49,054 research outputs found

    One-dimensional modelling of mixing, dispersion and segregation of multiphase fluids flowing in pipelines

    Get PDF
    The flow of immiscible liquids in pipelines has been studied in this work in order to formulate a one-dimensional model for the computer analysis of two-phase liquid-liquid flow in horizontal pipes. The model simplifies the number of flow patterns commonly encountered in liquid-liquid flow to stratified flow, fully dispersed flow and partial dispersion with the formation of one or two different emulsions. The model is based on the solution of continuity equations for dispersed and continuous phase; correlations available in the literature are used for the calculation of the maximum and mean dispersed phase drop diameter, the emulsion viscosity, the phase inversion point, the liquid-wall friction factors, liquid-liquid friction factors at interface and the slip velocity between the phases. In absence of validated models for entrainment and deposition in liquid-liquid flow, two entrainment rate correlations and two deposition models originally developed for gas-liquid flow have been adapted to liquid-liquid flow. The model was applied to the flow of oil and water; the predicted flow regimes have been presented as a function of the input water fraction and mixture velocity and compared with experimental results, showing an overall good agreement between calculation and experiments. Calculated values of oil-in-water and water-in-oil dispersed fractions were compared against experimental data for different oil and water superficial velocities, input water fractions and mixture velocities. Pressure losses calculated in the full developed flow region of the pipe, a crucial quantity in industrial applications, are reasonably close to measured values. Discrepancies and possible improvements of the model are also discussed. The model for two-phase flow was extended to three-phase liquid-liquid-gas flow within the framework of the two-fluid model. The two liquid phases were treated as a unique liquid phase with properly averaged properties. The model for three-phase flow thus developed was implemented in an existing research code for the simulation of three-phase slug flow with the formation of emulsions in the liquid phase and phase inversion phenomena. Comparisons with experimental data are presented

    An experimental study of oil-water flows in horizontal pipes

    Get PDF
    © BHR Group 2015 Multiphase 17.This paper reports an effort to investigate the effect of flow velocities and inlet configurations on horizontal oil-water flows in a 32 mm ID acrylic pipe using water and an aliphatic oil (Exxsol D140) as test fluids. The flows of interest were analysed using pressure drop measurements and high-speed photography in an effort to obtain a flow pattern map, pressure gradient profiles and measures of the in situ phase fractions. The experiments reveal a particular effect of the inlet configuration on the observed flow patterns. A horizontal plate, installed at the inlet, generates a transition to stratified flow when the plate height closely matched the in situ water height at low water cuts

    Probabilistic Flow Regime Map Modeling of Two-Phase Flow

    Get PDF
    The purpose of this investigation is to develop models for two-phase heat transfer, void fraction, and pressure drop, three key design parameters, in single, smooth, horizontal tubes using a common probabilistic two-phase flow regime basis. Probabilistic two-phase flow maps are experimentally developed for R134a at 25 ??C, 35 ??C, and 50 ??C, R410A at 25 ??C, mass fluxes from 100 to 600 kg/m2-s, qualities from 0 to 1 in 8.00 mm, 5.43 mm, 3.90 mm, and 1.74 mm I.D. horizontal, smooth, adiabatic tubes in order to extend probabilistic two-phase flow map modeling to single tubes. An automated flow visualization technique, utilizing image recognition software and a new optical method, is developed to classify the flow regimes present in approximately one million captured images. The probabilistic two-phase flow maps developed are represented as continuous functions and generalized based on physical parameters. Condensation heat transfer, void fraction, and pressure drop models are developed for single tubes utilizing the generalized flow regime map developed. The condensation heat transfer model is compared to experimentally obtained condensation data of R134a at 25 ??C in 8.915 mm diameter smooth copper tube with mass fluxes ranging from 100 to 300 kg/m2-s and a full quality range. The condensation heat transfer, void fraction, and pressure drop models developed are also compared to data found in the literature for a wide range of tube sizes, refrigerants, and flow conditions.Air Conditioning and Refrigeration Project 18
    • …
    corecore