
I. Introduction

Performance comparison is an important aspect of bench-
marking in critical care, whether to observe a critical care 
unit over time or to compare units, hospitals, or even health 
systems across geographic regions [1,2]. Benchmarking out-
comes in critical care, such as mortality or length of stay, al-
lows a risk-adjusted comparison with healthcare leaders as a 
proxy for quality and efficacy of care. Risk adjustment mod-
els have been the cornerstone for benchmarking outcomes in 
critical care. These models allow the prediction of outcomes 
to enable the benchmarking or comparison of actual versus 
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predicted outcomes among peers. Outcomes are difficult to 
interpret unless they are risk-stratified for diagnosis groups, 
severity of illness, and other patient characteristics [3]. 
	 Several taskforces worldwide have recommended the use of 
quality indicators that are measurable, comparable, and rel-
evant across critical care units [1,4-6]. Regarding outcomes, 
several measures have been proposed [3,7]. An example is 
mortality, which is utilized as a quality indicator in inten-
sive care units (ICUs) due to its direct reflection of patient 
outcomes; it serves to measure the effectiveness of medical 
interventions and the overall quality of care provided. Mor-
tality is usually assessed using the standardized mortality 
ratio, which compares actual hospital mortality to predicted 
mortality through risk-adjusted scoring systems. Morbidity 
and complications, such as acute renal failure, hemodialysis, 
and prolonged mechanical ventilation, are more prevalent 
than mortality events and are also used as outcome measures 
[8]. Length of stay, encompassing both hospital and ICU 
durations, is commonly employed as an indicator of cost and 
efficiency; however, it is influenced by variables like struc-
tural factors and patient transfers [9]. Variation in ICU read-
missions can also highlight opportunities for enhancement 
and is potentially influenced by ICU discharge practices 
[10]. Ventilation outcomes, including mechanical ventilation 
duration [11] and probability [12], facilitate the comparison 
of ventilator practices across ICUs. Ventilation outcomes 
are also valuable for controlling patient disparities in clini-
cal trials or weaning techniques and for advancing quality 
improvement endeavors. Patient-reported outcomes, used to 
a lesser degree, cover a range of aspects, such as cognition, 
fatigue, pain, psychological well-being, activities of daily liv-
ing, sleep, appetite, and alcohol consumption [13].
	 Machine learning (ML) constitutes a field within computer 
science where statistical techniques are employed to analyze 
data, which facilitates classification, prediction, and opti-
mization by leveraging past data observations. It can help 
address issues such as imbalanced classes (such as deaths 
versus surviving patients), missing data, and variation in 
documentation. This narrative review is meant for clinicians 
and scientists who would like to understand some of the 
most important directions in developing these models for 
benchmarking clinical outcomes. We also highlight the most 
important sources of bias and variations in performance, 
aiming to give researchers a concrete list of factors to con-
sider when planning benchmarking studies. 

II. Methods 

This article reviews ML approaches for benchmarking clini-
cal outcomes in the ICU with a focus on mortality, length of 
stay, and mechanical ventilation. The literature search was 
conducted on PubMed, including all articles and reviews 
between January 1, 2003 and August 1, 2023. Search terms 
for mortality were “mortality,” “ICU” AND (“machine learn-
ing” OR “artificial Intelligence”). For length of stay, they 
were “length of stay,” “ICU” AND (“machine learning” OR 
“artificial Intelligence”). For ventilation, the search terms 
were “ventilation,” “ICU” AND (“machine learning” OR 
“artificial Intelligence”). Only articles related to adult critical 
care in English were included. The searches above were also 
conducted in Google Scholar to ensure that relevant works 
were not excluded, and to add any missing articles. The ini-
tial search yielded 592 articles on mortality, 143 on length of 
stay, and 195 on ventilation. After a meticulous review, 26, 
12, and nine pertinent papers were chosen for each respec-
tive domain. For mortality and length of stay, we eliminated 
articles focusing on specific patient groups and focused on 
approaches applicable to all critical care patients. An added 
condition for mortality was the use of a dataset of more than 
10,000 patients to enable a fair comparison of results be-
tween different studies. In this narrative review, we focus on 
the important directions for ML in each outcome area rather 
than providing an exhaustive listing of prior work. 

III. Outcome Benchmarking with ML 

1. Mortality Benchmarking with ML
Mortality prediction models are applied to critical care 
patients for benchmarking and stratification into different 
risk categories. The most widely used models are the Acute 
Physiology and Chronic Health Evaluation (APACHE) mod-
els, the Simplified Acute Physiology Score (SAPS) I–III, and 
the Mortality Prediction Model (MPM) [14]. However, other 
models have been developed for improved calibration in 
particular regions, such as the Intensive Care National Audit 
& Research Centre (ICNARC) in the UK [15]. 
	 Several reviews have covered mortality models: Keuning 
et al. [16] surveyed predictive mortality models and focused 
mostly on statistical linear models. An earlier review by 
Strand et al. [17] reviewed articles focusing on prognostic, 
single-organ failure, trauma scores and organ dysfunction 
scores. Siontis et al. [18] evaluated predictive mortality mod-
els with a focus on specific patient groups. Promising ap-
proaches for particular groups such as brain injury [19] and 
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coronavirus disease 2019 (COVID-19) patients [20] have 
also been explored. The 2012 PhysioNet/Computing in Car-
diology Challenge focused on the prediction of in-hospital 
mortality of ICU patients leading to several new prediction 
models [21]. In a more recent review by Barboi et al. [22], 
the authors highlighted that ML-based models can accurate-
ly predict ICU mortality as an alternative to traditional scor-
ing models. However, they concluded that the results cannot 
be generalized due to the high degree of heterogeneity and 
that clinicians should only select models with sufficient vali-
dation for use in a practice environment. 
	 Table 1 summarizes several relevant articles on ML for 
predicting mortality [15,23-46]. Note that there are several 
aspects of mortality prediction: at the ICU level or hospital 
level, within 48 or 72 hours after discharge, and 28-day and 
90-day mortality, among others. The periods used are vari-
able. For example, mortality may be predicted on admission 
to the ICU, during the first 6 hours [32], 24 hours after ar-
rival (similar to APACHE), during the last ICU day [28], or 
even in a continuous manner [36]. 
	 Although it is challenging to compare the approaches in 
Table 1, since many were developed on different datasets and 
predict different types of mortality (ICU or in-hospital ver-
sus post-release), we may summarize the main observations: 
	 Improved interpretability: Numerous ML algorithms have 
faced criticism for their “black box” nature, which limits 
interpretability. This concern is particularly evident in deep 
learning models, where a balance between predictive accura-
cy and interpretability must be struck. Deep learning, a sub-
set of ML, organizes algorithms into layers, forming an arti-
ficial neural network capable of learning from data. Methods 
such as Shapley values [47], used in Thorsen-Meyer et al. [23] 
and Caicedo-Torres et al. [24], can convey the importance (or 
weighting) that the deep model assigns to each input feature, 
which offers improved interpretability for these networks. 
	 Features used: The approaches summarized vary be-
tween models that use features similar to existing models 
(APACHE) as well as some novel features. The benefits of 
using simple features such as demographics, labs, and vi-
tals are their availability, reliability, and ease of use. Even 
a reduced set of features, such as the 15 selected by Kim et 
al. [31], showed a good area under the curve (AUC) when 
used with ML models. However, when combined with static 
features, physiological time series such as vitals and inter-
ventions offer an improved means of continuous mortal-
ity prediction [23]. Another promising direction is to use 
semi-structured data, such as those present in diagnosis and 
inspection reports [37]. Methods such as topic modeling 

from clinical notes can be added to traditional variables to 
improve prediction [37,45]. Grnarova et al. [26] proposed 
a convolutional document-embedding approach applied to 
clinical notes showing high AUC values. However, varia-
tions in clinical annotation practices across health systems 
may affect how benchmarking may be applied to this type 
of model. Purushotham et al. [46] compared hand-picked 
features (such as those used for SAPS-II), raw values of fea-
tures, and inputs without pre-processing. They showed that 
when using models that can learn data representations (such 
as deep learning models), unprocessed inputs provided the 
best results. Although premorbid functional status and diag-
nosis are known predictors of ICU–relevant study outcomes, 
they are not regularly implemented in established scoring 
systems. Moser et al. [34] included this information showing 
increased predictive model performance compared to pre-
dictions from established risk scoring systems. 
	 Model choice: A one-fits-all model is unlikely, since model 
selection depends on the type of features used (raw data or 
clinical notes versus hand-picked clinical features) and out-
comes required (continuous mortality prediction versus in-
hospital and post-discharge). However, several promising 
approaches have addressed mortality prediction in different 
ways. Purushotham et al. [46] benchmarked the perfor-
mance of deep learning models with respect to ensemble ML 
models and prognostic scoring systems, showing improved 
performance of deep learning models. Deep learning also 
offered promising results in Caicedo-Torres et al. [24], who 
used multi-scale deep convolutional neural networks. It was 
also used in Aczon et al. [25] regarding pediatric mortality 
risk. A convolutional document-embedding approach based 
on the textual content of clinical notes was proposed by Grn-
arova et al. [26]. Another popular approach is that of using 
ensemble classifiers to leverage the power of different groups 
of classifiers. Guo et al. [30] proposed a dynamic ensemble-
learning algorithm based on k-means (DELAK) for mor-
tality prediction. They used k-means sampling to generate 
several data subsets on which base classifiers could learn the 
classification boundary. El-Rashidy et al. [35] used a stack-
ing ensemble classifier, leading to a high AUC for in-hospital 
mortality, whereas Awad et al. [32] used an ensemble-learn-
ing random forest model. 
	 Class imbalance: A common problem with mortality pre-
diction is that of class imbalance, with a rather low mortality 
versus survival rate. Several strategies are deployed com-
monly, either to pre-process imbalanced data (re-sampling, 
optimizing feature space) or to provide new algorithms that 
can address this problem. Bhattacharya et al. [29], for ex-
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ample, proposed a binary classifier consisting of skewness-
based transformation of input features and statistical hy-
pothesis tests to obtain the final classification. The balanced 
random forest (BRF) algorithm was used by Li et al. [48] to 
address class imbalance with promising results.

2. Length of Stay Benchmarking Using ML 
Length of stay (LOS) predictions can be used for planning, 
identifying individuals with unexpectedly long (or short) 
LOS, and benchmarking. The models for LOS prediction 
enable case-mix correction when comparing LOS between 
ICUs, hospitals, or even health systems across geographic re-
gions. Verburg et al. conducted a systematic review of mod-
els that can be used for predicting LOS [9]. They identified 
11 studies describing the development of 31 prediction mod-
els and three studies describing the external validation of 
one of these models. For benchmarking, they concluded that 
none of the models satisfied their criteria for performance 
with the exception of the original [49] and the second-order 
recalibration of APACHE [50]. However, none of the models 
considered fulfilled their requirements for moderate cali-
bration. It is worth noting that the models reviewed were 
multivariable linear models, which assume linearity between 
LOS and its covariates or predictors. This assumption might 
not capture the complexity of the relationship; although 
patients with more severe illness tend to have a longer LOS, 
they also have a higher mortality risk, which could lead to 
shorter stays. Another important observation highlighted by 
Verburg et al. [9] is that LOS distributions are asymmetrical 
(right-skewed) and present multimodality, since patient dis-
charge tends to occur at particular times of day. 
	 Given the above, nonlinear models have shown promising 
results in LOS prediction versus linear/statistical models. 
The recent review by Peres et al. [51] covers several approach-
es that have been proposed to address some disadvantages 
of using linear models. Another recent review [52] focused 
on the use of ML for predicting medical inpatient LOS with 
a focus on non-ICU patients. In this report, we focus on the 
use of ML for predicting LOS for ICU patients.
	 It is important to highlight that methods can be categorized 
into two types: regression, which involves predicting LOS 
as a continuous result, and classification, which revolves 
around categorizing patients into distinct groups. These 
categories might encompass distinctions like extended stays 
versus brief ones. The results for LOS regression models 
are usually assessed using the R-squared error, root-mean-
squared error (RMSE), and mean absolute error (MAE). The 
concordance correlation coefficient is also presented in some 

studies. The classification results (a long stay, for example) 
are usually presented using the AUC metric, as well as sen-
sitivity, specificity, and prediction accuracy. Recent studies 
have proposed the use of classification models that convert 
length of stay into a binary or multi-class problem and clas-
sify LOS into smaller buckets [53]. 
	 Table 2 shows a set of different ML approaches for the 
prediction of both ICU and hospital LOS for critical care pa-
tients [38,53-63]. Below we summarize some of our observa-
tions:
	 Preprocessing: To deal with the asymmetric nature of the 
LOS distribution, preprocessing in some studies included log 
transformation [54] and Z-score normalization. In a regres-
sion application, a log transformation can be seen as model-
ing LOS via a Poisson or negative binomial regression mod-
el, among others. Studies in other areas have used methods 
that can deal with a skewed distribution; an example is the 
use of gamma mixture models that were applied to maternal 
hospital LOS [64]. 
	 Features: In most of the studies above, the features or pre-
dictors used focused on data readily available in the ICU, 
such as labs and patient demographics. However, Houthouft 
et al. [54] combined the raw data available in the first 5 ICU 
days with sequential organ failure assessment scores, as well 
as sub-scores created to assess the performance of differ-
ent physiological systems, such as renal, cardiovascular, and 
respiratory systems. Recently, Peres et al. [65] surveyed risk 
factors that have been used in ICU LOS prediction and sug-
gested that a list of risk factors should be considered in pre-
diction models for ICU LOS. These factors included severity 
scores, mechanical ventilation, hypomagnesemia, delirium, 
malnutrition, infection, trauma, red blood cell count, and 
PaO2:FiO2 ratios. 
	 Models: As in the mortality prediction case, it is difficult to 
compare model performance because the datasets used were 
different, with different sizes, patient groups, and geographic 
regions. However, turning the problem into a classification 
issue showed better results. Harutyunyan et al. [53] showed 
an AUC of 0.84 for predicting ICU LOS >7 days using chan-
nel-wise long short-term memory units (LSTMs) and multi-
task training, whereas Ma et al. [58] had an AUC of 0.85 for 
predicting LOS >10 days using just-in-time learning (JITL) 
and one-class extreme learning machine (note that their 
study included only 4000 patients). In the studies of Iwase et 
al. [38] and Peres et al. [62], the authors used random forest 
models and achieved good classification accuracy for short 
and long ICU stays with an AUC larger than 0.87. Houthouft 
et al. [54] approached the issue by initially transforming it 
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into a classification task to identify patients with extended 
stays (beyond 10 days). Subsequently, they tackled the stays 
shorter than 10 days as a regression problem, achieving a 
MAE of 1.79 days for this subgroup. 

3. Mechanical Ventilation Management Benchmarking 
Although less investigated than either mortality or LOS, 
the last few years have seen several new approaches for the 
prediction of both probability and duration of mechanical 
ventilation (Table 3). Note that unlike mortality and LOS, 
where our focus was on models for generic ICU patients, 

few papers predicted ventilation for all groups, so we present 
work that focused on certain cohorts (such as acute respira-
tory distress syndrome and COVID-19 patients). Other im-
portant areas where ML is used are ventilation weaning and 
extubation outcomes. However, they are out of the scope of 
this review. 
	 Much like the case of predicting mortality, drawing di-
rect comparisons between the methods outlined in Table 
3 proves challenging when considering the results alone 
[11,12,66-72]. The variability in cohorts and target variables, 
such as distinguishing between ventilation duration and 

Table 3. Summary of studies using machine learning to predict ventilation (probability and duration)

Study, year Outcome​ Number of patients/stays Method​ Main results

Sayed et al. [66], 
2021 

MV duration after ARDS 
onset​

Two cohorts from different 
databases:

Set 1: 2,466 (MIMIC-III),
Set 2: 5,153 (eICU database)

Light-gradient 
boosting  
machine 

RMSE:
Set 1: 6.10 days​,
Set 2: 5.87 days​

Seneff et al. [11], 
1996 

MV duration​ 42 ICU, 40 hospitals, 17,400 
ICU admission, 6,000  
patients with MV​

Multivariate re-
gression analysis​

RMSE: 8.01 days

Kramer et al.  
[67], 2016 

MV duration 56,336 patients Multivariable  
logistic  
regression 
model

For individual patients, the 
difference between ob-
served and predicted mean 
duration of MV: 3.3 hours 
(95% CI, 2.8–3.9) with R-
squared equal to 21.6%

Kulkarni et al.  
[68], 2021 

Probability of MV for 
COVID-19 patients ​

528 patients (X-ray images)​ Deep learning ​ 90% accuracy​

Yu et al. [69],  
2021 

Probability of MV for  
COVID-19 patients 
based on ER data​

1,980 patients​ Boosting (XG-
Boost)

85% accuracy​

Shashikumar  
et al. [12], 2021 

Probability of MV  
(including COVID-19 
patients)​

30,000 ICU patients Deep learning​ AUC = 0.895 vs. 0.882,  
development and  
validation​ sites

Douville et al.  
[70], 2021 

Probability of MV for 
COVID-19 patients ​​

398 patients Random forest​ 
model

AUC = 0.858

Karri et al.  
[71], 2022 

Probability of MV for 
COVID-19 patients ​​

300 admissions Random forest 
model/Gradient 
boosting

AUC = 0.69  
(Random forest);

AUC = 0.68  
(Gradient boosting)

Parreco et al.  
[72], 2018 

Predicting prolonged 
mechanical ventilation 
(over 7 days) for ICU 
patients 

20,262 ICU stays Gradient boosting 
algorithms

AUC = 0.852

MV: mechanical ventilation, ICU: intensive care unit, MIMIC: Medical Information Mart for Intensive Care, RMSE: root mean 
square error, COVID-19: coronavirus disease 2019, ER: emergency room, AUC: area under the curve, CI: confidence interval.



309Vol. 29  •  No. 4  •  October 2023 www.e-hir.org

Machine Learning for Critical Care Outcomes

daily/entire-stay probabilities, contributes to this complexity. 
Some observations are as follows:
	 Features: The use of imaging (X-rays), especially for CO-
VID-19 patients [68], provides a new source of data that 
can be leveraged for increased precision, especially when 
combined with deep learning approaches. Other studies de-
pended on more standard features, such as patient character-
istics, baseline comorbidities, vital signs, laboratory values, 
medication administration records, and processes of care.
	 Models: For ventilation duration, gradient boosting showed 
promising results [66,72], as did simpler methods like mul-
tivariable log regression models [67]. For ventilation prob-
ability, the choice of methods depended on the targets and 
features. Deep learning was used for X-ray imaging datasets 
as well as for clinical features, with promising results in both 
cases. 

IV. Discussion

ML has provided a novel means of benchmarking critical 
care through utilizing the power of large datasets and im-
proved algorithms for outcome prediction. However, despite 
the plethora of articles appearing in the last two decades, the 
comparison of results and performance remains challenging. 
Despite some attempts to offer unified datasets for compari-
son [21], many of the models are developed on different da-
tabases, which may be country-specific, be disease/cohort-
specific, or even target different outcomes (such as mortality 
in the ICU, hospital, or after release). Several ICU databases 
have recently been shared publicly, which can facilitate the 
comparison of modeling approaches [73].
	 The studies reviewed showed a variety of inputs or pre-
dictors used. Traditionally, features were hand-crafted and 
included demographics, characteristics, input diagnoses, 
labs, and vitals. However, we have recently seen more stud-
ies that devote less effort to fine-tuning, features yet achieve 
good results based on learning from raw data [32,33]. New 
predictors have also been added, such as imaging [68], clini-
cal notes, and premorbid functional status [34], which show 
improvements in outcome prediction. 
	 In terms of the models selected, the studies show a large va-
riety, including support vector machines, gradient boosting, 
hidden Markov models, and deep learning. Model selection 
is affected by performance, data size, the handling of miss-
ing/erroneous data, and interpretability. Multi-task learning 
is an interesting direction because it improves generalization 
by leveraging the domain-specific information contained in 
the training signals of related tasks. Harutyunyan et al. [53] 

applied a deep learning multi-task learning framework to 
cover a range of clinical problems, including modeling risk 
of mortality, forecasting LOS, detecting physiologic decline, 
and classifying phenotype. In terms of interpretability, meth-
ods such as Shapley values can be used to convey the impor-
tance that an ML model assigns to input features [23,24]. 
	 Second, a significant concern during the training and 
evaluation of benchmarking models is class imbalance, a 
phenomenon evident across all the clinical outcomes ex-
amined for the current study. This imbalance is particularly 
pronounced in cases of mortality, as a relatively small subset 
of critical care patients experience death. Furthermore, this 
issue extends to recent studies that assess the efficacy of 
established LOS models. Interestingly, these models do not 
distinguish between patients who have survived and those 
who have not, leading to the overrepresentation of surviving 
and lower-risk patients [74]. We presented some approaches 
that addressed class imbalance, such as skewness-based 
transformations [29] and balanced random forest algorithms 
[48]. We point the reader to several reviews on this active 
research area [75,76]. 
	 Third, one factor contributing to differences among studies 
relates to how stays are defined and consolidated. While in a 
hospital setting, patients could experience multiple instances 
of being discharged and readmitted to the ICU. To maintain 
uniformity in model development, it becomes essential to 
define standardized criteria for classifying these occurrences 
as either one continuous stay or several separate stays. This 
effort aims to reduce variation in the resulting models. An 
associated subject pertains to ICU type, encompassing dif-
ferent patient groups, treatments, and results, such as cardiac 
care versus neurological cases. Despite its significance war-
ranting deeper exploration, the published literature shows 
limited emphasis in this domain.
	 A further issue that could affect model performance is that 
some sub-populations, such as ethnic minorities, may be un-
derrepresented even in large datasets. Other sources of bias 
that could influence performance are related to variations 
in documentation across sites and geographic regions, due 
mostly to subjective evaluation. Both the reason for admis-
sion to the ICU and the Glasgow Coma Score, for example, 
may incorporate subjective evaluation from clinicians [77]. 
	 Most existing benchmarking models were developed on 
country-specific databases. The APACHE scores, for exam-
ple, were United States-trained and tested. However, clinical 
practice, documentation, and patient diversity differ across 
geographic regions, requiring model recalibration and train-
ing. 
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	 As in other fields, ML in benchmarking ICU outcomes has 
focused on developing models with improved performance 
on retrospective data. However, little work has occurred on 
long-term validation post-deployment, which would observe 
data drift, model drift, and performance over time. Existing 
models merit recalibration every few years due to data drift. 
Some reasons for data drift in critical care include changes 
in data due to seasonality, changes in documentation prac-
tices, the addition of new devices, missing data, and changes 
in clinical practices over time. The same applies to bias, 
model generalizability, and fairness [78]. Federated learning, 
a distributed technique for training ML models without ex-
changing data, presents an intriguing paradigm for locations 
where data sharing is not feasible or for refining models us-
ing local datasets for updates [79]. 
	 Although the models highlighted in the current review 
attempt to adjust for measured risk factors, unobserved pa-
tient attributes mean that risk adjustment is never perfect 
[80]. Areas such as medication adherence, social support, 
or mobility before admission can be considered as unmea-
sured factors. Even when models are accurately calibrated to 
the collected data, the influence of these factors continues 
to impact the results. Finding ways to incorporate some of 
these factors, possibly through clinical notes and patient in-
teractions, remains crucial. This could emerge as a thriving 
research domain for large language models or generative ar-
tificial intelligence (AI) methods to offer a potential solution 
that would bridge this gap.
	 In conclusion, ML has provided novel tools for bench-
marking critical care outcomes, leading to improved results 
as well as addressing important drawbacks of previous meth-
ods, such as reducing biases due to documentation, missing 
data, and class imbalance, as well as modeling non-linear 
relationships between variables and outcomes. Prospects ex-
ist for using ML to encompass a broader array of data types, 
including imaging, medical notes, and diagnoses. The utili-
zation of multi-national datasets via techniques like feder-
ated learning could also prove advantageous in developing 
models that find broader relevance across diverse patient 
groups and geographic regions where data sharing is not 
possible. Generative AI and large language models present a 
fresh approach for scrutinizing extensive datasets, including 
medical notes, thereby enhancing the efficacy of future ML 
models within this domain. In clinical contexts, we suggest 
that healthcare practitioners opt for well-validated models 
tailored to their specific geographic and patient-demograph-
ic considerations.
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