681 research outputs found

    Predictive Models to Evaluate the Interaction Effect of Soil-Tunnel Interaction Parameters on Surface and Subsurface Settlement

    Get PDF
    Nowadays, the need for subway tunnels has increased considerably with urbanization and population growth in order to facilitate movements. In urban areas, subway tunnels are excavated in shallow depths under densely populated areas and soft ground. Its associated hazards include poor ground conditions and surface settlement induced by tunneling. Various sophisticated variables influence the settlement of the ground surface caused by tunneling. The shield machine's operational parameters are critical due to the complexity of shield-soil interactions, tunnel geometry, and local geological parameters. Since all elements appear to have some effect on tunneling-induced settlement, none stand out as particularly significant; it might be challenging to identify the most important ones. This paper presents a new model of an artificial neural network (ANN) based on the partial dependency approach (PDA) to optimize the lack of explainability of ANN models and evaluate the sensitivity of the model response to tunneling parameters for the prediction of ground surface and subsurface settlement. For this purpose, 239 and 104 points for monitoring surface and subsurface settlement, respectively, were obtained from line Y, the west bond of Crossrail tunnels in London. The parameters of the ground surface, the trough, and the tunnel boring machine (TBM) were used to categorize the 12 potential input parameters that could impact the maximum settlement induced by tunneling. An ANN model and a standard statistical model of multiple linear regression (MLR) were also used to show the capabilities of the ANN model based on PDA in displaying the parameter's interaction impact. Performance indicators such as the correlation coefficient (R2), root mean square error (RMSE), and t-test were generated to measure the prediction performance of the described models. According to the results, geotechnical engineers in general practice should attend closely to index properties to reduce the geotechnical risks related to tunneling-induced ground settlement. The results revealed that the interaction of two parameters that have different effects on the target parameter could change the overall impact of the entire model. Remarkably, the interaction between tunneling parameters was observed more precisely in the subsurface zone than in the surface zone. The comparison results also indicated that the proposed PDA-ANN model is more reliable than the ANN and MLR models in presenting the parameter interaction impact. It can be further applied to establish multivariate models that consider multiple parameters in a single model, better capturing the correlation among different parameters, leading to more realistic demand and reliable ground settlement assessments. This study will benefit underground excavation projects; the experts could make recommendations on the criteria for settlement control and controlling the tunneling parameters based on predicted results. Doi: 10.28991/CEJ-2022-08-11-05 Full Text: PD

    Stratum Displacement Law and Intelligent Optimization Control Based on Intelligent Fuzzy Control Theory During Shield Tunneling

    Get PDF
    The laws of Stratum displacement and optimal control are critical for shield operation. This article’s focus is made on the intelligent fuzzy control theory concentrating on earth pressure, total thrust, driving speed, cutter torque, grouting pressure and grouting volume as the main elements of the study. A model of intelligent fuzzy control theory based on the model of No. 9 Line of Guangzhu Rail transit, on the Tianma river shield section. The paper also analyzes stratum displacement law due to shield tunnelling, executes & analyses intelligent controls for optimization of parameters, combining the five two-dimensional structures of the double structure of fuzzy control system. According to the observations made on the model. The model is upto date and the control of all parameters develops stably. The parameter ranges should be controlled as follows: earth pressure, 0.19 ~ 0.22Mpa; total thrust, 1100 ~ 1350T; driving speed, 38 ~ 50mm / min; cutter torque, 1600 ~ 2300 KN • m; grouting pressure, 0.19 ~ 0.25Mpa and grouting volume, 30 ~ 50L/min. Keywords: Shield tunnel, intelligent fuzzy control, Stratum displacement, optimal control DOI: 10.7176/CER/13-6-01 Publication date:October 31st 202

    Estimation of the rock deformation modulus and RMR based on data mining techniques

    Get PDF
    In this work Data Mining tools are used to develop new and innovative models for the estimation of the rock deformation modulus and the Rock Mass Rating (RMR). A database published by Chun et al. (2008) was used to develop these models. The parameters of the database were the depth, the weightings of the RMR system related to the uniaxial compressive strength (UCS), the rock quality designation (RQD), the joint spacing (JS), the joint condition (JC), the groundwater condition (GWC) and the discontinuity orientation adjustment (DOA), the RMR and the deformation modulus. As a modelling tool the R program environment was used to apply these advanced techniques. Several algorithms were tested and analysed using different sets of input parameters. It was possible to develop new models to predict the rock deformation modulus and the RMR with improved accuracy and, additionally, allowed to have an insight of the importance of the different input parameters.Fundação para a Ciência e a Tecnologia (FCT

    Real-time assessment of tunnelling-induced damage to structures within the building information modelling framework

    Get PDF
    During the initial design phases of complex multi-disciplinary systems such as urban tunnelling, the appraisal of different design alternatives can ensure optimal designs in terms of costs, construction time, and safety. To enable the evaluation of a large number of design scenarios and to find an optimal solution that minimises impact of tunnelling on existing structures, the design and assessment process must be efficient, yet provide a holistic view of soil-structure interaction effects. This paper proposes an integrated tunnel design tool for the initial design phases to predict the ground settlements induced by tunnelling and building damage using empirical and analytical solutions as well as simulation-based meta models. Furthermore, visualisation of ground settlements and building damage risk is enabled by integrating empirical and analytical models within our Building Information Modelling (BIM) framework for tunnelling. This approach allows for near real-time assessment of structural damage induced by settlements with consideration of soil-structure interaction and non-linear material behaviour. Furthermore, because this approach is implemented on a BIM platform for tunnelling, first, the design can be optimised directly in the design environment, thus eliminating errors in data exchange between designers and computational analysts. Secondly, the effect of tunnelling on existing structures can be effectively visualised within the BIM by producing risk-maps and visualising the scaled deformation field, which allows for a more intuitive understanding of design actions and for collaborative design. Having a fully parametric design model and real-time predictions therefore enables the assessment and visualisation of tunneling-induced damage for large tunnel sections and multiple structures in an effective and computationally efficient way

    Tunneling-induced ground movement and building damage prediction using hybrid artificial neural networks

    Get PDF
    The construction of tunnels in urban areas may cause ground displacement which distort and damage overlying buildings and services. Hence, it is a major concern to estimate tunneling-induced ground movements as well as to assess the building damage. Artificial neural networks (ANN), as flexible non-linear function approximations, have been widely used to analyze tunneling-induced ground movements. However, these methods are still subjected to some limitations that could decrease the accuracy and their applicability. The aim of this research is to develop hybrid particle swarm optimization (PSO) algorithm-based ANN to predict tunneling-induced ground movements and building damage. For that reason, an extensive database consisting of measured settlements from 123 settlement markers, geotechnical parameters, tunneling parameters and properties of 42 damaged buildings were collected from Karaj Urban Railway project in Iran. Based on observed data, the relationship between influential parameters on ground movements and maximum surface settlements were determined. A MATLAB code was prepared to implement hybrid PSO-based ANN models. Finally, an optimized hybrid PSO-based ANN model consisting of eight inputs, one hidden layer with 13 nodes and three outputs was developed to predict three-dimensional ground movements induced by tunneling. In order to assess the ability and accuracy of the proposed model, the predicted ground movements using proposed model were compared with the measured settlements. For a particular point, ground movements were obtained using finite element model by means of ABAQUS and the results were compared with proposed model. In addition, an optimized model consisting of seven inputs, one hidden layer with 21 nodes and one output was developed to predict building damage induced by ground movements due to tunneling. Finally, data from damaged buildings were used to assess the ability of the proposed model to predict the damage. As a conclusion, it can be suggested that the newly proposed PSO-based ANN models are able to predict three-dimensional tunneling-induced ground movements as well as building damage in tunneling projects with high degree of accuracy. These models eliminate the limitations of the current ground movement and building damage predicting methods

    Meta models for real-time design assessment within an integrated information and numerical modelling framework

    Get PDF
    In situations where rapid decisions are required or a large number of design alternatives is to be explored, numerical predictions of construction pro-cesses have to be performed in near real-time. For the design assessment of com-plex engineering problems such as mechanised tunnelling, simple numerical and analytical models are not able to reproduce all complex 3D interactions. To over-come this problem, in this paper a novel concept for on-demand design assess-ment for mechanized tunnelling using simulation-based meta models is proposed. This concept includes: i) the generation of enhanced simulation-based meta mod-els; ii) real-time meta model-based design assessment in the design tool, and; iii) the implementation within a unified numerical and information modelling plat-form called SATBIM. The capabilities of this concept are demonstrated through an example for the evaluation of tunnel alignment design and the assessment of the impact of tunnelling on existing infrastructure. Moreover, meta models are used for fast forward calculation in sensitivity analyses for the evaluation of the importance of model parameters. The concept proved its efficiency by assessing the design alternatives in real-time with the prediction error of less than 3% com-pared to complex numerical simulation in presented example

    Theory and Practice of Tunnel Engineering

    Get PDF
    Tunnel construction is expensive when compared to the construction of other engineering structures. As such, there is always the need to develop more sophisticated and effective methods of construction. There are many long and large tunnels with various purposes in the world, especially for highways, railways, water conveyance, and energy production. Tunnels can be designed effectively by means of two and three-dimensional numerical models. Ground–structure interaction is one of the significant factors acting on economic and safe design. This book presents recent data on tunnel engineering to improve the theory and practice of the construction of underground structures. It provides an overview of tunneling technology and includes chapters that address analytical and numerical methods for rock load estimation and design support systems and advances in measurement systems for underground structures. The book discusses the empirical, analytical, and numerical methods of tunneling practice worldwide

    Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes

    Get PDF
    A surrogate modelling strategy for predictions of interval settlement fields in real time during machine driven construction of tunnels, accounting for uncertain geotechnical parameters in terms of intervals, is presented in the paper. Artificial Neural Network and Proper Orthogonal Decomposition approaches are combined to approximate and predict tunnelling induced time variant surface settlement fields computed by a process-oriented finite element simulation model. The surrogate models are generated, trained and tested in the design (offline) stage of a tunnel project based on finite element analyses to compute the surface settlements for selected scenarios of the tunnelling process steering parameters taking uncertain geotechnical parameters by means of possible ranges (intervals) into account. The resulting mappings of time constant geotechnical interval parameters and time variant deterministic steering parameters onto the time variant interval settlement field are solved offline by optimisation and online by interval analyses approaches using the midpoint-radius representation of interval data. During the tunnel construction, the surrogate model is designed to be used in real-time to predict interval fields of the surface settlements in each stage of the advancement of the tunnel boring machine for selected realisations of the steering parameters to support the steering decisions of the machine driver

    A simulation-based software to support the real-time operational parameters selection of tunnel boring machines

    Get PDF
    With the fact that the main operational parameters of the construction process in mechanized tunneling are currently selected based on monitoring data and engineering experience without exploiting the advantages of computer methods, the focus of this work is to develop a simulation-based real-time assistant system to support the selection of operational parameters. The choice of an appropriate set of these parameters (i.e., the face support pressure, the grouting pressure, and the advance speed) during the operation of tunnel boring machines (TBM) is determined by evaluating different tunneling-induced soil-structure interactions such as the surface settlement, the associated risks on existing structures and the tunnel lining behavior. To evaluate soil-structure behavior, an advanced process-oriented numerical simulation model based on the finite cell method is utilized. To enable the real-time prediction capability of the simulation model for a practical application during the advancement of TBMs, surrogate models based on the Proper Orthogonal Decomposition and Radial Basis Functions (POD-RBF) are adopted. The proposed approach is demonstrated through several synthetic numerical examples inspired by the data of real tunnel projects. The developed methods are integrated into a user-friendly application called SMART to serve as a support platform for tunnel engineers at construction sites. Corresponding to each user adjustment of the input parameters, i.e., each TBM driving scenario, approximately two million outputs of soil-structure interactions are quickly predicted and visualized in seconds, which can provide the site engineers with a rough estimation of the impacts of the chosen scenario on structural responses of the tunnel and above ground structures

    Spatial Interpolation of SPT with Artificial Neural Network

    Get PDF
    In large infrastructure projects, initial geotechnical investigation is conducted at large spacing (~ 100m to 250m), in which SPT is the common test performed while dynamic tests are limited in number. The preliminary planning and design of the buildings are performed based on this information. Hence, estimate of dynamic properties of soil (say, shear wave velocity) at building locations becomes necessary. This can be performed by estimation of SPT at building locations, by interpolation from borehole locations, and thereafter using correlation expressions for estimating shear wave velocity at building location. Interpolation of SPT has been handled earlier in literature with statistical and geospatial techniques. In this article, an artificial intelligence technique, namely, artificial neural network (ANN) is explored for addressing this problem. ANN allows multiple degrees of freedom to data and optimizes weights and biases of the network to yield the best possible estimates of the desired output, in this case, the SPT at intermediate locations. ANN is known to be robust in handling data with noise and thus would be suitable for this application. Five neighbouring points were found suitable for efficient and accurate spatial interpolation of SPT using ANN with two to three neurons in one hidden layer. The performance was very good (correlation higher than 0.9 and errors lower than 2) and better than the geo-statistical approaches reported in literature (correlation lower than 0.9 and errors higher than 6). Within the limits of the study, the number of degrees of freedom (varying from 9 to 37) of the ANN did not affect its generalization capability
    corecore