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Aircraft structural design is influenced by the static and dynamic loads resulting from 

flight manoeuvres, gust/turbulence encounters and ground manoeuvres; thus the 

identification of such loads is crucial for the development and structural analysis of aircraft, 

requiring the solution of the aeroelastic dynamic responses. Numerical aeroelastic models are 

used to predict a large number (1000s) of “Interesting Quantities” (IQs), and for aircraft 

design the identification of the worst cases for each IQ is very important, but involves a 

significant computational effort. Of particular interest are the so-called correlated loads, 

where coincident values of pairs of IQs are plotted against each other. This paper 

demonstrates how to reduce the computational burden to determine the behaviour of the 

correlated loads envelopes with little reduction in the accuracy, and also to quantify the effects 

of uncertainty, for a range of different parameters. The methodology is demonstrated on a 

numerical aeroelastic wing model of a civil jet airliner. 

Nomenclature 

𝑨 = matrix to which the SVD is applied 

D = number of sampling points 

M = number of case loads 

𝑼 = matrix of the right singular vector 

𝑽 = matrix of the left singular vector 

𝚺 = diagonal matrix of the singular values 

λ = singular value 

N = number of time steps 

S = number of stations of interest 

𝑓(𝒙) = Kriging regression function 

𝐻 = gust gradient 

Lg = gust length, 2 ∙ 𝐻 

𝐼, 𝐽  = inertia moments of the bar element 
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𝑠 = distance penetrated into the gust 

𝑈 = gust velocity 

𝒙  = vector of the input parameters 

𝑥𝑖𝑗  = element of a matrix 

𝑦̂(𝒙) = estimated function, predictor in the surrogate model theory 

𝑦 = actual function 

𝑧𝑖𝑗  = element of a normalized matrix 

𝑍(𝒙) = Kriging regression function 

𝜇 = mean 

𝜎 = root mean square 

𝜓 = basis function  

𝜃 and 𝑝 = free parameters used in the Kriging methods 

I. Introduction 

HE design and development of an aircraft are tasks that require multidisciplinary analyses. Central constraints in 

the design process are the loads and the aeroelastic response characterizing the structure during its operating life. 

The external and internal loads have a strong impact upon structural design, aerodynamic characteristics, flight control 

system and control surface design, weight and performance. In this regard, the development of methods that provide 

fast, but accurate, prediction of loads will enable a quicker determination of the critical loads cases and also permit 

more design configurations to be considered.  

Of particular interest is the identification of those flight loads that lead to the most extreme stress levels for a 

specific design. This aim is achieved by applying a large number of loads cases due to dynamic gusts and manoeuvres 

to detailed aeroelastic models1-3 for a range of different Interesting Quantities (IQs) e.g. bending moments, shear 

forces, etc. Table 1 shows an estimate of the number of conditions that are typically required in the analysis of a large 

civil aircraft. Even with simplistic models of aircraft behaviour being used, this is an unfeasible number of separate 

simulations; however, engineering experience is used to identify the most likely critical loads conditions, meaning 

that approximately 100,000 simulations are required for conventional aircraft configurations. Furthermore, these 

analyses have to be repeated every time that there is an update in the aircraft structure. Within the modern civil airframe 

industry, each of these loads calculation cycles takes a considerable time.  Previous work in the FFAST FP7 

project4-7 has investigated the use of several surrogate modeling (also known as surrogate models) and optimization 

methods for fast and efficient prediction of the worst case gust loads for each IQ. It has been shown that savings in 

computational time can be made without sacrificing accuracy. Further studies considered the effect of changes to the 

actual aircraft structure as part of the evolving design process6 using reanalysis methods.  

In the previous work, the worst case gust loads were found for each IQ independently. However, it is essential to 

take into account the effect of correlation between the IQs, such as bending moment and torque, since the combination 

of IQs values and not only the maximum (in magnitude) of each of the IQs can provide a critical condition. 

This analysis is possible by considering the so-called “potato” plots which are obtained by considering the 

correlated loads, a set of loads that are consistent across the aircraft in time. To construct these plots, relevant pairs of 

IQs are extracted at the same instant of time for all the load cases and, after having plotted these responses, the 

envelope of all the points is computed.* The critical cases can be found as the vertices of the global convex hull. 

                                                           
* The envelope can be determined using a Convex Hull Algorithm, such as the MATLAB® function "convhull". 

T 

50 Flight points (altitude and speed) 

100 Mass cases (loaded weight and weight distribution) 

10 Control surface configurations 

50 Manoeuvres and gusts (gradient lengths) 

4 Control laws 

10,000,000 TOTAL NUMBER OF CASES REQUIRED 

 

Table 1. Estimate of Load Cases Required4. 
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All of the critical load conditions for an aircraft could be identified if a method were developed that is able to 

capture: 

1. The behaviour of the convex hull  

2. The correlated loads at different stations at the same critical case load 

3. The critical case loads and relative instant for all the desired stations 

One may carry out Monte Carlo Simulation (MCS) by directly running the numerical model to calculate all the 

time histories of IQs at any possible points in the space of input parameters; however, MCS is computationally 

expensive. For individual IQs, the use of surrogate models can be used to decrease the computational time without 

losing accuracy4-7.  

A further area where there has been little work in the aircraft loads is that of uncertainty quantification to predict 

the effect of variations in the structure (manufacturing tolerance and material properties) and the aerodynamics 

(atmospheric variations and forces resulting from geometric variations). Research in this field has been recently 

increased since the industrial companies themselves are aware that a deterministic approach, with the application of 

safety factor, involves an over or under designed system. Most work in this area related to aeroelastic effects8-14 has 

been concentrated upon the effect of uncertainties on critical phenomena such as flutter and divergence rather than 

loads. A very preliminary investigation relating to the uncertainty quantification of correlated gust envelopes was 

undertaken7 using a simple 2 DOF aeroelastic model and exploiting the Polynomial Chaos Expansion (PCE)8-10. The 

PCE technique is one of several methods to quantify the uncertainty for which a statistical description of the inputs is 

known and it is often applied to aleatory uncertainties in the aeronautical field. For example, uncertainties in the 

properties of composite-structures9-11 and in the stiffness of the structure8-14 have been studied to understand their 

effect on the flutter velocity6,11-13,15-16. 

In this work, a methodology will be described that satisfies the above critical load detection requirements, and can 

be achieved with reduced computational cost. The investigation will consider prediction of the changes in the structural 

parameters of the wings, using the Singular Value Decomposition (SVD) and a range of different Surrogate Models, 

such as Kriging and Neural Networks, and the Latin Hypercube Sampling (LHS) method. Using the developed 

technique, it is also possible to employ a probabilistic approach to propagate the effect of uncertainties (e.g. PDF, 

CDF and quantiles) in the design parameters on each individual IQ and also the “potato” plots resulting from families 

of “1 – cosine” (1MC) gusts.  

The approaches are demonstrated by considering IQs (bending moments and torques) arising from loads due to 

families of 1MC gusts acting upon a wing / pylon / engine structure of a typical civil jet aircraft model. Uncertainty 

Quantification (UQ) has been applied in order to efficiently determine the effects of design change (engine mass and 

engine pylon stiffness) on the aircraft and load models. 

II. Aircraft and Load Models 

A Aircraft Model 

 The aircraft model used is a representative civil jet airliner, the FFAST model6, whose nominal weights and main 

dimensions are reported in Table 2 . The structural model of the aircraft was a beam-stick model with lumped masses 

(Fig. 1) and the aerodynamics modelled using the Doublet-Lattice Method (DLM)17. 

 

Weights Dimension 

MTOW 231103kg Wing span 57.83 

MLW 187103kg Mean chord 6.07 m 

OEW 123103kg  

MZFW 175103kg Other 

Max Payload 
51.7 

103kg 

Cruise 

Speed 
241.7m/s 

Total fuel 110 103kg Max 

12500 m Mean Engine 

Weight 
8694.3 kg 

operating 

altitude 

Mean Wing Weight 3.2 104kg  

 

Table 2. Main weights and dimensions of the FFAST Model. 

 
 

Figure 1. Structural Model of the aircraft. 
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B Gust Model 

Turbulence is an unfortunate feature of air travel regularly encountered by aircraft which occurs due to the 

movement of the air, causing dynamic response of the aircraft. The turbulence induces a variation in the effective 

incidence of the aerodynamic surfaces (related to wings, tails, control surfaces etc.) which changes the lift and drag 

forces acting on the aircraft structure. 

Suitable models are needed for design purposes in order to determine the gust and turbulence loads, some of which 

are likely to be the critical cases. Different approaches1 have been developed since the 1970s; a historical perspective 

is given by Fung, Hoblit2, Flomenholft, Fuller and Bisplinghof. The latest requirements for civil aircraft are found in 

the EASA Certification Specifications (CS-25) and Federal Aviation Regulations (FAR-25)18. In these requirements 

two types of gust and turbulence have to be considered, to represent the conditions that are met in flight:  

- Discrete gusts, where the gust velocity is assumed to vary in a deterministic way. The most common shape, 

used in the CS/FAR, is the called ‘1-cosine’ (1MC) shape. 

- Continuous turbulence, where the gust velocity is considered to vary randomly. In this work, the 1MC gusts 

will be considered.  

In this work, 1MC gusts were considered (Fig. 2) specified in the CS/FAR,2,18 as 

 𝑈 =
𝑈𝑑𝑠

2
[1 − cos (

𝜋𝑠

𝐻
)]        for 0 ≤ 𝑠 ≤ 2𝐻 (1) 

 and, as the aim is to determine the critical response for each IQ, a sufficient number of gust gradient distances H 

in the range 9 to 107 meters must be investigated (gust length = 2 x gust gradient). Ten different gust gradients† were 

considered as input cases across the entire range of gust lengths.  

III. Methodology 

The aim of the present paper is to present a new methodology to efficiently predict correlated quantities, and hence 

the convex hulls in the presence of design parameter variations without sacrificing accuracy, and then to propagate 

the uncertainties. Here, variations in the structure parameters of the model civil jet airliner were considered; namely 

the mass, flexural and torsional stiffness of the wings, the mass of the engines and the stiffness of the pylons. The 

uncertainties considered here are related to the mass of engine and the stiffness of the pylon; both are epistemic and 

aleatory uncertainties since both the lack of knowledge and uncertainties inherent in the problem can cause them. In 

order to speed up the process, the SVD is adopted to accomplish the feature selection19 and surrogate models are 

considered rather than running the numerical model. Here, the surrogate models are trained and validated using the 

Latin Hypercube Sampling (LHS) method 20 . 

As well as determining the maximum and minimum response for each IQ4-7, 31, it is also of interest to determine 

“correlated loads” as the critical stresses / strains will be dependent upon a combination of Moment, Axial, Shear and 

Torque (MAST) loads. The correlated responses (or correlated loads) (Fig. 3), can be plotted against each other, as 

shown in Fig. 4, determining the so called “potato” plots. Once the load is selected, the outlying points of a convex 

hull are used to define the critical solicitations at each station of the structure. 

In the present paper, a convex hull in terms of the Bending Moment and the Torque of the wings has been 

considered. Note that both the number and the time instants characterizing a critical case usually change as parameters 

vary or different stations are considered.  

                                                           
† The gust lengths considered in the present problem are (in metres): [18, 40, 62, 83, 105, 127, 149, 170, 192, 214] 

 
 

Figure 2. Discrete ‘1-cosine’ gust1. 
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In this regard, Fig. 5 presents the variation of the shape and area of the correlated loads plots along one wing (10 

stations have been considered from the root to the tip of the wing). Moreover, considering families of 1MC gusts, the 

outlying points at each single station are commonly related to different gust wavelength Lg. 

The proposed methodology can be divided in three parts as summarized in Fig. 6. 

1. Application of SVD 

2. Surrogate Model Selection 

3. Uncertainty Quantification 

In what follows each part of the methodology will be detailed. 

A Application of Singular Value Decomposition 

The Singular Value Decomposition (SVD) is a mathematical operation to decompose a rectangular matrix, used 

to analyze and simplify problems in several fields. In linear algebra it is commonly used to obtain ranks, kernels, 

norms and solution of simultaneous equations for over-determined systems. Moreover, it is very useful in data 

analysis, for instance noise removal, visualization and dimensionality reduction. 

The SVD is defined as22: for every matrix 𝑨 ∈ ℝ𝑚×𝑛 there exist two orthogonal matrixes 𝑼 ∈ ℝ𝑚×𝑚 and 𝑽 ∈
ℝ𝑛×𝑛 and a diagonal matrix 𝜮 ∈ ℝ𝑚×𝑛 , whose diagonal contains the non-negative singular values 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥
𝜆𝑚𝑖𝑛 {𝑛,𝑚} ≥ 0 , such that 𝑨 can be decomposed as 𝑨 = 𝑼𝜮𝑽𝑻 . 

In order to reduce the dimension of a problem,  𝑨𝑻, a truncated SVD can be considered. It is the matrix obtained 

considering only the columns of 𝑼 and 𝑽 (i.e. the singular vectors) related to the 𝑘 highest singular values; usually 

the non-zero singular values are chosen although this can be sometimes difficult to do in practice, and therefore the 

most significant terms are retained.  

  
Figure 3. IQ Time Histories for Different Gust 

Lengths, Lg. 

Figure 4. 2D Correlated Loads for Different Gust 

Lengths, Lg. 

 
Figure 5. Correlated Loads Envelope obtained at the wing root and its 

behaviour along the wing considering a family of ten 1MC gusts. 
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Although several methods have been investigated (Guttman-Kaiser criterion, Captured Energy, Cattell’s Scree 

test) a general approach that automatically identifies the correct rank for truncated SVD has not been yet identified, 

and this is mainly due to the inability on real data sets to determine where the cut-off needs to be made. 

In the aeronautics field, the SVD has been used for over 30 years, applied to a range of different purposes including 

system identification and modal analysis. Recently, Sarkar et al.23 have developed, demonstrated and tested a SVD-

based method for symbolic design optimization problem reformulation. Such a method has been applied to Hydraulic 

Cylinder Design and Aircraft Concept Sizing. Armstrong24 used such a technique both to accomplish a down-selection 

procedure in terms of loads, identifying a suitable set of unit loads, and also to predict the response of a structure 

faster.  

In this new methodology the SVD is adopted for feature extraction by fixing a basis and then using other 

coefficients to obtain the required information. The basis is given by the product of the diagonal matrix and the matrix 

containing the right singular vectors, namely 𝚺k𝑽𝑘
𝑇 ∈ ℝ𝑘×𝑚; the coefficients that vary with respect to the design 

parameters are the terms in the matrix of the left singular vectors (𝑼𝑘).  

Initially the parameters to be varied are decided upon, and then a sampling method is selected. Two kinds of 

sampling points must be determined: 

1. those that will be used to train the surrogate model (so called training points) 

2. those that will be considered to validate the surrogate model 

The numerical model has to be run at each sampling point. If the objective is to determine the critical 1D or 2D 

points, then only the first two cycles of the dominant mode need to be saved and the rest of the time history can be 

ignored. Having saved all of the required time responses, a matrix is constructed for each IQ. For example here, the 

Bending Moment and the Torque at 10 stations along each wing have been selected as IQs. The matrix, defined for 

 
 

Figure 6. Flow chart of the Methodology. 
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each IQ, has as many rows as the number of parameter variations (e.g. engine mass, pylon stiffness) (D) and as many 

columns as the product of the number of time steps in each response (N), the number of configurations/ environmental 

conditions (e.g. case loads as gust lengths, altitudes) (M) and the number of stations of interest (S). Thus, the 

dimensions of each matrix are (D) x (NxMxS). The structure of the matrix is shown in Table 3.  

The SVD is applied to each IQ matrix so that both a basis and set of coefficients can be related to each IQ. The 

basis for the computations is given by 𝚺k𝑽𝑘
𝑇 , whose dimensions are (K) x (N x M x S), where K is the number of 

singular values that are retained, and this is assumed not to change throughout the design space. Consequently, the 

time histories of each IQ at different stations, for different configurations/ environmental conditions and for a specific 

i-th sampling point can be simply identified by multiplying the respective row vector of coefficient (𝑼k)𝑖 by the fixed 

basis 𝚺k𝑽𝑘
𝑇 .  

B Surrogate Model Selection 

After having identified these matrices, surrogate models of each of the K columns in the U matrix can be developed 

in order to enable both prediction and UQ of the correlated IQs. The use of surrogate models presents a key opportunity 

in all branches of physics and engineering to efficiently explore the design space and also the effects of uncertainty. 

In fact, surrogate models are able to simulate complex problems guaranteeing the required accuracy without incurring 

too much computation, which characterizes most of the current emulators since the significant improvements in 

computational fluid and structural modelling over the last two decades. Surrogate models25 are developed using 

sampled data obtained by running simulations at particular training points in the region of interest. They have been 

applied in numerous fields, for instance for design space exploration, visualization, prototyping and sensitivity 

analysis26, to deal with noisy or missing data, and also for data mining i.e. to understand which data/variables have 

the most impact25. Approaches often used are Kriging based methods, Neural Network, Regression Tree and 

Polynomial Radial Basis Functions.  

There are several different Kriging surrogate models and the difference is related to the particular form of the 

regression function.25 -30 The main ones are: 

- Simple Kriging, which assumes the regression function to be a known constant. 

- Ordinary Kriging that considers a constant but unknown regression function (𝑓(𝒙) = 𝜇̂). 

- Blind Kriging, which assumes the regression function to be a completely unknown function. This function is 

identified using a Bayesian variable selection technique. 

The latter method, Blind Kriging, is preferable to the Ordinary Kriging which suffers from: 

1. Reduced performance in the presence of strong trends31. 

2. Lack of direct information about the effects of the factors (it is necessary to use a sensitivity analysis such as 

the functional analysis of the variance) 

3. Lack of robustness in the presence of misspecification in the correlation parameters, which are difficult to be 

exactly evaluated. 

 

Polynomial Radial Basis Functions are regression models in which the selected basis is polynomial25 and Neural 

Network (NN) can be considered as a generalization of the Radial Basis Function, in fact the latter is a neural network 

with a single hidden layer17. 

 Station 1 … Station S 

 
Case 

Load 1 
… 

Case 

Load M 
… 

Case 

Load 1 
… 

Case 

Load M 

Training 
Time 

(1:N) 
… 

Time 

(1:N) 
… 

Time 

(1:N) 
… 

Time 

(1:N) 

1 
 

… 
 

… 
 

… 
 

… … … … … … … … 

D 
 

… 
 

… 
 

… 
 

Table 3. Matrix constructed for each IQ, to be decomposed through the SVD 



8 

American Institute of Aeronautics and Astronautics 
 

 

 

Moreover, there are a huge set of NN approaches that can be classified as: 

- Feedforward Networks (MLP/Radial Basis Function) 

- Recurrent Networks (Elman Networks) 

- Cellular Networks (SOM, Self Organising Map) 

 

Finally, Regression Tree can be described in a series of logical if-then conditions (tree nodes) and is attractive 

since its simplicity and the lack in assuming linear and/or monotonic link-functions between output and input 

variables32. The aforementioned surrogate models have been compared in order to select the best for the present 

problem. In particular, in the developed methodology, surrogate models are used to generate the row vector for any 

required parameter case and pre-multiplication of the basis leads to the necessary time history. Validation was 

performed considering the Mean Absolute Percentage Error (MAPE) in terms of the maximum/minimum IQs: the 

absolute percentage error is calculated considering the actual and the emulated results at the validation points and 

averaged for all the validation cases. A maximum MAPE of 8% is fixed to check the accuracy; if such desired level 

of accuracy is not met, then possible solutions to improve the results are: 

1. increase the number of test samples keeping the same variation in the parameters 

2. decrease the range of the input parameters, or 

3. decrease the number of parameters for which the prediction is required. 

C Uncertainty Quantification 

The proposed methodology can be used to quantify the effects of uncertainty in the system parameters. Whereas 

for the 1D case the variation of the maximum and minimum IQ values can be easily tracked1, the correlated time 

histories still need to be retained for each IQ. Using the reduced order surrogate model, it is possible to efficiently 

generate uncertainty bounds for the 1D time histories and the 2D correlated IQs plots by considering the quantiles of 

the IQs at each time instant. Although the uncertainty quantiles of each element of the rows of 𝑼𝒌 can easily be found, 

it is not possible to then obtain physically-meaningful quantiles for the time history simply by multiplying the fixed 

basis 𝜮𝒌 𝑽𝒌
𝑻 by the determined quantile row vector of the coefficient 𝑼𝒌 as the signs in the basis terms are not all 

positive. The quantiles of the IQs related to a specific time instant must be computed instead, in this case using the 

Kriging Method. Through adopting such an approach, the quantiles of the IQ time histories can be determined, and 

Fig. 7 shows typical trends for the 0.1, 0.5 and 0.9 quantiles. Note that the critical parameter case for each point on 

the quantile time histories is still maintained. 

A more sophisticated approach needs to be used in order to determine the bounds of the convex hull of the 

correlated loads plots, ensuring that the correlation between the time histories of the individual IQs is maintained and 

also identifying which are the cases that lead to the critical correlated IQs. Taking the selected quantile bounds (q) as 

0.1 and 0.9 as an example, it is not valid to simply plot the corresponding q = 0.1 and q = 0.9 quantile trends together, 

instead, all four possible combinations of correlated time histories between the q = 0.1 and q = 0.9 quantiles need to 

be plotted i.e. [ IQ1(q=0.1) vs IQ2(q=0.1), IQ1(q=0.1) vs IQ2(q=0.9), IQ1(q=0.9) vs IQ2(q=0.1), IQ1(q=0.9) vs 

IQ2(q=0.9) ]. For each quartet of points related to a specific time instant defines a rectangle in the 2D space that 

 
Figure 7. Example of a time histories (Torque) obtained for quantiles to 0.1, 0.5 and 0.9 directly 
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includes all the possible correlated IQs that can occurs at that instant, providing the required range of quantile-bounds 

within the defined rectangle. Typical correlated load plots for these combinations are shown in Fig. 8 and it can be 

seen that, in this particular case study, the plot identified by points with the different quantile in terms of the Bending 

Moment are almost the same. This behaviour is due to the fact that the bending modes are less sensitive to the gust 

loads and the varied structural parameters than the torsional modes. In order to determine the overall quantile bounds, 

the outer curve is found using a convex hull on all the four quantile time history combinations. The inner curve exploits 

the fact that quantile plots always intersect, and given m points belonging to n intersecting closed convex curves C, 

the inner bound of such curves is the locus of 𝑖 ≤ 𝑚 points that are inside 𝑛-1 curves 𝐶 (the equality occurs only for 

𝑛 - overlapping curves). The inner bound identified in such a way cannot be convex.  

In order to validate the UQ, the results have been compared with those obtained running directly the numerical 

model, i.e. operating a Monte Carlo Simulation (MCS), and considered as “truth”. In particular, in the above-

mentioned comparison, a maximum absolute percentage error of 8% is fixed in terms of the maximum/minimum IQs. 

 

IV. Results 

Results using the methodologies discussed above were obtained for the time history simulations for the 

wing/engine system. Initially, only variations in the mass of engine and the stiffness of pylon (in terms of Young 

Modulus) were considered, and then the complexity was been increased to vary five parameters: the mass of the wings, 

wing flexural and torsional stiffness, and the engine mass and pylon stiffness. These cases are referred to as the 2D 

and 5D problems respectively. Table 4 shows the mean and the range adopted for the values of the structural 

parameters. In particular, the values assumed for the mass of Engine and the Young Modulus of the Pylon have been 

selected in according to the information provided by S. K. Choi8 and M.T. Tong33; the mean of the inertia moments, 

the structure and unstructured mass of the considered 10 stations along the wing are provided in the Appendix. 

 Mean Minimum Maximum   Mean Minimum Maximum 

Mass of Engine 8694.93 kg -10% +10%  𝑚𝑓 - -40% +40%  

Young Modulus 69 ∙ 109 Pa -20% +20% I - -25% +25% 

 J - -25% +25% 
 

Table 4. Range of Variation of the structural parameters 

 
 

Figure 8. Potato plot for two IQs and four different quantile combinations. The legend provides 

the quantiles considered to obtain each convex hull in the format x-axis/y-axis IQ 
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A Singular Value Decomposition 

Both 2D and 5D sampling planes for the surrogate training were considered in order to demonstrate how the 

accuracy increases in terms of the dimension of the sampling plane. Table 5 shows the number of samples that were 

considered and whether the z-score normalization was used; the adoption of a normalization approach and the number 

of Singular Values chosen depend upon the MAPEs discussed in Section 3.2. The aim was to capture those values 

that are significant to predict the behaviour of the convex hull even in presence of uncertainty in the input parameters. 

 

B Surrogate Model: Training and Validation 

The surrogate models presented in Section 3.2 were implemented using: Neural Networks, Tree, Polynomial 

Radial Basis Functions and Kriging. In particular, among the Kriging Methods the Ordinary and Blind Kriging have 

been considered. With the only exception of the Polynomial Radial Basis Function, all the modes were constructed 

by considering a unit cube normalization for both the inputs and the outputs. 

Figure 9 shows an example of a Surrogate Model of the first coefficient related to the Torque responses obtained 

in the 2D problem with 100 training points, whilst in Fig. 10 the “potato” plots predicted adopting surrogate models, 

always trained with 100 points, are compared to the one obtained running directly the numerical model (labelled with 

‘No Reduction’). 

After having trained the surrogate models and discarded those with a low accuracy, the validation step was 

accomplished and the MAPE evaluations discussed in Section 3.2 showed that the most accurate prediction for the 

correlated loads envelope was obtained using the Blind Kriging method (Fig. 11), which always provides the smallest 

MAPEs. 

The key findings from the validation for both the 2D and 5D problems using the MAPEs show: 

- best accuracy was achieved with the Blind Kriging surrogate model, in particular the evaluated MAPEs 

(Section 3) is always less than 0.1% for all the considered stations. 

- predictors for bending moment were more accurate than the ones developed for the torque, which is due to 

the higher influence of the gust on the torsional modes. 

- a slight improvement of the prediction if a higher number of training points is adopted. 

 

  
 

Figure 9. Example of a Surrogate Model obtained in the 

2D problem using the Blind Kriging method for the first 

coefficient related to the torque. 
 

 

Figure 10. Reconstructed Correlated Load Plots 

using Different Surrogate Models 

 2D problem 
5D 

problem 

Training Points 100 240 600 1000 

Validating Points 30 30+100 150 150 

Singular Values: 

Bending Moment 

Torque 

 

1 

22 

 

1 

30 

 

30 

50 

 

30 

50 

Zscore Norm YES YES NO NO 

 

Table 5. Adopted Sampling Plane and SVs 
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C Uncertainty Quantification 

Results for the UQ are presented using the two different computations shown in Table 6. As already stated in section 

3.3, the Monte Carlo Simulation (MCS) is included to provide a comparison for the ROM approach. 

The methods for the uncertainty propagation presented in section V were applied to the 2D problem, considering 

the effects of uncertainty in the Engine mass and stiffness of the pylon, and the Kriging surrogate models trained with 

100 points. The PDFs of such structural parameters have been assumed to be Gaussian and the main statistical 

quantities‡ are summarized in table 7. 

First of all it is important to emphasise that once the time history related to the desired quantiles are determined, the 

behaviour of the convex, the correlated loads at different stations at the same critical case load, the critical case loads 

and relative instants for all the desired stations can be detected with simply mathematical considerations. In this 

regard, Fig. 12 shows the critical load cases, which are expressed in terms of the lengths of gust (Lg), characterizing 

the bounds of the convex hull and the “potato” plot detected fixing 0.5 quantile for both the IQs. In particular, they 

are obtained at the wing root using the SVD-based method together with Blind Kriging Surrogate Models.  

1. Comparison of UQ SVD-based methods 

In order to validate the UQ, a Monte Carlo Simulation was conducted for the 2D problem and considered as the 

“truth”. The numerical model was run 1200 times and the IQs post-processed in order to determine the sought 

quantiles. The surrogate model has been emulated 600, 1200 and 2400 times to check if differences in the results 

would occur. In all the three cases, the estimated quantiles are practically the same and the results are satisfactory, i.e. 

fulfilled the required accuracy (Section 3.3). There is only a slightly improvement adopting the last two. Thus, the 

results obtained considering 1200 emulations for the surrogate model are presented here. Figure 13 shows a 

comparison of bounds of convex hull and the “potato” plot detected fixing 0.5 quantiles for both the IQs at three 

stations: at wing root, just inboard of the engine and at the wing tip. In all the cases very good agreement is obtained. 

                                                           
‡ A sub-domain of the uncertain inputs is considered (Table 6). These subdomains capture 98.97% and 95.45% of the 

probability distribution for the mass of engine and stiffness of pylon, respectively. 

 
 

Figure 11. Validation in terms of Correlated Load Plots. 

 Case 

 1 2 

Quantiles Forces Forces 

Method 

SVD  

+ 

Kriging 

MCS 

 

Table 6. Cases compared in section 6 for the UQ. 

 Mean 𝝁 COV 𝝈 

Mass of 

Engine 
8694.93 kg 0.039 339.1 kg 

Young 

Modulus of 

the Pylon 

69 ∙ 109 Pa 0.1 69 ∙ 108 Pa 

 

Table 7. Adopted statistical quantities. 
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Figure 12. UQ obtained applying the SVD-based method together with the Blind Kriging model. The 

colored points on the bounds stand for the critical ones. 

 
(a) Wing root             (b) Just inboard of the engine      

 
(c) Wing tip 

 

Figure 13. Validation of the UQs. Comparison of convex hulls obtained at three stations for a 10 1MC gust 

family using the emulation of the developed Blind Kriging surrogate model (SURR) and a MCS of the 

numerical model (Actual). 
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In order to determine the accuracy of the developed method, percentage errors obtained emulating the Blind 

Kriging surrogate model rather than evaluating MCSs of the numerical model are considered for a set of quantiles. 

Table 8 shows the maximum of the absolute-percentage errors of the maximum/minimum IQs, and for which quantile 

they are obtained, for all the stations along the wing. 

Even in the presence of some errors, it has been demonstrated, by comparing the convex hulls and their critical 

lengths, that the obtained accuracy is excellent. Indeed, we have verified that adopting the developed method for the 

UQ the required critical conditions for the aircraft are identified with very good accuracy: the correlated loads at 

different stations at the same critical case load and the critical case loads for all the desired stations are the same of 

those obtained adopting the MCS technique. 

Moreover, the developed method requires much less computation than MCS computational cost; for the 2D study 

considered, using a desktop PC, a MCS takes about 2 days to propagate the uncertainty, whereas the developed 

methods requires about 2 hours both to train all the surrogate models and propagate the uncertainty to the convex hull. 

 

V. Conclusions and Further Work 

A SVD-based method for both the prediction and the propagation of the uncertainty in terms of correlated aircraft 

loads has been presented and validated considering an aeroelastic model of a civil aircraft. For both the prediction and 

the UQ, the Blind Kriging surrogate model gave the most accurate results and good quality predictions were obtained 

considering variations for both two (2D) and five (5D) structural parameter variations. It has been shown that using 

the SVD together with the Blind Kriging surrogate model, all the required information related to the behaviour of the 

“potato” plots, the correlated IQs and the critical conditions can be captured. Very good results have been achieved 

for the prediction of correlated loads, and the comparison between the results obtained for the uncertainty 

quantification, using the developed method and Monte Carlo Simulation, showed an excellent agreement with a 

significant reduction (approximately 95%) in computation.  

The SVD-based method can be simply generalized for higher dimensions, once suitable surrogate models of the 

coefficients have been determined. 

Future work will improve the application of the developed techniques, investigating the application to a more 

complex aircraft model, considering more configurations/conditions and design parameters, the inclusion of nonlinear 

effects, and the use of piecewise Gaussian processes for the uncertainty quantification. 

  

 Station 

 1 2 3 4 5 6 7 8 9 10 

 Percentage Error Maximum Bending Moment 

Value 
0.099

% 
0.046% 0.23% 0.29% 0.29% 0.3% 0.32% 0.36% 0.53% 0.86% 

Quantile 0.3 0.3 0.7 0.9 0.9 0.9 0.9 0.9 0.1 0.1 

 Percentage Error Minimum Bending Moment 

Value 0.34% 0.14% 0.45% 0.23% 0.24% 0.25% 0.28% 0.62% 0.64% 0.57% 

Quantile 0.7 0.1 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9 

 Percentage Error Maximum Torque 

Value 6.8% 7.2% 6.9% 0.62% 0.48% 0.43% 0.22% 0.16% 0.37% 1.4% 

Quantile 0.9 0.9 0.5 0.1 0.1 0.1 0.1 0.1 0.9 0.3 

 Percentage Error Minimum Torque 

Value 1.2% 1.3% 1.9% 0.35% 0.37% 0.21% 0.13% 0.11% 0.17% 7.8% 

Quantile 0.9 0.9 0.5 0.1 0.9 0.9 0.2 0.2 0.1 0.4 

 

Table 8 Maximum of the absolute-percentage errors with respect to the MCS for the maximum/minimum IQs 

for each station and quantiles. The considered quantiles are from 0 to 1 with an increment of 0.1. 
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Appendix 

A Structural Parameters along the wing 

Table 9 and 10 show the nominal values for the inertia moments (I and J), the structured (CONM2) and non-structural 

mass (nstrM) of the 10 stations considered along each wing. 
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