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Abstract 
A capacitive void fraction sensor was developed to study the objectivity in flow pattern 
mapping of horizontal refrigerant two-phase flow in macroscale tubes. Sensor signals 
were gathered with R410A and R134a in a smooth tube with an inner diameter of 8mm at 
a saturation temperature of 15°C in the mass velocity range of 200 to 500 kg/m²s and 
vapour quality range from 0 to 1 in steps of 0.025. A visual classification based on high 
speed camera images is made for comparison reasons. A statistical analysis of the sensor 
signals shows that the average, the variance and a high frequency contribution parameter 
are suitable for flow regime classification into slug flow, intermittent flow and annular 
flow by using the fuzzy c-means clustering algorithm. This soft clustering algorithm 
predicts the slug/intermittent flow transition very well compared to our visual 
observations. The intermittent/annular flow transition is found at slightly higher vapour 
qualities for R410A compared to the prediction of [Barbieri et al., 2008, Flow patterns in 
convective boiling of refrigerant R134a in smooth tubes of several diameters, 5th 
European Thermal-Sciences Conference, The Netherlands]. An excellent agreement was 
obtained with R134a. This intermittent/annular flow transition is very gradual. A 
probability approach can therefore better describe such a transition. The membership 
grades of the cluster algorithm can be interpreted as flow regime probabilities. 
Probabilistic flow pattern maps are presented for R410A and R134a in an 8 mm I.D. tube. 
 
 
Keywords: two-phase flow regimes, HFC, flow pattern map, fuzzy c-means 
clustering 
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Nomenclature 
 
AVG average 
CPSD cumulative power spectral 

distribution 
c centroid 
C regression coefficient 
D inner tube diameter, m 
Fr Froude number 
G mass velocity, kg/m2s 
cp specific heat capacity, J/kgK 
h specific enthalpy, J/kg 
J objective function 
K number of features 
m mass flow rate, kg/s 
n regression coefficient  
N number of objects/data points 
NC number of clusters 
M2 variance 
M3 skewness 
M4 kurtosis 
MG membership grade 
P flow regime probability 
PDE probability density estimation 
PSD power spectral density 
T temperature, K 
u cluster fraction 
V voltage signal, V 
var variance 
w weight parameter 
x vapour quality, - 
Xtt Lockhart-Martinelli parameter 

 
Greek symbols 
∆ difference 
σ variance 
µ mean 
 
Subscripts 
A annular flow 
i, i’ class index 
I intermittent flow 
j object index 
k feature index 
L liquid 
max maximum 
min minimum 
PH preheater 
R refrigerant 
S slug flow 
sat saturation  

V vapour 
2PH two-phase 
 
Superscripts 
* dimensionless 
m smoothness factor 
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1. Introduction 
 
Complex two-phase flow phenomena occur during the phase change of refrigerant from 

liquid to vapour and vice versa. To accurately predict the heat transfer and pressure drop, 

these flow phenomena should be incorporated in the design models for in-tube 

evaporators used in refrigeration and air-conditioning [1-2]. Traditionally, this is 

achieved by classifying two-phase flows into flow regimes and presenting them in flow 

pattern maps. Kattan et al. [3-4] introduced a comprehensive flow pattern map in the heat 

transfer prediction of boiling refrigerants. Recently, Cheng et al. [5] published a 

comprehensive review on flow regimes and flow pattern maps. Most of the two-phase 

flow classifications are based on visualizations (with or without use of high speed 

cameras). But visual-only methods are inherently subjective. Cheng et al. [5] assign this 

as the main reason why flow pattern data from different researchers are often inconsistent 

for similar test conditions. Objective methods can therefore contribute to more accurate 

flow pattern data. 

 
Rather than purely classifying a flow into mutually exclusive regimes, the classification 

problem can also be approached by describing the flow as a combination of different flow 

regimes each with a certain probability. Nino et al. [6] introduced the probabilistic 

approach in multiport microchannels. Jassim and Newell [7] applied probabilistic flow 

regime mapping to predict pressure drop and void fraction in microchannels. Van Rooyen 

et al. [8] used the same approach for intermittent flows during condensation in 

macroscale tubes.  Jassim et al. [9] obtained probabilistic two-phase flow data of R134a 

and R410A in single horizontal smooth, adiabatic tubes (diameters D ranging from 

1.74mm to 8mm) by using an automated image recognition technique. Jassim [10] also 

developed curve fits for this time fraction data, which were used by Jassim et al. [11] for 

void fraction modeling and by Jassim et al. [12] for heat transfer modeling during 

condensation. However, so far, it is not known how general such time fraction curve fits 

are [5]. 

 
This study aims to find more objectivity in flow pattern mapping. Therefore a capacitance 

probe was developed [13][14] as well as a transducer suitable for use with low dielectric 

fluids such as refrigerants [15]. The use of a signal clustering technique was previously 
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investigated for air-water flows [16] and is now further studied for use with evaporating 

refrigerant flows to objectively and probabilistically describe flow regime transitions.  

 
2. Experimental facility 
 
2.1 Refrigerant test facility 
In Figure 1, a schematic of the refrigerant test facility is shown. A pump provides 

subcooled refrigerant to the preheater. This preheater consist of six tube-in-tube heat 

exchangers with a total length of 15m. The length of the preheater can be altered between 

1m and 15m in steps of 1m. The refrigerant in the central tube is heated and evaporated to 

the desired vapour quality x, by hot water flowing in the annuli. A boiler system heats a 

2m³ tank to provide hot water at a stable temperature during the experiments. The 

conditioned vapour-liquid mixture is fed into the test sections after which it is condensed 

back to liquid in a plate condenser. The condenser transfers the heat from the refrigerant 

to a water/glycol (30%) flow and provides subcooled liquid to the pump. The ice water is 

supplied from a 1m³ tank which is cooled by a chiller system. In contrast with a 

traditional compressor loop, there is only one working pressure. The pump only bridges 

the pressure losses. By controlling the frequency of the pump the mass velocity G, in the 

refrigerant loop is set. The loop is connected to a reservoir which is submerged in a water 

bath. By changing the bath temperature, the saturation pressure in the loop can be altered. 

 
The mass flow rate of the refrigerant as well as the mass flow rate of the water in the 

preheater, are measured using coriolis type flow meters with an accuracy of ±0.2% (of 

reading). Temperature measurements are performed using thermocouples (type K) which 

are in situ calibrated with an uncertainty of ±0.05°C. From these measurements, the heat 

balance of the preheater is determined (Eq. (1)).  
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The uncertainty in this heat balance is monitored online. Measurements were accepted if 

the uncertainty in the heat balance was smaller than ±2% (with an exceptional ±4% for 
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G=200kg/m²s and x<0.125) and all temperature measurements of the preheater were 

stable within the uncertainty of ±0.05°C over the course of the measurements. The 

uncertainty in the mass velocity is smaller than 1.5% at mass velocities lower than 250 

kg/m2s and smaller than 0.75% for mass velocities higher than 250 kg/m2s. The vapour 

quality at the inlet of the test section is calculated using Eqs. (1)-(2). The uncertainty in x 

varied between ±0.005 and ±0.02 with the higher values for higher vapour qualities. The 

saturation temperature at the exit of the preheater was controlled to within ±0.5°C. 

 
2.2 Adiabatic test section 
A horizontal adiabatic test section is used for flow visualization and characterization 

purposes. It consists of a sight glass with a camera, the capacitive void fraction sensor 

and a second sight glass. The second sight glass after the capacitance sensor is required to 

ensure electrical separation between the set-up and the sensor. This is absolutely 

necessary to prevent noise pick-up in the capacitance sensor by the antenna effect of the 

copper tubing. To eliminate disturbances from bends or valves, a minimum entrance and 

exit length of 60D was ensured upstream and downstream of the test section. In that case, 

the flow in the test section is fully developed and a constant tube diameter is assured over 

the full length of the test section with as little disturbances as possible. 

 

The sight glasses are made of smooth quartz glass (100mm x 8mm inner diameter/10mm 

outer diameter) which is mounted in the 7.91mm copper tube. Nylon ferrules are used as 

sealing in the fittings. The glass tube was annealed and hardened to prevent fracture 

caused by micro cracks at higher pressure. Two bolt connections are used in parallel with 

the sight glasses to absorb the axial forces. To ensure the electrical separation of the 

tubing, the supports for these bolts are made of electrically insulating material. The 

construction was successfully pressure and leak tested with nitrogen up to 40bar. To 

capture images of the refrigerant flow, a monochromatic high speed camera was used 

which could capture images at 250 frames per second. 

 
2.3 Capacitive void fraction sensor 
A capacitance probe with a concave electrode configuration was developed for dynamic 

two-phase flow void fraction measurements [13][17]. Capacitance probes use the 
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difference in dielectric constant between the liquid phase and the vapour phase. The 

output of the probe is a voltage signal proportional to the capacitance of the two-phase 

mixture between the electrodes. To acquire (quasi)-local two-phase flow data, the 

electrode width is equal to the diameter of the tube. In Figure 2 the electrode 

configuration is illustrated. The capacitance between the middle electrode pair is 

measured. The outer electrode pairs are used for guarding purposes. 

 

The electronic transducer measures the capacitance between the electrodes at 2MHz and 

is based on the charge-discharge principle [15][17]. The electric current that flows 

because of this charging and discharging is converted to a voltage signal. These voltage 

signals are gathered at a sample frequency of 1kHz by the DAQ system and are made 

dimensionless according to Eq. (3). VL and VV are the voltage levels of liquid only and 

vapour only flowing in the tube. 

  

VL

VPH

VV
VV

V
−
−

= 2*       (3) 

 
The transducer gain is 1.16V/pF. At 15°C, the difference between VL and VV was 

measured ∆V=1.32V for R410A and ∆V=1.31V for R134a. The difference in electric 

capacitance between liquid flow and vapour flow is thus 1.14pF and 1.13pF respectively. 

A temperature variation of ±0.5°C results in variations of VL of ±6mV or ±0.44% of ∆V. 

The slope of the VL-T curve is -0.0117 V/°C for R410A and -0.0099 V/°C for R134a. The 

negative slope of the VL-T calibration curve corresponds to the decreasing dielectric 

constant of liquid refrigerant in function of temperature. The influence of temperature on 

the dielectric constant of the vapour phase is negligible. A temperature compensation was 

thus only performed to VL. After this compensation, all measurements of VL and VV fell 

within ±4mV. There was no significant difference in VL or VV between measurements at 

the start and those taken at the end of the experimental campaign. Drift from the 

electronic transducer can therefore be neglected. The noise level of both liquid only and 

vapour only flow is 10mV (peak to peak). The corresponding uncertainty evaluated as 2σ 

is ±4mV or ±0.3% of ∆V, resulting in signal-to-noise ratios SNR higher than 300. The 
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step response of the transducer to a change in capacitance of 1pF was faster than the 

sample frequency (1kHz).  

 
3. Experimental results 
 
3.1 Dataset and visual classification 
Capacitance sensor signals are gathered for R410A at Tsat=15°C. Four data series at mass 

velocities ranging from G=200 to 500 kg/m2s are obtained with vapour qualities ranging 

from 0 to 1 in steps of 0.025. A similar set was gathered with R134a. But the G=400 

kg/m²s and G=500 kg/m²s series are not complete up to x=1. Because of the larger 

pressure drop of R134a, the saturation temperature could not be kept constant at 15°C. In 

Figure 3, the dataset with our visual classification is shown in a Wojtan-Ursenbacher-

Thome flowmap [19] under adiabatic conditions. Additionally the intermittent/annular 

flow transition of Barbieri et al. [20] is depicted as well (Eq. (4)).  
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Using the high speed camera images, the observed two-phase flows were classified into 

slug flow, intermittent flow and annular flow. The liquid slugs have to fill the entire tube 

but can be aerated to be classified as slug flow. In annular flow, the motion of the liquid 

flowing at the top of the tube should be comparable to the motion of liquid flowing at the 

bottom. Intermittent flow groups the remaining two-phase flows. 

 
The slug flow/intermittent flow transitions have the same trend but do not fully agree 

with our visual classification. This discrepancy can be partially due to the classification 

criterion. Wojtan et al. [19] define the intermittent flow regime as a group of unsteady 

flow patterns like plug and slug flows. Due to the unsteadiness of the flow, the entire tube 

periphery is frequently wetted in this flow regime, but does not have to remain wet all the 

time. In our classification, the presence of the slugs itself is the criterion. For R410A, at 

G>300kg/m²s, slugs do appear but the flow is classified as intermittent by Wojtan et al. 

[19]. At G=200kg/m2s and x>0.15, no slugs appear in our observations, although slugs 

should be present according to their flow pattern map. For R134a, at G=200kg/m²s and 

x>0.125 again no slugs were observed even though predicted by the flow pattern map. At 
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higher mass velocities, the transition line corresponds well to our visual classification. 

There is a possibility that high amplitude waves are classified as highly aerated slugs. 

This can shift the transition line to higher vapour qualities.  
 
In the flow pattern map of Wojtan et al. [19] the intermittent-annular flow transition is 

defined at a constant value of the Lockhart-Martinelli parameter Xtt=0.34. Thus, only 

density and viscosity are taken into account, resulting in a transition line at constant 

vapour quality. However, Barbieri et al. [20] concluded from their visual observations 

that this transition is also affected by tube diameter, mass velocity and vapour quality. 

They proposed a transition line as a function of the liquid Froude number and Xtt based 

on observations of R134a two-phase flows in smooth tubes with internal diameters 

varying from 6.2mm to 12.6 mm at Tsat=5°C, namely FrL = 3.75 Xtt
2.4. Thus also mass 

velocity and tube diameter are accounted for. Their transition line in G-x format (Eq. (4)) 

is set out in dash-dot in Figure 3 and agrees much better with our visual observations 

compared to the transition of Wojtan et al. [19]. In Figure 4 the data of Barbieri et al. and 

their regression is shown together with our new data of R134a and R410A in an 8mm 

tube at Tsat=15°C. The slope of our R134a data corresponds well to the regression of 

Barbieri et al. [20]. The slope of our R410A data is slightly steeper. But, the FrL-Xtt map 

shows that our new data is located within the scatter cloud of the Barbieri et al. data. 

Therefore, the Barbieri et al. [20] criterion for intermittent-annular flow transition is 

found to be valid for the conditions at Tsat=15°C and for use with R410A. 

 
No dry-out was observed at high vapour qualities, although this is predicted by the flow 

pattern map of Wojtan-Ursenbacher-Thome. But the observations were done under 

adiabatic conditions and fully developed flow. There is no reason why there should be 

partial dry-out or a transition to stratified-wavy flow. Under diabatic conditions, dry-out 

appears because the liquid film is thinner at the top of the tube. This allows dry patches to 

appear before new liquid is provided from the thicker film at the bottom. Under fully 

developed adiabatic conditions, the liquid can swing back to the top of the tube. The 

velocity in the vapour core is definitely high enough to preserve the annular film because 

this velocity increases with vapour quality. So, the liquid film thins out when the vapour 

quality is increased until all liquid is vaporized or entrained. 
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3.2 Capacitive void fraction signals 
Three typical sensor signals are shown in Figure 5, i.e. a slug flow, an intermittent flow 

and an annular flow signal obtained with R410A at Tsat=15°C. At low vapour qualities 

slugs frequently fill the entire cross section with liquid. The slugs are often aerated with 

vapour bubbles. The concentration of these bubbles is higher near the top of the tube. 

Each liquid slug causes a peak in the voltage signal that approaches V* =1. This results in 

a high variance in the signal values. The slug frequencies dominate the frequency 

spectrum. The average signal values of slug flows are high due to the large liquid content. 

 
At transition from slug flow to intermittent flow, the vapour content in the slugs is that 

high, that the liquid bridges break up. The interfacial waves are more turbulent in the 

intermittent flow regime, causing liquid droplets to swing into the vapour phase and 

vapour bubbles to appear into the liquid phase. The two-phase flow becomes fully 

chaotic. This results in a higher frequency spectrum content at frequencies higher than 

5Hz. The tube perimeter remains fully wetted. The amplitude of the wave patterns 

diminishes and the liquid content in the upper film increases gradually.  

 
A further increase in vapour quality results in the development of an annular film. The 

thickness of the film always remains larger at the bottom of the tube. The transition from 

intermittent to annular flow is very gradual. In fully developed annular flow, the interface 

between the liquid annulus and the vapour core is disturbed by small amplitude waves. 

Droplets may be dispersed in the vapour core but these are hard to notice due to the 

limited visual access. The annular film thickness gradually diminishes with increasing x. 

The average signal values are low because of the high vapour content, the variance of the 

signal values is low as well, but the frequency content at high frequencies is high instead. 

 
4. Statistical analysis 
 
4.1 Feature definitions 
From each signal of the dataset, several statistical features are mined. A first group 

consists of the statistical moments of the sensor signal, i.e. the average value (AVG), the 

variance (M2), the skewness (M3) and the kurtosis (M4). These features determine the 

shape of the probability density estimation (PDE) of a signal and represent information of 
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the signal in the amplitude domain. A second group consists of features in the frequency 

domain, further caller F#-parameters. First, the power spectral density (PSD) was 

calculated using the fast Fourier algorithm. Then the cumulative distribution (CPSD) was 

taken of the PSD contributions between 0 and 100Hz. The features are then the 

frequencies corresponding to a certain percentile of this cumulative distribution. For 

example F50 is the frequency corresponding to the 50% percentile of the CPSD. This 

means that 50% of the power spectrum contribution (between 0-100Hz) is present in the 

frequencies lower than F50. The frequency range for vapour-liquid interface phenomena 

is typically smaller than 100Hz [21]. Therefore, only contributions of frequencies lower 

than 100Hz are considered. 

 
When following a trajectory (in a flow pattern map) from intermittent flow to annular 

flow, typically the power spectrum contributions of low frequencies (related to pseudo-

slugs for instance) diminish and the power spectrum contributions of higher frequencies 

(related to interfacial phenomena of annular film flow) increase. The purpose of the F#-

parameters is to incorporate this effect of PSD contributions moving to higher 

frequencies and so track the intermittent-annular flow transition. However, in the annular 

flow regime at very high vapour qualities, some very low frequent phenomena were 

noticed, most probably induced by dry-out phenomena in the preheaters. This causes 

drastic drops in the F#-parameter values. Since this is not related to the intermittent to 

annular flow transition, this phenomenon should not contribute to the F#-parameters. 

Therefore, a regression was performed to the F#-parameter data eliminating the data at 

high vapour quality with low F#-parameter values. This regression, using sigmoid 

functions (Eq. (5)) also eliminates the inherent scatter in the frequency parameter data. 

This all is shown in Figure 6. 
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4.2 Fisher criterion 
The signal features are investigated for their ability of flow regime classification. First, a 

Fisher Criterion [22] was applied to the datasets of R410A and R134a using the visual 

classification into slug flow, intermittent flow and annular flow.  A Fisher discriminant 
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Jii’(k) is determined using Eq. (6), with µi(k) the mean of feature k of the data points in 

class i and σi(k) the variance of feature k of the data points in class i. 
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The score of the Fisher Criterion for a selected feature is then the average of Jii’ for all 

combination of classes i and i’. This criterion quantitatively determines whether a feature 

is able to separate class i from class i’. It expresses how far the means of the classes are 

separated taking also the variances within the classes into account. 

 
The results are listed in Table 1 and Table 2 for R410A and R134a respectively. If the 

Fisher criterion is applied to the full datasets, AVG and M2 have a significantly larger 

score compared to M3 and M4. If the intermittent flow data and the annular flow data are 

grouped in a non-slug flow class, then the score of the variance is dominant (S/non-S in 

Tables 1 and 2). Due to the presence of liquid slugs a second maximum in the PDE at 

high vapour qualities appears, causing M2 to be significantly larger compared to M2 of 

non-slug flows. The variance thus has the highest potential in separating slug flows from 

non-slug flows. This transition occurs in a narrow zone in the flow pattern map. The 

same conclusion applies if the Fisher criterion is evaluated using only slug flow and 

intermittent flow data (see S-I only in Tables 1 and 2). When slug flow data and 

intermittent flow data are grouped into a non-annular flow class, AVG has the highest 

score of the features in the amplitude domain. This feature is thus useful for tracking the 

intermittent/annular flow transition. In contrast with M2, AVG decreases smoothly with 

increasing vapour quality. It is basically a measure for average void fraction. No sudden 

change in the trend appears in the transition zone from intermittent flow to annular flow.  

 

Concerning the F#-parameters, the F95 has the highest score for all data of R134a and the 

second highest score for the R410A data. Since these parameters were defined for 

tracking the change in frequency contributions in the intermittent /annular flow transition, 

they have the highest scores for the annular/non-annular division and the intermittent-

annular only data. According to the Fisher criterion, F95 has the highest potential in 

separating intermittent from annular flow signals.  
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4.3 Principle Component Analysis 
Another possible approach for reducing the number of features is performing a Principle 

Component Analysis (PCA) [23]. In a PCA the eigenvalues and eigenvectors of the 

covariance matrix of the feature data are calculated. The first eigenvector in feature space 

(with the highest eigenvalue) indicates the major direction in the feature data cloud. The 

coefficients of this first eigenvector thus indicate the (relative) importance of the features. 

Applying a PCA to the HFC datasets, the eigenvalue of the first principle component is 

about ten times higher than that of the second principle component. The data cloud is thus 

mainly organized along one direction. The coefficients of the first principle component in 

the feature space are listed in Table 3. The PCA again proves the dominance of AVG and 

M2 over M3 and M4.  

 

The F#-parameters equally contribute to the first principle component. This means that 

any of these parameters can be chosen, but according to the Fisher test, F95 is the best 

choice for the classification. Comparing the relative importance of the amplitude domain 

features and the frequency domain features, the F#-parameters are slightly higher but the 

coefficients of both groups are in the same order of magnitude. 

 
The feature space of AVG, M2 and F95 is shown in Figure 7. From this plot, it is again 

clear that finding the slug/intermittent flow transition will be feasible by using M2. But 

the intermittent/annular flow transition is rather arbitrary due to the smoothness of this 

transition.  

 

The multivariate analysis of the sensor signal features thus results in a small selection of 

features which contain the necessary flow regime information. The Fisher Criterion 

indicates the AVG, M2 and F95 as optimal for flow pattern classification. A principle 

component analysis supports this. The choice of the features can be related to the two-

phase flows as follows: AVG is a matter for void fraction, M2 is directly related to the 

presence of liquid slugs and F95 parameter can track the power spectrum contribution 

shift towards higher frequencies in the intermittent-annular flow transition. 
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5. Fuzzy c-means clustering 
 
Clustering algorithms [24] are unsupervised learning methods. The goal of such a method 

is to deduce properties from a dataset, without the help of a supervisor providing correct 

answers for each observation. In the case of two-phase flow classification, no visual 

decisions are needed. Clustering analysis tries to group a collection of objects into subsets 

or clusters such that those within each cluster are more closely related to one another than 

objects assigned to different clusters. An object is a selection of input features deduced 

from a sensor signal.  The choice of these input features is fundamental to the clustering 

technique. The choice of a dissimilarity measure between two objects, the distance 

function, is a second important factor. By far the most common choice of the distance 

function is the squared or Euclidian distance between two objects yj and yj’ (Eq. (7)). 

∑
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This is a weighted average of squared feature distances with wk the weight parameters 

and y the positions of the objects in feature space. Each object is iteratively assigned to 

one cluster based on the minimization of an objective function. Each of the weight 

parameters can be chosen to set the relative importance of the features upon the degree of 

similarity of the objects. Variables that are more relevant in separating the clusters should 

of course be assigned a higher influence in defining object dissimilarity. 

 
The fuzzy c-means clustering algorithm is a soft-clustering algorithm. This means that 

each data point is assigned to a cluster to some degree that is specified by a membership 

grade MG. This allows for describing the boundaries between clusters in a smooth way. 

Since the aim of the clustering of our datasets is finding a probabilistic description of 

flow regime boundaries, this soft-clustering algorithm is the preferred choice amongst 

other clustering algorithms like k-means clustering or hierarchical clustering. 

 
The user first has to choose the number of clusters NC. The fuzzy c-means clustering 

algorithm then starts with initial guesses for the centers (or centroids) of each cluster ci. 

Initial cluster fractions uij are also assigned to each data point in such a way that: 

∑
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The algorithm minimizes an objective function Jm (Eq. (9)) based on the distance 

between a data point xj and a cluster centroid ci.  
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The parameter m (chosen at the default value 2) determines the smoothness of the cluster 

transitions. When m approaches 1, the cluster boundaries are sharp, when m approaches 

infinity, uij becomes constant over all data. The values of uij and ci are iterated from an 

initial value until convergence using Eqs. (10)-(11). The default value (1e-5) for the 

minimum amount of improvement of the objective function is used as convergence 

criterion. 
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The output of the clustering algorithm is thus a membership grade MG of each class for 

every data point. A membership grade of unity means the sensor signal is typical for that 

class. The data point is assigned to the class for which it has the highest membership 

grade.  

 

The fuzzy c-means clustering algorithm is applied to the refrigerant flow signal data 

using a combination of input features which can track both the slug flow/intermittent 

flow and the intermittent flow/annular flow transition: i.e. the feature input matrix I = 

w·[AVG, M2, F95]. wk=1/(2vark) represents the weight parameters listed in Table 4. By 

using these values every feature equally contributes to the clustering [24]. This selection 

of features is based on the multivariate analysis and has a clear physical link with the 

flow phenomena. The result of using these features to cluster the dataset into three 

clusters is shown in Figure 8. The clustering groups the data points in perfectly separable 

areas in the flow map. Compared to our visual classification (Figure 3) an excellent 

agreement is found. The slug/intermittent flow transition is perfectly predicted as is the 
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intermittent/annular flow transition for R134a. The intermittent/annular flow transition 

for R410A however is found at slightly higher vapour qualities. The difference in vapour 

quality at the transition is less than 0.1 and can be assigned to the gradual nature of the 

transition and the subjectivity in visually classifying the flow regimes. 

 
The corresponding membership grades are depicted in Figure 9. Because of the properties 

of the algorithm, they decline for vapour qualities smaller than the typical slug flow data 

point and vapour qualities larger than the typical annular flow data point. Therefore some 

post-processing was necessary to use the membership grades as flow regime 

probabilities. 

 

First, the maxima and minima of the slug flow and annular flow membership grades are 

traced for each mass velocity series. These MG are kept constant at the maximum and 

minimum value outside the vapour qualities corresponding to the maxima and minima. 

The MGs of intermittent flow are then recalculated using Eq. (12). This recalculation 

does not affect the transitions, but only the data points near x=0 and x=1. 

 
ASI MGMGMG −−= 1     (12) 

 
The membership grades are now consistent with the probabilistic flow regime approach 

and can be interpreted as flow regime probabilities P. To generalize the probabilities, a 

regression is performed for every mass velocity series. Chapman functions (Eq. (13)) are 

used for the slug flow probabilities and sigmoid functions (Eq. (14)) for the annular flow 

probabilities. 

 
( )[ ]cS bxaPP −−+= exp10

*     (13) 

([ )]bxa
PA −−+

=
exp1

1*     (14) 

 
Because of the residuals of the regression, a final rescaling is necessary using Eq. (15) to 

make the maximum probability unity and the minimum zero. This rescaling has only a 

significant effect for G=200kg/m²s and G=300kg/m²s. Finally the probability for 
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intermittent flow is found (Eq. (16)). In Table 5 and Table 6, the regression coefficients 

with corresponding R-squared values are shown, as well as the necessary scaling factors.  

 

minmax

min
*

pp
pPP
−
−

=     (15) 

 
ASI PPP −−=1     (16) 

 
6. Probabilistic flow pattern mapping 
 
6.1 Flow regime probabilities 
In Figure 10, the probabilistic flow maps are presented for adiabatic flow of R410A and 

R134a at Tsat= 15°C in a horizontal smooth tube of 8mm I.D. at mass velocities ranging 

from 200 to 500 kg/m2s and vapour qualities from 0 to 1. The flow regime probabilities P 

are shown as contour lines in the flow map. Our visual classification and the Wojtan-

Ursenbacher-Thome flow map [19] with the extra intermittent/annular flow transition of 

Barbieri et al. [20] are depicted as well. The 50% probabilities are drawn in black. These 

correspond to the classification lines used by the clustering algorithm. It is very clear that 

the slug flow/intermittent flow transition is a narrow transition zone in the flow pattern 

map. This is now quantified in terms of the probabilities. The contour lines indicate a 

width of approximately ∆x=0.05. The intermittent/annular flow transition instead is very 

gradual with a width of over ∆x=0.25. 
 
These flow regime probabilities are solely based on the capacitive void fraction signals. 

The void fraction variations of the two-phase flows are therefore explicitly used in these 

probabilistic flow pattern maps. The time fraction functions of Jassim et al. [9] instead 

are based on processing of images and thus track variations in the vapour-liquid 

interfaces. Since void fraction is the key parameter in the heat transfer models, these void 

fraction variations are more promising for improving heat transfer modeling.  
 
6.2 Prediction method for the intermittent/annular flow transition 
To generalize the flow regime probabilities found by the cluster method, a prediction 

method is developed for the flow transition between intermittent and annular flow. An 

adopted Barbieri et al. [20] equation (Eq. (17)) is proposed because its suitability was 

shown in §3.1. In this new prediction method, also the width of the transition zone is 
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considered by incorporating the flow regime probabilities P in the regression coefficients 

C and n (Eqs. (18) and (19)). PA is the annular flow regime probability which can be 

evaluated between 0 and 1.  
n
ttL CXFr =       (17) 

315.227.14 += APC      (18) 
504.26975.0618.0 2 ++−= AA PPn      (19) 

 

The coefficients of determination, R², are 0.989 and 0.939 for C and n respectively. The 

R² values of the fit of the vapour quality for given flow regime probabilities and mass 

velocities are 0.973 for R134a and 0.974 for R410A. The mean absolute deviation of 

vapour quality is only 0.0164 for R134a and 0.0162 for R410A. 
 
6.3 Applicability 
This probabilistic flow regime transition between intermittent to annular flow can for 

instance be incorporated in the flow pattern based heat transfer model of Wojtan-

Ursenbacher-Thome [25] to better describe the gradual change in flow characteristics in 

the intermittent to annular flow transition. The heat transfer prediction in this transition 

zone suffers from an inappropriate combination of flow structures at low mass velocities 

[17]. Using the flow regime probabilities will assure a proper weighing of the flow 

phenomena and result in a smooth transition. This can be an alternative for a full 

probabilistic heat transfer model for evaporating flow similar to the model developed by 

Jassim et al. [12] under condensing conditions. 

 
7. Conclusions 
 
A capacitance probe and transducer was developed for use with HFC refrigerants. Sensor 

signals are gathered with R410A and R134a in an 8mm I.D. smooth tube at a saturation 

temperature of 15°C in the mass velocity range of 200 to 500kg/m²s and vapour quality 

range from 0 to 1 in steps of 0.025. A visual classification based on high speed camera 

images is made for comparison reasons. This visual classification confirmed the new 

intermittent/annular flow transition criterion of Barbieri et al. [20] for use with R410A 

and Tsat=15°C. 
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The signal average, the variance and a frequency contribution parameter are found 

suitable for flow regime classification into slug flow, intermittent flow and annular flow. 

The use of the c-means fuzzy clustering algorithm is investigated for objective flow 

regime classification purposes. The clustering in feature space groups the data points in 

clearly separable areas in a flow pattern map. The slug flows could be easily separated 

from non-slug flows by using the variance of the sensor signal. The AVG and the F95 

parameter were found most suitable for separating intermittent flows from annular flows. 

But, because of the gradual nature of this transition, the choice of this parameter is rather 

arbitrary. 

 
The soft-clustering algorithm assigns a membership grade to each data point which can 

be interpreted as a flow regime probability. After regression of these membership grades, 

flow regimes probability functions were given and probabilistic flow pattern maps were 

presented for the HFC data. These maps clearly quantify the width of the transition zones. 

A probabilistic prediction method for the intermittent/annular flow transition is proposed 

based on the Barbieri et al. [20] correlation. This method can be further applied for 

probabilistic heat transfer and/or pressure drop modeling. 
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Table 1: Results of the Fisher Criterion on the R410A signal features 
 

Feature All data S/non-S S-I only A/non-A I-A only 
AVG 3.676 2.645 1.811 1.804 2.553 
M2 3.399 4.958 4.578 0.200 0.385 
M3 0.391 0.585 0.374 0.890 0.020 
M4 0.017 0.014 0.002 0.021 0.018 
F50 1.056 0.655 1.006 0.903 0.806 
F70 1.303 0.666 1.034 1.275 1.180 
F90 3.091 1.275 1.254 2.875 2.613 
F95 3.397 1.540 1.210 3.104 2.797 
F99 6.540 2.720 1.404 1.936 1.678 
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Table 2: Results of the Fisher Criterion on the R134a signal features 
 

Feature All data S/non-S S-I only A/non-A I-A only 
AVG 6.737 3.599 2.886 1.911 2.440 
M2 3.378 3.738 3.499 0.178 2.708 
M3 1.384 1.950 2.419 0.032 0.012 
M4 0.174 0.233 0.282 0.002 0.035 
F50 2.124 0.842 1.041 2.277 2.138 
F70 2.417 0.947 1.165 2.485 2.320 
F90 4.065 1.340 1.324 3.580 3.360 
F95 5.575 1.684 1.435 3.810 3.651 
F99 3.067 1.715 0.633 1.460 1.214 
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Table 3: Coefficients of the first principle component of the feature data 
 

Feature R410A R134a
AVG -0.343 -0.260
M2 -0.234 -0.118
M3 -0.100 -0.058
M4 -0.035 -0.022
F50 0.235 0.349 
F70 0.315 0.348 
F90 0.434 0.356 
F95 0.490 0.349 
F99 0.483 0.294 
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Table 4: Variances and weight parameters by feature (after normalization) 
 

 R410A R134a
Feature k vark wk vark wk
AVG 0.214 2.33 0.269 1.86
M2 0.216 2.31 0.168 2.98
F95 0.415 1.21 0.412 1.21
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Table 5: Regression coefficients with R-squared values and scaling factors of 
R410A 

 
G [kg/m²s] 200 300 400 500 
S a -0.962 -0.982 -0.993 -0.997 
 b 113.2 51.04 99.57 113.5 
 c 1.87e6 269.7 425.4 1500 
 P0 0.968 0.984 0.996 1.005 
 R² 0.9994 0.9978 0.9986 0.9977 
 pmin 5.67e-3 1.34e-3 3.37e-3 7.46e-3 
 1-pmax 3.21e-2 1.63e-2 3.89e-3 -4.61e-3 
A a 13.97 18.30 20.85 19.91 
 b 0.657 0.562 0.468 0.347 
 R² 0.999 0.9997 0.9996 0.9977 
 pmin 1.04e-4 3.40e-5 5.77e-5 1.00e-3 
 1-pmax 8.20e-3 3.30e-4 1.52e-5 2.24e-6 
I R² 0.9979 0.9988 0.9991 0.9966 
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Table 6: Regression coefficients with R-squared values and scaling factors of 
R134a 

 
G [kg/m²s] 200 300 400 500 
S a -0.986 -0.983 -0.928 -0.987 
 b 83.02 100.4 127.3 103.1 
 c 1482 652.7 559.8 127.5 
 P0 0.992 0.987 0.933 0.990 
 R² 0.999 0.9998 0.9997 0.9997 
 pmin 6.55e-3 4.03e-3 5.74e-3 3.08e-3 
 1-pmax 7.88e-3 12.7e-3 6.66e-2 9.67e-3 
A a 15.84 27.18 30.03 28.77 
 b 0.507 0.378 0.321 0.265 
 R² 0.994 0.9995 0.9997 0.996 
 pmin 3.24e-4 3.45e-5 6.22e-5 4.87e-4 
 1-pmax 4.09e-4 4.57e-8 1.39e-9 6.60e-10 
I R² 0.994 0.9998 0.9992 0.996 
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