2,559 research outputs found

    A Two-Biomarker Model Predicts Mortality in the Critically Ill with Sepsis.

    Get PDF
    RATIONALE: Improving the prospective identification of patients with systemic inflammatory response syndrome (SIRS) and sepsis at low risk for organ dysfunction and death is a major clinical challenge. OBJECTIVES: To develop and validate a multibiomarker-based prediction model for 28-day mortality in critically ill patients with SIRS and sepsis. METHODS: A derivation cohort (n = 888) and internal test cohort (n = 278) were taken from a prospective study of critically ill intensive care unit (ICU) patients meeting two of four SIRS criteria at an academic medical center for whom plasma was obtained within 24 hours. The validation cohort (n = 759) was taken from a prospective cohort enrolled at another academic medical center ICU for whom plasma was obtained within 48 hours. We measured concentrations of angiopoietin-1, angiopoietin-2, IL-6, IL-8, soluble tumor necrosis factor receptor-1, soluble vascular cell adhesion molecule-1, granulocyte colony-stimulating factor, and soluble Fas. MEASUREMENTS AND MAIN RESULTS: We identified a two-biomarker model in the derivation cohort that predicted mortality (area under the receiver operator characteristic curve [AUC], 0.79; 95% confidence interval [CI], 0.74-0.83). It performed well in the internal test cohort (AUC, 0.75; 95% CI, 0.65-0.85) and the external validation cohort (AUC, 0.77; 95% CI, 0.72-0.83). We determined a model score threshold demonstrating high negative predictive value (0.95) for death. In addition to a low risk of death, patients below this threshold had shorter ICU length of stay, lower incidence of acute kidney injury, acute respiratory distress syndrome, and need for vasopressors. CONCLUSIONS: We have developed a simple, robust biomarker-based model that identifies patients with SIRS/sepsis at low risk for death and organ dysfunction

    A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study

    Get PDF
    Background: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. Methods: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Results: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. Conclusions: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.11 página

    Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model

    Get PDF
    Background: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) study was to develop and internally validate a multivariable prognostic model calibrated specifically for pregnant or recently delivered women admitted for critical care.Methods: A retrospective observational cohort was created for this study from 13 tertiary facilities across five high-income and six low- or middle-income countries. Women admitted to an ICU for more than 24 h during pregnancy or less than 6 weeks post-partum from 2000 to 2012 were included in the cohort. A composite primary outcome was defined as maternal death or need for organ support for more than 7 days or acute life-saving intervention. Model development involved selection of candidate predictor variables based on prior evidence of effect, availability across study sites, and use of LASSO (Least Absolute Shrinkage and Selection Operator) model building after multiple imputation using chained equations to address missing data for variable selection. The final model was estimated using multivariable logistic regression. Internal validation was completed using bootstrapping to correct for optimism in model performance measures of discrimination and calibration.Results: Overall, 127 out of 769 (16.5%) women experienced an adverse outcome. Predictors included in the final CIPHER model were maternal age, surgery in the preceding 24 h, systolic blood pressure, Glasgow Coma Scale score, serum sodium, serum potassium, activated partial thromboplastin time, arterial blood gas (ABG) pH, serum creatinine, and serum bilirubin. After internal validation, the model maintained excellent discrimination (area under the curve of the receiver operating characteristic (AUROC) 0.82, 95% confidence interval (CI) 0.81 to 0.84) and good calibration (slope of 0.92, 95% CI 0.91 to 0.92 and intercept of −0.11, 95% CI −0.13 to −0.08).Conclusions: The CIPHER model has the potential to be a pragmatic risk prediction tool. CIPHER can identify critically ill pregnant women at highest risk for adverse outcomes, inform counseling of patients about risk, and facilitate bench-marking of outcomes between centers by adjusting for baseline risk

    Reducing Wait Time Prediction In Hospital Emergency Room: Lean Analysis Using a Random Forest Model

    Get PDF
    Most of the patients visiting emergency departments face long waiting times due to overcrowding which is a major concern across the hospital in the United States. Emergency Department (ED) overcrowding is a common phenomenon across hospitals, which leads to issues for the hospital management, such as increased patient s dissatisfaction and an increase in the number of patients choosing to terminate their ED visit without being attended to by a medical healthcare professional. Patients who have to Leave Without Being Seen (LWBS) by doctors often leads to loss of revenue to hospitals encouraging healthcare professionals to analyze ways to improve operational efficiency and reduce the operational expenses of an emergency department. To keep patients informed of the conditions in the emergency room, recently hospitals have started publishing wait times online. Posted wait times help patients to choose the ED which is least overcrowded thus benefiting patients with shortest waiting time and allowing hospitals to allocate and plan resources appropriately. This requires an accurate and efficient method to model the experienced waiting time for patients visiting an emergency medical services unit. In this thesis, the author seeks to estimate the waiting time for low acuity patients within an ED setting; using regularized regression methods such as Lasso, Ridge, Elastic Net, SCAD and MCP; along with tree-based regression (Random Forest). For accurately capturing the dynamic state of emergency rooms, queues of patients at various stage of ED is used as candidate predictor variables along with time patient s arrival time to account for diurnal variation. Best waiting time prediction model is selected based on the analysis of historical data from the hospital. Tree-based regression model predicts wait time of low acuity patients in ED with more accuracy when compared with regularized regression, conventional rolling average, and quantile regression methods. Finally, most influential predictors for predictability of patient wait time are identified for the best performing model

    An explainable machine learning framework for lung cancer hospital length of stay prediction

    Get PDF
    This work introduces a predictive Length of Stay (LOS) framework for lung cancer patients using machine learning (ML) models. The framework proposed to deal with imbalanced datasets for classification-based approaches using electronic healthcare records (EHR). We have utilized supervised ML methods to predict lung cancer inpatients LOS during ICU hospitalization using the MIMIC-III dataset. Random Forest (RF) Model outperformed other models and achieved predicted results during the three framework phases. With clinical significance features selection, over-sampling methods (SMOTE and ADASYN) achieved the highest AUC results (98% with CI 95%: 95.3–100%, and 100% respectively). The combination of Over-sampling and under-sampling achieved the second-highest AUC results (98%, with CI 95%: 95.3–100%, and 97%, CI 95%: 93.7–100% SMOTE-Tomek, and SMOTE-ENN respectively). Under-sampling methods reported the least important AUC results (50%, with CI 95%: 40.2–59.8%) for both (ENN and Tomek- Links). Using ML explainable technique called SHAP, we explained the outcome of the predictive model (RF) with SMOTE class balancing technique to understand the most significant clinical features that contributed to predicting lung cancer LOS with the RF model. Our promising framework allows us to employ ML techniques in-hospital clinical information systems to predict lung cancer admissions into ICU

    Predicting the risk factors of diabetic ketoacidosis-associated acute kidney injury: A machine learning approach using XGBoost

    Get PDF
    ObjectiveThe purpose of this study was to develop and validate a predictive model based on a machine learning (ML) approach to identify patients with DKA at increased risk of AKI within 1 week of hospitalization in the intensive care unit (ICU).MethodsPatients diagnosed with DKA from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database according to the International Classification of Diseases (ICD)-9/10 code were included. The patient’s medical history is extracted, along with data on their demographics, vital signs, clinical characteristics, laboratory results, and therapeutic measures. The best-performing model is chosen by contrasting the 8 Ml models. The area under the receiver operating characteristic curve (AUC), sensitivity, accuracy, and specificity were calculated to select the best-performing ML model.ResultsThe final study enrolled 1,322 patients with DKA in total, randomly split into training (1,124, 85%) and validation sets (198, 15%). 497 (37.5%) of them experienced AKI within a week of being admitted to the ICU. The eXtreme Gradient Boosting (XGBoost) model performed best of the 8 Ml models, and the AUC of the training and validation sets were 0.835 and 0.800, respectively. According to the result of feature importance, the top 5 main features contributing to the XGBoost model were blood urea nitrogen (BUN), urine output, weight, age, and platelet count (PLT).ConclusionAn ML-based individual prediction model for DKA-associated AKI (DKA-AKI) was developed and validated. The model performs robustly, identifies high-risk patients early, can assist in clinical decision-making, and can improve the prognosis of DKA patients to some extent

    Development of a multivariable prediction model for identification of patients at risk for medication transfer errors at ICU discharge

    Get PDF
    Introduction Discharge from the intensive care unit (ICU) is a high-risk process, leading to numerous potentially harmful medication transfer errors (PH-MTE). PH-MTE could be prevented by medication reconciliation by ICU pharmacists, but resources are scarce, which renders the need for predicting which patients are at risk for PH-MTE. The aim of this study was to develop a prognostic multivariable model in patients discharged from the ICU to predict who is at increased risk for PH-MTE after ICU discharge, using predictors of PH-MTE that are readily available at the time of ICU discharge. Material and methods Data for this study were derived from the Transfer ICU Medication reconciliation study, which included ICU patients and scored MTE at discharge of the ICU. The potential harm of every MTE was estimated with a validated score, where after MTE with potential for harm were indicated as PH-MTE. Predictors for PH-MTE at ICU discharge were identified using LASSO regression. The c statisticprovided a measure of the overall discriminative ability of the prediction model and the prediction model was internally validated by bootstrap resampling. Based on sensitivity and specificity, the cut-off point of the prediction model was determined. Results The cohort contained 258 patients and six variables were identified as predictors for PH-MTE: length of ICU admission, number of home medications and patient taking one of the following medication groups at home: vitamin/mineral supplements, cardiovascular medication, psycholeptic/analeptic medication and medication for obstructive airway disease. The c of the final prediction model was 0.73 (95%CI 0.67–0.79) and decreased to 0.62 according to bootstrap resampling. At a cut-off score of two the prediction model yielded a sensitivity of 70% and a specificity of 61%. Conclusions A multivariable prediction model was developed to identify patients at risk for PH-MTE after ICU discharge. The model contains predictors that are available on the day of ICU discharge. Once external validation and evaluation of this model in daily practice has been performed, its incorporation into clinical practice could potentially allow institutions to identify patients at risk for PH-MTE after ICU discharge, on the day of ICU discharge, thus allowing for efficient, patient-specific allocation of clinical pharmacy services

    Risk Factors for and Prediction of Post-Intubation Hypotension in Critically Ill Adults: A Multicenter Prospective Cohort Study

    Get PDF
    OBJECTIVE: Hypotension following endotracheal intubation in the ICU is associated with poor outcomes. There is no formal prediction tool to help estimate the onset of this hemodynamic compromise. Our objective was to derive and validate a prediction model for immediate hypotension following endotracheal intubation. METHODS: A multicenter, prospective, cohort study enrolling 934 adults who underwent endotracheal intubation across 16 medical/surgical ICUs in the United States from July 2015-January 2017 was conducted to derive and validate a prediction model for immediate hypotension following endotracheal intubation. We defined hypotension as: 1) mean arterial pressure \u3c 65 mmHg; 2) systolic blood pressure \u3c 80 mmHg and/or decrease in systolic blood pressure of 40% from baseline; 3) or the initiation or increase in any vasopressor in the 30 minutes following endotracheal intubation. RESULTS: Post-intubation hypotension developed in 344 (36.8%) patients. In the full cohort, 11 variables were independently associated with hypotension: increasing illness severity; increasing age; sepsis diagnosis; endotracheal intubation in the setting of cardiac arrest, mean arterial pressure \u3c 65 mmHg, and acute respiratory failure; diuretic use 24 hours preceding endotracheal intubation; decreasing systolic blood pressure from 130 mmHg; catecholamine and phenylephrine use immediately prior to endotracheal intubation; and use of etomidate during endotracheal intubation. A model excluding unstable patients’ pre-intubation (those receiving catecholamine vasopressors and/or who were intubated in the setting of cardiac arrest) was also developed and included the above variables with the exception of sepsis and etomidate. In the full cohort, the 11 variable model had a C-statistic of 0.75 (95% CI 0.72, 0.78). In the stable cohort, the 7 variable model C-statistic was 0.71 (95% CI 0.67, 0.75). In both cohorts, a clinical risk score was developed stratifying patients’ risk of hypotension. CONCLUSIONS: A novel multivariable risk score predicted post-intubation hypotension with accuracy in both unstable and stable critically ill patients. STUDY REGISTRATION: Clinicaltrials.gov identifier: NCT02508948 and Registered Report Identifier: RR2-10.2196/11101

    Machine Learning for Benchmarking Critical Care Outcomes

    Get PDF
    Objectives Enhancing critical care efficacy involves evaluating and improving system functioning. Benchmarking, a retrospective comparison of results against standards, aids risk-adjusted assessment and helps healthcare providers identify areas for improvement based on observed and predicted outcomes. The last two decades have seen the development of several models using machine learning (ML) for clinical outcome prediction. ML is a field of artificial intelligence focused on creating algorithms that enable computers to learn from and make predictions or decisions based on data. This narrative review centers on key discoveries and outcomes to aid clinicians and researchers in selecting the optimal methodology for critical care benchmarking using ML. Methods We used PubMed to search the literature from 2003 to 2023 regarding predictive models utilizing ML for mortality (592 articles), length of stay (143 articles), or mechanical ventilation (195 articles). We supplemented the PubMed search with Google Scholar, making sure relevant articles were included. Given the narrative style, papers in the cohort were manually curated for a comprehensive reader perspective. Results Our report presents comparative results for benchmarked outcomes and emphasizes advancements in feature types, preprocessing, model selection, and validation. It showcases instances where ML effectively tackled critical care outcome-prediction challenges, including nonlinear relationships, class imbalances, missing data, and documentation variability, leading to enhanced results. Conclusions Although ML has provided novel tools to improve the benchmarking of critical care outcomes, areas that require further research include class imbalance, fairness, improved calibration, generalizability, and long-term validation of published models
    • 

    corecore