5 research outputs found

    On the k-anonymization of time-varying and multi-layer social graphs

    Get PDF
    The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs

    Differentially Private Link Prediction With Protected Connections

    Full text link
    Link prediction (LP) algorithms propose to each node a ranked list of nodes that are currently non-neighbors, as the most likely candidates for future linkage. Owing to increasing concerns about privacy, users (nodes) may prefer to keep some of their connections protected or private. Motivated by this observation, our goal is to design a differentially private LP algorithm, which trades off between privacy of the protected node-pairs and the link prediction accuracy. More specifically, we first propose a form of differential privacy on graphs, which models the privacy loss only of those node-pairs which are marked as protected. Next, we develop DPLP , a learning to rank algorithm, which applies a monotone transform to base scores from a non-private LP system, and then adds noise. DPLP is trained with a privacy induced ranking loss, which optimizes the ranking utility for a given maximum allowed level of privacy leakage of the protected node-pairs. Under a recently-introduced latent node embedding model, we present a formal trade-off between privacy and LP utility. Extensive experiments with several real-life graphs and several LP heuristics show that DPLP can trade off between privacy and predictive performance more effectively than several alternatives

    Data Preparation for Social Network Mining and Analysis

    Get PDF
    corecore