈ RR and τ t,ψt ∈ RC as follows. Initialise

ψ0
c = E for c ∈ [C], and for t ≥ 0, iteratively compute:

γtr =
C∑

c=1

Wrcψ
t
c, φtr = σ2 + µinnerγ

t
r , r ∈ [R], (4.7)

τ tc =

[
R∑

r=1

Wrc

φtr

]−1

, ψt+1
c = mmse(1/τ tc), c ∈ [C], (4.8)

where µinner = R
C µ from (4.5), and

mmse(1/τ) = E
∥∥∥Xsec − E

[
Xsec |Xsec +

√
τZ
]∥∥∥

2
(4.9)

=





E

[
1− E

[
e

√
E
τ Z1

e

√
E
τ Z1+e−E/τ

∑B
j=2 e

√
E
τ Zj

]]
if Xsec ∼ p1,

E

[
1− E

[
sinh(E

τ
+
√
E
τ
Z1)

cosh(E
τ

+
√
E
τ
Z1)+

∑B
j=2 cosh(

√
E
τ
Zj)

]]
if Xsec ∼ p2,

(4.10)

where Xsec ∼ pXsec and Z = [Z1, . . . , ZB] is a standard Gaussian vector independent of Xsec.

Recall that p1 and p2 are described in Examples 4.1.1 and 4.1.2.

The vector υ̃t ∈ Rn and the matrix Q̃
t ∈ Rn×LB in (4.6) both have a block-wise structure
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and are defined using state evolution parameters as follows. For i ∈ [n] and j ∈ [LB],

υ̃ti =
µinner γ

t
r(i)

φt−1
r(i)

, Q̃tij =
τ tc(j)

φtr(i)
, (4.11)

where we recall that r(i) and c(j) denote the row and column block index of the i-th row entry

and j-th column entry, respectively. The vector υ̃0 is defined to be all-zeros.

Denoising function In each iteration, the AMP decoder (4.6) produces an effective observa-

tion st = xt+(Q̃
t�A)∗zt, which has the following approximate representation: for an index j in

column block c of the message vector x, we have stj ≈ xj +
√
τ tcZj , where {Zj} i.i.d. ∼ N (0, 1).

The estimate xt+1 in (4.6) is then the minimum mean square error (MMSE) estimate of x

given st, computed using the assumed distribution. This leads to the following definition of the

denoising function ηt = (ηt1, . . . , η
t
LB) in (4.6): for index j in section ` ∈ [L], which we denote

by j ∈ sec(`),

ηtj(s) = E
[
(Xsec)j |Xsec +

√
τ tc(j)Z = s`

]
(4.12)

=





√
E ·

exp
(
sj
√
E/τ t

c(j)

)
∑
i∈sec(`) exp

(
si
√
E/τ t

c(j)

) if Xsec ∼ p1,

√
E ·

sinh
(
sj
√
E/τ t

c(j)

)
∑
i∈sec(`) cosh

(
si
√
E/τ t

c(j)

) if Xsec ∼ p2,

(4.13)

where we recall that the `-th section of a vector s ∈ RLB is denoted by s` ∈ RB.

Hard decision estimate In addition to xt+1, the decoder can also produce a hard-decision

maximum a posteriori (MAP) estimate from st, which we denote by x̂t+1. For section ` in

column block c ∈ [C], the `-th section of this hard-decision estimate is given by

x̂t+1
` = arg max

x′∈S
P
(
Xsec = x′ |Xsec +

√
τ tc Z = st`

)
, (4.14)

where S is the support of pXsec . WhenXsec ∼ p1, index j ∈ sec(`) of this hard-decision estimate

is given by

x̂t+1
j =





√
E if stj > sti for all i ∈ sec(`)\j,

0 otherwise.
(4.15)
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When Xsec ∼ p2, index j ∈ sec(`) of this hard-decision estimate is given by

x̂t+1
j =





sign(sj) ·
√
E if |stj | > |sti| for all i ∈ sec(`)\j,

0 otherwise.
(4.16)

AMP and SE for i.i.d. Gaussian A For the special case where the entries of the design

matrix A are i.i.d. N (0, 1
n), the AMP decoder (4.6) and the state evolution (4.7)–(4.8) can be

simplified. The AMP decoder initialises the message vector estimate x0 to the all-zero vector,

and for t ≥ 0, iteratively computes:

zt = y −Axt +
µψt

τ t−1
zt−1,

xt+1 = ηt
(
xt +A∗zt

)
,

(4.17)

where quantities with negative iteration indices are set to zero. The scalars τ t and ψt are

given by the state evolution. The state evolution initialises ψ0 = E, and for t ≥ 0, iteratively

computes:

τ t = σ2 + µψt,

ψt+1 = mmse(1/τ t),
(4.18)

where the mmse function is defined in (4.9). Furthermore, when the design matrix has i.i.d.

Gaussian entries, the denoising function ηt in (4.12) and the hard-decision estimate x̂t+1 in

(4.14) are defined using the state evolution parameter τ t as the effective noise variance.

4.2 Asymptotic UER achieved by AMP decoding

We now characterise the asymptotic user error rate (4.1) achieved by coding schemes based on

i.i.d. and spatially coupled Gaussian design matrices with AMP decoding. These results are

stated in terms of a potential function.

4.2.1 Potential function

Consider the single-section Gaussian channel with noise variance τ :

Sτ = Xsec +
√
τZ, (4.19)

where Xsec ∼ pXsec and Z ∈ RB is a standard Gaussian vector independent of Xsec. The

potential function for the random linear system (4.2) with user density µ = L/n and channel
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noise variance σ2 is defined as

F(µ, σ2, ψ) = I(Xsec;Sτ ) +
1

2µ

[
ln
( τ
σ2

)
− µψ

τ

]
, (4.20)

where ψ ∈ [0, E], τ = σ2 + µψ, and the mutual information I(Xsec;Sτ ) is computed using the

channel (4.19). If Z = [Z1, . . . , ZB], then for the specific choices of pXsec given in Examples

4.1.1 and 4.1.2, we have

I(Xsec;Sτ ) =





E
τ + lnB − E ln

[
exp

(
E
τ +

√
E
τ Z1

)
+
∑B

j=2 exp
(√

E
τ Zj

)]
if Xsec ∼ p1,

E
τ + lnB − E ln

[
cosh

(
E
τ +

√
E
τ Z1

)
+
∑B

j=2 cosh
(√

E
τ Zj

)]
if Xsec ∼ p2.

(4.21)

Define the set of potential function minimisers (w.r.t. ψ) as:

M(µ, σ2) =

{
arg min
ψ∈[0,E]

F(µ, σ2, ψ)

}
. (4.22)

Consider decoding Xsec in the Gaussian channel in (4.19). The MMSE decoder

x̂MMSE
sec (Sτ ) = E[Xsec|Sτ ], (4.23)

achieves the MMSE given by (4.9). The MAP decoder

x̂MAP
sec (Sτ ) = arg max

x′
P(Xsec = x′|Sτ ), (4.24)

achieves the minimum probability of error, given by

Pe(τ) = P
(
x̂MAP

sec (Sτ ) 6= Xsec

)
(4.25)

=





1− E
[
Φ
(√

E
τ + Z

)B−1
]

if Xsec ∼ p1,

1−
∫ ∞

−
√
E
τ

[
1− 2Q

(√
E
τ + z

)]B−1

φ(z) dz if Xsec ∼ p2,

(4.26)

where Z ∼ N (0, 1). The functions φ(·), Φ(·) and Q(x) =
∫∞
x

1√
2π
e−z

2/2 dz are the probability

density function, cumulative distribution function and upper tail probability of the standard

Gaussian distribution, respectively.
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4.2.2 I.I.D. Gaussian matrices

Theorem 4 (I.I.D. Gaussian matrices with AMP decoding). Consider the linear model (4.2),

with the entries of the design matrix A i.i.d. ∼ N (0, 1
n) and the L sections of the message vector

x i.i.d. ∼ pXsec. Let x̂t be the AMP hard-decision estimate of x after iteration t (defined in

(4.14)), and recall that τ t, ψt are outputs of the state evolution (4.18).

1) The sequences {τ t}t≥0 and {ψt}t≥0 are non-increasing and converge to fixed points τFP,

ψFP, where

τFP := σ2 + µψFP, (4.27)

ψFP := max

{
ψ : ψ = mmse

(
1

σ2 + µψ

)}
= max

{
ψ :

∂F(µ, σ2, ψ)

∂ψ
= 0

}
. (4.28)

The potential function F(µ, σ2, ψ) is defined in (4.20).

2) Fix δ > 0, and let T denote the first iteration for which τ t ≤ τFP + δ. Then the user

error rate of the AMP decoder after T + 1 iterations satisfies

lim
L→∞

1

L

L∑

`=1

1
{
x̂T+1
` 6= x`

} a.s.
= Pe(τ

T ) ≤ Pe(τFP + δ), (4.29)

where the limit is taken with L
n = µ held constant and Pe(·) is defined in (4.25).

Proof. 1) We first prove that the sequence {ψt}t≥0 is non-increasing and converges to the fixed

point ψFP defined in (4.28). Then the result that {τ t}t≥0 is non-increasing and converges to

τFP = σ2 + µψFP immediately follows since τ t = σ2 + µψt (an increasing function of ψt).

Let us consider the state evolution (4.18) as a single recursion:

ψt+1 = mmse((σ2 + µψt)−1). (4.30)

Starting from ψ0 = E‖Xsec‖2 = E, we have that

ψ1 = mmse((σ2 + µE)−1) ≤ E = ψ0, (4.31)

where the inequality is because the trivial all zero estimate of a random section Xsec achieves

an expected squared error of E. The mmse function defined in (4.9) is a non-increasing function

of its argument snr — this has been rigorously shown in [140, 163]. Since its argument snr =

(σ2 + µψt)−1 is decreasing in ψt, the mmse function is non-decreasing in ψt. Therefore, if

ψt ≤ ψt−1, then

ψt+1 = mmse((σ2 + µψt)−1) ≤ mmse((σ2 + µψt−1)−1) = ψt,

which together with (4.31) shows that the sequence {ψt}t≥0 is non-increasing. Moreover, if
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ψt ≥ ψFP, then ψt+1 ≥ ψFP. Indeed, for any ψt ≥ ψFP,

ψt+1 = mmse((σ2 + µψt)−1) ≥ mmse((σ2 + µψFP)−1) = ψFP.

Since {ψt}t≥0 is a non-increasing sequence bounded below by ψFP (noting that ψ0 ≥ ψFP), we

conclude that it converges to ψFP.

To show that the fixed points of the state evolution correspond to the stationary points of

the potential function F(µ, σ2, ψ) defined in (4.20), we compute the derivative:

∂F(µ, σ2, ψ)

∂ψ
=
∂τ−1

∂ψ

∂

∂τ−1
I(Xsec;Xsec +

√
τZ) +

∂

∂ψ

1

2µ

[
ln
(

1 +
µψ

σ2

)
− µψ

σ2 + µψ

]

=
−µ

(σ2 + µψ)2

1

2
mmse(1/τ) +

µψ

2(σ2 + µψ)2

=
µ

2(σ2 + µψ)2

[
ψ −mmse

(
1

σ2 + µψ

)]
,

where the equalities are obtained using τ = σ2 + µψ and the vector I-MMSE relationship [85,

Thm. 2]. Therefore, since σ2 > 0 and µ > 0, we have that ∂F(µ, σ2, ψ)/∂ψ = 0 corresponds to

ψ = mmse((σ2 + µψ)−1), which is the fixed point of the iteration (4.30).

2) We now prove (4.29). For ` ∈ [L], we denote by a` ∈ RB the `-th section of a vector

a ∈ RLB. Consider the input to the AMP hard-decision step in iteration t+ 1, which we denote

by st = xt +A∗zt ∈ RLB (see (4.14), (4.17)). The MAP estimator x̂t+1
` = x̂t+1

` (st`) in (4.14)

partitions the space RB into decision regions. For each x` in the support of pXsec , the decision

region is

D(x`) :=
{
st` : x̂t+1

` (st`) = x`
}
. (4.32)

Note that 1{x̂t+1
` (st`) = x`} = 1{st` ∈ D(x`)}.

The distance between a vector v ∈ RB and a set B ⊂ RB is denoted by d(v,B) := inf{‖v −
u‖2 : u ∈ B}. For any ε > 0, define the ψε,+, ψε,− : RB × RB → R as follows:

ψε,+(x`, s
t
`) =





1, st` ∈ D(x`),

0, d(st`,D(x`)) > ε,

1− d(st`,D(x`))/ε, otherwise,

(4.33)

ψε,−(x`, s
t
`) =





1, d(st`,D(x`)
c) > ε,

0, st` ∈ D(x`)
c,

d(st`,D(x`)
c)/ε, otherwise.

(4.34)
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We note that ψε,+, ψε,− are Lipschitz-continuous (with Lipschitz constant 1/ε), and

ψε,−(x`, s
t
`) ≤ 1{st` ∈ D(x`)} ≤ ψε,+(x`, s

t
`),

and thus

1

L

L∑

`=1

ψε,−(x`, s
t
`) ≤

1

L

L∑

`=1

1{x̂t+1
` (st`) = x`} ≤

1

L

L∑

`=1

ψε,+(x`, s
t
`). (4.35)

The results in [76] and [1,57] imply that for any pseudo-Lipschitz function ψ : RB×RB → R,

the following holds almost surely:

lim
L→∞

1

L

L∑

`=1

ψ(x`, s
t
`) = E{ψ(Xsec, Sτ t)}, (4.36)

where Xsec ∼ pXsec and Sτ t is given by (4.19). This result was proved in [76] for the case B = 1,

and extended in [1, 57] to the setting of sparse regression codes where the specific distribution

pXsec given in Example 4.1.1 (corresponding to random codebooks) is used. The proof for more

general discrete distributions is essentially the same. In (4.36) and in the equations below,

L/n = µ as L→∞.

Applying (4.36) to the Lipschitz continuous functions ψε,+ and ψε,−, we obtain:

lim
L→∞

1

L

L∑

`

ψε,+(x`, s
t
`) = E{ψε,+(Xsec, Sτ t)} a.s.

lim
L→∞

1

L

L∑

`

ψε,−(x`, s
t
`) = E{ψε,−(Xsec, Sτ t)} a.s.

(4.37)

Since ε > 0 is arbitrary, from (4.35) and (4.37), we almost surely have

lim
ε→0

E{ψε,−(Xsec, Sτ t)} ≤ lim inf
L→∞

1

L

L∑

`=1

1{x̂t+1
` (st`) = x`}

≤ lim sup
L→∞

1

L

L∑

`=1

1{x̂t+1
` (st`) = x`} ≤ lim

ε→0
E{ψε,+(Xsec, Sτ t)}.

(4.38)

By the monotone convergence theorem, we have

lim
ε→0

E{ψε,−(Xsec, Sτ t)} = P(Sτ t ∈ D(Xsec)) = 1− Pe(τ t),

lim
ε→0

E{ψε,+(Xsec, Sτ t)} = P(Sτ t ∈ D(Xsec)) = 1− Pe(τ t).
(4.39)
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This completes the proof that

lim
L→∞

1

L

L∑

`=1

1{x̂t+1
` (st`) 6= x`} = Pe(τ

t). (4.40)

Remark 4.2.1 (Related work). In [36, Sec. IV.C], the authors analyse the error performance

of an AMP decoder to obtain an achievability bound on the minimum Eb/N0 required for

reliable communication in quasi-static fading MACs in the asymptotic regime considered in this

chapter. The essence of their AMP analysis is similar to that of Theorem 4: they analyse the

error performance of an AMP decoder for i.i.d. (complex) Gaussian design matrices via the fixed

points of its state evolution. However, the AMP decoder (and state evolution) used in their

work differs from the one we analyse in Theorem 4. Their analysis provides a bound on the

achievability of their AMP decoder, whereas Theorem 4 provides the exact achievability of our

AMP decoder. Furthermore, their bound can be numerically evaluated for large B (the section

size), whereas the result in Theorem 4 is too computationally expensive to numerically evaluate

at large B. (In our work, computing the fixed point of the state evolution or the stationary

point of the potential function each require a B-dimensional integral.)

Remark 4.2.2. Consider the setting of Theorem 4 and the (high-dimensional) MAP decoder

for the linear model (4.2), denoted by x̂MAP. The (non-rigorous) replica analysis in [164–166]

shows that the asymptotic user error rate of x̂MAP can be analysed in terms of probability

of decoding error in the single-section Gaussian channel (4.19). Specifically, when M(µ, σ2)

defined in (4.22) is a singleton,

lim
L→∞

1

L

L∑

`=1

1{x̂MAP
` 6= x`} = Pe(τ

∗), (4.41)

where the limit is taken with L
n = µ held constant and

τ∗ = σ2 + µM(µ, σ2). (4.42)

In this setting, and when the sections of the message vector x are i.i.d. ∼ p1 (which corre-

sponds to coding with random codebooks), the MAP decoder is the (joint) ML decoder which

was analysed in [32, 33]. Therefore, while [32, 33] provided bounds on the asymptotic achiev-

able region of i.i.d. Gaussian codebooks with ML decoding, equation (4.41) provides the exact

asymptotic achievable region.2

2A similar result to (4.41) has been rigorously proven for the (high-dimensional) MMSE decoder for the linear
model (4.2), denoted by x̂MMSE: under the same condition on M(µ, σ2), we have limL→∞

1
L
‖x̂MMSE

` − x`‖2 =
M(µ, σ2). This result was proved for the B = 1 case (x having i.i.d. entries) in both [84] and [74]. It was
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Figure 4.2: The potential function F as a function of the normalised MSE at several signal-to-noise
ratios Eb/N0, when the user density µ = 2, user payload = 1 bit, and Xsec ∼ p1 (Example 4.1.1). The
solid coloured circles represent the local and global minima of the potential function.

Example 4.2.1. In Fig. 4.2, we show some examples of the potential function F defined in

(4.20) when Xsec ∼ p1. Instead of considering the potential function as a function of σ2

and ψ, we consider it being a function of their normalised forms: σ2

E and ψ
E . This allows

us to understand the potential function as a function of Eb
N0

since σ2

E = (2EbN0
log2B)−1. The

corresponding potential function is as follows,

F
(
µ,
σ2

E
,
ψ

E

)
= I(Xsec;Sτ ) +

1

2µ

[
ln
(

1 +
µ(ψ/E)

σ2/E

)
− µ(ψ/E)

(σ2/E) + µ(ψ/E)

]
, (4.43)

where the mutual information term is given in (4.21), which is a function of τ
E = σ2

E + µψE . In

Fig. 4.2, the potential function is shown as a function of ψ
E when B = 2, µ = 2.0, and Eb

N0
takes

on a few different values. Numerical integration is used to evaluate the expectation term in

(4.21).

Starting from the smallest signal-to-noise ratio Eb
N0

= 8.0 dB (blue), the potential function

has a unique minimum (stationary point) with corresponding normalised MSE (NMSE) greater

than 10−1. Let us denote this NMSE by ψ∗

E . From Theorem 4 and Remark 4.2.2, both the

AMP and MAP decoder achieve the same asymptotic UER of Pe(τ
∗), where τ∗

E = σ2

E +µψ
∗

E and

Pe is defined in (4.26) for Xsec ∼ p1. At Eb
N0

= 9.1 dB, there are two minima, one global and

one local. Since the global minimum and largest stationary point coincide (with corresponding

mentioned in [84] that the result would hold for general B ≥ 1 if the MSE of the AMP decoder for spatially
coupled design matrices can be shown to concentrate around their corresponding state evolution prediction for
B ≥ 1. Such a concentration result has since been shown in [1] for the specific distribution of pXsec in Example
4.1.1. The proof for more general discrete priors is essentially the same.
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NMSE > 10−1), the AMP and MAP decoder again achieve the same asymptotic UER. At
Eb
N0

= 10.06 dB, there are two minima with the same potential function value. Hence, the

minimiser of the potential function is not unique. The minima at higher NMSE, which is

also the largest stationary point, can be used to calculate the asymptotic UER of the AMP

decoder (Theorem 4). For Eb
N0

between 10.06 dB and 15.8 dB (e.g. Eb
N0

= 12.0 dB), the potential

function has two minima, the global minima at low NMSE and the local minima (also the largest

stationary point) at high NMSE. The low and high NMSE value can be used to calculate the

asymptotic UER achieved by the MAP and AMP decoder, respectively. For Eb
N0
≥ 15.8 dB, there

one global minimum at low NMSE (< 10−5), which can be used to calculate to the asymptotic

UER achieved by both MAP and AMP decoders.

4.2.3 Spatially coupled Gaussian matrices

Theorem 5 (Spatially coupled Gaussian matrices with AMP decoding). Consider the linear

model (4.2) with a spatially coupled design matrix A constructed using an (ω,Λ, ρ) base matrix,

and the L sections of the message vector x i.i.d. ∼ pXsec. Let x̂t be the AMP hard-decision

estimate of x after iteration t, and recall that τ t ∈ RC is an output of the state evolution

(4.7)–(4.8) and C = Λ in this setting.

1) For any (ω,Λ, ρ) base matrix, each entry of τ t ∈ RC is non-increasing in t, and the c-th

entry converges to a fixed point, denoted by τSC-FP
c , for c ∈ [C].

2) For any ε > 0, there are constants ω0 <∞, Λ0 <∞ and ρ0 > 0 such that, for all ω > ω0,

Λ > Λ0 and 0 ≤ ρ < ρ0, the fixed points {τSC-FP
c }c∈[C] satisfy

max
c∈[C]

τSC-FP
c ≤ τϑ := σ2 + ϑµ(maxM(ϑµ, σ2) + ε), (4.44)

where ϑ = 1 + (ω − 1)/Λ, and the set of potential function minimisers M(ϑµ, σ2) is defined in

(4.22).

3) Fix base matrix parameters ω > ω0, Λ > Λ0, and 0 < ρ < ρ0. Fix δ > 0, and let T denote

the first iteration for which maxc τ
t
c ≤ τSC-FP

c + δ. Then the user error rate of the AMP decoder

after T + 1 iterations satisfies

lim
L→∞

1

L

L∑

`=1

1
{
x̂T+1
` 6= x`

} a.s.
=

1

C

C∑

c=1

Pe(τ
T
c ) ≤ Pe(τϑ + δ), (4.45)

where the limit is taken with L
n = µ held constant.

Remark 4.2.3 (Threshold saturation). Theorem 5 shows that the asymptotic user error rate

achievable with a suitable spatially coupled Gaussian matrix and AMP decoding is bounded by

Pe(τϑ + δ). If Λ � ω, we have ϑ → 1. Therefore, if M(µ, σ2) defined in (4.22) is a singleton,
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(noting that ε in (4.44) can be arbitrarily small) we have

lim
ω→∞

lim
Λ→∞

τϑ → τ∗, (4.46)

where τ∗ is defined in (4.42). Therefore, in the limit described in (4.46), the asymptotic UER of

the spatially coupled scheme with AMP decoding is bounded by Pe(τ
∗+ δ) for any fixed δ > 0.

This matches the (predicted) asymptotic UER achieved by i.i.d. Gaussian matrices and MAP

decoding (Remark 4.2.2).

This phenomenon, where the performance of message passing decoding in a spatially coupled

system matches the MAP (or MMSE) decoding performance in the corresponding uncoupled

system, has been shown in other applications and is known as threshold saturation [14, 15, 83,

134,139,140].

Proof of Theorem 5. 1) Consider the spatially coupled state evolution (4.7)–(4.8) as a single

line recursion in the vector γt ∈ RR: for t ≥ 0 and r ∈ [R],

γt+1
r =

C∑

c=1

Wrcmmse

( R∑

r′=1

Wr′c
1

σ2 + µinnerγtr′

)
. (4.47)

For any base matrix W with non-negative entries (which includes (ω,Λ, ρ) base matrices), the

result in [140, Cor. 4.3] shows that each entry of γt is non-increasing in t and converges to a fixed

point; we denote these fixed points by {γSC-FP
r }r∈[R]. Since the entries of the state evolution

parameter τ t are non-decreasing in {γtr}r∈[R]:

τ tc =

[
R∑

r=1

Wrc

σ2 + µinnerγtr

]−1

, for c ∈ [C], (4.48)

we conclude that each entry of τ t is also non-increasing in t and converges to a fixed point;

these fixed points are denoted {τSC-FP
c }c∈[C]. The arguments used in [140, Cor. 4.3] are similar

to those used in the proof of Theorem 4 to show that the uncoupled state evolution parameters

converge to fixed points.

2) The result (4.44) is obtained by using the results in [83] on the fixed points of general

coupled recursions. We now describe the steps we take to apply the results in [83]. The

uncoupled state evolution (4.18) can be written as a single line recursion:

ψt+1 = mmse

(
1

σ2 + µψt

)
. (4.49)

The uncoupled recursion in (4.49) and the coupled recursion in (4.47) correspond exactly to [83,

Eqs. (27)–(28)] when µ of the uncoupled system is equal to µinner of the spatially coupled system

and W is an (ω,Λ, ρ = 0) base matrix. (We will discuss the implications of ρ being a small
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positive constant later.) Using the same arguments as in [83, Sec. VI.E], and using the vector

I-MMSE relationship [85, Thm. 2], we obtain the following result by applying [83, Thms. 1 and

2].

For ρ = 0 and any ε > 0, there is an ω0 < ∞ and Λ0 < ∞ such that, for all ω > ω0 and

Λ > Λ0, the fixed point of (4.47) satisfies

minM1(µinner, σ
2)− ε ≤ max

r∈[R]
γSC-FP
r ≤ maxM1(µinner, σ

2) + ε, (4.50)

where

M1(µ, σ2) =

{
arg min
ψ∈[0,E]

F1(µ, σ2, ψ)

}
, (4.51)

F1(µ, σ2, ψ) = 2

(
I

(
Xsec;

√
1

σ2 + µψ
Xsec +Z

)
− I
(
Xsec;

√
1

σ2
Xsec +Z

)

+
1

2µ

[
ln
(

1 +
µψ

σ2

)
− µψ

σ2 + µψ

])
, (4.52)

and where Xsec ∼ pXsec and Z ∈ RB is a standard Gaussian vector independent of Xsec.

Since F1(µ, σ2, ψ) and the potential function F(µ, σ2, ψ) defined in (4.20) are equivalent after

removing constant scaling factors and terms that don’t depend on ψ, their minimisers with

respect to ψ are identical. Therefore, we can write (4.50) as

minM(µinner, σ
2)− ε ≤ max

r∈[R]
γSC-FP
r ≤ maxM(µinner, σ

2) + ε, (4.53)

where M(µ, σ2) is the set of minimisers of F(µ, σ2, ψ) defined in (4.22).

Now we consider the effect of ρ being a small positive constant on the fixed point of the state

evolution. We study this scenario as ρ needs to be lower bounded by a strictly positive constant

for the AMP concentration result in (4.45) to hold. First, the mmse(snr) function defined in

(4.9) is a smooth function of snr on (0,∞) [163, Prop. 7]. Therefore, the right-hand-side of (4.47)

is a smooth function of the entries of W . Hence, the fixed point of the state evolution recursion

(4.47) is a smooth function of ρ. For ρ ≥ 0, denoting this fixed point by {γSC-FP
r (ρ)}r∈[R], and

letting

∆(ρ) := max
r∈[R]

∣∣γSC-FP
r (ρ) − γSC-FP

r (0)
∣∣ ,

we have ∆(ρ) → 0 as ρ → 0. Consequently, the result for (ω,Λ, ρ = 0) base matrices in (4.53)

holds for (ω,Λ, ρ > 0) base matrices with the deviation ε replaced by the slightly larger value

ε + ∆(ρ). Equivalently, since ε > 0 is arbitrary and ∆(ρ) is a smooth function with ∆(0) = 0,

there exists a ρ0 > 0 such that, for all ρ < ρ0, the result (4.53) holds for (ω,Λ, ρ > 0) base

matrices.
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We now obtain (4.44) using (4.53). For c ∈ [C], we have

τSC-FP
c =

[
R∑

r=1

Wrc

σ2 + µinnerγSC-FP
r

]−1

≤
[ ∑R

r=1Wrc

σ2 + µinner maxr′∈[R] γ
SC-FP
r′

]−1

≤ σ2 + µinner(maxM(µinner, σ
2) + ε),

where the last inequality is obtained using the
∑R

r=1Wrc = 1 constraint on base matrices, and

the upper bound in (4.53). The result (4.44) follows by recalling from (4.5) that µinner = ϑµ,

where ϑ = 1 + (ω − 1)/Λ.

3) We now prove (4.45). Consider the input to the AMP hard-decision step in iteration

t+ 1, which we denote by st = xt + (Q̃
t �A)∗zt (see (4.6), (4.14)). For ` ∈ [L], we denote by

a` ∈ RB the `-th section of a vector a ∈ RLB.

The results in [100] and [1] imply that for any pseudo-Lipschitz function ψ : RB ×RB → R,

the following holds almost surely:

lim
L→∞

1

L

L∑

`=1

ψ
(
x`, s

t
`

)
=

1

C

C∑

c=1

E
{
ψ
(
Xsec, Sτ tc

)}
, (4.54)

where the limit is taken with L/n = µ held constant, Xsec ∼ pXsec and Sτ tc is given by (4.19).

This result was proved in [100] for B = 1, and extended in [1] to the setting of sparse regression

codes where the specific distribution pXsec given in Example 4.1.1 (corresponding to random

codebooks) is used. The proof for more general discrete distributions is essentially the same.

Then, following the same steps as (4.32)–(4.39) (using (4.54) instead of (4.36) in (4.37))

gives the desired result.

4.2.4 Numerical results

Theorems 4 and 5 give us the asymptotic UER achieved by the AMP decoder when i.i.d. and

spatially coupled Gaussian design matrices are used. These results are given in terms of the

largest stationary point and (global) minimum of the potential function defined in (4.20). In

this section we numerically evaluate these results for certain system parameter choices.

Asymptotic UER heat map for 1 bit user payload

Fig. 4.3 plots the asymptotic UERs achieved by AMP decoding with i.i.d. and spatially coupled

Gaussian design matrices as the user density µ and signal-to-noise ratio Eb/N0 is varied. We

consider the setup where each user transmits a payload of 1 bit using a codebook with B = 2

Gaussian codewords (see Example 4.1.1).

Specifically, for each (Eb/N0, µ) point on a 2D grid, we calculate σ2/E = (2EbN0
log2B)−1

and evaluate the potential function in (4.43) for a list of ψ/E values, using the first expression
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(a) Spatially coupled Gaussian matrices with AMP decoding
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(b) I.I.D. Gaussian matrices with AMP decoding

Figure 4.3: Heat maps of the asymptotic UER achieved by AMP decoding and either i.i.d. or spatially
coupled Gaussian design matrices. The user payload is 1 bit and users encode their information using
random codebooks defined by the design matrix.

in (4.21) for the mutual information term.3 We find the ψ/E values at the global minimum

and largest stationary point and use them to calculate τ/E = σ2/E + ψ/E, which is then

used to calculate the UER using the first expression in (4.26). Recall that the global minimum

corresponds to the asymptotic UER achieved by spatially coupled matrices and AMP decoding

in the limit of large coupling parameters described in Remark 4.2.3, and the largest stationary

corresponds to that achieved by i.i.d. matrices and AMP decoding. The colour of each grid

point in Fig. 4.3 represents the UER value.

In Fig. 4.3, we first observe that the asymptotic UER achieved using both i.i.d. and spatially

coupled Gaussian matrices are exactly the same for user densities µ < 2.0. When both µ and Eb
N0

are large (top right section of the figures), using spatially coupled matrices achieves lower UER.

Looking at the asymptotic UER heat map of spatially coupled matrices with AMP decoding

(Fig. 4.3a), we make the following observations:

1. Fix µ and increase Eb/N0; the UER decreases as expected. However, the decrease in UER

is more gradual at low user densities, whereas at high user densities the UER undergoes

a sharp step drop: the UER is high (> 10−1) for all values of Eb/N0 below a certain

threshold and then suddenly drops to a low value (< 10−3) once Eb/N0 exceeds that

threshold.

3The expectation term in the potential function can be evaluated using either numerical integration or Monte
Carlo methods.
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2. Fix Eb/N0 and increase µ; the UER increases as expected. However, the increase in UER is

more gradual at low Eb/N0, and at high Eb/N0 the UER undergoes a sharp step increase:

the UER is low (< 10−3) and roughly constant for all values of µ below a certain threshold

and then suddenly increases to a large value (> 10−1) once µ exceeds that threshold.

3. Consider the contour lines of constant UERs (dotted lines). At high UER (10−1–10−2),

as the user density µ increases, the signal-to-noise ratio Eb/N0 also needs to increase to

keep the UER constant, which is expected. However, at low UER (≤ 10−4), as the user

density µ increases, Eb/N0 may not need to increase to keep the UER constant, it depends

on whether the user density is larger than a certain threshold.

Asymptotic achievable region for fixed payload and target UER

Fig. 4.4 plots the asymptotic achievable region of AMP decoding with i.i.d. and spatially coupled

Gaussian codebooks, i.e., when the design matrixA is either i.i.d. or spatially coupled Gaussian,

and the sections of the message vector x are drawn i.i.d. from p1. Specifically, for a list of user

densities µ, we plot the minimum Eb/N0 required by the coding schemes to achieve a UER of

less than 10−3, when the user payload is 2 or 8 bits.

The asymptotic achievable region of the i.i.d. coding scheme is given by Theorem 4 (solid

blue lines), and that of spatially coupled coding scheme given by Theorem 5 and Remark

4.2.3 (solid green lines). We observe that the asymptotic achievable region of spatially coupled

Gaussian codebooks with efficient AMP decoding is strictly larger than the achievability bound

in [33] (black lines), which is based on i.i.d. Gaussian codebooks and ML decoding. Moreover,

in Fig. 4.4b where the user payload is 8 bits, it nearly matches the converse bound (red line)

for µ ≥ 0.2. We observe that gaps between the bounds (converse, achievability, and asymptotic

SC + AMP) are much wider when the user payload is 2 bits compared to 8 bits.

At low user densities (µ ≤ 0.80 in Fig. 4.4a and µ ≤ 0.15 in Fig. 4.4b), we observe that

the minimum Eb/N0 required by the i.i.d. and spatially coupled coding schemes is the same.

However, the gap between the achievable regions of the two schemes increases sharply for larger

µ. Furthermore, the shape of the solid blue curve suggests that it might be impossible to achieve

UER ≤ 10−3 with i.i.d. Gaussian codebooks and AMP decoding above a certain user density

(µ ≈ 1.0 in Fig. 4.4a and µ ≈ 0.2 in Fig. 4.4b).

We also show the simulated performance of the i.i.d. and spatially coupled coding schemes

at 500 and 5000 users, respectively (dotted lines with crosses). For a list of user densities µ, the

crosses show the minimum Eb/N0 at which the coding scheme achieves an average UER less

than 10−3 (averaged over many independent trials). Discrete cosine transform (DCT) based

design matrices were used to reduce decoding complexity and memory usage (see Section 2.5.1

for more details). The error rates obtained using DCT and Gaussian matrices are similar for

large matrix sizes. The simulations for the spatially coupled coding scheme used (ω, Λ = 50,
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(a) 2 bits (B = 22)
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(b) 8 bits (B = 28)

Figure 4.4: Achievable regions for massive multiple access at a user payload of 2 bits and 8 bits, when
the maximum tolerated UER is 10−3. Users encode their information using random codebooks defined
by the design matrix.

ρ = 0) base matrices. The coupling width ω was optimised for each user density µ (see Table

4.1).4

4When spatially coupled design matrices are used, the actual user density differs slightly from the design user
density µ (which we plot) because a rounding procedure is carried out to ensure that the design matrix is split
into blocks with an integer number of rows and columns. For example, at user density µ = 1.0, L = 5000 users,
coupling length Λ = 50 and coupling width ω = 5, the codelength is n = 5000 and the base matrix has R = 54
rows and C = 50 columns. Therefore, each block of the design matrix has 5000/54 = 92.59 ≈ 93 rows and
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Table 4.1: Optimised coupling width values used in Figs. 4.4a and 4.4b.

Fig. 4.4a Fig. 4.4b

µ 0.9 1.00 1.1 1.2 1.3 0.15 0.20 0.25 0.30 0.33

ω 5 5 6 6 7 5 5 6 11 14

We observe that for both i.i.d. and spatially coupled coding schemes, the finite user and

asymptotic curves match at low user densities. For the i.i.d. coding scheme (blue), although

a gap between the two curves appears above a certain user density threshold (µ = 0.5 in Fig.

4.4a and µ = 0.13 in Fig. 4.4b), their overall shape remains similar. For the spatially coupled

scheme (green), the gap between the two curves appears above a user density threshold slightly

higher than that of the i.i.d. coding scheme, and increases with µ. This gap is a finite length

effect, due to the relatively small values of base matrix parameters.

Table 4.1 shows the values of the optimised coupling widths ω used in Figs. 4.4a and 4.4b,

for user densities above the threshold at which the spatially coupled coding scheme has an

advantage over the i.i.d. coding scheme. At user densities lower than this threshold, a range of

coupling widths (including the uncoupled case ω = 1) achieve similar UERs. We see that the

optimal coupling width increases with the user density.

In Fig. 4.4, we also plot the asymptotic achievable region of the coding scheme based on

random code-division multiple access (CDMA) with binary phase shift keying (BPSK) modula-

tion and MAP decoding for comparison (solid orange lines). Recall that this encoding scheme

corresponds to a random linear system (4.2) with an i.i.d. Gaussian design matrix and a message

vector with i.i.d. entires drawn uniformly from {±
√
E} (see Example 4.1.2). The asymptotic

achievable region of the MAP decoder is predicted using the result from the replica analysis

(see Remark 4.2.2). Since each user can only encode 1 bit per n transmissions in this coding

scheme, encoding 2 bits and 8 bits would require 2n and 8n transmissions, which corresponds

to a reduction in the user density µ = L/n by factors of 2 and 8, respectively.

The effect of modulation In Fig. 4.5, we investigate how the achievable region changes

when modulation is introduced to the encoding process. We consider encoding with Gaussian

codebooks and binary modulation, i.e., in addition to encoding log2B bits in the choice of

one-of-B Gaussian codewords, an additional bit is encoded in the sign of the chosen codeword

(see Example 4.1.2).

In Fig. 4.5 we plot the asymptotic achievable region when the user payloads is 2 bits and

the maximum tolerated UER is 10−3 (same as in Fig. 4.4a). The unmodulated scheme (B = 4,

K = 1) will encode 2 bits by choosing one of B = 4 codewords, whereas the binary modulated

scheme (B = 2, K = 2) would encode 2 bits by using 1 bit to choose one of B = 2 codewords

and the other bit to choose one of K = 2 signs.

5000/50 = 100 columns, and the actual user density is 5000/(93× 54) ≈ 0.9956.
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(a) I.I.D. design matrix + AMP
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(b) Spatially coupled design matrix + AMP

Figure 4.5: Achievable regions for massive multiple access at a user payload of 2 bits, when the maximum
tolerated UER is 10−3. The K = 1 case corresponds to encoding with random codebooks (defined by
the design matrix) and the K = 2 case corresponds to encoding with random codebooks and binary
modulation.

In Figs. 4.5a and 4.5b, both the asymptotic and finite user achievability region of the binary

modulated scheme (green lines) are noticeably larger than that of the unmodulated scheme (blue

lines), for both i.i.d. and spatially coupled design matrices. We did not plot the achievable region

of the binary modulated scheme when the user payload is 8 bits because its difference with the
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unmodulated scheme (Fig. 4.4b) is less than 0.1 dBs at all user densities.

In Fig. 4.5b, the spatially coupled design matrices used in finite user simulations were con-

structed using (ω, Λ = 50, ρ = 0) base matrices. The optimal coupling width for both the

binary modulated and unmodulated schemes is the same at each user density (see Table 4.1).

(The optimal coupling width for the binary modulated scheme at µ = 1.4 is 9 — it continues

to increase with the user density.)

4.3 Large user payloads

When coding with random codebooks, i.e., when the sections of x are drawn i.i.d. from p1,

the section size B increases exponentially with the user payload (log2B bits). For large B

it is infeasible to evaluate the potential function (4.20), and the potential function is needed

to compute the asymptotic UER bounds in Theorems 4 and 5 (see (4.29) and (4.45)). In

this section we bound the asymptotic UER achieved by i.i.d. and spatially coupled Gaussian

codebooks with AMP decoding, when the user payload is large. Both results (Theorems 6 and

7) utilise the following Lemma.

Lemma 4.3.1 (Asymptotic UER bound). Consider the setting of either Theorem 4 or 5, and

take the distribution pXsec to be p1. Let x̂t be the AMP hard-decision estimate of x after iteration

t, and recall that ψt ∈ RC is an output of the state evolution (4.7)–(4.8). Then we have that

the following limit exists almost surely and satisfies:

1

2C

C∑

c=1

ψtc
E
≤ lim

L→∞

1

L

L∑

`=1

1
{
x̂t` 6= x`

}
≤ 4

C

C∑

c=1

ψtc
E
, (4.55)

where the limit is taken with L
n = µ held constant. Recall that C = 1 when the design matrix A

has i.i.d. Gaussian entries N (0, 1
n).

Proof. The existence of the limit in (4.55) is shown in Theorems 4 and 5. For ` ∈ [L], we denote

by a` ∈ RB the `-th section of a vector a ∈ RLB. Let xt+1 be the AMP estimate of x after

iteration t+ 1 (defined in (4.13)).

It was proved in [1, Thm. 2] that the MSE of the AMP decoder after iteration t ≥ 0 converges

almost surely to the following limit:

lim
L→∞

‖xt+1 − x‖2
L

=
1

C

C∑

c=1

ψt+1
c =

1

C

C∑

c=1

E
{∥∥Xsec − E[Xsec |Xsec +

√
τ tc Z]

∥∥2
}
, (4.56)

where Xsec ∼ pXsec and Z is a standard Gaussian vector independent of Xsec. The last equality

in (4.56) follows from the definition of ψtc in (4.8)–(4.9). Moreover, using the result (4.45) (noting
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that the first equality in (4.45) holds for t ≥ 0), we have

lim
L→∞

1

L

L∑

`=1

1
{
x̂t+1
` 6= x`

}
=

1

C

C∑

c=1

Pe(τ
t
c) =

1

C

C∑

c=1

E
[
1

{
Xsec 6= X̂(Xsec +

√
τ tcZ)

}]

=
1

2E

1

C

C∑

c=1

E
[
‖Xsec − X̂(Xsec +

√
τ tcZ)‖2

]
.

(4.57)

Here X̂(·) is the MAP estimator of Xsec, i.e.,

X̂(s) = arg max
x′

P
(
Xsec = x′ |Xsec +

√
τ tc Z = s

)
.

The second equality in (4.57) follows from (4.25), noting that Pe(τ
t
c) = P(Xsec 6= X̂(Xsec +√

τ tcZ)). The third equality is obtained by noticing that for Xsec ∼ p1, the squared error of

the MAP estimator X̂(s) (defined in (4.15)) satisfies

‖X̂(s)−Xsec‖2 = 2E 1
{
X̂(s) 6= Xsec

}
. (4.58)

Among estimators of Xsec from S = Xsec +
√
τ tc Z, the expected squared loss is minimised

by the conditional expectation. Therefore, for c ∈ [C],

E
{∥∥Xsec − E[Xsec |Xsec +

√
τ tc Z]

∥∥2} ≤ E
{
‖Xsec − X̂(Xsec +

√
τ tcZ)‖2

}
. (4.59)

Using (4.59) to compare the limits in (4.56) and (4.57), we obtain first inequality in (4.55).

To prove the second inequality in (4.55), we first notice that for the prior p1, the hard-

decision estimator x̂t+1
` defined in (4.15) can equivalently be written as follows. For j ∈ sec(`):

x̂t+1
j =





√
E if xt+1

j > xt+1
i for all i ∈ sec(`)\j,

0 otherwise.
(4.60)

Here xt+1 is the AMP estimate computed according to (4.6) and (4.13).

Let j∗ ∈ sec(`) denote the index of the unique non-zero entry of x in section ` ∈ [L], i.e.,

xj∗ =
√
E. From (4.13), we note that the sum of the entries in each section of xt+1 equals√

E. The decision rule (4.60) then implies that xt+1
j∗ is less than or equal to

√
E/2 whenever

x̂t+1
` 6= x`. Therefore,

x̂t+1
` 6= x` implies ‖xt+1

` − x`‖2 ≥ E/4. (4.61)
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Therefore,

1

L

L∑

`=1

1{x̂t+1
` 6= x`} ≤

1

L

L∑

`=1

4‖xt+1
` − x`‖2
E

. (4.62)

Combining (4.62) with (4.56) yields the second inequality in (4.55).

4.3.1 I.I.D. Gaussian codebooks

Theorem 6 (AMP decoding of i.i.d. Gaussian codebooks at large user payloads). Consider

the setting of Theorem 4 and take the distribution pXsec to be p1. The user error rate of the

AMP decoder after its first iteration exhibits the following phase transition for sufficiently large

payloads of log2B bits.

1) For any δ ∈ (0, 1
2), let fB,δ := B−kδ

2

δ
√

lnB
where k is a positive constant. If

µ log2B <
1

2

(
1

(1 + δ
2) ln 2

− 1

Eb/N0

)
, (4.63)

then limL→∞
1
L

∑L
`=1 1

{
x̂1
` 6= x`

}
≤ fB,δ.

2) For any δ̃ ∈ (0, 1), let gB,δ̃ := B−k1δ̃2
where k1 is a positive constant. If

µ log2B >
1

2(1− gB,δ̃)

(
1

(1− δ̃
2) ln 2

− 1

Eb/N0

)
, (4.64)

then limL→∞
1
L

∑L
`=1 1

{
x̂t` 6= x`

}
≥ (1− gB,δ̃)/2 for all t ≥ 1.

In both statements, the limits exist and are taken with L
n = µ held constant.

Proof. From Lemma 4.3.1, we know that the asymptotic UER after each iteration t ≥ 1 satisfies

ψt

2E
≤ lim

L→∞

1

L

L∑

`=1

1
{
x̂t` 6= x`

}
≤ 4ψt

E
, (4.65)

where ψt is the output of the state evolution (4.18) after the t-th iteration.

Using state evolution variables τ t and ψt defined in (4.18), let

νt :=
E

τ t lnB
=

E

(σ2 + µψt) lnB
. (4.66)

From [1, Lem. 4.1] we know that for sufficiently large B and any δ ∈ (0, 1
2), δ̃ ∈ (0, 1), we have

(1− gB,δ̃)1{νt < 2− δ̃} < ψt+1

E
≤ 1− (1− fB,δ)1{νt > 2 + δ}, (4.67)

where gB,δ̃, fB,δ are defined in the theorem statement. Using (4.66) in (4.67) and recalling that
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E = Eb log2B, σ2 = N0/2, we obtain

ψt+1

E





≤ fB,δ if ψt

E <
2

2+δ
− ln 2
Eb/N0

2µ lnB ,

> (1− gB,δ̃) if ψt

E >
2

2−δ̃
− ln 2
Eb/N0

2µ lnB .

(4.68)

We obtain the first part of the theorem by substituting the initial condition ψ0 = E into

the first condition in (4.68), and using a different positive constant in the definition of fB,δ to

account for the factor of 4 in the upper bound in (4.65).

We prove the second statement of the theorem by showing that under (4.64), ψ
t

E > (1−gB,δ̃)
for all t ≥ 1. Combining this with the lower bound in (4.65) then yields the required result.

Noting that ψ0/E = 1, assume towards induction that ψt

E > (1−gB,δ̃) for some t ≥ 0. Then,

from (4.66) we have

νt <
1

(σ2/E + µ(1− gB,δ̃)) lnB
=

1

ln 2/(2Eb/N0) + µ log2B(1− gB,δ̃) ln 2
. (4.69)

Therefore a sufficient condition for νt < (2− δ̃) is

(
N0

2Eb
+ µ log2B(1− gB,δ̃)

)
ln 2 >

1

2− δ̃
. (4.70)

Rearranging, we obtain the condition in (4.64). From (4.67) we see that under this condition,

ψt+1/E > (1−gB,δ̃). This completes the proof of the induction step, and hence the theorem.

Remark 4.3.1. From (4.63) and (4.64), we see that for any fixed values of µ and Eb/N0, the

asymptotic UER of AMP decoding is lower bounded by a value that approaches 1/2 with growing

B. Therefore, the interesting regime for large user payloads is when the spectral efficiency

S := µ log2B =
L log2B

n
bits/transmission, (4.71)

is of constant order. (The spectral efficiency is the total number of bits sent by all the users

per channel use.) Theorem 6 can be extended to the asymptotic regime where L, n, log2B all

tend to infinity with the spectral efficiency held constant. In this case, the user error rate of

the AMP decoder exhibits the following phase transition in this large system limit:

lim
L,B,n→∞

1

L

L∑

`=1

1
{
x̂1
` 6= x`

}




= 0 if S < SBP,

≥ 1
2 otherwise,

(4.72)
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where SBP is the belief propagation (BP) threshold

SBP :=
1

2

(
1

ln 2
− 1

Eb/N0

)
. (4.73)

From (4.72), we see that positive spectral efficiencies are achievable in this large system setting

using i.i.d. Gaussian codebooks and AMP decoding if and only if Eb/N0 > ln 2.

4.3.2 Spatially coupled Gaussian codebooks

From Remark 4.3.1, we see that for large user payloads and spectral efficiencies less than the BP

threshold SBP, one does not require spatial coupling for reliable AMP decoding. The following

result shows that any spectral efficiency above SBP and below the converse can be achieved

using spatially coupled Gaussian codebooks and AMP decoding.

Theorem 7 (AMP decoding of spatially coupled Gaussian codebooks at large user payloads).

Consider the setting of Theorem 5 and take the distribution pXsec to be p1. Let ϑ = 1 + ω−1
Λ ,

µ = L
n , SNR = 2Eb

N0
µ log2B, and define

∆ :=
1

2ϑ
ln(1 + ϑ SNR)− µ lnB, (4.74)

ω∗ :=
( ϑ SNR2

1 + ϑ SNR

) 1

∆
, (4.75)

ρ∗ := min
{ ∆

3 SNR
,
1

2

}
. (4.76)

Let δ be an arbitrary constant in (0,min{ ∆
2µ lnB ,

1
2}) and Sopt be the positive solution to

Sopt =
1

2
log2

(
1 + Sopt

2Eb
N0

)
. (4.77)

1) If the spectral efficiency satisfies

1

ϑ
SBP ≤ µ log2B <

1

ϑ
Sopt, (4.78)

and the base matrix parameters satsify ω > ω∗ and 0 < ρ ≤ ρ∗, then, for t ≥ 1 and c ≤
max{ ωtω∗ , dΛ

2 e}, we have

ψtc = ψtΛ−c+1 ≤ E hB,δ (4.79)

for sufficiently large B, where E = Eb log2B, hB,δ := B−k2δ
2

δ
√

lnB
and k2 is a positive constant.

2) Let T denote the first iteration for which maxc ψ
t
c ≤ E hB,δ. Then we have

T ≤
⌈

Λω?

2ω

⌉
, (4.80)
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and the user error rate of the AMP decoder after T iterations satisfies

lim
L→∞

1

L

L∑

`=1

1
{
x̂T` 6= x`

}
≤ 4hB,δ, (4.81)

where the limit is taken with L
n = µ held constant.

Proof. The first part of Theorem 7 is a direct application of Proposition 2.3.1, which is the

state evolution analysis of spatially coupled sparse regression codes for channel coding over the

(single user) AWGN channel. The main change of variables required is that the signal-to-noise

ratio in the AWGN channel is replaced by SNR = L(E/n)
σ2 = 2Eb

N0
µ log2B. Another change is that

the AWGN rate R = L lnB
n is replaced by µ lnB. In the second part of Theorem 7, the result

in (4.80) comes from (2.44)–(2.45), and the result in (4.81) is a direct application of the upper

bound in Lemma 4.3.1.

Remark 4.3.2. A positive solution to (4.77) exists if and only if Eb/N0 > ln 2.

Remark 4.3.3 (Parameter choice). Consider spectral efficiency S = µ log2B bits/transmission.

For any spectral efficiency S < Sopt, or equivalently any Eb
N0

> 22S−1
2S (which matches the converse

bound in [33] with B → ∞ and the target PUPE ε → 0), we can choose design parameters as

follows to guarantee that the AMP decoder achieves a small UER at large user payloads.

1) If S < SBP, or equivalently Eb
N0

> ( 1
ln 2 − 2S)−1 for S < 1

2 ln 2 , then using i.i.d. Gaussian

codebooks guarantees that the UER is bounded by a small constant at large payloads (Thm.

6).

2) If SBP ≤ S < Sopt, we can choose the base matrix parameters ω and Λ as follows to

satisfy the conditions of Theorem 7. Let ϑ0 = Sopt/S, first choose ω > ω?(ϑ0) (with ϑ in

(4.75) replaced by ϑ0). Then choose Λ large enough that ϑ = 1 + ω−1
Λ ≤ ϑ0. This ensures that

S < Sopt/ϑ and ω > ω?(ϑ).

Remark 4.3.4. Theorem 7 can be extended to the setting where L, n, log2B all tend to infinity

with the spectral efficiency S = L log2B/n held constant (see Remark 4.3.1). In this asymptotic

regime, the result states that for any SBP ≤ S < Sopt, the UER with AMP decoding converges

almost surely to 0.

4.3.3 Numerical results

Fig. 4.6 shows the achievable regions of i.i.d. and spatially coupled Gaussian codebooks with

AMP decoding, in the large system limit of L, n, log2B all tending to infinity with the spectral

efficiency S = L log2B/n held constant (Remarks 4.3.1 and 4.3.4). The dashed black line is

the achievable region for i.i.d. Gaussian codebooks and the solid black line for spatially coupled

Gaussian codebooks. From (4.73), we note that i.i.d. Gaussian codebooks with AMP decoding
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Figure 4.6: Achievable regions for massive multiple access at different user payloads (log2B bits) using
either i.i.d. or spatially coupled Gaussian codebooks with AMP decoding. The results at finite B show
the minimum Eb/N0 required to achieve UER ≤ 10−3.

cannot achieve spectral efficiencies S ≥ 1
2 ln 2 ≈ 0.7213 (asymptote of the dashed black line).

We also note that the solid black line matches the converse bound in [33] with B →∞ and the

target PUPE ε→ 0.

The solid and dashed black lines split Fig. 4.6 into three distinct regions, which are sometimes

referred to as the easy, hard, and impossible regions of inference in statistical physics [136]:

1. Below dashed black line: achievable with i.i.d. Gaussian codebooks and AMP decoding.

2. Between solid and dashed black lines: achievable with spatially coupled Gaussian code-

books and AMP decoding, or with i.i.d. Gaussian codebooks and MAP decoding.

3. Above solid black line: not achievable by any scheme.

In Fig. 4.6, we also plot the achievable regions of i.i.d. Gaussian codebooks (dashed) and

spatially coupled codebooks (solid) with AMP decoding at several finite payloads log2B (with

L, n → ∞ and the user density µ held constant). For B = 2, 22, 28, we use the same setup as

Fig. 4.4, and find the smallest Eb/N0 such that the coding scheme achieves UER ≤ 10−3. For

B = 280, 21000, it is computationally infeasible to evaluate the potential function (4.20), so we

plot the achievability bound from [33] (red and purple curves).

For spatially coupled Gaussian codebooks with AMP decoding, the achievable region gets

larger as the user payload increases, but at high spectral efficiencies (e.g. S > 1.5), the improve-

ment is insignificant after roughly log2B = 8 bits. Therefore, it is possible to communicate

reliably at high spectral efficiencies with near-minimal Eb/N0 even when the user payload is
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finite. For i.i.d. Gaussian codebooks with AMP decoding, there is a trade-off in the achievable

region as the user payload increases: a lower Eb/N0 is required to communicate reliably at low

spectral efficiencies, but the maximum achievable spectral efficiency decreases.

4.3.4 Implementation

When the user payload (log2B bits) is large, the computational complexity of the AMP decoder

is too high for practical use even when DCT based codebooks are used. In this section we

discuss how simple modifications to the encoding scheme discussed thus far can reduce the

computational complexity, making it feasible for large user payloads. Furthermore, we discuss

how introducing modulation to the encoding scheme can further reduce the complexity and

improve the achievable region.

The idea to reduce the complexity is simple: instead of encoding the each user’s message

using a single large codebook, one can encode it using several smaller sized codebooks. This

can be implemented in one of the following two ways.

1. Transmit using a smaller codebook multiple times. For example, a user payload of 80 bits

can be transmitted by using a codebook of size B = 28 ten times. The codebooks can

be based on either i.i.d. or spatially coupled Gaussian matrices, and the messages can be

decoded using an AMP decoder.

2. Transmit by superposition coding of codewords from multiple (different) smaller code-

books. For example, a user payload of 80 bits can be transmitted with each user encoding

their message with 10 codebooks of size B = 28 each. The codewords from the 10 code-

books are summed together to form the final user codeword. This method is equivalent

to each user encoding their message with a sparse regression code (introduced in Section

1.3). If we consider the linear model (4.2) where the message vector x has unmodulated

sections of length B (Example 4.1.1), then this method is equivalent to each user encoding

their message using 10 sections of size B = 28 each (instead of 1 section of size B = 280).

We now consider the achievability regions of above methods. Compared to the coding

scheme where the user payload is 8 bits and each user encodes with a single codebook of size

B = 28, the first method effectively increases the code length by a factor of 10 due to repeated

transmissions, and the second method effectively reduces the number of users by a factor of 10

due to each user using 10 codebooks (sections). Therefore, the achievable region obtained using

these two methods in terms of the user density µ = number of users
code length versus Eb/N0 trade-off, is

the same as that obtained when the user payload is 8 bits and each user encodes with a single

codebook of size B = 28, except the user density µ is now reduced by a factor of 10.5

5If instead we considered the spectral efficiency S = (µ × user payload) versus Eb/N0 trade-off, then the
achievability region of these methods would be exactly the same as that obtained when the user payload is 8 bits
and each user uses a single codebook of size B = 28. This is because the user payload of 80 bits (ten times that
of 8 bits) cancels out the ten times reduction in the user density µ.

138



0 2 4 6 8
Eb/N0 (dB)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Us
er

 d
en

sit
y,

 

Converse [33]
Achievability [33]
SC + AMP (asymptotic) (B = 28, K = 1), 10 transmissions
SC + AMP (asymptotic) (B = 28, K = 2), 9 transmissions

Figure 4.7: Red and black: converse and achievability bounds from [33] for massive multiple access when
the per-user payload is 80 bits and the maximum tolerated UER is 10−3. Green and blue: asymptotic
achievable regions of coding methods based on spatially coupled Gaussian codebooks (of size B = 28)
and AMP decoding for the same maximum tolerated UER. The K = 2 case (green) corresponds to
encoding with spatially coupled Gaussian codebooks and binary modulation.

This (asymptotic) achievable region is shown in blue in Fig. 4.7, where we assumed that

spatially coupled Gaussian codebooks (with B = 28) and AMP decoding are used, and the

maximum tolerated UER is 10−3. The red and black curves plot the converse and achievability

bounds from [33] when the user payload is 80 bits and the maximum tolerated UER is also

10−3. We see that one can still achieve near-optimal µ versus Eb/N0 trade-offs using these

methods at user densities above 0.02. However, at lower user densities, there is a noticeable

gap between the achievability of these methods and the achievability of large (B = 280) i.i.d.

Gaussian codebooks with ML decoding (black).

Although the two methods described above have the same effect on the achievability region,

their effect on the computational complexity differs. Let L denote the number of users, B denote

the size of the codebooks used in these methods (B = 28 in the above examples), and N denote

either the number of transmissions in the first method, or the number of codebooks per user

in the second method (N = 10 in the above examples). When DCT based codebooks are used,

the complexity of the the first method scales as O(NLB log(LB)) whereas the complexity of

the second method scales as O(NLB log(NLB)). Therefore, the first method is more efficient.

Using modulation to improve achievability

Let us consider again the example where the user payload is 80 bits. If in addition to encoding

8 bits using a size B = 28 codebook, we encode an extra 1 bit in the sign of the chosen codeword

(as in Example 4.1.2), then each user’s codeword would encode 9 bits, and 80 bits can be sent in
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fewer than 9 transmissions. In comparison, to send 80 bits without modulation would require

10 transmissions of 8 bits each. The reduction in the number of transmissions reduces the

complexity linearly, and the increase in AMP decoding complexity due to binary modulation is

insignificant. Fig. 4.7 shows that using binary modulation (green) can increase the size of the

achievable region.

4.4 Complex Gaussian channel and coding schemes

In this section we discuss how the coding methods described in this chapter and their analysis

can be extended to complex Gaussian multiple access channels in the many-user setting. Recall

that the coding methods described in this chapter can be represented using the random linear

model y = Ax+w, whereA is an n×LB random design matrix which represents the codebooks

of the L users, and the user messages are encoded in the message vector x which has L sections

that are drawn i.i.d. from pXsec (a discrete distribution over length B vectors).

In the complex Gaussian channel, the noise vector w has i.i.d. circularly symmetric complex

Gaussian entries with mean 0 and varianceN0 = 2σ2, i.e., wi ∼ CN (0, N0), with <(wi),=(wi)
i.i.d.∼

N (0, σ2), where <(x) and =(x) denote the real and imaginary part of a complex variable x.

Now the design matrix A and the message vector x can both have complex valued entries.

The coding scheme that uses i.i.d. complex Gaussian codebooks corresponds to using a design

matrix A with i.i.d. complex Gaussian entries Aij ∼ CN (0, 1
n) and a message vector x with

sections that have a single non-zero entry equal to
√
E (see also Example 4.1.1). Spatially cou-

pled complex Gaussian design matrices A are constructed using base matrices W ∈ RR×C
+ in a

similar way to their real-valued counterparts described in Section 4.1.1. They have independent

complex Gaussian entries

Aij ∼ CN
(

0,
1

n/R
Wr(i)c(j)

)
, for i ∈ [n], j ∈ [LB]. (4.82)

Recall that the L sections of x each correspond to a user’s message, and the sections are drawn

i.i.d. from pXsec . Generalising the distribution p2 that corresponded to random codebooks with

binary modulation in Example 4.1.2, in this section we will often use the following example of

pXsec which uses K-ary phase-shift keying (PSK) modulation.

Example 4.4.1 (Random codebooks with K-ary PSK modulation). Let pXsec be the distribu-

tion over length B vectors that chooses uniformly at random one of its B entries to be non-zero,

taking values in6
{
bk :=

√
E ej2πk/K

}
k∈[K]

(4.83)

6The PSK symbols are represented using {bk}k∈[K] instead of {ck}k∈[K] as done in Chapter 3 because in this
chapter the vectors c` for ` ∈ [L] correspond to the user codewords.
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with equal probability, where j :=
√
−1. Since each section of the message vector corresponds

to B columns of the design matrix A, in the coding scheme each user encodes log2B bits in

the selection of one-of-B codewords, and an additional log2K bits in the selection of its phase.

When the design matrixA has i.i.d. CN (0, 1
n) entries and B = 1, this coding scheme corresponds

to random CDMA with K-ary PSK modulation. In the rest of the section, we denote the choice

of pXsec used in this example by pK .

PSK modulation is considered instead of other modulation techniques because PSK symbols

have equal magnitude. Unequal symbol magnitudes will counteract the effect of spatial coupling,

and simulations show that errors are much more likely to occur in the sections where symbols

of smaller magnitude are chosen. PSK modulation is considered for modulated complex sparse

regression codes for the same reason (see Section 3.2).

Before we detail how the results in Theorems 4–7 can be extended to the complex Gaussian

MAC in the many-user setting, we need to introduce the AMP decoder, state evolution, and

potential function for the complex random linear coding setup.

AMP decoding The AMP algorithm for decoding the message vector x in the complex

linear model and its corresponding state evolution only differ slightly from their real-valued

counterparts described in Section 4.1.2.

The AMP decoder for spatially coupled and i.i.d. complex Gaussian A are the same as

that given in (4.6) and (4.17), except the transpose operation is now the conjugate transpose

operation. Furthermore, the denoising function ηt and the hard-decision MAP estimate of the

message vector are defined using a standard complex Gaussian random vector Z instead of a

standard real-valued one. That is, for index j in section ` ∈ [L], which we denote by j ∈ sec(`),

with section ` in column block c ∈ [C],

ηtj(s) = E
[
(Xsec)j |Xsec +

√
τ tc Z = s`

]
(4.84)

=

∑K
k=1 bk · exp

(
<(sj bk)
τ tc

)

∑
i∈sec(`)

∑K
k′=1 exp

(
<(si bk′ )

τ tc

) if Xsec ∼ pK , (4.85)

where Xsec ∼ pXsec and Z is a standard complex Gaussian vector independent of Xsec. We

use z to denote the complex conjugate of a complex number z. Recall that the `-th section of

a vector s ∈ RLB is denoted by s` ∈ RB and pK is described in Example 4.4.1. For section ` in

column block c ∈ [C], the `-th section of the hard-decision MAP estimate after iteration t + 1

is given by

x̂t+1
` = arg max

x′∈S
P
(
Xsec = x′ |Xsec +

√
τ tc Z = st`

)
, (4.86)

where S is the support of pXsec . When Xsec ∼ pK with K = 4, i.e., the non-zero entries in Xsec

takes values in {±
√
E,±j

√
E} with equal probability, index j ∈ sec(`) of this hard-decision
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estimate is given by

x̂t+1
j =





sign(<(sj)) ·
√
E if |<(sj)| > |=(sj)| and

|<(sj)| > max{|<(si)|, |=(si)|} for all i ∈ sec(`)\j,

sign(=(sj)) · j
√
E if |=(sj)| > |<(sj)| and

|=(sj)| > max{|<(si)|, |=(si)|} for all i ∈ sec(`)\j,

0 otherwise.

(4.87)

The parameters {τ tc}c∈[C] are given by the state evolution recursion below.

State evolution The state evolution (SE) recursions of the AMP decoders for spatially cou-

pled and i.i.d. complex Gaussian A are the same as that given in (4.7)–(4.8) and (4.18), except

the noise variance term σ2 is now N0. Furthermore, the mmse function is defined using a

standard complex Gaussian random vector Z instead of a standard real-valued one, i.e.,

mmsec(1/τ)

= E
∥∥∥Xsec − E

[
Xsec |Xsec +

√
τZ
]∥∥∥

2
(4.88)

= E − E





∑K
k=1

√
E <(bk) · exp

(2
√
E <(bk)
τ + 2<(Z1bk)√

τ

)

∑K
k′=1

[
exp

(2
√
E <(bk′ )
τ +

2<(Z1bk′ )√
τ

)
+
∑B

j=2 exp
(2<(Zjbk′ )√

τ

)]



 if Xsec ∼ pK ,

(4.89)

where Z = [Z1, . . . , ZB] is a standard complex Gaussian random vector independent of Xsec,

and the superscript “c” in mmsec denotes “complex”. For example, the state evolution of the

AMP decoder for i.i.d. complex Gaussian design matrices initialises ψ0 = E‖X2
sec‖ = E, and

for t ≥ 0 computes

τ t = N0 + µψt, (4.90)

ψt+1 = mmsec(1/τ t). (4.91)

Remark 4.4.1 (Real-valued Xsec). When pXsec is a distribution over real-valued random vec-

tors, the effective noise variance in the definition of the mmsec function (4.88) is actually τ
2

(instead of τ) since the MMSE (conditional expectation) estimator can ignore the noise along

the imaginary axis. Therefore, if Xsec is real, then

mmsec(1/τ) = mmse(2/τ), (4.92)

where the mmse function is defined in (4.9), and the state evolution of the AMP decoder for
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i.i.d. complex Gaussian design matrices (4.90)–(4.91) can be written as a single line recursion

ψt+1 = mmse

(
1

σ2 + µ
2ψ

t

)
, (4.93)

where we used N0 = 2σ2. Comparing (4.93) with the state evolution in the real-valued setting

(4.18), we observe that when Xsec is real, the state evolution in the real and complex setting

are exactly the same when the user density µ in the complex setting is twice the user density

in the real setting. The same observation holds for the state evolution of the AMP decoder for

spatially coupled complex Gaussian design matrices.

Potential function Recall that the results in Theorems 4 and 5 are given in terms of the

minimisers or stationary points of the potential function defined in (4.20). The complex variants

of these theorems are given in terms of the following potential function for user density µ =

L/n > 0 and channel noise variance N0 > 0.

Fc(µ,N0, ψ) = I(Xsec;S
c
τ ) +

1

µ

[
ln

(
τ

N0

)
− µψ

τ

]
, (4.94)

where ψ ∈ [0, E], τ = N0 +µψ, and the mutual information is computed using the single-section

complex Gaussian channel with variance τ :

Sc
τ = Xsec +

√
τZ, (4.95)

where Xsec ∼ pXsec and Z ∈ CB is a standard complex Gaussian random vector independent

of Xsec. If Z = [Z1, . . . , ZB] and pXsec is chosen to be the K-PSK modulated prior given in in

Example 4.4.1, we have

I(Xsec;S
c
τ ) =

2E

τ
+ ln(BK)

− E ln

(
K∑

k=1

[
exp

(2
√
E<(bk)

τ
+

2<(Z1bk)√
τ

)
+

B∑

j=2

exp
(2<(Zjbk)√

τ

)])
. (4.96)

Remark 4.4.2 (Real-valued Xsec). When pXsec is a distribution over real-valued random vec-

tors, the potential function Fc for the complex setting defined in (4.94) is equivalent to the

potential function F for the real setting defined in (4.20) when the user density µ in the com-

plex setting is twice the user density in the real setting, i.e.,

Fc (µ,N0, ψ) = F
(
µ/2, σ2, ψ

)
. (4.97)

This is because N0 = 2σ2 and in the calculation of the mutual information term I(Xsec;S
c
τ ),

the effective noise variance of the single-section channel (4.95) is τ
2 (instead of τ) due to Xsec
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being real.

Decoding error in single-section complex Gaussian channel Consider decoding Xsec

in the complex Gaussian channel in (4.95). The MMSE decoder

x̂MMSE
sec (Sc

τ ) = E[Xsec|Sc
τ ], (4.98)

achieves the MMSE given by (4.88). The MAP decoder

x̂MAP
sec (Sc

τ ) = arg max
x′

P(Xsec = x′|Sc
τ ), (4.99)

achieves the minimum probability of error, given by

P c
e (τ) = P

(
x̂MAP

sec (Sc
τ ) 6= Xsec

)
(4.100)

= 1−
∫ ∞

−
√

2E
τ

[
1− 2Q

(√
2E

τ
+ z

)]2B−1

φ(z) dz if Xsec ∼ pK and K = 4, (4.101)

where φ(·) and Q(x) =
∫∞
x

1√
2π
e−z

2/2 dz are the probability density function and upper tail

probability of the standard (real-valued) Gaussian distribution, respectively.

Remark 4.4.3 (Real-valued Xsec). When pXsec is a distribution over real-valued random vec-

tors, the minimum probability of decoding error in the single-section complex Gaussian channel

(4.95) with noise variance τ is equal to the minimum probability of decoding error in the single-

section real Gaussian channel (4.19) with noise variance τ
2 since the optimal estimator can ignore

the noise along the imaginary axis, i.e.,

P c
e (τ) = Pe(τ/2), (4.102)

where Pe(·) is defined in (4.25).

Notice that the probability of error function for 4-PSK modulated sections in the complex

noise setting given in (4.101) is the same as that for binary modulated (2-PSK) sections in the

real noise setting given in (4.26), except that τ in (4.26) changed to τ
2 (due to moving from real

to complex), and B in (4.26) changed to 2B.

4.4.1 Theoretical results

Asymptotic UER achieved by AMP decoding

The complex variants of Theorems 4 and 5 describe the asymptotic UER achieved by AMP de-

coding when the design matrix A is either i.i.d. complex Gaussian, or spatially coupled complex

Gaussian constructed using an (ω,Λ, ρ) base matrix, and the channel is complex Gaussian. We
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do not explicitly state Theorems 4 and 5 for the complex setting, but we expect these results

to be the same as Theorems 4 and 5, except that they are given in terms of the minimiser(s)

and the largest stationary point of the potential function Fc defined in (4.94), and they use the

probability of error function P c
e defined in (4.100).

Remark 4.4.4 (Real-valued Xsec). When pXsec is a distribution over real-valued random vec-

tors, the asymptotic UER achieved by AMP decoding in the complex setting (with either i.i.d.

or spatially coupled design matrices) at user density µ is the same as that achieved in the real

setting at user density µ/2. (See Remarks 4.4.1, 4.4.2 and 4.4.3, and note that τ
2 = σ2 + µ

2ψ in

the complex setting.)

To prove the complex variants of Theorems 4 and 5, one needs to prove that the performance

of the AMP decoder is accurately tracked by the state evolution recursion for general complex

discrete priors pXsec and both i.i.d. and spatially coupled complex Gaussian design matrices.

(See (4.36) and (4.54) in the proofs of Theorems 4 and 5.) Such a concentration result was

proved in [160] for the special case where the design matrix has i.i.d. complex Gaussian entries

and the message vector has i.i.d. entries (B = 1). For the complex design matrices and message

vectors under consideration, the proof is essentially the same as that in [1,22,57], which consider

real-valued design matrices and the specific pXsec distribution given in Example 4.1.1. Apart

from this AMP result for the complex setting, the proofs of the complex variants of Theorems

4 and 5 are nearly identical to those of Theorems 4 and 5 due to the similarity of the state

evolution recursions and potential functions in the real and complex setting.

Large user payloads

The complex variants of Theorems 6 and 7 provide bounds on the asymptotic UER achieved by

AMP decoding at large user payloads when complex Gaussian codebooks (without modulation)

are used, i.e., when the sections of the message vector have a single non-zero entry equal to
√
E.

Since the asymptotic UER achieved by AMP decoding in the complex setting is the same

as that achieved in the real setting at half the user density when the message vector is real

(Remark 4.4.4), the complex variants of Theorems 6 and 7 are exactly the same as Theorems

6 and 7 except with the user density µ and spectral efficiency S = µ log2B replaced with µ
2

and S
2 . The proofs are the same as those for Theorems 6 and 7, except one needs to prove that

the performance of the AMP decoder is accurately tracked by state evolution in the complex

setting (as discussed earlier).

The complex variants of Theorems 6 and 7 consider complex Gaussian codebooks without

modulation. We also expect similar results to hold for complex Gaussian codebooks with K-

ary PSK modulation (Example 4.4.1) when K is a power of 2, albeit with the bounds on the

asymptotic UER being a function of K. In the proofs, the upper bound in Lemma 4.3.1 will need

to be modified according to Lemma 3.4.1, and the bounds on the (normalised) state evolution
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Converse [33]
SC + AMP (B=16, K=1)
SC + AMP (B=8, K=2) & (B=4, K=4)
SC + AMP at 2000 users (B=4, K=4)
SC + AMP (B=2, K=8)
SC + AMP (B=1, K=16)
SC + AMP (B=1, K=4), 2 transmissions
SC + AMP (B=1, K=2), 4 transmissions

Figure 4.8: Achievable regions for complex massive multiple access when the per-user payload is 4 bits
and the maximum tolerated UER is 10−3. Users encode their information using random codebooks of
size B (defined by the design matrix) and K-ary PSK modulation.

parameter ψt+1

E (e.g. in (4.67) and (4.79)) modified according to Propositions 3.4.1 and 3.4.2.

We omit the details here.

4.4.2 Numerical results

In Fig. 4.8, we plot the asymptotic achievable region of the coding scheme based on spatially

coupled complex Gaussian design matrices and AMP decoding, when the user payload is 4 bits

and the maximum tolerated UER is 10−3.

One benefit of the complex setting is that complex modulation techniques can be used to en-

code information in the message vector. In these simulations the users encode their information

in K-PSK modulated message vector sections of length B (Example 4.4.1); hence, log2(BK) = 4

bits. In Fig. 4.8 we consider the following combinations of B and K:

• (B = 16, K = 1), which corresponds to unmodulated sections (blue),

• (B = 8, K = 2), which corresponds to binary modulated sections (green),

• (B = 4, K = 4), which corresponds to 4-PSK modulated sections (green),

• (B = 2, K = 8), which corresponds to 8-PSK modulated sections (cyan), and

• (B = 1, K = 16), which corresponds to random CDMA with 16-PSK modulation (ma-

genta).
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Table 4.2: Optimised coupling width values used in Fig. 4.8.

µ 0.70 0.80 0.90 1.00 1.10 1.16 1.18

ω 3 3 3 4 5 6 6

We compare our results with the converse bound in [33] (red), doubling the user density since

we are considering complex instead of real channels. We also compare our results to random

CDMA with either binary (dashed and dotted black) or 4-PSK (dashed black) modulation, and

MAP decoding. The random CDMA with binary modulation (1 bit) and 4-PSK modulation (2

bits) are used 4 times and 2 times, respectively, to complete the 4 bit user payload.

From Fig. 4.8 we see that the asymptotic achievable region for the (B = 8, K = 2) and

(B = 4, K = 4) encoding scheme are exactly the same. This is because the potential function

in (4.94) for K-PSK modulated sections has the same expression for (B = B′, K = 2) and

(B = B′/2, K = 4), and from Remark 4.4.3 we know that P c
e (·) also has the same expression

for (B = B′, K = 2) and (B = B′/2, K = 4).

Comparing the different complex encoding schemes, we see that the (B = 8, K = 2) and

(B = 4, K = 4) encoding schemes have the largest asymptotic achievable region, closely followed

by (B = 16, K = 1), and then by (B = 2, K = 8) and (B = 1, K = 16). There is a large

gap between the (B = 16, K = 1) and (B = 2, K = 8) encoding scheme, and an even larger

gap between the (B = 2, K = 8) and (B = 1, K = 16) encoding scheme. The asymptotic

achievable regions of random CDMA with binary and 4-PSK modulation come in between that

of the (B = 16, K = 1) and (B = 2, K = 8) encoding schemes, with binary modulation having

the larger achievable region of the two.

We also show the simulated performance of the (B = 4, K = 4) spatially coupled coding

scheme at L = 2000 users (green dotted line with crosses). For a list of user densities µ, the

crosses show the minimum Eb/N0 at which the coding scheme achieves an average UER less than

10−3 (averaged over many independent trials). The spatially coupled complex design matrix

was constructed using (ω, Λ = 20, ρ = 0) base matrices, with the coupling width ω optimised

for each user density µ (see Table 4.2). Furthermore, we use discrete Fourier transform (DFT)

based design matrices and the fast Fourier transform (FFT) is used to reduce complexity and

memory requirements (see Section 2.5.1 for implementation details).

Similar to Fig. 4.4, we see that the achievable region of the finite user simulations matches the

asymptotic achievable region (solid green) at low user densities. However, above a certain user

density threshold, roughly µ = 0.70 in Fig. 4.8, the gap to the asymptotic curve widens as the

user density increases due to the relatively small values of base matrix parameters. Moreover,

from Table 4.2 we observe that the optimal coupling width ω increases with the user density

above the user density threshold.
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Converse [33]
Achievability [33]
SC + AMP (B = 28, K = 1), 10 transmissions
SC + AMP (B = 28, K = 2), 9 transmissions
SC + AMP (B = 28, K = 4), 8 transmissions
SC + AMP (B = 28, K = 8), 8 transmissions

Figure 4.9: Red and black: converse and achievability bounds from [33] for massive multiple access
when the per-user payload is 80 bits and the maximum tolerated UER is 10−3. Blue, orange, green and
purple: asymptotic achievable regions of coding methods based on spatially coupled complex Gaussian
codebooks (of size B = 28) with K-ary PSK modulation and AMP decoding for the same maximum
tolerated UER.

Large user payloads

Just as introducing binary modulation to the encoding scheme can improve the achievable region

and reduce computational complexity at large user payloads (end of Section 4.3.4), introducing

K-ary PSK modulation can have the same effect in the complex setting.

Fig. 4.9 considers the same setting as in Fig. 4.7, except with a complex Gaussian channel

and K-ary PSK modulation. The user payload is 80 bits and the maximum tolerated UER is

10−3. Since it is not feasible to implement large codebooks of size B = 280, we use smaller

codebooks of size B = 28 with varying levels of modulation multiple times, with the modulation

factor being K. Each transmission encodes log2(BK) bits. For example, the (B = 28,K = 1)

scheme encodes 8 bits/transmission and requires 10 transmissions to complete the payload of 80

bits, and the (B = 28,K = 4) scheme encodes 10 bits/transmission and requires 8 transmissions.

Fig. 4.9 shows that using 2-PSK (orange) and 4-PSK (green) modulation increases the size

of the achievable region; however, using 8-PSK (purple) decreases the size of the achievable

region. Moreover, as the modulation factor K increases, the number of transmissions required

(hence the computational complexity) is reduced. The increase in AMP decoding complexity

due to increased modulation is insignificant when K � log(LB) (see Section 3.5.1).
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Chapter 5

Conclusions

In this thesis we investigated the sparse regression code (SPARC) framework with efficient

approximate message passing (AMP) decoding for capacity-achieving communications over the

single-user additive white Gaussian noise (AWGN) channel and the Gaussian multiple access

channel (MAC) in the many-user setting.

In Chapter 2, we introduced spatially coupled (SC) SPARCs constructed via base matrices,

where the design matrix used to define the code has a block-diagonal structure. We showed that

base matrices provide a unified framework for designing power allocated and spatially coupled

SPARCs. We described an AMP decoder for SC-SPARCs and analysed its decoding progression

in the regime where the sections of the message vector are large. The analysis explained the

“wave-like” decoding progression in SC-SPARCs (Fig. 2.2). We showed that for any rate less

than the capacity, and sufficiently large coupling width ω, coupling length Λ and section size

M , the probability of excess section error rate of the AMP decoder after T iterations decays

exponentially in the code length n (Theorem 1), where T is inversely proportional to the rate

gap to capacity.

The finite code length simulation results in Section 2.5 showed that SC-SPARCs with AMP

decoding can achieve lower error rates than power allocated SPARCs and standard coded mod-

ulation schemes based on LDPC codes and QAM modulation. Motivated by the wave-like

decoding progression of SC-SPARCs, we introduced a sliding window AMP decoder where a

decoding window moves (unidirectionally) across the message vector, updating only the esti-

mates of the sections within the decoding window at each window position. The latency and

per-iteration decoding complexity of this decoder is independent of the code length.

In Chapter 3, we proposed modulated SPARCs, a generalisation of SPARCs for the complex

AWGN channel, where the user message is encoded in both the locations and the values of

the non-zero entries of the message vector. This generalisation introduces more flexibility in

the SPARC code design, allowing us to reduce decoding complexity without affecting error

performance (at a given rate). We considered the setting where the values of the non-zero

entries of the message vector were chosen from a K-ary phase shift keying (PSK) constellation
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to ensure that the modulation scheme does not counteract the effect of power allocation or

spatial coupling.

We analysed the performance of an AMP decoder by obtaining analytical bounds on a key

state evolution parameter which predicts its MSE in each iteration (Proposition 3.4.1). These

bounds showed that in the large system limit (L,M, n → ∞ with fixed R = L log(MK)/n

and K), the per-iteration MSE of the AMP decoder for K-PSK modulated SPARCs does not

depend on the modulation factor K. Therefore, the asymptotic analysis of K-PSK modulated

SPARCs is equivalent to that of unmodulated (K = 1) SPARCs. This equivalence together

with existing state evolution analysis for unmodulated SPARCs was used to show that in the

large system limit, for any rate less than the capacity, K-PSK modulated SPARCs with suitable

power allocation or spatial coupling and AMP decoding achieves zero section error rate in a

finite number of iterations that depends on the rate gap to capacity.

In Chapter 4 we considered Gaussian MACs in the asymptotic setting where the number

of users L and the code length n both tend to infinity with the user density µ = L/n held

constant, and where the user payload, user energy and user error rate (the fraction of user

messages decoded in error) are fixed. We analysed coding schemes based on the random linear

models (e.g., SPARCs) and efficient AMP decoding, and derived the exact asymptotic achievable

trade-off between the signal-to-noise ratio Eb/N0 and the user density µ, for a fixed target user

error rate and user payload. The SPARC framework fit naturally to this problem setting as

each section of the message vector represents a user’s message.

We found that the asymptotic achievable region of a coding scheme based on spatially

coupled Gaussian matrices and AMP decoding exceeds that obtained using the achievability

bound in [33] and nearly matches the converse bound for a large range of user densities. To the

best of our knowledge, this is the first efficient coding scheme to do so in this MAC regime. The

spatially coupled scheme can be interpreted as generalised time-sharing: the coupling structure

specifies which users are active during each channel use. We also analysed the performance of

these coding schemes as the user payload grows large and extended our results to the complex

Gaussian MAC. We showed that using small random codebooks multiple times to transmit

large user payloads is near-optimal at large user densities, and adding modulation (e.g., K-PSK

modulation) to the encoding scheme can increase the size of the asymptotic achievable region

in such settings.

5.1 Future directions

Base matrix designs In this thesis we introduced SPARCs where the design matrix used

to define the code is constructed using a base matrix. We explained how power allocated and

spatially coupled SPARCs can be represented using simple base matrices, e.g., the (ω,Λ, ρ) base

matrix. These simple base matrix designs were used to prove that power allocated and spatially
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coupled SPARCs with K-PSK modulation are asymptotically capacity achieving; however, they

are not optimised for practical use.

We would like to develop base matrix designs that give better finite code length error

performance. One idea is to use both power allocation and spatial coupling in the design

(see Remark 2.1.2). Preliminary simulation results show that it is possible for such a combined

design to achieve lower error rates at finite lengths than SPARCs with either power allocation

or spatial coupling. However, this design is harder to optimise due to the increased number of

design parameters.

Moreover, the base matrix framework and the base matrix designs for SPARCs can be

applied to the coding schemes introduced in Chapter 4 for the Gaussian MAC in the many-

user setting, and may also inspire better designs in other random linear (or generalised linear)

estimation problems. For example, in the noiseless compressed sensing problem, we would like

to discover a simple base matrix design that can demonstrate in practice that the theoretically

optimal undersampling ratio can be obtained with spatial coupling and AMP algorithms. (The

base matrix design in [139] is sufficient for the proof of this result, but does not obtain near-

optimal undersampling ratios in practice.) We expect that effective spatially coupled base

matrix designs would differ depending on whether the compressed sensing signal entries are

discrete or continuous.

Base matrix designs for sliding window AMP decoding The unidirectional sliding

window AMP decoder introduced in Section 2.6 for SC-SPARCs does not fully utilise the “seeds”

at the two ends (corners) of the (ω,Λ, ρ = 0) base matrix. We would like to explore other base

matrix designs that are tailored to the unidirectional window decoder. We expect such designs

to have a larger seed region at the top-left corner of the base matrix, and a smaller (if not none

at all) seed region at the bottom-right corner of the base matrix.

Implementation of fast transforms for spatially coupled design matrices In Section

2.5.1, we discussed how we encode and decode with Hadamard and Fourier based spatially

coupled design matrices using their corresponding fast transforms (FWHT and FFT). The

implementation was simple: each block of the spatially coupled design matrix corresponded to

one fast transform operation. It is possible to consider other implementations that may lead to

advantages in design simplicity and computational complexity, such as doing one fast transform

per ω (the coupling width) blocks (either blocks within the same row-block or column-block).

Closing the converse and achievability gap in many-user MACs There exists a gap

between the converse and achievability regions of many-user Gaussian MACs at low user pay-

loads (see Chapter 4, e.g., Fig. 4.4). We showed (via numerical simulation results) that using

modulation in addition to random codebooks can narrow the gap at very small user payloads
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(2 bits), but has no effect on the achievability region at 8 bits per user. We would like to know

whether there are coding schemes whose achievability matches the converse at the low user

densities, or whether the converse bound is not tight.

Evaluating modern multiple access techniques for many-user MACs In Chapter 4

we considered Gaussian MACs in the many-user setting and showed that the asymptotic achiev-

ability of a coding scheme based on spatially coupled Gaussian matrices and AMP decoding is

near-optimal at large user densities. We would like to understand how the achievability of mod-

ern multiple access techniques such as sparse code multiple access and non-orthogonal multiple

access compare to the achievability of our proposed coding scheme (both asymptotically and at

finite number of users).

Inspiring new multiple access techniques The multiple access technique we introduced

in Chapter 4 was based on spatially coupled Gaussian random codebooks and PSK modulation.

We would be interested to see if this approach inspires deterministic multiple access techniques

with better performance. Recall from Section 4.1.1 that spatial coupling can be viewed as

block-wise time (or frequency) division with overlap, and random codebooks with modulation

can be seen as a generalisation of random CDMA (Example 4.4.1).

In the linear coding framework of (4.2), one can use a design matrix with specific structural

properties (rather than the i.i.d. Gaussian design). Examples include matrices where the user

codewords are orthogonal (or approximately orthogonal) and matrices that facilitate certain

low complexity encoders or decoders. Our simulations in Section 4.4.2 already use DFT based

spatially coupled design matrices and the FFT algorithm for low complexity encoding and

decoding; perhaps there are ways to optimise this design for practical implementation.

Furthermore, instead of having users encode their message in the location and value of

the single non-zero entry in a section of the message vector, different encoding schemes (pXsec

distributions) can be considered.

Unsourced random access SPARCs have been considered for unsourced random access

in [38–40]. It would be interesting to explore how the spatial coupling and modulation techniques

discussed in this thesis can be applied to that problem setting.
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[110] B. Çakmak, O. Winther, and B. H. Fleury, “S-AMP: Approximate message passing for

general matrix ensembles,” in Proc. IEEE Inf. Theory Workshop, 2014, pp. 192–196.

[111] A. Fletcher, M. Sahraee-Ardakan, S. Rangan, and P. Schniter, “Expectation consistent

approximate inference: Generalizations and convergence,” in Proc. IEEE Int. Symp. Inf.

Theory, 2016, pp. 190–194.

[112] J. Ma and L. Ping, “Orthogonal AMP,” IEEE Access, vol. 5, pp. 2020–2033, 2017.

[113] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” IEEE

Trans. Inf. Theory, vol. 65, no. 10, pp. 6664–6684, 2019.

[114] S. Rangan, P. Schniter, A. K. Fletcher, and S. Sarkar, “On the convergence of approximate

message passing with arbitrary matrices,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp.

5339–5351, 2019.

161



[115] S. Rangan, A. K. Fletcher, P. Schniter, and U. S. Kamilov, “Inference for generalized linear

models via alternating directions and Bethe free energy minimization,” IEEE Trans. Inf.

Theory, vol. 63, no. 1, pp. 676–697, 2017.

[116] J. T. Parker, P. Schniter, and V. Cevher, “Bilinear generalized approximate message

passing—part i: Derivation,” IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5839–5853,

2014.

[117] J. T. Parker, P. Schniter, and V. Cevher, “Bilinear generalized approximate message

passing part ii: Applications,” IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5854–

5867, Nov 2014.

[118] Y. Deshpande and A. Montanari, “Information-theoretically optimal sparse PCA,” in

Proc. IEEE Int. Symp. Inf. Theory, June 2014, pp. 2197–2201.

[119] T. Lesieur, F. Krzakala, and L. Zdeborová, “Phase transitions in sparse PCA,” in Proc.
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