1,181 research outputs found

    Méthodes d'apprentissage statistique pour la prédiction de charges et de contraintes aéronautiques

    Get PDF
    Cette thèse s'intéresse à l'apprentissage et à la représentation de données de charges et contraintes aéronautiques. Nous réalisons dans un premier temps une étude préliminaire pour la prédiction des courbes de charges aéronautiques. Nous comparons des méthodes de régression à base d'arbres et quantifions l'influence de techniques de réduction de dimension sur les performances en régression dans un cadre d'extrapolation. Dans un second temps, nous développons un modèle de déformation agissant simultanément sur les entrées et sorties des courbes. Nous étudions les propriétés asymptotiques des estimateurs des paramètres de déformation. Ce modèle de déformation est associé au processus de modélisation et prédiction des charges aéronautiques. Dans un troisième temps, nous donnons une méthodes simple et efficace de prédiction de charges critiques.This thesis focuses on Machine Learning and information extraction for aeronautical loads and stress data. In the first time, we carry out a study for the prediction of aeronautical loads curves. We compare regression trees based models and quantify the influence of dimension reduction techniques on regression performances in an extrapolation context. In the second time, we develop a deformation model acting simultaneously on the input and the output space of the curves. We study the asymptotic properties of the estimators of the deformation parameters. This deformation model is associated to the modeling and predicting process of aeronautical loads. Finally, we give a simple and efficient method for predicting critical loads

    Evaluation of low wing-loading fuel conservative, short-haul transports

    Get PDF
    Fuel conservation that could be attained with two technology advancements, Q fan propulsion system and active control technology (ACT) was studied. Aircraft incorporating each technology were sized for a Federal Aviation Regulation (FAR) field length of 914 meters (3,000 feet), 148 passengers, and a 926 kilometer (500 nautical mile) mission. The cruise Mach number was .70 at 10100 meter (33,000 foot) altitude. The improvement resulting from application of the Q fan propulsion system was computed relative to an optimized fuel conservative transport design. The performance improvements resulting from application of ACT technology were relative to the optimized Q fan propulsion system configuration

    Analytical evaluation of tilting proprotor wind tunnel test requirements

    Get PDF
    Specific test requirements related to the wind tunnel testing of the XV-15 advanced tilt rotor research aircraft were determined. The following analytical tools were developed: (1) digital simulation of the XV-15, incorporating a simplified tunnel support model, control system loop, measurement lags, gust disturbances, and sensor noise, (2) specialization of existing data analysis programs to the high order XV-15 dynamical model (transfer function program, a time series analysis program, an advanced maximum likelihood parameter identification program), (3) several auxiliary programs to provide estimates of damping from transfer functions as well as calculations of model decomposition of system response. The following results were discussed: (1) modelling of the aircraft, instrumentation, and controls, (2) results of the rotor/cantilever wing model and coupled wing, (3) examples of data prediction with system identification techniques, and (4) detailed conclusions and recommendations

    Efficient Prediction and Uncertainty Propagation of Correlated Loads

    Get PDF

    System analysis approach to deriving design criteria (Loads) for Space Shuttle and its payloads. Volume 2: Typical examples

    Get PDF
    The achievement of an optimized design from the system standpoint under the low cost, high risk constraints of the present day environment was analyzed. Space Shuttle illustrates the requirement for an analysis approach that considers all major disciplines (coupling between structures control, propulsion, thermal, aeroelastic, and performance), simultaneously. The Space Shuttle and certain payloads, Space Telescope and Spacelab, are examined. The requirements for system analysis approaches and criteria, including dynamic modeling requirements, test requirements, control requirements, and the resulting design verification approaches are illustrated. A survey of the problem, potential approaches available as solutions, implications for future systems, and projected technology development areas are addressed

    Propfan Test Assessment (PTA)

    Get PDF
    The objectives of the Propfan Test Assessment (PTA) Program were to validate in flight the structural integrity of large-scale propfan blades and to measure noise characteristics of the propfan in both near and far fields. All program objectives were met or exceeded, on schedule and under budget. A Gulfstream Aerospace Corporation GII aircraft was modified to provide a testbed for the 2.74m (9 ft) diameter Hamilton Standard SR-7 propfan which was driven by a 4475 kw (600 shp) turboshaft engine mounted on the left-hand wing of the aircraft. Flight research tests were performed for 20 combinations of speed and altitude within a flight envelope that extended to Mach numbers of 0.85 and altitudes of 12,192m (40,000 ft). Propfan blade stress, near-field noise on aircraft surfaces, and cabin noise were recorded. Primary variables were propfan power and tip speed, and the nacelle tilt angle. Extensive low altitude far-field noise tests were made to measure flyover and sideline noise and the lateral attenuation of noise. In coopertion with the FAA, tests were also made of flyover noise for the aircraft at 6100m (20,000 ft) and 10,668m (35,000 ft). A final series of tests were flown to evaluate an advanced cabin wall noise treatment that was produced under a separate program by NASA-Langley Research Center

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Get PDF
    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included

    Integrative application of active controls (IAAC) technology to an advanced subsonic transport project. Initial act configuration design study

    Get PDF
    The performance and economic benefits of a constrained application of Active Controls Technology (ACT) are identified, and the approach to airplane design is established for subsequent steps leading to the development of a less constrained final ACT configuration. The active controls configurations are measured against a conventional baseline configuration, a state-of-the-art transport, to determine whether the performance and economic changes resulting from ACT merit proceeding with the project. The technology established by the conventional baseline configuration was held constant except for the addition of ACT. The wing, with the same planform, was moved forward on the initial ACT configuration to move the loading range aft relative to the wing mean aerodynamic chord. Wing trailing-edge surfaces and surface controls also were reconfigured for load alleviation and structural stabilization
    corecore