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I. INTRODUCTION AND SUMMARY

)

i.i INTRODUCTION

The XV-IS is an advanced tilt rotor research aircraft (Figure

i.i) currently under development by the National Aeronautics an_

Space Administration and the U.S. Army Air Mobility R&D Labora-

tory. An important element of the aircraft development is an ex-

tensive full-scale wind tunnel test to be conducted in the Ames

Research Center 40- by 80-foot wind tunnel. Since previous wind

tunnel scale model and full-scale tests of the tilt rotor concept

have been effective in previous years, it is desired to conduct the

forthcoming XV-I5 tests in a comprehensive manner to continue to

minimize uncertainties in system characteristics.

°

Figure i.i The NASA/Army XV-15
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This study is a determination of specific test requirements

which impact the conduct of these tests. This research is based on

a mathematical model of the XV-15. This model is used to analyze

the dynamic characteristics of the vehicle at 190 knots in the

wind tunnel.

1.2 METHOD OF APPROACH

The method of approach used for this work is schematically

shown in Figure 1.2. The mathematical model was converted into a

simulation and a state _ector format. These two reformulations

were then combined with existing data on the input control channels

and instrumentation characteristics to provide a model for the test

system.

The next steps were the evaluation of the test model to deter-

mine basic requirements on the data analysis algorithms. In par-

ticular, this step produced an evaluation of mode identifiability

which set further requirements on instrumentation and inputs.

Originally, the effort was directed to a basic rotor/cantilever

wing model. During the course of this effort, coordination with

the test agency indicated the need for results which expanded this

method of approach to coupled modes between both wings. The steps

were repeated for this case.

1.3 PRINCIPAL CONTRIBUTIONS AND CONCLUSIONS

The following analytical tools have been developed:

(I) An XV-15 digital simulation incorpolating a simplified

tunnel support model, control system loop, measurement

lags, gust disturbances, and sensor noise. Time histor-

ies are generated from this simulation which provide a

correlation base for the tunnel tests, as well as a means

of evaluating various data processing methods.

2
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! (2) Specialization of existing data analysis programs to the

high order XV-15 dynamical model. The programs so speci-

alized at various stages of this work are: (a) the trans-

fer function program, (b) a time series analysis program

(FFT, auto-correlation, transfer functions), and (c) SCIDNT,
P

an advanced maximum likelihood parameter identification

program.

.

(3) Several auxiliary programs have been developed to provide

estimates of damping from transfer functions, as well as

calculation of modal decomposition of system response

(to identify modes), particularly useful for analysis of

coupled wing responses.

Application of these programs to the basic symmetric, nine

degree-of-freedom mathematical model have produced the following

conclusions (see Table I.i):

(I) If the test configuration at 190 knots is such that con-

trol inputs are limited to collective pitch and flaperon

at frequencies below approximately 5 Hz and measurements

are made orly of the wing bending accelerations, qwl and

qwz' then sufficient information for calculating modal

frequency and damping accurately is available only for

the qwl and qw2 modes. (Necessary input amplitudes to

achieve a desired noise-to-signal ratio for different

levels of wind gust and speed of actuator response can

be obtained from Figures 5.5-5.7 for the cantilever wing

and Figures 4.6-4.8 for the coupled wing.)

(2) If the above test configuration could b_ improved to

allow flaperon input frequencies in the vicinity of I0 Hz,

then information would be sufficient to compute modal

frequency and damping of the wing torsion mode from

measurements of the wing bending accelerations.

4

I
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_' (3) Similarly, collective pitch input frequencies near 20 Hz

would provide information for the frequency and damping

of the rotor coning mode, B.

(4) If instrumentation is provided to measure the wing tor-

sion degree-of-freedom, p, and if czclic pitch control at

18.6 Hz is possible, then the frequency and damping of

the upper rotor inplane bending, _ @�”be determined.

(5) Even under the best of circumstances (i.e., any of the

four controls could be excited at any frequency and

measurements could be taken of all nine degrees-of-freedom)

sufficient information is not present in the transfer

functions to calculate the modal frequencies and dampings

of the upper and lower gimbal modes, B �˜�and8 1 , and the

lower rotor inplane bending mode, _-I" It is because

these modes are well damped that there are no resonant

peaks associated with them in the transfer functions.

Consideration of the coupled wing motions in the presence of

control and measurement calibration errors produced the following

conclusions:

(i) The test configuration of exciting one wing and measur-

ing the response of that wing makes the determination of

frequency and damping of individual modes extremely

difficult since the symmetric an_ asymmetric modes

usually result in a single resonant peak in the frequency

response.

{2) Symmetric and asymmetric motions can be separated if

either both wings are excited and/or the responses of

both wings are measured.

1976012058-021



- (3) Errors in calculating a mode's frequency and damping

,- from its resonant peak may still occur if the motion of

other modes is significant.

, °
m

(4) Measurement and control calibration errors less than 20%

do not produce significant errors in calculating damping

values compared to the problem stated in (3) above.

i. 4 SUMMARY OF REPORT

The objective of this report is to present principal modeling

and analysis approaches and reference material for tunnel test

planning. Chapter II discusses the modeling of the aircraft,

instrumentation, and controls. Chapter III reviews results of the

rotor/cantilever wing model, and Chapter IV presents the coupled

wing results. Chapter V gives some examples of data prediction

with system identification techniques. Chapter Vl presents de-

tailed conclusions and recommendations.

The appendices provide the detailed analysis and figures upon

which the text draws. Appendix A is the derivation of the support

equations. Appendix B presents the principal derivations for

transfer function analysis. Appendix C is the plots of transfer

functions.

7
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II. TILTING PROPROTOR MATHEMATICAL MODEL

An analytical evaluation of tilting proprotor test require-

ments is based on a comprehensive description of the dynamics and

aerodynamics of the subject vehicle. This section discusses the

basis of that description (the simulation, detailed in [2]), and

modifications to this simulation which approximate typical test con-

figuration constraints and disturbances. Section 2.1 reviews essen-

tial elements of the basic rotor/wing model. Section 2.2 discusses

the influence of the aircraft tunnel support restraint. Coupled wing

interactions are approximated in Section 2.3, followed by Section

2.4, outlining the gust simulation method, Section 2.5, modeling of

instrumentation, and Section 2.6, control system representations.

Z.1 REVIEW OF BASIC ROTOR WING MATHEMATICAL MODEL

The basic mathematical model of the XV-I5 aircraft dynamics

has been established by Johnson [2-5]. A conclusion of Reference 5

was that, in general, the basic rotor dynamics were satisfactorily

described by a nine degree-of-freedom model (the first bending

mode and rigid pitch mode of each blade, gimbal pitch and roll

angles, and rotor speed perturbation), but that in some cases it

may be reduced to six degree-of-freedom by using the quasi-static

blade-torsion approximation, which is discussed in Reference 2.

For the purposes of this study, it was determined that the six

degree-of-freedom model was satisfactory• Hence, the complete rotor/

pylon/wing model consists of the six rotor and pylon degrees-of-

freedom described above, plus three degrees-of-freedom for the wing,

_hich are lowest mode vertical bending, chordwise bending, and

torsion. These nine degrees-of-freedom are listed in Table 2.1 for

_ase of reference.

i
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Table 2.i

Rotor, Pylon, Wing Degrees-of-Freedom and Controls

I SYMBOL DESCRIPTION

i

Degrees-of-Freedom
i

B1c Longitudinalcomponentin nonrotatingframe of lowest blade
bendingmode

Bls Lateralcomponentin nonrotatingframe of lowestblade bending
mode

Bo Coningof the rotor

BGC Gimbal pitch angle

BGS Gimbal roll angle

_S Rotor rotationalazimutl,perturbation

ql Wing vertical bending

q2 Wing chordwisebending

p Wing torsion

Controls

eo Blade collectivepitch

es Blade longitudinalcyclic pitch

ec Blade lateralcyclic pitch

6f Wing flaperondeflection
i i ,

Several aspects of this model deserve further con_nent. The

lowest blade bending modes are essentially inplane bending {lead-lag)

during high speed, axial flow. The effect of collective lag of the

blades appears in the rotor speed perturbation degrees-of-freedom.

The effects of engine and transmission dynamics are included in the

equations of motion, but they do not introduce additional degrees-

i0
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.. of-freedom. The equations of motion include the effects of gusts

and four control variables (see Table 2.1): collective, longitudin-

al cyclic, and lateral cyclic pitch of the blades and wing flaperon

deflection.

The computer program developed by Johnson [3] calculates the

equations o£ motion in the general form

A2R + AI_ + AoX - Bu + BGg (Z.l)

where

x is the state vector composed o( either the nine sym-

metric or asymmetric degrees-o£-£reedom,

u is the vector o£ control variables,

g is the gust vector,

Az,AI,A ° are the "mass", "damper", and "spring" matrices,

respectively, and

B,BG distribute the controls and gusts, respectively,

among the states.

This equation is readily converted to the standard state-space

form

= Fx + Gu + rg (z.z)

where

"Ix] (z.3)x- ._j

[ 0 I 1 (2.¢)F- ° 1

11
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[°I! G - (z.s)
B

and

I°]r ,, (z.6)
BG

Measurements, y, of the degrees-of-freedom are modeled as lin-

ear combinations of the state and control:

y " Hx + Du �D'E(2.79

J
Except where stated otherwise, it is assumed that the accelerations

of the wing bending degrees-of-freedom, ql and q2' are measured by

accelerometers and that direct measurements of other degrees-of-

freedom are available as needed for the sake of discussion.

The frequency response of the measurements to the controls or

gusts are available from the Laplace transfer functions

u_ - HCsI-F)'IG (2.8)

g_ - HCsI-F)'IF. D" (2.9)

which follow directly from Eq. (2.2). The results obtained

from these functions are discussed in Chapters III and IV.

2.2 EFFECT OF SUPPORT FLEXIBILITY

A preliminary requirement for this study was to determine if

the flexibility of the support structure in the 40x80 wind tunnel

would introduce modal frequencies near frequencies of interest. If

IZ
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J
_' so, the isolation of the modal frequencies of <nterest and the

I determination of the modal damping factor would be made more diffi-

i cult.

Displacement of the support attachment points in a horizonzal

plane was considered. Vertical displacement was not considered

because the support is far more rigid in that direction. Thus, the

basic equations of motion were expanded to include two more degrees--

of-freedom: longitudinal and lateral transl_tion of the aircraft,

xs and vs' respectively. Aircraft yaw is also possible, but data

were not available to adequately specify the frequency and damping

parameters for the yaw degree-of-freedom, so it was omitted from

the study.

The support equations will be only briefly described here; a

detailed derivation of the equations appears in Appendix A. The

direct aerodynamic effects on the xs and Ys degree-of-freedom are

negligible compared to the structural kinetic effects; Zherefore,

only the latter are retained in the equations. The result may be

written simply as

ms _s + CxsXs �KxsXs- FXs (Z.IO)

ms Ys �CysYs* KysYS " Fys (2.ii)

where the asterisk superscripts denote nondimensional quantities.

The mass coefficient, ms, is estimated from a weight analysis

of _he XV-15. The terms FXs and Fys are composed of all the
cross-coupling terms between the support and the remaining degrees-

of-freedom, plus the effects of controls and gusts, all of which

were available from she existing coraputer program. Therefore, only

the damping coefficients, Cxs and Cys, and the spring coefficients,

KXs and Kys, remain to be specified. This was done by assuming 2%

13
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structural damping and specifying the frequency of the support

oscillations with the rotor off. These frequencies were taken as

3.5 Hz in the longitudinal direction and 4.0 Hz in the lateral,

based on earlier experience in the 40 x 80 tunnel [6].

The result is shown in Figure Z.l, which compares the pole

' locations of the symmetric nine degree-of-freedom model to the same

model with the support degrees-of-freedom added. As can be see_,

the effect is an increase in the modal frequencies of the rotor-

coning (SO) mode (from 2.6 to z.g per rev); of the upper blade lag

(_ �¤�mode(from 2.4 to 2.6 per rev); and of the wing chordwise

bending (qw2) mode (from 0.67 to 0.84 per rev). The frequencies
of the remaining modes are unchanged. The two new modes associated

with xs and Ys are at low frequencies (0.1Z and Q.IS per rev,

respectively) and are not expected to cause any difficulties in

identifying the frequencies and damping of other modes. Also, even

though the 80 , 4+1, and qw2 modal frequencies are altered, there -_
still remains adequate separation of frequencies to permit discrim-

ination of individual modes. Therefore, the conclusion is that

the support flexibility do_s'hot_h_nge the basic characteristics

of the ._/-15 structural damping or frequencies and need not be

considered in the remainder of this study.

2.3 MODELING OF COUPLED WING RESPONSES

A major part of this study was to ascertain the effects of

exciting on_ or both rotors (or wines), the effects of measuring

the _response of one or both wines, and the effects of calibration

errors in the measurements of the control inputs and the wing

responses on the ability to correctly compute the frequency and

damping of important modes. The nine degrees-of-freedom of the

right rotor/pylon/wing system are coupled to the nine 4egre_--of-

freedom of the left system, principally by means of the transmission

14
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interconnect shaft. This left and right system of eighteen degrees-

of-freedom may be decoupled into symmetric and asymmetric systems

of nine degrees-of-freedom each. This procedure is advantageous

because it aids the understanding of the complete system, simplifies

the mathematics, and reduces the computational effort.

There are nine cases to be investigated (Table 2.2). It is

assumed that the symmeZric and asymmetric responses are separated

whenever possible to better isolate the frequencies of individual

modes.

Some definitions are helpful before proceeding with this analy-

sis. Six subscripts which will be used are:

S _ symmetric

A _ asymmetric

R _ right

L _ left

a _ actual or true

m _ measured

The basic symmetric and asymmetric transfer functions are:

YS(s) YA(S)
Ts(S) - _ , TA(S) - UA_- (2.12)

where

I (s)), measurement of symmetricYs(S) -__ (YR(S)+Y L
response (2.13)

YA(S) _ ½ (YR(S)-YL(S)), measurement of asymmetric
response (2.14)

16
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usCs) -_½ (URCS)eULCS)), symmetric control input C2.15)

UA(S) _ _ (UR(S)-UL(S)), asymmetric control input (2.16)

Also, right and left control calibration errors (_R and _L' respec-

tively) and the right and left measurement calibration errors C_R

and qL' respectively) are defined such that:

(UR)actual = (l+¢R)(UR)commanded or measured (2.17)

(YR)measured = (l+qR) (yR)actual (Z.18)

and the left variables are related similarly.

An example of the first case, that of exciting one wing and

measuring one wing where no calibration errors are present, is the
_J

following:

YR(S) = Ys(S) �yA(s)

1 (s) (s)] ��TA(S)(s)-Ue(S) ] (Z.19)= _ TSCs) [uR +uL [uR

YR(S)

•" _ " { [Ts(s)+TA(S) ] (2.20)

y (s)

UL_ -{ [Ts(s) - TAts)] (2.21)

Next, consider the last case, that of exciting both wings

either symmetrically or asymmetrically and measuring the responses

of both wings in the presence of both control and measurement cal-

ibration errors. For symmetric excitation:

18
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YR = (I R
_" m a

= + TAUAYRa TSUSa a

YRa = TS{½ [URm(l è�l�)]}

(l+ZR)- (l �¬22)-" �TA{½[URm ULm L

and similarly for YLm and yLa . From the above, it is easily shown
that

and, similarly for asymmetric excitation,

uA
m

The results for the remaining cases are found in a similar manner

and presented in Table 2.2 Note that many cases follow directly

from the above two equations when the calibration errors are set

to zero as appropriate. For example, the case of measuring both

wings and exciting both wings with control (but not measurement)

calibration errors follows simply by setting oR = nL = 0 in the

above equation.

The following observations are made concerning these results:

(1) Exciting one wing and measuring one wing does not allow

the separation of symmetric and asymmetric responses.

19
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(2) Exciting both wings with calibration error and measuring

I one wing means that the measured response will consist

of both symmetric and asymmetric modes when only one or

the other was wanted. A similar case exists when one wing

is excited and both are measured in the presence of

measurement error.

(5) When both wines are excited and both measured and both

measurement and control errors are present, then again

the unwanted modes contribute to the response. However,

the fractional amount of this unwanted contribution is

reduced to the order of the square of the calibration errors.

How much the presence of these unwanted modes affect the esti-

mate of the damping factors of individual modes as computed from

test data will be the discussed in Chapter III.

2.4 MODELING OF GUST EFFECTS

In general, there are two principal sources of random effects

which can degrade the information content of data. These are

process noise (e.g., gusts) and measurement noise. For a well

instrumented aircraft, with prefiltering on data, the process noise

effects are of most concern. Particularly for the wind tunnel tests

at high speeds, these gust effects can obscure essential stability

information.

This study required a method for emulating gust effects in

both the frequency and the time domain. Gust spectra charact is-

tics of the 40- by 80-foot wind tunnel are largely unquantified,

and it is not clear as to the relation between tunnel randomness

and corresponding flight gusts.

2O
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.. The approach used is based on use of an atmospheric gust

spectrum. The yon Karman spectrum is known to be one of the most

accurate of isotropic atmospheric gust models, although such a

spectrum is not convenient for matching with linear filters (due

to noninteger factors in the spectrum). An approximating spectrum

is the Dryden spectrum, which is "close" to the yon Karman spectrum

for low frequencies. The Dryden spectra used for longitudinal,

lateral, and vertical gusts are:

O uL
_u{W) . __ Z

\% !

% (w) -

\% / J

O.w2L I + 3[wLI2\uO/

%(w) = --Uo
" F1 + {wL_21-_
L" k/J

where L is the correlation distance, uo the wind velocity, and
L = _ 1
u-_ Tcorr _n {_n is the bandwidth of the noise).

For this work, the bandwidth of the noise was estimated at

2 Hz (which corresponds to a correlation distance of 25.5 ft) for

all three directions. The variance of the lateral and vertical gust

was chosen to be a fixed fraction of the longitudinal gust variance,

but this ratio was chosen conservatively. This allowed parameteri-

zation of the noise-to-signal ratio (see Appendix B.2.3) as a func-

tion of input amplitude on the longitudinal gust rms velocity.

The resulting variance is

21
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where cT is the total rms gust velocity.

As discussed in Section B.2.3, these spectra and variances

were used with the aircraft dynamic response to random gusts to

determine the power due to random gusts in a particular measurement.

Viewing the three gust directions as _correlated with each other,

their power contributions to a particular measurement can be added

in an ms sense. Representations of these gust effects in time

domain simulation were approximated using white noise passed through

a first order filter with a break frequency at 2 Hz.

2.5 INSTRUMENTATION MODELING

Measurements were taken from the position states except those

measurements with which the XV-15 is now instrumented--wing vertical

bending acceleration and wing chordwise bending acceleration. The

measurements were created from the appropriate linear combinations

of the states and controls. The simulation did not include a lag

in measurement (the strain gauge accelerometers on the pylon have

bandwidth of 100 Hz (13.1 per rev), which is far above any modes

of interest). Initially, random measurement noise was added to

simulations, but in general the process noise (tunnel gust) was

the only noise considered, due to the expected severity of such

tunnel disturbance.

The transfer functions all included a first order lag at I00 Hz

(13.1 per rev), but its effect is difficult to isolate since the

primary modes of interest lie in the regime 0.i to i0 per rev.

22
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., ,. 2.6 CONTROL MODELING

Two cases for the order of the control system actuator were

chosen, a first order and a fourth order lag, to represent an opti-

mistic case and worst case for the steepness with which the actuator

gain falls off with frequency. The break frequency was S Hz.

(This corresponds to a good quality control servo.)

The frequency responses discussed in Chapters II and III all

include a first order lag at 5 Hz. The fourth order control lag

was achieved by applying the following third order filter to the

transfer function data:

w3

n . with s - j_.

(S+_n)(SZ+2(0.S)_nS+_ _)

(5 Hz = 0.654 per rev). As will be seen in Chapters Ill and IV,

there is little difference in these two representations of the

actuator below 5 Hz, for example in studying the qwl mode (symmetric)
motion at 0.398 per rev). Of course, the fourth order lagged con-

trol would make the study of high frequency modes (greater than

1.5 per rev) prohibitive. Cyclic inputs were studied with a first

order control lag ac 2 Hz and I0 Hz.

Time domain simulations of the measured responses were made

using different inputs (multiple sinusoids, random inputs, and

swept sine), all using a first order lag, primarily at 5 Hz band-

width but also at i0 flz.

Scale errors between the commanded and actual control were

modeled as described in Section 2.3.

23
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III. ANALYSIS OF ROTOR/CANTILEVER WING DYNAMICS

This section presents the analytical evaluation of test con =

siderations for rotor�cantilever wing modes. This evaluation is

based on the frequency response characteristics of the nine degree-

of-freedom model, discussed in Section 3.1. Section 3.2 reviews

the wing modes which are of principal significance in defining

stability tests at maximum tunnel speed of 190 knots. Section 3.3 m

shows the input considerations which are required to isolate these

principal modes, and Section 5.4 discusses the effect of tunnel in-

duced random disturbances in the measured responses. A summary is

presented in Section 3.5.

3.1 FREQUENCY RESPONSE OF THE ROTOR/CANTILEVER WING MODEL

As discussed in Chapter II, the transfer function

u_ = H(sI-F)'IG+D

can be used to evaluate the frequency response characteristics of

the system with dynamics matrix, F; measurement distribution matrix,

H; control distribution matrix, G; and direct measured inputs, D.

The stability of this transfer function is completely described by

the roots of the characteristic equation of F. Heasurement of these

stability characteristics, however, depends not only on these roots,

but also on the roots o£ the numerator of the transfer function.

These numerator roots are governed not only by the system dynamics

(F), but also the mesurements and the controls which define the

test configuration.

.. PAC'EIINTE" ' -,. ":,
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5.1.1 Transfer Functions of Rotor/Cantilever Wing Model

The primary controls available on the XV-15 are collective

pitch [80 ) and wing flaperon (_f), at least for the fully converted

configuration. For reference, the frequency response to these

inputs for all degrees of freedom of the basic rotor/cantilever

wing, are given in Appendix C.

3.1.2 Evaluation Method of Transfer Functions

The transfer functions of Appendix C serve as a useful refer-

ence description of the frequency response of the nine degrees-of-

freedom to collective and flaperon inputs. In this section, we

examine the total information content of the transfer functions,

assuming that all states are measured and input bandwidth is above

the highest frequency mode of the system. This "ideal" case demon-

strates the relative ranking of modal information independent of

test input or instrumentation limits. In Sections 3.Z-3.4, we dis-

cuss the effect of these limits in more detail. The purpose of

presenting these "ideal" transfer function characteristics is to

formulate a basis for discussing the desirability of more stringent

requirements on instrumentation and excitation hardware.

The basic objective of stability testing is the determination

of frequency and damping of system responses. For a multivariable

rotorcraft system, however, it is necessary to isolate the frequency

and damping of the elemental modes which produce that system

response. The problem is, however, that the system response (as

indicated by the transfer functions of Appendix C) represent the

sum of contributions of all these elemental modes at a particular

frequency. In many cases, the elemental modes are essentially un-

coupled, and a particular peak corresponds to a unique degree of

freedom (e.g., wing vertical bending). For the rotorcraft, however,

significant modes are highly coupled and measuremen% of system

26
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frequency response may not provide the desired stability character-

istics for a particular degree-of-freedom.. A corollary to this is

that determination of system damping for a particular peak, itself

a nontrivial calculation, may not define the stability of a particu-

lar degree of freedom.

There are several analytical techniques which may be used to

decompose system response into contributions from various modes

(such decomposition is equivalent to quantifying the identifiability

of a particular degree of freedom). These techniques include the

following:

(a) Mode Shape Analysis: Corresponding to a particular natur-

al frequency of response is a mode shape associated with

that frequency. This mode shape, or eigenvector, may be

calculated. The eigenvector consists of a vector of

components of the elemental degrees-of-freedom. The rela-

tive size of these components quantifies the participation

of each degree of freedom at a natural frequency. Unfor-

tunately, highly coupled modes yield eigenvectors which

show several components of nearly equal contribution, and

it is not clear how to isolate the most significant

degrees-of-freedom.

(b) Residue Analysis (Appendix B): The natural response

of a system mode may be written as a sum of elemental

modes. The terms of this expansion are of the form

I ni
e Ai cos (wni /[T_i t +¢i )

where Ai is the combined residue of the mode eigenvalue,

I • ;i _J_i (Ai = 21Ril' where Ri is residue of li). Modal
content can be estimated by ranking the residues of all

modes at each frequency.

1976012058-040



(c) Nodal Power (Appendix B): The modal power of a par-

ticular transfer function peak is the power contributed

by the complex pole pair associated with the vibration

(in a selected frequency range about the peak).

J

(d) Modal Power Ratio (_lPR) (Appendix B): The ratio of a

particular degrees of freedom power to total power of a

response. The MPR can be positive or negative depending

on whether a particular degree of freedom is adding or

subtracting power from a resonant peak. The sum of the

MPR's for each mode is unity.

rhe modal power and modal power ratios are used to quantify

the following:

(I) Which transfer function is more desirable to identify a

particular mode?

(2) Which _ode is most significant in a resonant peak when

more than one mode is contributing?

The modal power ratio does not include information on the magnitude

of the peak. (For example, transfer function B may show a resonant

peak of much less magnitude than transfer function A, yet their

MPR's are nearly equal.) Thus, for selecting which transfer func-

tion is more desirable to identify a particular mode, the modal

power should be used. This can be done since: (I) the system ^f

equations is normalized so the transfer function evaluations are in-

dependent of the units, and (2) the same integration interval was

used on each transfer function. When investigating one peak of a

particular transfer function to determine which mode is being iden-

tified, either the MPR or modal power may be used. W_en comparing

the uniqueness (meaning lack of other modes that contaminate) of

Z8
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li
different peaks of one transfer function, the MPR must be used

' ,: because the modal power _nay be computed at different frequency

bandwidths for each peak.

3.1.3 Transfer Function Comparisons

Table 3.1 is a qualitative comparison of the transfer functions

to colleztive and flaperon. Such a table is useful for rapid refer- -

ence to determine the importance of measuring a particular degree-

of-freedom or using a particular input. For example, the table

indicates that the qwl' qw2' p' and 8 modes can be isolated (if

,, sufficient control bandwidth is available).

Table 3.2 is the quantitative evaluation of the transfer func-

tions, upon which Table 3.1 is based, and summarizes the modal power

computations for the cantilever wing [symmetric motion) transfer

functions. Transfer functions to all nine degrees-of-freedom excited

by collective pitch and wing flaperon, as well as selected cyclic

transfer functions, are included. In the horizontal direction of

the table are the different transfer functions; in the vertical

direction of the table are the different modes. As developed in

Appendix B.2.2 and B.2.3, every mode contributes either positively

or negatively by some great or small amount to the total power

of each peak in a particular transfer function. Only contributions

(in terms of MPR) greater than 5% are included in Table B.I.

Each box ssseciated with a particular transfer function

contains three values. The first is the frequency of the peak

for which the modal power is computed, and the following two values

are the modal power and modal power ratio (MPR). Each transfer

function does not exhibit peaks at each of the modal frequencies.

W_en a mode is not excited in a particular transfer function, the

block for that mode is used to indicate that mode's contribution
i

to the nearest adjacent peak, which is at the indicated frequency.

29
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Thus, the table can be used in the following ways:

• Comparisons can be made horizontally of the modal power

values for a desired mode to choose the transfer function

giving the best information for that mode. This compari-

son can be made because the equations were normalized and

the same frequency bandwidths were used.

• Comparisons of MPR can be made vertically to determine

which peaks of a particular transfer function arise mostly

from the resonance of a single mode and are least obscured

by other modes.

Figures 3.1a and 3.1b are illustrative of the manner in which

: modal pcwer ratio is used to evaluate system response. The wing

chordwise acceleration to wing flaperon (_w2/_f) transfer function

is shown in Figure C.2 (Appendix C). Four distinct peaks are evi-

dent. Figure 3.1a shows the modal power ratios for each of t.tese

peaks for contributors above 5% of the total power in the response.

(Note that other degrees of freedom not shown are below 5% of the

total power and sum with the plotted NPR's to unity.) The following

Figure 5.1b shows the effect of additional control system lag beyond

5 Hz and the alterations in MPR associated with this lag.

The modal power ratio has even more utility when considering

the coupled wing responses. This will be discussed in Chapter IV.

3.2 DISCUSSION OF TRANSFER FUNCTION CHARACTERISTICS

The primary modes of interest for XV-IS structural stability

testing are those associated with the wing. For the purposes of

this study, these modes include the wing vertical bending {qwl),

wing chordwise bending (qw2), and wing torsion (p) modes. These

1976012058-047
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] modes are lightly damped and, therefore, of significant interest
I

i for flight test prediction.: l
I

_I In addition to the wing modes, there is another lightly

damped mode whose response is important. This is the upper inplane I
i

I

mode, _+I' although this mode is at a high frequency. These four

modes are summarized with respect to frequency and damping in

Table 3.3. The data in Table 3.3 is the "ideal" frequency and

damping, based on an analysis of the characteristic equation. Sta-

bility parameters determined from various transfer functions will,

in general, be different, as discussed below. I

Of these four modes, further analysis was focused primarily

on the qwl and qw2 modes. The p mode has the greatest damping of the

four at 0.058, and the analysis performed on the qwl and qw2 modes

Table 3.3

Principal Symmetric Modes

MODE w D
•L , , I

2.43 Per Rev

_+I (18.6 Hz) 0.02990

1.34 Per Rev
p 0.05783

(10.3 Hz)

0.666 Per Rev
qw2 0. 04258

(5.09 Hz)

0.$98 Per Rev
qwl 0. 04798

(3.04 Hz)
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• can be easily extended to the higher two modes when consideration of

control excitation at their frequencies is desired (p at 10.3 Hz

_ and _+i at 18.6 Hz).

Observations about the transfer functions are made here pri-

marily to point out modes not available in the wing bending transfer

functions from instrumentation presently planned for the XV-I5

(_wl/_f and _wZ/%o are presently available). For example, it is

difficult to obtain information on the upper inplane mode. Direct

measurements of the inplane motion show a resonant peak in the fre-

quency vicinity of the upper inplane mode (_+i). However, the rotor

coning mode (8) is very close to this frequency. Excitation of

the inplane degrees of freedom by collective gives a response with

magnitude I0"I, but the collective also excites the 8 mode consid-

erably (see Table 5.2). Excitation of the inplane degrees of freedom

by the flaperon does not excite the 8 mode significantly; however,

the resonant peak has a magnitude of only 10"2. Cyclic inputs would

excite the _+I mode sufficiently without significant participation

of the 8 mode. Resonant peaks with good information on the _+I

mode occur in the transfer functions of wing torsion (p) and rotor

inplane motion (8(I) and 8(1)) to cyclic inputs (81C and 81S)IC IS

Thus, by measuring wing torsion, it would not be necessary to add

strain gauges on the rotor blades to measure the _+i _.ode.

Collective pitch to the rotor coning degree of freedom does

not show sharply distinguished resonances for modal decomposition.

Excitation of this degree of freedom with wing flaperon does show

resonance; however, the 8+1 mode corrupts the _ �¸(see
Table 3.2). Also, this peak is rather small in magnitude (10"5),

again indicating that a rotor blade measurement would not add to

the information available from present instrumentation.

37

1976012058-050



t ! i I !

Gimbal measurements excited by flaperon (_f) give no additional

modes. Collective pitch (90) does excite the T �œho_=ver, it
is corrupted somewhat by the B mode (see Table 3.2). The rotor

azimuth perturbation transfer functions give no additional modes.

Of the wing bending measurements presently instrumented on the

XV-15, investigation of the cross transfer functions shows that

_w2/_f is quite attenuated, with peaks at a magnitude of 10.3 or

below. However, _wl/8o is actually more desirable than _iwl/_f

for identifying the qwl mode, showing a greater magnitude, greater
modal power and also a greater modal power ratio (Table 3.2). Both

measurements, qwl and qw2' will be recorded when either 80 or _f

is excited. Obtaining the cross transfer functions (_wl/8o or

_w2/6f) is merely a matter of addition_l data processing. For iden-

tifying the damping of the ql mode, the estimates from the _wl/_f

and iw!/So transfer functions can be combined to give an improved

estimate. The _wl/_f transfer function can be used to identify
the p mode. (There are other transfer functions where the p mode is

excited more such as the gimbal angle, inplane bending, and torsion

transfer functions_ but these require additional instrumentation.)

The _w2/8o transfer function can be used to identify the 6 mode

(given that the control system could be excited at this high fre-

quency: 19.5 Hz). As with the p mode, the 8 mode could be identi-

fied from other trar-fer functions by adding measurements. The

wing bending measurements excited with cyclic yield no additional

modes (_+I and 8 mode obscure each other).

Torsion measurements excited by either collective pitch or wing

flaperon give no additional modes. The significant observation

about a torsion measurement, however, is that the upper inplane

mode _+i can be identified with excitation by cyclic pitch (if the

control system could be excited at this frequency: 18.6 Hz). A

torsion measurement could be obtained from linear combinations of

vertically aligned accelerometers on the fore and aft ends of the
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pylon. This instrumentation would be much easier than adding a

strain gauge to the rotor blades and passing the signal through

a commutator at the rotor hub.

3.3 INPUT FREQUENCY REQUIRENENT

The overall system transfer function analysis of Sections 3.1

and 3.2 is now specialized to analysis of the wing transfer func-

tions. From the results of Tables 3.1 and 3.2, wing response trans,-

fer functions are isolated which would give the best information

about particular degrees of freedom.

The damping of modes from particular transfer functions is now

presented from the frequency response data plotted in Figures C.I

to C.12. The method used is that suggested by Johnson in Ref. 6,

Appendix E. A detailed derivation and explanation of the method is

included in Appendix B of this report.

Table 3.4 shows the damping factors calculated for each

mode using this method. The transfer function was selected using

the modal power as a criterion. The table includes the effects of

two different control lags--a first order and a fourth order lag--

both with a bandwidth of 5 Hz. It is seen that, with existing

wing input channels, wide band input frequencies can be used to

isolate coning (Be), upper blade out-of-plane (8+I) and inplane

(_+I) modes, and wing torsion. Only wing vertical bending and

chordwise bending can be excited with a one/rev limit on 8o and _f.

Note that the _ ˜�modecould be excited by a cyclic input (although

at a high input frequency).

The calculation of the dampings of Table 3.4 was achieved by

integrating over the frequency band 0.9 _n to I.I _n' where _n is

the peak frequency. Damping obtained by this method was found very

sensitive to this frequency band. A wider band, 0.8 _n " 1.2 _n

was found too wide, introducing other modes and degrading the damp-

a.
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ing to SO_ of the theoretica_ ,_ue for the qwl and qw2 modes.

Reducing the frequency bandw1_'_ to the half-power value of 0.95 _n"

1.05 _n further showed a degr',_=d accuracy.

The response conclusions based on the transfer functions apply

principally to input and measurement frequency requirements. ._pli-

rude specifications for inputs and instrumentation are based on

actuator and sensor limits not fully available at this time, but

easily determined from the transfer functions of Appendix C. An

important additional source of input requirement arises from the

consideration of tunnel induced turbulence, discussed in the follow-

ing Section 5.4.

3.4 THE EFFECT OF NOISE IN SELECTING INPUT _IPLITUDES

Having selected the transfer functions to identify the primary

modes on a deterministic basis, we now address the effect of random

disturbances in the wind tunnel in further specifying input ampli-

tudes. There are two questions of interest here:

(i) _at is the responsiveness (or susceptibility to dis-

turbance) of a particular measurement to random gusts?

(2) Given a particular measurement excited by a particular

input, what input magnitude is required to achieve a

desired signal-to-noise ratio (SNR), or, alternately,

minimi:e a noise-to-signal ratio (NSR)?

These questions can be answered by considering the model of

the XV-15 dynamics

41

i

1976012058-054



!

= Fx �Gu�rv

Z = Hx + Du

We have been considering the steady state response to control exci-

tation

y(j_) = [H(j_I-F)'IG + D] u(j_)

The resulting Bode plot can be used to predict the magnitude and

phase of the response to sinusoidal excitation (a discrete fre-

quency) or band limited r_ndom excitation in a frequency range of

interest. For example, the entire Bode plot would be the response

to excitation of all frequencies in the range of the Bode plot or

white noise limited to this range. Thus, we can _;onsider random

excitation in any frequency band; and, specifically, we can consider

random excitation in the vicinity of a peak of interest.

"" It may be shown (Appendix B.2.3), that the noise-to-signal

ratio in a frequency band w 2 - _i can be written

N qXn r(_2"_l)
= (3.1)

2 + '3 XsUrmsX s Urms

where

Xn is the _oise power in the frequency band

Xs is the equivalent power from a sinusoidal signal in

the same frequency band

q is the gust power spectral density

r is the measurement noise power spectral density

Urm s is the root-mean-square value of the input
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_" The second term of this equation is negligible compared to

high speed wind tunnel turbulence, and may be neglected. (Note

" that the effect of measurement noise can be simply added.)

Plots for the selected transfer functions of NSR, as a fanc-

- tion of the rms input amplitude, are plotted as families of curves

parameterized on the rms velocity of the gust in the wind tunnel

and on the control actuator bandwidth (Figures 3.2 through 3.7).

The results are presented for two cases. -"

(i) First order lagged control with the Dryden wind gust

model (see Section 2.4).

(2) Fourth order lagged control with the Dryden wind gust
model.

3

Two general observations are evident in the NSR plots [Figures

3.2-3.7). First, the Z Hz control bandwidth case shows a greater

deviation from the base case of S Hz than the I0 Hz control band-

width case. This is to be expected since the S Hz break frequency

is close to the upper limit of the wing modes under consideration,

while the 2 Hz break frequency is completely below them. Second,

the fourth order lagged control system makes the break frequency

more significant, and indicates a significant increase in rms

amplitude to achieve a desired NSR for a mode above the break fre-

quency.

An example use of these charts is as follows. To achieve a

I NSR between 0.I and 0.2 for the _wZ/eo transfer function when the
expected total rms wind tunnel gust is i0 ft/sec, the following

] collective pitch input would be required:
i

]
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t+ TiltRotorat 190 knots
FirstOrderControlLag at S HZ
FirstOrderMeasurementLag at 100 Hz
DrydenGust Model

J CorrelationDistance25.5ft

Figure 5.Z Noise-to-Signal Ratio--Collective Pitch to Wing Chord-

wise Acceleration (_w2/eo); Cantilever Wing Transfer

Function (For Frequency Range 4.Z0 to 6.35 Hz)
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I, TiltRotorat 190knots

__ FourthOrderControlLagat 5 Hz
FirstOrder_easurt_nentLag at _00Hz

_. DrydenGustModel
CorrelationDistance25.5ft

I ......
I( 50

.\ \

_ --\

\

'1 \

NSR \ k

L '\

2 Hertz
| 5 Hertz\ I

•I il i_O IO0

eOrms,DEGREES

Figure 3.3 Noise-to-Signal Ratio--Collective Pitch to Wing Chord-

wise Acceleration (_w2/Bo); Cantilever Wing Transfer
Function (For Frequency Range 4.20 to 6.3S Hz)
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J "
\ CONTRO_B_O==".----

Ttlt Rotor at 190 Kts I 2 Hertz .....Fourth Order Control Lag at 5 Hz

FirstOrderMeasurementLag at 100 Hz I 5 Hertz , ,

• "yde. Gust Model _ [10 Hertz - -,
Correlation Otstance 25.S ft

.01 ....... l .............
I I. 10. 100.

6f, DEGREES

Figure 3.4 Noise-to-Signal Ratio--Wing Flaperon to Wing Vertical

Acceleration [_wl/_f); Cantilever Wing Transfer Func-

tion (For Frequency Range 3.04 to 4.60 Hz)
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I0

I I -.,---_ GustVelocityin
ft/sec

TiltRotorat 190knots _ IICONTROL

BANDWIDTH:

FirstOrderControlLag at 5 Hz \ I 2 Hertz

FirstOrderMeasurementLag at loe Hz k I 5 Hertz
DrydenGustModel 1110HertzCorrelationDistance25.5 ft |

.01 , \ ,

.! l _if, DEGREES lO 100

Figure 3.5 Noise-to-Signal Ratio--Wing Flaperon to Wing Vertical
Acceleration (_wl/_f); Cantilever Wing Transfer Func-

tion (For Frequency Range 3.04 to 4.60 Hz)
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TiltRotorat !90 knots
FirstOrderControlLag at 5 Hz
FirstOrderMeasurementLag i00HZ
DrydenGustModel
CorrelationDistance25.$ft

\ \ ,

\ , \ _
MS GustVelocityin

, _ ft/se¢

\ \
o

\ ,
' \ \ \ \

_, \ , \
, \ \

.X- _ \

,\ \

)zHertz-- .
5 Hertz

II0Hertz -- I
i i' " $

• 1 1 eO, OEGREES 10 100

Figure 3.6 Noise-to-Signal Ratio--Collective Pitch to Wing Verti-

cal Acceleration (_wl/8o); Transfer Function for Asym-
metric Motion (For Frequency Range 3.33 to 5.Z9 Hz)
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I- k 0-----RMSft/secGUStVelocityin

\
\

NSR

• ICONTROLBANDWIOTH:

Ttlt Rotor at 190 knots I Z HertzFirstOrderControlLag at 5 Hz

FirstOrderMeasurementLag 100 Hz I S Hertz

O_en _st _deI _I0HertzCorrelation Olst4nce Z$.5 ?t

.01, , !
•1 1I 10 100

COrms, DEGREES

Figure 3.7 Noise-to-Signal Ratio--Collective Pitch to Wing Verti-

cal Acceleration (_wl/eo); Transfer Function for Sym-
metric Motion (For Frequency Range 2.?7 to 3.49 Hz)
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CONTROLBANDWIDTH INPUT AMPLITUDE
IN DEGREES- RMS

(HERTZ) (FIRSTORDER LAG IN CONTROL)

2 5.80 - 8.10

5 2.97 - 4.20

10 2.31 - 3.30 ,

(From Figure 3.2)

The NSR plots can be used in the following manner (neglecting

measurement noise):

(i) A range of acceptable SNR's and, hence, NSR's, and a

range of expected rms longitudinal gust should be

selected.

(Z) The corresponding limiting upper and lower rms input

amplitudes from the NSR plots give the required ampli-

tude to achieve the desired SNR.

(3) These values should be determined for the first order

lagged control model and the fourth order lagged model

(at the desired break frequency) to give a best and worst

case (as discussed in Section 2.6).

3.S SUMMARY

This section has presented the results of a detailed study of

a model of XV-I5 rotor/cantilever wing dynamics at 190 knots.

The objectives of this study have been the following:

(I) Calculation of transfer functions from the two principal

controls (collective and flaperon) to the nine de,tees-

of-freedom of the model.

SO
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(2) Ranking of the transfer functions with respect to their

utility in isolating principal modes, and input frequency

bandwidth requirements.

(3) Quantification of the effects of tunnel noise on required

input amplitudes.

It is concluded that the principal limitation to mode isolation_

for the nine degree-of-freedom model is input bandwidth. Instru-

mentation of the wing is sufficient to identify all but the [+i

and lower (-I) rotor modes if collective and flaperon input channels

are used. To identify the _+i mode, measurements of wing torsion

excited by longitudinal cyclic would be effective. In all cases,

however, input frequencies required to identify the upper (+I)

rotor modes and wing torsion mode are above 1 per rev. The lower

(-i) rotor modes are not identifiable with wing instrumentation

because they are heavily damped and obscured by other modes.

Evaluations of the quality of transfer functions from this

nine degree-of-freedom model are based on a control system band-

width of 5 Hz. A first order and fourth order lag were used with

this bandwidth. The principal effect of increased control system

rolloff beyond 5 Hz is increase in input a,,_plitude required to

achieve an adequate noise-to-signal ratio of output data. Input

amplitudes required to achieve a desired noise-to-signal ratio

for different levels of wind gust were determined for a control

system bandwidth of 2, 5, and i0 Hz.
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. IV. COUPLED WING DYNAMICS

This section presents the analytical evaluation of the coupled

wing dynamics. Section 4.1 discusses the frequency response for

the measurements presently available [both wing bending accelera-

tions) excited by collective pitch and wing flaperon. Section 4.2

suntmarizes the modeling of calibration errors in measurement and -

excitation and discusses the results. Section 4.3 presents the

effect of tunnel-induced random disturbances and the input ampli-

tudes and frequency ranges which are required to identify principal

modes of interest with particular noise-to-signal ratios.

4.1 FREQUENCY RESPONSE OF THE COUPLED WING MODEL

4.1.1 Computation of Coupled Wing Responses

The discussion of the coupled wing model will be limited to

the _wl/_f and _w2/So transfer functions for identification of the

following modes:

qlS: symmetric vertical wing bending mode

qlA: asymmetric vertical wing bending mode

q2s: symmetric chordwise bending mode

q2A: asymmetric chordwise bending mode

As discussed in Section 2.3, the response of the right wing by

excitation of the right wing has a symmetric and an asymmetric por-

tion. Excitation of a wing, and measurement of that wing, is not

sufficient to separate the symmetric and asymmetric coupled wing

modes if they are "close in fre._ , " As discussed in Section

Z.3 and again in Section 4,2, additional instrumentation makes it

"" possible to separate the symmetric and asymmetric frequency

F:'.."_I',t TENTIONA'.LY _,LANK
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responses, except for some fraction of the opposite motion (asym-

metric or symmetric) due to calibration errors.

The nine degree-of-freedom rotor/cantilever wing model can

be used to analyze the coupled wing (e.g., right and left wing

coupled modes} in the following manner:

(I) compute the symmetric transfer function, Ts(J_], from -

the linear equations representing the symmetric motion;

(2) compute the asymmetric transfer function, TA(J_), simi-

larly, and

(3) combine these transfer functions at discrete values of

the frequency, _, by the formula

TCj_) " ½ [TsCjc_) +'TACit)] •

Because this new transfer function T now has twice as many

modes in the same frequency range, more pronounced modal coupling

occurs in a small frequency range and the phase may appear to be

discontinuous (Appendix B.2.1}. However, if a sufficiently small

frequency increment were used, it would show the phase to be con-

tinuous, since both transfer functions are analytic.

Clearly, the coupledwing motion will exhibit characteristics

of both the symmetric and asymmetric motions. The characteristics

of the symmetric transfer functions were discussed in some detail

in the previous chapter. Before continuing the discussion of the
m

coupled wing motion, the characteristics of asymmetric motion will

be presented briefly.
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4.1.2 Asymmetric Mode Characteristics

The principal asymmetric modes are listed in Table 4.1. The

asymmetric frequency responses for the wing bending accelerations

are shown in Appendix C (Figures C.25 to C.28).

The linear model for the asymmetric motion differs from the

symmetric motions in that the coupling due to the drive shaft

between the two rotors introduces an oscillatory mode associated

with the rotor speed perturbation. The wing ,tiffnesses, associated

with the two asymmetric wing bending degrees of freedom, were in-

creased to shift the qlA and q2A modes up in frequency from the

qlS and q2s modes in order to distinguish them. The q2A mode was

shifted up such that it was almost coincident with the _oA mode

(the rotor speed perturbation mode). This was considered one type

o£ worst case for analyzing the effect of the asymmetric mode on

measured frequency and damping.

Table 4.1

Principal Asymmetric Modes

DAMPED DAMP ING
FREQUENCY FACTOR

MODE _D
.. ,. ,,

2.44 Per Rev
0.02978

;*i
18.6 Hz

1.42 Per Rev
p 0.05382

I0.8 Hz
, , .m •

0.727 Per Rev
qw2 0. 02124

5.55 Hz
..... ,,, , --

0.562 Per Rev
0.05543

"_ qwl 4.29 Hz
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4.1.5 Coupled Wing Mode Characteristics
!

The transfer functions for the coupled wing responses are calcu-

' lated from the plots presented in Appendix C. For the two principal

modes of most interest, qwl and qwz' the qlS and qlA modes are prac-

tically unobscured and the q2s and qZA modes are obscured to a _oder-

ate and greater extent, respectively. This illustrates both ex-

tremes which can occur in the actual dynamics of the XV-IS.

°

The _w2/eo transfer function shows a prominent resonant peak

for q2s (at 0.66 per rev), but the q2A mode (at 0.72 per rev)

shows no resonant peak at all. It is obscured by the q2s and {oA

modes. The q2s peak itself is obscured somewhat by the _oA mode
(at 0.73 per rev), as is shown by the modal power ratio (NPR) in

Figure 4.1. The symmetric and asymmetric flapping modes BS and BA

are very close in frequency (SS = 2.55 and 8A = 2.61 per rev),

and although theZ are not principal modes, it is interesting to

note their equal contributions to the second resonant Reak on t|

_w2/8o transfer function from the MPR shown in Figure 4.1. Because

the symmetric and asymmetric 8 modes result in a single resonant

peak, these modes cannot be distinguished in this transfer function,

which illustrates the value of being able to separate the symmetric

and asymmetric motions.

The _wl/6f transfer function shows distinct resonant peaks

for the qlS and qlA modes and one resonant peak where the two

torsion modes occur (Ps a% 1.54 and PA at 1.417 per rev). The

MPR's for this transfer function, which are shown in Figure 4.2,

indicate that qlS is unobscured and that qlA is slightly obscured

by qlS" The torsiou modes obscure each other in the third peak

as expected. The modal power ratio for collective pitch to wing

vertical bending acceleration (_wl/eo) with coupled wing motion is
shown in Figure 4.3.

At this point, it must be concluded that the di£ficulties

with the coupled wing model are as follows:
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Figure 4.1 Modal Power Ratio (MPR)--Collective Pitch to Wing

Chordwise Acceleration (_w2/8o); Coupled _ng Motion
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Figure 4.3 Modal Power Ratio (MPR)--_?_nEVertical Bending Acceler-
ation to Collective Pitch (qwl/eo); Coupled Wing Motion
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•- (I) There are so many modes in the same frequency region

that it is difficult to determine whether a particular

resonant peak is due to sy_etric or asymmetric motion

(i.e., due to the excitation of the wing which is being

measured, or the reaction force of the rest of the air-

craft on the wing being measured).

(2) Even more importantly, given a particular resonant peak

on the frequency response, one does not know how many,

which one, or how much other modes are contributing to

that peak. The modeled dynamics used in this analysis

show examples where some principal modes are obscured

and others are not. The measured dynamics of the XV-15

could be better or worse, but the significant point is

that one will not be able to determine this unless the

symmetric and asymmetric motions are separated. It is

important to know whether a principal mode is obscured

or not and to know how much. The damping calculated

from a resonant peak could show the XV-IS to be quite

stable, when in fact there are two or more modes contrib-

uting to this peak, one of which is safely stable, but

another of which has very light damping that could become

unstable in some flight conditions.

4.2 HVALUATION OF CALIBRATION ERRORS

"" The approach for modeling calibration errors for various will

tunnel test configurations (e.g., excite one wine and measure one

winE, or excite one wine and measure both wines , etc.) is developed

in Section 2.3. In this section, three test configurations are

considered in detail to assess the effect of unwanted modes on

the damping estimates'of desired modes. The three cases are:

(I) the present test configuration (excite one wing and

measure that wing);

S9
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(2) An improved test configuration which will separate sym-

metric and asymmetric motion (excite one wing and

measure both wings); and

(3) the most accurate test configuration for separating sym-
I

metric and asummetric motion (excite both wings and

measure both wings).

_e

For each configuration, the actual environment is considered; that
-r

is, calibration errors in both measurements and controls are

modeled.

First consider the effect of calibration errors in both ""

measurement and control of the present test configuration. The

notation of Section Z.3 is used here except that functional _-

dependence on the Laplace complex variable s is not shown

explicitly. The measured response of the right wing is ..

- (i �nR) ..
YRm YRa

where nR is the measurement calibration error and the actual

response of the right wing is

/ = Ts
• YRa Usa + TAUAa

Thus,

- ]
YRm (i + nR) [TSUSa �TAUAa

• Ts _ Rm ¢YRa ' ULm

6O
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where CR and eL are the control calibration errors.• i

YR

_ = ½ (1 R)(1 R)[T s , TAI

#

- [I + cR + nR + nR ¢R] ½ [Ts + TA]

Thus, calibration errors in both excitation and measurement for

the present configuration have the effect of scaling the measured

transfer function by a gain factor, which does not affect the

determination of the resonant peak frequencies. "This gain factor

also does not affect the damping calculation because the square

of the gain enters in both the numerator and denominator and, there-

fore, cancels out.

Thus, for the present wind tunnel test configuration, calibra-

tion errors have a negligible effect in the calculation of the

frequency and damping associated with a particular resonant peak

on the frequency response. However, the difficulty with the present

"" test configuration, as discussed in the previous section, is that

"- the symmetric and asymmetric modes obscure each other, making the

-- determination of the damping of principal modes for assessing the

-- dynamic stability of the XV-15 ineffective.

Nm

.. Therefore, it is very desirable to separate the symmetric and

.. asymmetric motion to determine with confidence which modes are

.. present in the resonant peaks of the frequency response. This can

:: be accomplished in three ways, as discussed in Section 2.3:• °

(1) Measure both wings exciting one wing.

(2) Measure one wing exciting both wings.

(5) Measure both wings exci_ing both wings.
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t It will be shown later that the third alternative, although it in-

volves more test equipment and, hence, more cost, actually reduces

the effect of calibration errors to a negligible level. The first

alternative will be considered here since it is the easiest to im-
,L

plement.

Again, using the notation of Section 2.3,

_4B

YSm " ½(YRm +yLm) = ½ [(l+nR)YRa + (I+nL)YLa] "

Considering the case where the control input is to the right wing °.

only (i.e., uL - 0) ..

Under the assumption that products of errors may be neglected, "_'

URm
• -

Likewise,

YAm = ll/nR'nL_ nR )I(,.,. '
Since a gain constant times the measured transfer function does not

affect the ability to identify the frequency and damping of prin-

cipal modes, Eqs. (4.1) and (4.2) can be written as:

6Z
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• =

- _ = {[I+ {CnR+nL+2_R)] TS+ 2+nR+nL+ZCR iURm

I

YAm- {[i+ {CnR+nL+2_R)]I_ 2 nR nL+2_R] Ts+TA 1URm

Let

nR'n L

2+nR+nL+2¢ R (4.5)

be called the "distortion factor" because it is this factor times

the asymmetric transfer function in Eq. (4.3) which "distorts" the

desired symmetric transfer function. Similarly, this same factor

times TS distorts TA in Eq. (4.4). That is,

YSm
-- _ TS + ATA (4.6)

.. URm

. o

YAm
- -- cc TA + ATS (4.7)
.. URm

. .

.. For values of the measurement and control scaling factors

between -0.20 and +0.20, the distortion factor varies in the range

-0.25 < _ < +0.25

Clearly, the value of the distortion factor is most strongly

dependent upon the difference of the calibration errors in the
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_' right and left wing response measurements, qR-nL, and less upon the

right control calibration error, _R" Figure 4.4 shows how A varies
as a function of the right and left measurement calibration errors

for discrete values of the control calibration error.

To study the effect of calibration errors on the damping esti- "-

mates, the qwl mode was chosen since both the qwl symmetric and qwl

asymmetric modes are not obscured significantly by other modes. i
The symmetric or asymmetric transfer function was degraded by adding _

or subtracting the other transfer function with varying levels of
T

distortion factor. The dampings calculated for these various levels

of distortion factor are plotted in Figure 4.5. As can be seen,

calibration errors do not have a significant effect on the calcu-

lated values of the qlS and qlA modal damping. The error in the

calculated value is primarily due to the influence of other modes

which are present even when the calibration errors are zero.

There are two important considerations to be kept in mind.con- ""

cerning the effect of calibration error on the calculated damping --

values. First, the calculated damping values presented here are .-

empirical in the sense that the complete algorithm for accurately

determining _ is a subject for further study. Naturally, there are ..

several data processing considerations affecting the accuracy at

(see Appendix B for a discussion of the method used to calculate

damping). These considerations include the distance between the

frequency response data points (a function of the data record

length), the size of the bandwidth about the peak used in the cal-

culations, and with actual data, the signal-to-noise ratio of each

data record and the number of data records averaged. It was found

that the damping value (_) was somewhat sensitive to the size of

the bandwidth chosen about the peak. Too wide a bandwidth included

too much influence from other modes and tended to underestimate _;

too narrow a bandwith did not contain sufficient information and

also underestimated _. Better damping values could be produced by

64

i

i

1976012058-076



1 [ I I ,

i i :

,"L

/
. _ _

• Z
t_

i i

(c) cR" *O.Z

Figure 4.4 Distortion Factor for Various Values of Control Calibra-
tion Error
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Figure 4.S The Influence of Calibration Errors on the Calculated
Values of Damping for the Mode from the _wl/OoTransfer Function qwl
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, calculating the transfer function with smaller frequency increments,

._ and varying the bandwidth used for each peak (within what is known

to be a reasonable range from the plot of the frequency response)ve

to achieve an accurate value for _. The purpose of results pre-

sented here is to provide sufficient information to evaluate vari-
• )

ous test instrumentation configurations.

A second problem in analyzing the effect of calibration errors

on calculated damping values is knowing what mode is actually being

measured from a particular resonant peak. The qw2 asymmetric (q2A)

peak gives an excellent example of what happens to the damping

calculation when a mode is being obscured by other modes. The q2A

mode (at 0.72 per rev) is obscured somewhat by the q2s mode (at

0.66 per rev) and significantly by the rotor speed perturbation,

which is an asymmetric mode (at 0.73 per rev). It is not valuable

to plot the damping of the q2A mode as a function of calibration

errors since it is obscured by other modes. However, the calculated

values for the damping for different levels of distortion are given

in Table 4.2 for reference.

Table 4. Z

Calculated Values of Damping for q2A Node

from _w2/8o Transfer Function

D ISTORT ION CALCULATED

FACTOR

'" 0.0 0.0429

"" 0.25 0.0439

•- 1.0 0.0426

; Actual Value of _-0.0212
• m,

_o

e_

.e
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The effect of calibration errors on the most complete test in-

strumentation configuration will now be discussed. Measuring both

wings while exciting both wings with calibration errors on both

measurement and control will be called the full test instrumentation ""

configuration.
J

It follows from the expression for the theoretical transfer _.

function in the above case in Table 2.3.1 that

"T,

{ (eR'CL) (nR "qL) 1YSm k TS (2+¢R+CL) (2+rlR hA
s 4"

USm i

YAm i (¢R'_L)(nR'nL)(2+ER �Ð�(2"_R'qL)I IU-_m" k TS �TA

!
where

k = 1 + ½ (nR+nL+2¢R) -

The distortion factor here becomes --
eu

(¢R'¢L) (nR-nL) --
A -

t'�#ˆ�0�..

Considering that each calibration is 20% and that they are combined

in the worst case, the magnitude of A is bounded at 4%. For the

previous test configuration {measure both wings, excite one wing)

the magnitude of A was bounded at 25%. Thus, by exciting both

wings, even though an additional source of calibration error is

introduced, the maximum distortion factor is reduced by a factor

of six. Based on the variation observed in the damping as a func-

tion of the distortion factor in the previous discussion, it is

concluded that the effect of calibration error on damping determin-
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_. ations is negligible using this full test instrumentation config-

uration.

4.3 REQUIRED INPUT AMPLITUDES TO ACHIEVE A DESIRED SIGNAL-TO-NOISE

RATIO FOR THE COUPLED WING .

The input amplitude necessary to achieve a desired noise-to-

signal ratio will be discussed using the vertical wing bending sym-

metric (qls) and asymmetric (qlA) modes as examples. It is assumed

that the symmetric and asymmetric motions are not decoupled; that

is, the transfer functions from which these results were obtained

are the sum of the symmetric and asymmetric transfer functions.

This simulates the case when only one wing is excited and only one

wing measured.

The noise-to-signal (NSR) ratio calculation for a particular

"" mode is based upon the frequency response to the desired control

"- and the frequency response to gusts in a frequency band about the

-- resonant peak for that mode. This calculation is described in

- Appendix B. For example, assume information on the qlS mode is

, sought from the frequency response of the vertical bending accelera-

tion to flaperon input (i.e., the _wl/_f transfer function). The

bandwidth about the qlS resonant peak for which the NSR calcula-

tions apply is 2.53 to 3.83 Hz (0.335 to 0.501 per rev).

i
The result is shown in Figure 4.6. From this figure, it can

be seen, for example, that, if the root-mean-square gust velocity

is 1 ft/sec, a noise-to-signal ratio of 0.i would require 3.6 de-

"" grees rms flaperon input. As another example, for a gust velocity

-- of I0 ft/sec rms, the same flaperon input results in a noise-to-

.. signal ratio of i0. (These examples are for a first order control

.. lag with a break frequency at S Hz).
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Figure 4.6 Noise-to-Signal Ratio for Symmetric Vertical %Ving Bend-

ing (qlS) Mode from _wl/_f Transfer Function (For Fre-

quency Range Z.53 to 3.83 H_ About the qls Peak)
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[
]. Next, assume information on the qlA mode is sought from the

same _wl/6f transfer function. Therefore, the calculations are

._ based on a bandwidth about the qlA resonant peak (3.83 to 4.82 Hz).

The results are shown in Figure 4.7.

A comparison of Figures 4.6 and 4.7 shows that the same rms

flaperon input in the presence of the same rms gust velocity would

mean a higher (i e., worse) noise-to-signal ratio (NSR) for the qlA

mode than for the qls mode. This was to be expected because the

qlA resonant peak has a lower amplitude than the qlS resonant peak.

Large input._ are required to lift the signal above the noise.
.)

A more favorable situation e:_'sts when information on the ql_

mode "s sougL- from the response of _.., to collective pitc]; inputs

becau_,e the resonant peak of the qwl mode has a higher amplitu,_e

in the _wl/8o transfer function. The NSR re_u!ts for this case,

shown in Figure 4.8, are ccnsiderably improved over the result_ in
•" I

Figure 4.7, which were based on the qwl/Sf transfer function.

4.4 SU_IARY

The test configuratlon of exciting one wing and measuring

•. that wing does not allow separation of the symmetric and asymmetric

modal responses. It follow_ t' _ determination of frequer_v and

.. damping of particular modes is difficult, requiring very special-

ized input designs or more complicated instrumentation.

If both wings are excited and/or the res) onses of both wings

are measured, symmetric and asymmetric motions can be separ_,ted.

'" In this configuration, control and measurement calibration errors

will result in some fract.onal part of unwaPted :nodes tc be present

with desired modes.
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Measurement and control calibration errors less than 20% do not

produce significant error in calculating damping values compared

to the attenuation effects of wing cross-coupling.
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,. V. EXAMPLES OF EVPLUATION OF METHODS FOR

MODAL IDENTIFICATION FROM DATA

The preceding two sections have summarized analytical results

on input and measurement system requirements for XV-I5 wind tunnel

tests. For any specified test configu{ation, however, the final

accuracy of the modal frequency and damping from test data depends

on the processing methods used. This section discusses a prelim-

inary evaluation of two such methods--spectral analysis and maximum

likelihood parameter identification.

The objective of this phase of the studywas twofold. First,

it was desired to use the digital simulation as a data generator

for evaluating algorithms to obtain more accurate estimates of

frequency and damping. Second, use of an advanced parameter iden-

tification algorithm was to be p_rformed on such data, and compared

with the more conventional spectral analysis approaches.

?

5.I SUMMARY OF ALGORITHMS

The spectral analysis of this data was performed by a Time

"" Series Analysis Program, which computes an estimate of the transfer

-_ function, H(f), by dividing the estimated cross-spectrum of the

-- input and output channels by the estimated auto-spectrum of the

.. input channel. That is,

..

. , uz(f)
Suu(f)

The spectra were computed by the Fast Fcurier Transform algorithm.

Details of this computer program are found in Reference 7.
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The maximum likelihood parameter identificat:o__nnwas performed "

with a modification of an existing program, SCTDNT [ 8]. The modi-

fication was to use a simplified model of a second order frequency-

damping model with measurements only of acceleration. Note that,

in general, it is necessary to perform a determination of transfer T f i

function order prior to actual identification. Development and .I

progran_uing of an analysis to do this for the current problem is T

beyond the scope of this program, and so the assumption of the L

: second order model was used. For the purposes of this study, this

model was considered satisfactory. I

The model was as follows: !

= + u, xC0) - "_
LXzj -_ -2_;_ x2 x2(O) ..

= _" = [-_ -2_1 + gu
2 meas x2

where the parameters to be identified are _, m, g, and possibly ""

the initial conditions, xl(0) and x2(0).

Note that this model differs from the standard state variable

2) ,model for a second order system (where FI2 = I and F21 = -_ . This
form is more amenable to identification than the standard canonical

form.

5.2 SIMULATED TEST DATA

The data were generated by a digital computer simulation based

on the XV-!5 mathematical mode_ discussed in Chapter II. It was

assumed that a means existed which allowed separation of the sym-
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.. metric and asymmetric responses of the coupled wing motion. That

is, either both wings were excited or the responses of both wings

were measured. Hence, the simulation used the equations of motion .

for the nine degree-of-freedom symmetric model. Two test cases

were generated. In the first simulation case, a Gaussian random ' •

input in collective pitch was passed through a first order lag with

a break frequency of 5 Hz (0.654 per rev). This lag was introduced

to approximate the dynamics of the control system. The data length_

was 20 revolutions of the rotor, and data samples were taken every

0.04 of a revolution (0.25 tad);

In the second case, the collective pitch input was the sum

of five sine waves whose frequencies were in the neighborhood of

. the resonant peak (specifically, they were 0.615, 0.628, 0.698,

0.739, and 0.?85 per rev). The steady state response to this

input was simulated for 12 revolutions of the rotor and the data

sampled every 0.0239 of a revolution [0.1S tad).

_u

5.3 RESULTS

"" The spect1"al anal>,sis method was only used on the first set

of test data (e.g., random input). When applied to the measurement

3 of wing chordwise acceleration, an estimate of the _w2/8o transfer

function was obtained. It displayed a resonant peak for the qw2

mode at 0.663 per rev with an associated damping factor 0.091.

The actual values in the simulation for the qw2m°dal frequency and

damping were 0.666 per rev and 0.043, respectively.

The maximum likelihood method was applied to the same data.

This identification method resulted in an estimated qw2 modal fre-

quency of 0.671 per rev and damping of 0.036. These estimates

compare favorably to the true values used in the simulation.
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Figure 5.1 shows the time histories for the collective pitch

' random input and the wing chordwise acceleration measurement from

the nine degree-of-freedom simulated data. Superimposed on the qw2

,. measurement is the estimated measurement time history from the

simple second order model.

Since no data windows were used for the time series analysis

method, it should be concluded that the apparent discrepancy of

the result (relative to the simulated and maximum likelihood esti-

mates) could be reduced significantly.

In order to evaluate the maximum likelihood method further,

the second set of data (using sum of sines inputs) were processed.

The results were an estimated qw2 modal frequency of 0.663 per rev

and damping of 0.033. These results and those of the spectral

analysis are summarized in Table S.I.

4

Table 5.1

Frequency and Damping Estimates of qw2 Mode ,

Values used in simulation 0.666 0.043

Values from spectralanalysisof _.
random input case 0.663 0.091

ML values identifiedfrom random
input case 0.671 0.036 "

ML values identified from sum of 5
sines input case 0.663 0.033

m

5.4 CONCLUSIONS

This brief example has demonstrated:

(I) the possibility and usefulness of generating simulated

wind tunnel data as a data base foz which the true

values of modal frequency and damping are known,

78

J

1976012058-090



79

L

1976012058-091



,I
t_

(2) a procedure for assessing the accuracy of methods (e.g.,

spectral analysis or parameter identification) for esti-

mating modal frequencies and damping factors, and

(3) the ability to assess which types of control inputs will
_m

result in better estimates (random and sinusoidal inputs

were used above). -"

t

Furthermore, the introduction of aerodynamic gust effects to the --

simulation, which was demonstrated in Chapter II, adds the possibil- ..

ity of studying their effects on the results of various data reduc- ..

tion techniques.

8O
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•. Vl. RECOMMENDATIONS

This study has achieved the following objectives. First,

several advanced analytical tools have been successfully demonstrat-

ed on the XV-IS mathematical model, including high order transfer

function evaluation and maximum likelihood parameter identification

techniques. Second, the application of this analysis has produced

a preliminary guideline for selecting test inputs and instrumenta-

tion. Third, specific problems have been isolated which may limit

the information which can be extracted from the tunnel tests.

It is recommended that several aspects of this preliminary

' study be expanded. These include the following:

(I) Incorporation of existing computer programs to determine

the sensitivity of transfer functions (e.g., frequency

response) to particular parameters such as tunnel velocity,

wing stiffness, collective pitch, or measurement error.

This would produce a valuable guide to estimating the

most significant error sources in determination of fre-

quency or damping.

(2) Investigation of the effects of nonlinearities in wing

-- structural parameters, the control system, or aerodynam-

ics. These nonlinearities would include backlash, hys-

.. teresis, or deadband.

(3) Determination of effects of fuselage modes on wing

response. The present support admittedly limits the

effect of fuselage coupling, but these couplings may be

important in analyses of flight data.
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One further recommendation is for the development of an ad-

vanced technique for processing data to determine, on-line, fre-

quency and damping. This recommendation is based on the results

of Chapters III to IV of this report, and evaluation of existing

methods of spectral analysis. The basic requirement is to develop
J

the capability to determine an estimate of the required analytical

model structure and parameters which best approximate a multivari-

able modal response. A fundamental result of this report, for

example, is that multivariable response poses a difficult problem

in establishing modal contributions from a particular transfer

function. This problem will be further magnified by the require-
L

ment to determine frequency and damping from multivariable response

data. -

The following procedure is, therefore, suggested to implement --

this recommendation:

(i) Develop algorithms which provide on-line estimates of

model structure (e.g., transfer function) and parameters ..

of that model.

(2) Evaluate this algorithm on the simulation discussed in

Chapter II, and the transfer function evaluation of

Appendix B.

(3) Implement the algorithm on-line at Ames Research Center

and evaluate it on helicopter model data.

(4) Perform any modifications or further extensions of the

algorithm.

It is anticipated that successful development of such a tech-

nique, combined with the results of this report, will produce a

state-of-the-art technology for improving the results of advanced

rotorcraft tunnel testing.
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.. APPENDIX A

SUPPORT EQUATIONS OF MOTION

The addition of the support degrees of freedom to the equations

of motion is accomplished in a manner very similar to the inclusion

of the wing degrees of freedom as described in Ref. 3. The equa-

tions of motion of the support and wing will be found as functions

of the forces and moments acting on the hub due to the rotor.

These can then be combined with existing equations (in Ref. 3) of

motion for the rotor, which require the motion of the hub, to com-

plete the equations.

The equations for the wing and support degrees of freedom may

be found by use of Lagrange's equation

where

L • T-V

T = Kinetic energy of the system

V = Potential energy of the system

"" Fi - Generalized force for it__hgeneralized va-lable

_i " itchgeneralized coordinate

Computing the kinetic energy of the system requires the iner-

tial linear and rotational velocities of the pylon center of mass

and the fuselage center of mass, which are computed below.

Figure A.1 shows the geometry and coordinates o£ the wing and

fuselage system. The :o axis is the rotational axis of the '_sup
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degree of freedom. The fusealage center of gravity is a distance

_xf forward of this axis. The cantilever root restraint of th_

wing elastic axis is at point A, which is ZXw forward and _Yw
q

later_lly (positive right) from the "o axis. The wing has sweep

angle _w3 (positive aft), dihedral _Wl (positive up), and in-

cidence angle _Wz (positive leading edge up). The wing semi-

= span is YTw. At the wing tip the _Wl , _w2 , _w3 angles are

reversed so that the rotor hub axis, :w' is parallel to xo.

The rotor forces and moments acting at the hub are T, H, Y, Q,

: Mx, My, as shown.

The system degrees-of-freedom are.

x - translation in x direction
s o

A __: t_ on
Ys = translation in 7o .......

Wsup I r_ation about zO axis

qw I - lowest mode wing vertical bending (positive up]

qw 2 - lowest mode wing chbrdwise bending (positive up)

p - lo_t mode win E torsion (positive leading edge

up)

The inertial reference frame is taken to be colinear with the

frame centered at point O as shown in Pigure A.I and _ixed in

inertial space.

• Given the position of a point expressed in "he A frame, de-

noted x, its position in the inertial frame is:
A

[:oo011Ill °°x
I " * _s C'#s } _Yw, 0 1 0

0 0 j 1 0 0

(A. Z)

_S

l
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Similarly, given an angular position vector expressed in the A

frame, denoted _, it is expressed in the inertial frame as .:

E:jE00 I_ - + 0 1 a (A.3)

I _s -I 0 A .! i

}

Using these two equations and equations in Refs. 1 and 2, which "_
i

express the position of the hub, pylon c.g., and an arbitrary ele- i

ment of mass in the wing with respect to the A frame, it is _

straightforward to e_ress these positions in the inertial frame.
. o

The task of computing the kinetic energy will be much simpler

if _T_ is first calculated for an arbitrary x. Later, the pylon ..
II A

and wing positions, AXp and __, will be substituted for x. -;A
ge

Let xT = ix, y, z], then from Eq. (A.I) _-
A ..

[iiczwcayywsix - + (=+Zxw)S,s + (y+Zyw)c_ (A.4) _.
I

- _,s �_.s,s+_,C,s+_s(Cz+_,xw)c,s- (y+_.y,,,)s,s) (A.s) _-

: The position of the pylon center of mass in the A frame is: ""
"T

v:
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: i! "YTw6wl+qWl (y'hpn_3)+qw 2 ('Y_2+hpnSl) --

:,i + Pw [hp h p) + ZEA62 ]

YTw+qwl [+hpn6 2"Y61 ]+qw2 [hpn-y63]+Pw [-hp6l+hp_ 3_2]
.i

"YTw_3"qwly6 2"qw2Y+Pw ["((hEA"hp) _2+ZEA )]+hp

(A.6) -

where the shorthand notation of Ref. 3 has been adopted. Similar-

ly,

nd2q2 1

-nql + - 63p

a = -nd3q I + n61q 2 + p (A.7)
ip

nd2q I_sup + + nq2 61P

To compute the kinetic energy of the wing, the velocity of a

differential mass element will be found, and the result integrated

over the wing. Let this differential element be a distance z

ahead of the elastic axis and a distance r from the root measured

along the elastic axis. Then the position of this element in the

A frame is:

I

r6wl+Z_w2+qwlCn (r)-zn" (r)63)+qw 2(-n (r)_Z+zn" (r}_l)

+Pw (_Cr) - _w(YBw)rS 3)

X =

ii Aw r*qwl (zn" (r)62-n (r)61) +qw2 (zn"(r)"n(r)63) "Pw_ (r)_l+Z_ 3

_- -r6ws*Z-qwln (r)_2-qw2n (r)-pw_ (YBw)r_I
t

,. CA.8)
t

i
i
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Finally, the position of the fuselage in the inertial frame is

_f " s (A.9) ...

-F

_f " 0 CA.I0) T

0sup

!
All the parts are now available to compute the kinetic energy.

The positions in the A frame must be expressed in the inertial frame i
through Eqs. (A.Z) and CA.3). Then the positions must be differen-

tiated with respect to time, and the resulting velocities substi- i
tuted into the kinetic energy of the system, which is

i

-YTw L.E. ..

+ {_ _T.E.f AmwxTwxw dz dr (A.II) ..

The potential energy is simply

v.{ Kpp KxsX s Kysy s

2 ""

+ K_sup_su p (A.12)

The generalized forces include aerodynamic forces on the wing and

fuselage and structural damping terms. The aerodynamic forces

for the wing were derived in Ref. 5. The nero forces on ",he

fuselage will be neglected because they are small by comparison

to the wing and rotor forces.

_7
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By substituting Eqs. (A.II) and (A. 12) into Eq. (A.I) and

_ performing the indicated differentiation and by neglecting small
±

terms, the following vector equation results: .

a2_w + alxw + aoXw = b'_f + b_g + _F (A.13)
a

where

Xw " [qwl qw2 Pw _sup Xs Ys IT

_f = wine flaperon deflection

= [u G longitudinal gust

g = IvG lateral gust

wG_ vertical gust

i: F = -Y-aa[CT 2CH 2Cy CQ 2CMy 2CMx]T
[

b - 3 x 4 matrix
I

' .o b_ - 3 x 5 matrix

•_ and the matrices a2, aI, ao, and i are given on the following

•. pages.
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, I

Is - _ I is total yaw moment of the aircraft

_Ib exclusive of the rotors.

, 2

mw - mwYTw .., m is mass o£ the wing
N w
- Ib ..
2

, 2

mf - mfYTw , mf is mass of the fusealage• ii _w

N

9,yw - _yw/YTw , 2,yw is lateral component of distance ..
from wing root elastic axis to c.g.,

£Xw " £xw/YTw, _Xw is longitudinal component of distance "
from wing root elastic axis to aircraft, -

C.g.,

and all other parameters are as defined in Ref. 5. ..

The total equations of motion are found by combining the ..

rotor equations and Eq. (A.13) as described in Ref. 5.

The numerical results o£ Chapter II were generated with the

following simplifications :

Q

(a) _sup = 0 (no torsion of supports)

(b) £Yw = 0 (wing cantilever attachement at c.g.)
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;. APPENDIX B
TRANSFER FUNCTION ANALYSIS

B.1 REVIEW OF MATHEMATICAL FORMULATION

As explained in Chapter II, the mathematical model for the

XV-I5, as developed by Johnson [Z-5], expressed in vector notation,.
is

- Fx �Gu �rv

- Hx + Du (measurements excited by the control)

i

y* - Hx + D*v (measurements excited by random gust)

There is an F, G, r, D, and D" associated with the symmetric

motion of the rotor/cantilever wing, and another F, G, r, D, and

D" associated with asymmetric motion of the rotor/cantilever wing.

The symmetric and asymmetric models are combined (as explained in

Section 2.3) for a complete description of the dynamics at the left

and right side of the aircraft.

.. The frequency responses

Z(s) -iG
•. _ = H(sI-F) * D (referred to as signaltransfer functions) (B.I)

and

l'(s) -I

• _ = H(sI-F) r �D"(referred to as noisetransfer functions) (B.Z)
7

were calculated using the Leverrier method [9,10] tO evaluate the

adjoint. The traEsfdr function was the primary analytical tool
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used to evaluate the dynamics of th_ XV-I5 and, hence, evaluate the

instrumentation requirements and test guidelines for the wind tunnel

testing of the XV-15 tilt rotor aircraft.

B.2 DERIVATION OF FORMULAE

Transfer functions for measurement of the states or linear

coordinates of the states were used in several ways: ..

(I) The transfer function indicates if a particular measure-

ment excited by a particular control shows a resonant
v_

peak to identify a desired mode.

(2) To study the stability of the XV-15, estimates of the

damping (_) of the least damped modes are desired. For- ""

mulae used for calculating _ from transfer function data

are discussed in Section B.2.1. "
4

(5) To quantify the value of different transfer functions _.

for identifying the frequency and damping of a desired

mode, and to clarify which modes contribute substantially _

to a resonant peak (when more than one mode are close

to the peak frequency), the modal power and modal power

ratio were derived. These formulae are presented in

Section B.2.2.

(4) To analyze the effect of various gust levels in the wind

tunnel on the ability to identify the frequency and damp- "

ing of a desired mode, the noise-to-signal ratio was

derived as explained in Section B.2.3. The signal power

and noise power were calculated from the signal and noise

transfer functions over the same frequency range.

94
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•- B.2.1 Damping Calculation [5]

. To evaluate the damping of a particular mode, the transfer

function is approximated by a general second-order system in a

region about the resonant peak for that mode. The second order

system is

m_ * c_ + kx - f CB.3)-

where

_n = _ is the natural frequency

- c/2_nm is the damping factor

f = control input.

This equation may be rewritten as

mR �c_:+ m_n2X - f (B.4)

The transfer function from f to the system acceleration, a = R, is

s2- T(s) - ....Z z (B.S)
ms + cs n

The Bode magnitude plot requires the magnitude of this func-

tion evaluated on the j_ axis of the s-plane.

2
TCJ_) - "_- CB.6)

mC_nZ-_z) * jcw
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4
ITCj_) Iz - _ CB.7)

m2 2 2 2 2C_n-_ ) * cZw

Eqs. CB.6) and CB.7) may be combined to yield

2 mC_. 2) . jc CB.S)

This form is preferred over Eq. (B.6) because the complex denomina-

tor is eliminated. ..

Taking the imaginary parts of both sides of Eq. (B.8), inte-

grating both sides, and solving for the average value of c gives

_w

_2

U

_ = 1 CS.9)

2 _ du

where the interval (Ul,U 2) is chose_l such that u n is at its midpoint
and for which the approximation of the frequency response curve

by the second-order system is valid (e.g., u I - 0.8 _n and u 2 =

1.2 _n ). The frequency at the peak, Up, is used as the estimate of
u n, which is reasonable for small values of q since

Up - _n _ (B.IO)

for a second order system.
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1976012058-108



T [ [ I '
) i I i ) _"

'T
It is now necessary to compute an average value for m in order

to compute the damping factor from
_o

"- - -- (S.ll)
• - 2_n_

To this end, Eq. (B.5) is written as

.s2/m (B 12)-T(s) l 2 Z

s �2_nS�wn

This leads to an equation analogous to Eq. (B.7); that is,

4
l t3l'T"w) '2 1 (8.13)

Substituting 2_nm for c in Eq. (B.8) gives

Substituing Eq. (B.13) into (B.14) for [T(j_)[ 2 and then taking the

imaginary parts of both sides of Eq. (B.14), integrating both sides,

and solving £or the average value of m gives

- I
m • (B.lS)

w2

Im(T)d_
W

w1

where

w2

L1 2_WnW2I • I(_) = (w..wZ)Zn �(2_n_)Zdw (8.16)
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This integral may be computed analytically as follows:

I(_,_) = tan" l + ---3--_n

\_n-_/ z-_T_ /-: ._ jj"1

Finally, substituting Eqs. (B.9) and (B.15) into Eq. CB.11) results

in an implicit equation for the damping,

_ dw
1 1 J

g " "_.-_r_ " . , (8.177

or
P

- _ CB.183

where P is defined appropriately from Eq. (B.17). P is a functio_

of the transfer function between the integration limits of _I and

w2, and is ao._t a function of _. Therefore, _ may be found by
iterative use of Eq. (B.18). It was found that, given a good

initial guess for _, convergence was achieved in three of four

iterations.

A good initial value for _ is

-" *Co "Lro" IT - 2o. p (S.l_)

which was found from Eq. (B.I8) by expanding the analytic expression

for I(_) in a power series and neglecting second and higher order

terms in _.
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t The transfer function T(j_) was approximated by a second

._ order system in the region of the resonance. A second order system

has a phase angle of -90° at the peak. Thus, the effect of other

: : modes on the resonance can be lessened by shifting the phase of

the measured transfer function before applying Eq. (B.17). This

phase shift is performed by the following equation:

Tne w = T • -j ]_ (B.20)

where Tp is the measured response at the resonant peak.

Data Processing

_ The calculated value of _ is a function of bandwidth since

other modes interfere as the bandwidth increases and the accuracy

of the integrals (averages) used in the calculations may deteriorate

as bandwidth decreases, particularly if the number of data points

in the bandwidth is small. To investigate this dependency, the

following procedure was used.

Using the _wl/_f transfer function as an example, T(j_) was

computed for I00 values of _ between 0.35 and 0.45 per rev for the

"" symmetric case (qls is 0.398 per rev), and i00 values of _ between

"_ 0.49 and 0.62 for the asymmetric case (qlA is 0.562 per rev). Using

-- these data, _ was calculated for various bandwidths containing each

.- peak. The results are summarized in Table B.I.

The calculated values of damping presented in the body of this

report were based typically on i0 to 15 data points in the frequency

range of integration (i.e., in the bandwidth _2-_i). The purpose

of obtaining i00 points in this small range was to reduce the numer-

ical errors in the calculation to a negligible level. Therefore,

the error in the calculated values of _ are due to the interference

of other modes and to the approximations in the theoretical method

: 99
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Table B.I

Calculated Damping as a Function of Frequency Bandwidth
Used for Integration _-

Je

FOR qwl MODE FROM -- i

BANDWIDTH i_wl/_f TRANS:ERFUNCTION _.
SYMMETRICMOTION ASYMMETRICMOTION -"

uI u2 _o = 0.4002 _ = 0.5616P P --

O.99_p - I.01Up O.04098 O.04200 ""
mw

O.98_p - I.02Up O.04331 O.04619

" O.04486 O.04977
O.97_p ,.03Up ..

O.96mp- 1.04_p O.04567 O.05194 -:

O.95_p - 1.05(_p O.04584* O.05302 ""

O.94_p - 1.06_p O.04578 O.05348 :

O.93_p - 1.07Up O.04503 O.05361* -T

O.92Up - 1.08_p O.04537 O.05359 . ,_

O.91Up - 1.09_p O.04511 O.05349 "

O.90_p - 1. lOOp 0.04483 O.05336 "
II

True Value of _ 0.04800 0.05540
i . .,L i i i i i , •

% Error (Based on
Best Value of _) 5.0% 3.2%

Maximumvalue of

of the calculation. Further study o£ data processing techniques

should include investigation of other methods, such as that suggested

by Kenney and Pancu [ii].

It was found that with i0 to 15 data points in the region

0.8 Up to 1.2 Up that 0.9 _p to i.i Up gave the best value for damp-

'/
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o- ing and with i00 data points in the 0.8 Up to 1.2 Up band, that

0.95 Up to 1.05 Up gave the best value for damping. Given a small
frequency increment between data points, the calculated damping does

not vary significantly in the range 0.9 Up - i.I Up to 0.95 Up -

1.05 Up.

This analysis was performed on the qls (0.598 per rev) and qlA
(0.562 per rev) modes. The trends shown in Table B.I may change -

somewhat for high frequency modes (such as the _+i mode at 2.43 per

rev), where the same frequency ratio about Up gives a bandwidth
several times greater.

B.2.2 Modal Power and Modal Power Ratio

To best identify particular modes from the frequency responses

of the system, it was desired to:

• Quantify the quality of different transfer functions to

identify a particular mode

• Quantify the extent to which a mode is obscured when more

.. than one are contributing to a resonant peak on the fre-

.. quency response.

The quantification of a particular mode's contribution to the

transfer function can be accomplished in the following manner.

Consider the response of a transfer function to sinusoidal excita-

tion and express this response in terms of the response to an im-

pulse function. In other words, express the steady state response

to a sinusoidal forcing function in terms of transient response

quantities, namely the residues at the poles of the particular

transfer function.

I01

i
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The response to these two inputs will be expanded in a partial

fraction expansion. Let the subscripts t denote transient, associ- "" ;

ated withan impulse input; s denote sinusoidal, associated with a _

sinusoidal input; and ss denote steady state, associated with a °"

sinusoidal input after the transients have died out.

' For an nth order system,

YtCs) " TCs)_{SCt)} _ TCs) _ CB.Zl)

_s

n k.

; ytCs) - z z CBZZ) °"i-1 is'xi) "

where N(s) and D(s) are the numerator and den.ominator polynomials, --

respectively, and the li's are the poles of T(s) and the ki's are -[
the residues at those poles. ..

i

-m

Forcing the system with a complex sinusoid of unit magnitude ._

gives

YS(S) - T(s) _{eJ_ot} . ""
[

IT( s ) N ( s

" (s-j%) " "(_-j%)b(s) (_.z3)

- _ 24)
i-1

From Eqs. (B.21) and (B.23), it is seen that

yt(s) - (s-j%)Ys(S) - o (B.ZS)
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*" The next step is to substitute Eq. (B.22) for Yt and Eq. (B.24)

-- for Ys in Eq. (B.25) and to express the result as the ratio of two
_, polynomials, whose numerator polynomial must be -0 identically

7: for all values of s. Hence, the coefficient of each power o£ s
J must = 0. The following relationships result.i .

' J n

, kss
: i=l

k,

z (B.27)
k_ = ix.jUo

Therefore,

n ki

- z _i (B.28)kss i=l "JUo

The steady state response is then

Yss(S) ksseJW°t eJ_O t n -ki= = Z (B.29)
i=l li'J_o

A complex sinusoid was used because it simplifies the algebra.

The steady state response to a purely sinusoidal excitation,

u - sin _ot, can be obtained by merely taking Im[Yss(S) ].

The magnitude of the steady state response is

- ITCj_,o9I - kss (B.30)

where T(s) is the system transfer function. The power in an

,, interval (_2,Ul) about a resonant peak is defined asi!
I

i03
|

I
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, P _ [T(j_)[ 2 d_

: i

i e_2 ..

=[ T(j_)• T(j_)d_ (B.31)
J

W 1 ""

where _(jm) is a vector in the complex plane and (.9 indicates the ""

vector inner [dot) product. '"

From Eqs. (B.29) and (B.309, --

n __

T(j_)- E Ti(j_) (B.3Z) *
i=1 "

where ""

ki --

Ti(J_)" i'_ (B.33)
o_

This is equivalent to saying that the total system response at ..

frequency _ is the sum of the responses o£ the individual modes ..
!

(i.e., Ii s). ..

For each oscillatory mode, there exists a conjugate complex

pair of poles, which will be denoted li and lZ = [i' whose a._soci-

ated residues are ki and k& = _i" Let

T_-Ti+T_

ki _i
- - --_ (B.34)

_i"J_ _[i-j_

104
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-- Then the contribution of this oscillatory mode to the total power

•- is

•- 1 • e

and ratio of this fractional power to the total power (Eq. (B.31)) -

is called the modal power ratio for the ith oscillatory mode:

Pi
MPR - --@- (B.56)

B.2.5 Noise-to-Signal Ratio

The transfer functions given in Section B.I

u_ _ Hs(J_ ) (signal transfer function)

v_ _ Hn(J_ ) (noise transfer function)

give the gain and phase of the system when excited at a discrete

frequency, and since the model is linear, any number of frequency

responses can be added to give the response to the sum of the

inputs. Theoretically, white noise would give the entire transfer

function since it includes all frequencies.

Thus, to establish the ratio of how a particular measurement

responds to random gusts in the tunnel compared to how it responds

.. to commanded controls• The signal squared, or power of the two

. transfer functions, can be compared in the frequency range of

interest

.

i" lOS
&J.
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L _02 ]Ul 2 IHs 12 d_
1

S/N = , ..

f W2 q *n d_ �rC_2 - _I) i '

_oI ..

where q is the gust covariance and r is the measurement covariance "

(considered as white noise in the frequency range of interest) "_

- q = 2 Tcorr X(t) -_

where ..

Tcorr is the correlation time of the noise = L/uo _.
(correlation distance divided by the wind

velocity)

x(t) is the autocorrelation o£ the noise ._

2
x(O) - v rms

, ,

Cn is a composite power spectrum obtained in the £ollow-

ing way:

i

#Xout _lin InlIz

¢ - ¢ IH212
2out 2in

, . , IH Iz
3out 3in

where ¢1' $2' _5 correspond to the longitudinal, lateral, and

vertical spoctrum, respectively, of the Dryden model, and H I, H2,

106
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; H3 are the gust transfer functions from these three sources to the
desired measurement. Assuming the gust from the three directions

" is uncorrelated means that the power from these three signals can
"" be added in an RMS sense; therefore, these sums can be integrated

3

Sn • Z
i=1%lout

2

UZrms IHIz d_
I

SIN = (B.37)

/=2 % d_ * r[_z-_ 1]
w

1

The reciprocal of this relationship, the noise-to-sisnal ratio

(NSR], is more convenient to work with since the gust effects can

be studied alone without the measurement noise.

q Xn r(_2-_I)
N/S • Z + Z (B.38)

UrmsXs UrmsXs

where Xn and Xs are the power under the noise and signal power
spectra. The noise-to-signal ratio for the measurement can be
added in if it's characteristics are known. It should be pointed

out that this is the noise-to-signal ratio for one data record.

Normally, k records are recorded and averaged in the frequency

" domain, where the signal adds and the random noise tends to cancel,

"" greatly improving the signal-to-noise ratio. Bendat and Piersol [12]

-- suggest using 10 records or more. The principal restriction is the

iL total sample time.

:. 107
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The point to be emphasized is that the siEnal-to-noise ratio

in Eq. (I0) is for one record, and thus all the noise-to-siEnal
[

(NSR) plots in Chapters III and IV are for one data record.

J

.4
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.. APPENDIX C

.. TRANSFER FUNCTION FREQUENCY RESPONSES

T_is appendix presents the Bode plots for the rotor/cantilever

wing and coupled wing models. These plots are outputed from the

transfer function analysis program. Other data outputed are the

poles, zeroes, and residues of these transfer functions. These

latter outputs are not presented here.

Each Bode plot is given with a reference scale which indicates,

according to the poles o£ the transfer function, which degree of

freedom is predominant at a particular frequency.

e_

.o
tQ

: 109

1976012058-121



110

I

1976012058-122



111

I

1976012058-123



i r, T I

' l

i12

1976012058-124



I

1976012058-125



114

1976012058-126



115

1976012058-127



/ i iJii l



! •

I ' 117
!,

I

1976012058-129



, I
I _ L

118

1976012058-130



119

1976012058-131



120

1976012058-132



1976012058-133



122

1976012058-134



1976012058-135



Figure C.29 ._wl/eo - Wing Ver¢ical Acceleration to Collective
(Coupled Wing Response - Excite One Wing, _leasure
Same Wing)

IZ4
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