
 

TUNNELING-INDUCED GROUND MOVEMENT AND BUILDING DAMAGE 

PREDICTION USING HYBRID ARTIFICIAL NEURAL NETWORKS 

MOHSEN HAJIHASSANI 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy (Civil Engineering) 

 

Faculty of Civil Engineering 

Universiti Teknologi Malaysia 

 

JUNE 2013   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199239572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iii 

DEDICATION 

 

 

 

 

 

I dedicated this thesis to my beloved father and mother for their support and 

encouragement. 

  



iv 

 

ACKNOWLEDGMENTS 

I would like to express my gratitude to my supervisor, Prof. Dr. Aminaton 

binti Marto for her guidance, advice, constructive feedback, and critical review of 

this thesis.  Her support, time and help are the motivations for me to strive harder in 

my academic journey.  I also would like to thank my co-supervisor Dr. Hisham bin 

Mohamad for his critical feedbacks on my research.  I wish to thank Universiti 

Teknologi Malaysia for giving me the opportunity to do my research in a supportive 

academic environment.   

 I would like to thank my wife for her understanding and love during the past 

few years. Her support and encouragement was in the end what made this research 

possible.  My parents receive my deepest gratitude and love for their patience, 

prayers, and the many years of support during my studies that provided the 

foundation for this work. 

The assistance of Miss Adriana Erica Amaludin in translating the abstract to 

Malay language is greatly appreciated. Lastly, I would like to give my special thanks 

to my dear friends Dr. Eshagh Namazi, Dr. Roohollah Kalatehjari, Mr. Houman 

Sohaei, and Mr. Hamed Akhondzadeh for their valuable helps during the writing of 

this thesis.  

I always thank the almighty God for removing my weaknesses and answering 

to my prayers. 

 



v 

 

ABSTRACT 

The construction of tunnels in urban areas may cause ground displacement 

which distort and damage overlying buildings and services. Hence, it is a major 

concern to estimate tunneling-induced ground movements as well as to assess the 

building damage. Artificial neural networks (ANN), as flexible non-linear function 

approximations, have been widely used to analyze tunneling-induced ground 

movements. However, these methods are still subjected to some limitations that 

could decrease the accuracy and their applicability. The aim of this research is to 

develop hybrid particle swarm optimization (PSO) algorithm-based ANN to predict 

tunneling-induced ground movements and building damage. For that reason, an 

extensive database consisting of measured settlements from 123 settlement markers, 

geotechnical parameters, tunneling parameters and properties of 42 damaged 

buildings were collected from Karaj Urban Railway project in Iran. Based on 

observed data, the relationship between influential parameters on ground movements 

and maximum surface settlements were determined. A MATLAB code was prepared 

to implement hybrid PSO-based ANN models. Finally, an optimized hybrid PSO-

based ANN model consisting of eight inputs, one hidden layer with 13 nodes and 

three outputs was developed to predict three-dimensional ground movements induced 

by tunneling. In order to assess the ability and accuracy of the proposed model, the 

predicted ground movements using proposed model were compared with the 

measured settlements. For a particular point, ground movements were obtained using 

finite element model by means of ABAQUS and the results were compared with 

proposed model. In addition, an optimized model consisting of seven inputs, one 

hidden layer with 21 nodes and one output was developed to predict building damage 

induced by ground movements due to tunneling. Finally, data from damaged 

buildings were used to assess the ability of the proposed model to predict the 

damage. As a conclusion, it can be suggested that the newly proposed PSO-based 

ANN models are able to predict three-dimensional tunneling-induced ground 

movements as well as building damage in tunneling projects with high degree of 

accuracy. These models eliminate the limitations of the current ground movement 

and building damage predicting methods. 
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ABSTRAK 

Pembinaan terowong di kawasan bandar mungkin boleh menyebabkan 

sesaran tanah yang mengakibatkan kerosakan kepada bangunan atas serta 

perkhidmatan. Oleh itu, ramalan pergerakan tanah dan juga menilai tahap kerosakan 

bangunan akibat pembinaan terowong merupakan satu kepentingan utama bagi 

menangani masalah tersebut. Rangkaian Neural Buatan (ANN) yang memberikan 

anggaran fungsi tidak linear fleksibel telah digunakan dengan meluas untuk 

menganalisa pergerakan tanah disebabkan oleh pembinaan terowong. Namun begitu, 

kaedah-kaedah ini masih lagi tertakluk kepada batas-batas tertentu yang 

mengurangkan kejituan dan keterterapan kaedah-kaedah tersebut. Tujuan kajian ini 

dijalankan adalah untuk membina satu rangkaian hibrid yang terdiri daripada ANN 

dan algoritma pengoptimuman kerumunan zarah (PSO) bagi meramal pergerakan 

tanah dan kerosakan bangunan yang disebabkan oleh pembinaan terowong. Lantaran 

itu, satu pangkalan data yang meluas telah dibangunkan merangkumi ukuran enapan 

daripada 123 penanda enapan, parameter geoteknik, parameter penerowongan dan 

sifat-sifat 42 bangunan yang mengalami kerosakan telah dikumpulkan dari projek 

Kereta Api Bandar Karaj di negara Iran. Berdasarkan data yang dicerap, hubungan 

antara parameter-parameter dominan yang menyebabkan pergerakan tanah dan 

enapan permukaan tanah maksimum telah ditentukan. Kod MATLAB telah 

disediakan untuk melaksanakan model-model hybrid ANN berasaskan PSO. 

Akhirnya, satu model pengoptimuman hibrid ANN berasaskan PSO yang 

mempunyai lapan input, satu lapisan tersembunyi mengandungi 13 nod dan tiga 

output telah dibangunkan untuk meramal pergerakan tanah tiga dimensi akibat 

pembinaan terowong. Untuk tujuan penilaian kemampuan dan kejituan model yang 

dicadangkan, nilai-nilai pergerakan tanah yang diramal menggunakan model 

cadangan tersebut telah dibandingkan dengan nilai enapan yang telah diukur. Bagi 

satu titik yang khusus, nilai pergerakan tanah telah diperolehi melalui model unsur 

terhingga dengan menggunakan perisian ABAQUS, dan hasilnya telah dibandingkan 

dengan model cadangan. Sebagai tambahan, satu model teroptimum yang terdiri 

daripada tujuh input, satu lapisan tersembunyi mengandungi 21 nod dan satu output 

telah dibangunkan untuk meramal kerosakan bangunan akibat pergerakan tanah yang 

disebabkan oleh pembinaan terowong. Akhir sekali, data dari bangunan yang 

mengalami kerosakan telah digunakan untuk menilai kemampuan model cadangan 

untuk meramal kerosakan bangunan tersebut. Kesimpulannya, model cadangan baru 

ANN yang berdasarkan PSO berkemampuan untuk meramal pergerakan tanah tiga 

dimensi dan kerosakan bangunan yang disebabkan oleh pembinaan terowong dengan 

tahap kejituan yang tinggi. Model-model baru tersebut dapat menyingkirkan batasan 

pada kaedah sedia ada bagi ramalan pergerakan tanah dan kerosakan bangunan.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Over the last few years, the world has witnessed an enormous growth of the 

urban population.  The speed and the scale of the population growth in urban areas 

are among the most difficult challenges to some countries.  This growth of the urban 

areas has resulted in increased demand for infrastructures.  Subsurface structures 

such as tunnels and underground metro stations became definitive choice to 

overcome the congestion at the ground surface, while urban environments became 

more limited.  Although underground structures have been effective in addressing the 

congestions at the surface, some problems and challenges still exist related to the 

tunneling in urban environment.   

The estimation of the environmental impacts of the tunnel construction is one 

of the most important steps in tunnel design in urban areas.  Although construction of 

tunnels in urban areas has various long term benefits, it may also cause important 

environmental issues.  Surface settlement is a very significant impact of tunneling in 

urban areas that can cause considerable damages to adjacent buildings and roads, and 

therefore increase the maintenance costs.  Hence, it is a major concern in the 

underground works to estimate tunneling-induced ground movements and also assess 

the building damage induced by ground movements due to tunneling.   



2 

In general, tunneling-induced ground movements are caused by three 

components; the immediate settlements due to tunnel excavation, deformation of 

tunnel lining and consolidation.  Immediate settlement, as the major settlement 

induced by tunneling, is a function of the tunnel depth and diameter, geological and 

geotechnical conditions, and construction procedure.  Deformation of the tunnel 

lining has an insignificant role in creating surface settlement and is usually negligible 

(Lee et al., 1992).  Long term settlement due to primary and secondary consolidation 

takes place in the saturated soils and groundwater conditions.  Based on empirical, 

analytical and numerical approaches, several methods have been developed by 

previous researchers to predict surface settlements due to tunneling.   

An empirically derived relationship has been introduced by Peck (1969) 

based on observation of transverse settlement trough in several tunneling project.  He 

assumed the shape of transverse settlement trough like a normal distribution curve.  

This method was accepted as a fundamental form of empirical methods and became 

the basis for other researchers such as Cording and Hansmire (1975) and O’Reilly 

and New (1982).  Moreover, Attewell and Woodman (1982) also utilized the 

stochastic theory to predict longitudinal surface settlement.  Analytical methods have 

been developed based on fundamental equations of elastic theory.  Several research 

have been conducted to predict surface settlements by means of analytical methods 

as in Sagaseta (1987), Verruijt and Booker (1996), Loganathan and Poulos (1998) 

and Park (2004).  In the last decades, numerical methods have been developed due to 

increasing in powerful computers beside the capability of the numerical methods in 

analysing the complex geometrical conditions.  Extensive research have been 

conducted to estimate tunneling-induced ground movements using numerical 

analysis (e.g. Lee et al., 1992; Vermeer et al., 2002; and Alessandra et al., 2009).   

In parallel with the development of prediction methods of ground 

movements, it has been hardly attempted to estimate building damage due to 

tunneling.  Similar to empirical methods of surface settlement prediction, various 

case studies have been investigated (e.g. Skempton and MacDonald, 1956; Bjerrum, 

1963; and Charles and Skinner, 2004) to establish a correlation between distortion 

parameters and the corresponding damage limits.  In contrast to empirical methods, 
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the semi-analytical method has become more popular.  This method was introduced 

by Burland and Wroth (1975) and further developed by other researchers such as 

Boscardin and Cording (1989).  This method assumes that the onset of crack is 

associated with average tensile strain in the buildings and utilizes the linear-elastic 

deep beam to obtain the maximum tensile strain in the buildings.   

All aforementioned methods to predict ground movements and building 

damage induced by tunneling assume the tunneling in “greenfield” conditions.  In 

other words, these methods ignore the presence of surface structures and their effects 

on ground movements.  In addition, all these studies are still faced with some 

limitations.  Therefore, an effective method is required to be able to predict ground 

movements and building damages induced by tunneling, accurately.   

In recent years, Artificial Neural Networks (ANNs) have been widely used to 

analyse geotechnical problems.  An ANN is a flexible non-linear function 

approximation that figures out a relationship between given input-output data, in 

contrast to the empirical and statistical methods which need previous knowledge.  

Several attempts (e.g. Suwansawat and Einstein, 2006; Santos Jr and Celestino, 

2008; and Boubou et al., 2012) have been done to predict tunneling-induced ground 

movements using ANNs.  Although ANNs are able to directly map input to output 

patterns and utilize all influential parameters in prediction of surface settlements, 

however still subjected to some limitation.  Therefore, an effort is needed to reduce 

the limitations making ANNs more applicable and accurate to predict ground 

movements as well as building damage induced by tunneling.   

1.2 Statement of the Problem 

As mentioned earlier, numerous attempts have been done to predict and 

subsequently control the tunneling-induced ground movements due to the fact that 

the number of tunnels in urban areas is increasing.  However, existing methods are 

faced with some limitations and cannot take into account of all the influential 

parameters in creating surface settlements.  As a result, in many cases, the existing 
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methods are not accurate enough, whereas prediction of the exact amount of the 

maximum surface settlement and the shape of settlement troughs is important to 

estimate the potential risk of building damage induced by tunneling.  

Empirically derived relationships have been mainly developed based on field 

observations obtained from hand mines or tunnels excavated using open faced 

shields.  Therefore, these methods mainly consider more of geological conditions 

than tunneling operational parameters.  Although these methods provide satisfactory 

results in determining settlement troughs, they tend to be misleading in estimating 

maximum surface settlement.  Analytical methods assume ground as an initially 

isotropic, incompressible and homogeneous mass.  These methods have been only 

developed for circular tunnels and therefore are inapplicable for non-circular tunnels 

under invariant geological conditions.  

Finite element simulation usually obtains the settlement troughs shallower 

and wider than the field observations (Lee and Rowe, 1989; Gunn, 1993; Dasari et 

al., 1996; Addenbrooke et al., 1997). This limitation can be partly improved by using 

advanced soil constitutive models. However, the time and the cost for a full three 

dimensional analysis with advanced nonlinear soil constitutive models is substantial.  

In addition, accuracy of the result depends on the type and the size of mesh.  ANNs 

employ training algorithms to be able to model complex relationships between inputs 

and output data.  Backpropagation (BP) algorithm is the most common and well-

known training algorithm that tries to adjust the network weights during learning 

process by reducing the error between input and output data.  However, it has been 

proven that BP algorithm can easily converge to any local minimum (Gori and Tesi, 

1992; Kröse and Smagt, 1996; Priddy and Keller, 2005), whereas the aim of 

simulation using ANNs is to find the global minimum of the error function.  In 

addition, the convergence obtained from BP learning is very slow and BP cannot 

guarantee the convergence in learning.   

In the case of building damage assessment, the existing methods assume the 

buildings infinitely flexible and follow the greenfield ground displacement.  

Therefore, these methods require separate numerical analyses to determine the 

http://en.wikipedia.org/wiki/Backpropagation
http://researchr.org/alias/marco-gori
http://researchr.org/alias/alberto-tesi
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influence of building stiffness on ground displacements.  Moreover, existing methods 

mostly determine building damages in two-dimensional condition, while building 

damage due to tunneling is exposed to three dimensional ground movements.      

There is no doubt that the ground movements and building damage analysis 

would be more realistic if the measured data is used.  According to the capabilities of 

artificial neural network to find a pattern among the input and output data, this 

method has the potential to be appropriate approach to predict ground movements 

induced by tunneling and building damages induced by ground movements due to 

tunneling, while its limitation is eliminated.   

1.3 Research Objectives 

The aim of the research is to develop a new model based on “hybrid particle 

swarm optimization (PSO) algorithm-based artificial neural network (ANN)” or 

“hybrid PSO-based ANN” to predict three-dimensional tunneling-induced ground 

movements and subsequently building damage induced by ground movements due to 

tunneling.  This approach is able to cover all influential parameters on ground 

movements and building damages.  In line with the aim of the research, the 

followings are the research objectives: 

i. To determine the relationship between influential parameters on ground 

movements and maximum surface settlement by analysing the behaviour 

of ground response related to tunneling  

ii. To predict three-dimensional ground movements induced by tunneling 

through a hybrid PSO-based ANN model  

iii. To determine the superiority of the proposed hybrid PSO-based ANN 

model as compared to pre-developed backpropagation artificial neural 

network by performing a substantial comparison between the obtained 

results  

iv. To predict building damage due to ground movement induced by 

tunneling using hybrid PSO-based ANN model  
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1.4 Significance of Research 

Large numbers of tunnels are excavated in many big cities around the world.  

A major concern of engineers during excavation of tunnels in the populated areas is 

to know that the surface and underground structures and services are sufficiently safe 

from ground movements induced by tunnel excavation.  Hence, a reliable method to 

predict surface settlements and consequently the risk of the damage to adjacent 

building is necessary.  The importance of the study on ground movements induced 

by tunneling is associated with the safety and economic aspects of underground 

projects.  The significant of research are as follows: 

i. This study demonstrates the relationships among the surface settlement 

induced by tunneling and influential parameters.  Therefore, the outcomes 

of the study contribute better understanding towards the behaviour of the 

ground surface settlements related to tunneling. 

ii. The presented research considers the effects of the existing structures on 

the surface settlement, due to the fact that actual data are used to train the 

networks, whereas the existing methods predict surface settlement in 

greenfield condition.  Therefore, the method developed from this research 

provides more realistic and accurate prediction.   

iii. In the model developed in this research, the ground movements induced 

by tunneling are simulated three-dimensionally, whereas empirical and 

analytical methods investigate the ground movements only in two 

dimensional and are usually applicable for specific type of tunnel.  In 

contrast to the three-dimensional analysis of ground movements using 

advanced finite element tools that usually need much time to create and 

run a model, the presented model is practically useful to simulate ground 

movements three-dimensionally in detail within a short time.    

iv. The existing methods for assessing building damage provide a simple 

means of estimating the near surface displacements due to tunneling 

under greenfield condition, whereas a separate three dimensional analysis 

is required to investigate the effects of the building stiffness on the twist 

deformation. In contrast, the proposed model is able to estimate 
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tunneling-induced building damage, in a straightforward manner.  This is 

a useful model to quantify the building damage using all the influential 

parameters in actual condition with reasonable accuracy.  

1.5 Scope and Limitation of the Study 

This research developed the model to predict tunneling-induced ground 

movements in soft soils above water table.  As a limitation, the presented model is 

applicable for only NATM tunnels due to the fact that the model was trained using 

measured data obtained from Karaj Urban Railway Tunnel that was excavated using 

NATM technique.  It should be mentioned that the range of applicability and 

accuracy of this model is constrained by the data used in the training step.  However, 

the presented model may be applicable in analyzing the ground movements in the 

other geotechnical conditions and tunneling methods, if the model is trained using 

the data related to those conditions.   

This research utilized the geometrical parameters and stiffness ratio of 

buildings, settlement trough parameters and relative location of buildings and tunnel 

to estimate building damage induced by tunneling.  The influences of non-linear 

building behaviour were not considered in simulations.  Furthermore, the range of 

applicability and accuracy of the presented model to predict potential risk of building 

damage induced by tunneling is limited by the data used in the training step.   

However, the model presented can be used to predict building damage induced by all 

the existing tunneling methods and even braced excavations, while the parameters of 

the settlement trough and adjacent buildings are available.    

1.6 Outline of Thesis  

This thesis is composed of eight chapters and six appendices.  The summaries 

of the chapters are as follows:  
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Chapter 1 presents the background of the study, statement of the problems, 

research objectives, significant, scope and limitation of the study.   

Chapter 2 explains the ground movements associated with tunnel construction 

and reviews the existing methods for predicting transverse and longitudinal surface 

settlements due to tunneling.  In addition, a number of available methods to estimate 

potential risk of building damage induced by ground movements due to tunneling are 

reviewed. 

Chapter 3 explains the fundamental concepts and various types of artificial 

neural networks.  The learning process by means of backpropagation algorithm is 

also describes in this chapter.  In addition, the concepts, parameters and procedure of 

particle swarm optimization algorithm are also introduced. 

Chapter 4 describes the methodology of the research.  The framework of the 

research is presented and procedure of the modeling is explained.   

Chapter 5 presents general descriptions of the KUR project as the case study 

in this research.  The geological and geotechnical conditions, tunneling method and 

monitoring program of this project are described in this chapter.  

Chapter 6 gives the analysis on the effects of influential geotechnical and 

tunneling parameters on maximum surface settlement associated with NATM 

tunneling.  Subsequently, a hybrid artificial neural network and particle swarm 

optimization were introduced in order to predict transverse and longitudinal surface 

settlement troughs caused by tunneling.  A computer code is developed and an 

optimal model is introduced based on sensitivity analyses to predict tunneling-

induced ground movements.   

Chapter 7 presents a new method based on hybrid artificial neural network 

and particle swarm optimization to simulate building damages induced by ground 

movements due to tunneling.  In this chapter verification and validation are 
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performed by comparing the obtained results of proposed method with the results 

obtained by deep beam theory and actual values obtained from field monitoring. 

Chapter 8 contains the conclusion of the research, the contributions made and 

some recommendations for future works.   
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